| // GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*-- |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This files defines GRSimpleVals, a sub-class of GRTransferFuncs that |
| // provides transfer functions for performing simple value tracking with |
| // limited support for symbolics. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "GRSimpleVals.h" |
| #include "clang/Basic/Diagnostic.h" |
| |
| using namespace clang; |
| |
| namespace clang { |
| |
| unsigned RunGRSimpleVals(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx, |
| Diagnostic& Diag, bool Visualize) { |
| |
| if (Diag.hasErrorOccurred()) |
| return 0; |
| |
| GRCoreEngine<GRExprEngine> Engine(cfg, FD, Ctx); |
| GRExprEngine* CheckerState = &Engine.getCheckerState(); |
| GRSimpleVals GRSV; |
| CheckerState->setTransferFunctions(GRSV); |
| |
| // Execute the worklist algorithm. |
| Engine.ExecuteWorkList(10000); |
| |
| // Look for explicit-Null dereferences and warn about them. |
| for (GRExprEngine::null_iterator I=CheckerState->null_begin(), |
| E=CheckerState->null_end(); I!=E; ++I) { |
| |
| const PostStmt& L = cast<PostStmt>((*I)->getLocation()); |
| Expr* Exp = cast<Expr>(L.getStmt()); |
| |
| Diag.Report(FullSourceLoc(Exp->getExprLoc(), Ctx.getSourceManager()), |
| diag::chkr_null_deref_after_check); |
| } |
| |
| #ifndef NDEBUG |
| if (Visualize) CheckerState->ViewGraph(); |
| #endif |
| |
| return Engine.getGraph().size(); |
| } |
| |
| } // end clang namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function for Casts. |
| //===----------------------------------------------------------------------===// |
| |
| RVal GRSimpleVals::EvalCast(ValueManager& ValMgr, NonLVal X, QualType T) { |
| |
| if (!isa<nonlval::ConcreteInt>(X)) |
| return UnknownVal(); |
| |
| llvm::APSInt V = cast<nonlval::ConcreteInt>(X).getValue(); |
| V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType()); |
| V.extOrTrunc(ValMgr.getContext().getTypeSize(T, SourceLocation())); |
| |
| if (T->isPointerType()) |
| return lval::ConcreteInt(ValMgr.getValue(V)); |
| else |
| return nonlval::ConcreteInt(ValMgr.getValue(V)); |
| } |
| |
| // Casts. |
| |
| RVal GRSimpleVals::EvalCast(ValueManager& ValMgr, LVal X, QualType T) { |
| |
| if (T->isPointerType()) |
| return X; |
| |
| assert (T->isIntegerType()); |
| |
| if (!isa<lval::ConcreteInt>(X)) |
| return UnknownVal(); |
| |
| llvm::APSInt V = cast<lval::ConcreteInt>(X).getValue(); |
| V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType()); |
| V.extOrTrunc(ValMgr.getContext().getTypeSize(T, SourceLocation())); |
| |
| return nonlval::ConcreteInt(ValMgr.getValue(V)); |
| } |
| |
| // Unary operators. |
| |
| RVal GRSimpleVals::EvalMinus(ValueManager& ValMgr, UnaryOperator* U, NonLVal X){ |
| |
| switch (X.getSubKind()) { |
| |
| case nonlval::ConcreteIntKind: |
| return cast<nonlval::ConcreteInt>(X).EvalMinus(ValMgr, U); |
| |
| default: |
| return UnknownVal(); |
| } |
| } |
| |
| RVal GRSimpleVals::EvalComplement(ValueManager& ValMgr, NonLVal X) { |
| |
| switch (X.getSubKind()) { |
| |
| case nonlval::ConcreteIntKind: |
| return cast<nonlval::ConcreteInt>(X).EvalComplement(ValMgr); |
| |
| default: |
| return UnknownVal(); |
| } |
| } |
| |
| // Binary operators. |
| |
| RVal GRSimpleVals::EvalBinOp(ValueManager& ValMgr, BinaryOperator::Opcode Op, |
| NonLVal L, NonLVal R) { |
| while (1) { |
| |
| switch (L.getSubKind()) { |
| default: |
| return UnknownVal(); |
| |
| case nonlval::ConcreteIntKind: |
| |
| if (isa<nonlval::ConcreteInt>(R)) { |
| const nonlval::ConcreteInt& L_CI = cast<nonlval::ConcreteInt>(L); |
| const nonlval::ConcreteInt& R_CI = cast<nonlval::ConcreteInt>(R); |
| return L_CI.EvalBinOp(ValMgr, Op, R_CI); |
| } |
| else { |
| NonLVal tmp = R; |
| R = L; |
| L = tmp; |
| continue; |
| } |
| |
| case nonlval::SymbolValKind: { |
| |
| if (isa<nonlval::ConcreteInt>(R)) { |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<nonlval::SymbolVal>(L).getSymbol(), Op, |
| cast<nonlval::ConcreteInt>(R).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| else |
| return UnknownVal(); |
| } |
| } |
| } |
| } |
| |
| |
| // Binary Operators (except assignments and comma). |
| |
| RVal GRSimpleVals::EvalBinOp(ValueManager& ValMgr, BinaryOperator::Opcode Op, |
| LVal L, LVal R) { |
| |
| switch (Op) { |
| |
| default: |
| return UnknownVal(); |
| |
| case BinaryOperator::EQ: |
| return EvalEQ(ValMgr, L, R); |
| |
| case BinaryOperator::NE: |
| return EvalNE(ValMgr, L, R); |
| } |
| } |
| |
| // Pointer arithmetic. |
| |
| RVal GRSimpleVals::EvalBinOp(ValueManager& ValMgr, BinaryOperator::Opcode Op, |
| LVal L, NonLVal R) { |
| return UnknownVal(); |
| } |
| |
| // Equality operators for LVals. |
| |
| RVal GRSimpleVals::EvalEQ(ValueManager& ValMgr, LVal L, LVal R) { |
| |
| switch (L.getSubKind()) { |
| |
| default: |
| assert(false && "EQ not implemented for this LVal."); |
| return UnknownVal(); |
| |
| case lval::ConcreteIntKind: |
| |
| if (isa<lval::ConcreteInt>(R)) { |
| bool b = cast<lval::ConcreteInt>(L).getValue() == |
| cast<lval::ConcreteInt>(R).getValue(); |
| |
| return NonLVal::MakeIntTruthVal(ValMgr, b); |
| } |
| else if (isa<lval::SymbolVal>(R)) { |
| |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(R).getSymbol(), |
| BinaryOperator::EQ, |
| cast<lval::ConcreteInt>(L).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| break; |
| |
| case lval::SymbolValKind: { |
| |
| if (isa<lval::ConcreteInt>(R)) { |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(L).getSymbol(), |
| BinaryOperator::EQ, |
| cast<lval::ConcreteInt>(R).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| // FIXME: Implement == for lval Symbols. This is mainly useful |
| // in iterator loops when traversing a buffer, e.g. while(z != zTerm). |
| // Since this is not useful for many checkers we'll punt on this for |
| // now. |
| |
| return UnknownVal(); |
| } |
| |
| case lval::DeclValKind: |
| case lval::FuncValKind: |
| case lval::GotoLabelKind: |
| return NonLVal::MakeIntTruthVal(ValMgr, L == R); |
| } |
| |
| return NonLVal::MakeIntTruthVal(ValMgr, false); |
| } |
| |
| RVal GRSimpleVals::EvalNE(ValueManager& ValMgr, LVal L, LVal R) { |
| |
| switch (L.getSubKind()) { |
| |
| default: |
| assert(false && "NE not implemented for this LVal."); |
| return UnknownVal(); |
| |
| case lval::ConcreteIntKind: |
| |
| if (isa<lval::ConcreteInt>(R)) { |
| bool b = cast<lval::ConcreteInt>(L).getValue() != |
| cast<lval::ConcreteInt>(R).getValue(); |
| |
| return NonLVal::MakeIntTruthVal(ValMgr, b); |
| } |
| else if (isa<lval::SymbolVal>(R)) { |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(R).getSymbol(), |
| BinaryOperator::NE, |
| cast<lval::ConcreteInt>(L).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| break; |
| |
| case lval::SymbolValKind: { |
| if (isa<lval::ConcreteInt>(R)) { |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(L).getSymbol(), |
| BinaryOperator::NE, |
| cast<lval::ConcreteInt>(R).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| // FIXME: Implement != for lval Symbols. This is mainly useful |
| // in iterator loops when traversing a buffer, e.g. while(z != zTerm). |
| // Since this is not useful for many checkers we'll punt on this for |
| // now. |
| |
| return UnknownVal(); |
| |
| break; |
| } |
| |
| case lval::DeclValKind: |
| case lval::FuncValKind: |
| case lval::GotoLabelKind: |
| return NonLVal::MakeIntTruthVal(ValMgr, L != R); |
| } |
| |
| return NonLVal::MakeIntTruthVal(ValMgr, true); |
| } |