| //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SimpleConstraintManager, a class that holds code shared |
| // between BasicConstraintManager and RangeConstraintManager. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SimpleConstraintManager.h" |
| #include "clang/Analysis/PathSensitive/GRExprEngine.h" |
| #include "clang/Analysis/PathSensitive/GRState.h" |
| |
| namespace clang { |
| |
| SimpleConstraintManager::~SimpleConstraintManager() {} |
| |
| bool SimpleConstraintManager::canReasonAbout(SVal X) const { |
| if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) { |
| const SymExpr *SE = SymVal->getSymbolicExpression(); |
| |
| if (isa<SymbolData>(SE)) |
| return true; |
| |
| if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { |
| switch (SIE->getOpcode()) { |
| // We don't reason yet about bitwise-constraints on symbolic values. |
| case BinaryOperator::And: |
| case BinaryOperator::Or: |
| case BinaryOperator::Xor: |
| return false; |
| // We don't reason yet about arithmetic constraints on symbolic values. |
| case BinaryOperator::Mul: |
| case BinaryOperator::Div: |
| case BinaryOperator::Rem: |
| case BinaryOperator::Add: |
| case BinaryOperator::Sub: |
| case BinaryOperator::Shl: |
| case BinaryOperator::Shr: |
| return false; |
| // All other cases. |
| default: |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const GRState* |
| SimpleConstraintManager::Assume(const GRState* St, SVal Cond, bool Assumption, |
| bool& isFeasible) { |
| if (Cond.isUnknown()) { |
| isFeasible = true; |
| return St; |
| } |
| |
| if (isa<NonLoc>(Cond)) |
| return Assume(St, cast<NonLoc>(Cond), Assumption, isFeasible); |
| else |
| return Assume(St, cast<Loc>(Cond), Assumption, isFeasible); |
| } |
| |
| const GRState* |
| SimpleConstraintManager::Assume(const GRState* St, Loc Cond, bool Assumption, |
| bool& isFeasible) { |
| St = AssumeAux(St, Cond, Assumption, isFeasible); |
| |
| if (!isFeasible) |
| return St; |
| |
| // EvalAssume is used to call into the GRTransferFunction object to perform |
| // any checker-specific update of the state based on this assumption being |
| // true or false. |
| return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption, |
| isFeasible); |
| } |
| |
| const GRState* |
| SimpleConstraintManager::AssumeAux(const GRState* St, Loc Cond, bool Assumption, |
| bool& isFeasible) { |
| BasicValueFactory& BasicVals = StateMgr.getBasicVals(); |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert (false && "'Assume' not implemented for this Loc."); |
| return St; |
| |
| case loc::SymbolValKind: |
| if (Assumption) |
| return AssumeSymNE(St, cast<loc::SymbolVal>(Cond).getSymbol(), |
| BasicVals.getZeroWithPtrWidth(), isFeasible); |
| else |
| return AssumeSymEQ(St, cast<loc::SymbolVal>(Cond).getSymbol(), |
| BasicVals.getZeroWithPtrWidth(), isFeasible); |
| |
| case loc::MemRegionKind: { |
| // FIXME: Should this go into the storemanager? |
| |
| const MemRegion* R = cast<loc::MemRegionVal>(Cond).getRegion(); |
| const SubRegion* SubR = dyn_cast<SubRegion>(R); |
| |
| while (SubR) { |
| // FIXME: now we only find the first symbolic region. |
| if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(SubR)) |
| return AssumeAux(St, loc::SymbolVal(SymR->getSymbol()), Assumption, |
| isFeasible); |
| SubR = dyn_cast<SubRegion>(SubR->getSuperRegion()); |
| } |
| |
| // FALL-THROUGH. |
| } |
| |
| case loc::FuncValKind: |
| case loc::GotoLabelKind: |
| isFeasible = Assumption; |
| return St; |
| |
| case loc::ConcreteIntKind: { |
| bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0; |
| isFeasible = b ? Assumption : !Assumption; |
| return St; |
| } |
| } // end switch |
| } |
| |
| const GRState* |
| SimpleConstraintManager::Assume(const GRState* St, NonLoc Cond, bool Assumption, |
| bool& isFeasible) { |
| St = AssumeAux(St, Cond, Assumption, isFeasible); |
| |
| if (!isFeasible) |
| return St; |
| |
| // EvalAssume is used to call into the GRTransferFunction object to perform |
| // any checker-specific update of the state based on this assumption being |
| // true or false. |
| return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption, |
| isFeasible); |
| } |
| |
| const GRState* |
| SimpleConstraintManager::AssumeAux(const GRState* St,NonLoc Cond, |
| bool Assumption, bool& isFeasible) { |
| // We cannot reason about SymIntExpr and SymSymExpr. |
| if (!canReasonAbout(Cond)) { |
| isFeasible = true; |
| return St; |
| } |
| |
| BasicValueFactory& BasicVals = StateMgr.getBasicVals(); |
| SymbolManager& SymMgr = StateMgr.getSymbolManager(); |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert(false && "'Assume' not implemented for this NonLoc"); |
| |
| case nonloc::SymbolValKind: { |
| nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond); |
| SymbolRef sym = SV.getSymbol(); |
| QualType T = SymMgr.getType(sym); |
| |
| if (Assumption) |
| return AssumeSymNE(St, sym, BasicVals.getValue(0, T), isFeasible); |
| else |
| return AssumeSymEQ(St, sym, BasicVals.getValue(0, T), isFeasible); |
| } |
| |
| case nonloc::SymExprValKind: { |
| nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond); |
| if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression())) |
| return AssumeSymInt(St, Assumption, SE, isFeasible); |
| |
| isFeasible = true; |
| return St; |
| } |
| |
| case nonloc::ConcreteIntKind: { |
| bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0; |
| isFeasible = b ? Assumption : !Assumption; |
| return St; |
| } |
| |
| case nonloc::LocAsIntegerKind: |
| return AssumeAux(St, cast<nonloc::LocAsInteger>(Cond).getLoc(), |
| Assumption, isFeasible); |
| } // end switch |
| } |
| |
| const GRState* |
| SimpleConstraintManager::AssumeSymInt(const GRState* St, bool Assumption, |
| const SymIntExpr *SE, bool& isFeasible) { |
| |
| |
| // Here we assume that LHS is a symbol. This is consistent with the |
| // rest of the constraint manager logic. |
| SymbolRef Sym = cast<SymbolData>(SE->getLHS()); |
| const llvm::APSInt &Int = SE->getRHS(); |
| |
| switch (SE->getOpcode()) { |
| default: |
| // No logic yet for other operators. |
| isFeasible = true; |
| return St; |
| |
| case BinaryOperator::EQ: |
| return Assumption ? AssumeSymEQ(St, Sym, Int, isFeasible) |
| : AssumeSymNE(St, Sym, Int, isFeasible); |
| |
| case BinaryOperator::NE: |
| return Assumption ? AssumeSymNE(St, Sym, Int, isFeasible) |
| : AssumeSymEQ(St, Sym, Int, isFeasible); |
| |
| case BinaryOperator::GT: |
| return Assumption ? AssumeSymGT(St, Sym, Int, isFeasible) |
| : AssumeSymLE(St, Sym, Int, isFeasible); |
| |
| case BinaryOperator::GE: |
| return Assumption ? AssumeSymGE(St, Sym, Int, isFeasible) |
| : AssumeSymLT(St, Sym, Int, isFeasible); |
| |
| case BinaryOperator::LT: |
| return Assumption ? AssumeSymLT(St, Sym, Int, isFeasible) |
| : AssumeSymGE(St, Sym, Int, isFeasible); |
| |
| case BinaryOperator::LE: |
| return Assumption ? AssumeSymLE(St, Sym, Int, isFeasible) |
| : AssumeSymGT(St, Sym, Int, isFeasible); |
| } // end switch |
| } |
| |
| const GRState* |
| SimpleConstraintManager::AssumeInBound(const GRState* St, SVal Idx, |
| SVal UpperBound, bool Assumption, |
| bool& isFeasible) { |
| // Only support ConcreteInt for now. |
| if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound))){ |
| isFeasible = true; |
| return St; |
| } |
| |
| const llvm::APSInt& Zero = getBasicVals().getZeroWithPtrWidth(false); |
| llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue(); |
| // IdxV might be too narrow. |
| if (IdxV.getBitWidth() < Zero.getBitWidth()) |
| IdxV.extend(Zero.getBitWidth()); |
| // UBV might be too narrow, too. |
| llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue(); |
| if (UBV.getBitWidth() < Zero.getBitWidth()) |
| UBV.extend(Zero.getBitWidth()); |
| |
| bool InBound = (Zero <= IdxV) && (IdxV < UBV); |
| |
| isFeasible = Assumption ? InBound : !InBound; |
| |
| return St; |
| } |
| |
| } // end of namespace clang |