blob: 085dddd95d4f5d70ba278423e90c12757b78fd7f [file] [log] [blame]
//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ exception related code generation.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/StmtCXX.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CallSite.h"
#include "CodeGenFunction.h"
#include "CGException.h"
using namespace clang;
using namespace CodeGen;
/// Push an entry of the given size onto this protected-scope stack.
char *EHScopeStack::allocate(size_t Size) {
if (!StartOfBuffer) {
unsigned Capacity = 1024;
while (Capacity < Size) Capacity *= 2;
StartOfBuffer = new char[Capacity];
StartOfData = EndOfBuffer = StartOfBuffer + Capacity;
} else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) {
unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer;
unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer);
unsigned NewCapacity = CurrentCapacity;
do {
NewCapacity *= 2;
} while (NewCapacity < UsedCapacity + Size);
char *NewStartOfBuffer = new char[NewCapacity];
char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity;
char *NewStartOfData = NewEndOfBuffer - UsedCapacity;
memcpy(NewStartOfData, StartOfData, UsedCapacity);
delete [] StartOfBuffer;
StartOfBuffer = NewStartOfBuffer;
EndOfBuffer = NewEndOfBuffer;
StartOfData = NewStartOfData;
}
assert(StartOfBuffer + Size <= StartOfData);
StartOfData -= Size;
return StartOfData;
}
EHScopeStack::stable_iterator
EHScopeStack::getEnclosingEHCleanup(iterator it) const {
assert(it != end());
do {
if (isa<EHCleanupScope>(*it)) {
if (cast<EHCleanupScope>(*it).isEHCleanup())
return stabilize(it);
return cast<EHCleanupScope>(*it).getEnclosingEHCleanup();
}
++it;
} while (it != end());
return stable_end();
}
void EHScopeStack::pushCleanup(llvm::BasicBlock *NormalEntry,
llvm::BasicBlock *NormalExit,
llvm::BasicBlock *EHEntry,
llvm::BasicBlock *EHExit) {
char *Buffer = allocate(EHCleanupScope::getSize());
new (Buffer) EHCleanupScope(BranchFixups.size(),
InnermostNormalCleanup,
InnermostEHCleanup,
NormalEntry, NormalExit, EHEntry, EHExit);
if (NormalEntry)
InnermostNormalCleanup = stable_begin();
if (EHEntry)
InnermostEHCleanup = stable_begin();
}
void EHScopeStack::popCleanup() {
assert(!empty() && "popping exception stack when not empty");
assert(isa<EHCleanupScope>(*begin()));
EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin());
InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup();
InnermostEHCleanup = Cleanup.getEnclosingEHCleanup();
StartOfData += EHCleanupScope::getSize();
// Check whether we can shrink the branch-fixups stack.
if (!BranchFixups.empty()) {
// If we no longer have any normal cleanups, all the fixups are
// complete.
if (!hasNormalCleanups())
BranchFixups.clear();
// Otherwise we can still trim out unnecessary nulls.
else
popNullFixups();
}
}
EHFilterScope *EHScopeStack::pushFilter(unsigned NumFilters) {
char *Buffer = allocate(EHFilterScope::getSizeForNumFilters(NumFilters));
CatchDepth++;
return new (Buffer) EHFilterScope(NumFilters);
}
void EHScopeStack::popFilter() {
assert(!empty() && "popping exception stack when not empty");
EHFilterScope &Filter = cast<EHFilterScope>(*begin());
StartOfData += EHFilterScope::getSizeForNumFilters(Filter.getNumFilters());
assert(CatchDepth > 0 && "mismatched filter push/pop");
CatchDepth--;
}
EHCatchScope *EHScopeStack::pushCatch(unsigned NumHandlers) {
char *Buffer = allocate(EHCatchScope::getSizeForNumHandlers(NumHandlers));
CatchDepth++;
return new (Buffer) EHCatchScope(NumHandlers);
}
void EHScopeStack::pushTerminate() {
char *Buffer = allocate(EHTerminateScope::getSize());
CatchDepth++;
new (Buffer) EHTerminateScope();
}
/// Remove any 'null' fixups on the stack. However, we can't pop more
/// fixups than the fixup depth on the innermost normal cleanup, or
/// else fixups that we try to add to that cleanup will end up in the
/// wrong place. We *could* try to shrink fixup depths, but that's
/// actually a lot of work for little benefit.
void EHScopeStack::popNullFixups() {
// We expect this to only be called when there's still an innermost
// normal cleanup; otherwise there really shouldn't be any fixups.
assert(hasNormalCleanups());
EHScopeStack::iterator it = find(InnermostNormalCleanup);
unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth();
assert(BranchFixups.size() >= MinSize && "fixup stack out of order");
while (BranchFixups.size() > MinSize &&
BranchFixups.back().Destination == 0)
BranchFixups.pop_back();
}
void EHScopeStack::resolveBranchFixups(llvm::BasicBlock *Dest) {
assert(Dest && "null block passed to resolveBranchFixups");
if (BranchFixups.empty()) return;
assert(hasNormalCleanups() &&
"branch fixups exist with no normal cleanups on stack");
for (unsigned I = 0, E = BranchFixups.size(); I != E; ++I)
if (BranchFixups[I].Destination == Dest)
BranchFixups[I].Destination = 0;
popNullFixups();
}
static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
// void *__cxa_allocate_exception(size_t thrown_size);
const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
std::vector<const llvm::Type*> Args(1, SizeTy);
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getInt8PtrTy(CGF.getLLVMContext()),
Args, false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
}
static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
// void __cxa_free_exception(void *thrown_exception);
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
std::vector<const llvm::Type*> Args(1, Int8PtrTy);
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
Args, false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
}
static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
// void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
// void (*dest) (void *));
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
std::vector<const llvm::Type*> Args(3, Int8PtrTy);
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
Args, false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
}
static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
// void __cxa_rethrow();
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
}
static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
// void *__cxa_get_exception_ptr(void*);
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
std::vector<const llvm::Type*> Args(1, Int8PtrTy);
const llvm::FunctionType *FTy =
llvm::FunctionType::get(Int8PtrTy, Args, false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
}
static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
// void *__cxa_begin_catch(void*);
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
std::vector<const llvm::Type*> Args(1, Int8PtrTy);
const llvm::FunctionType *FTy =
llvm::FunctionType::get(Int8PtrTy, Args, false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
}
static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
// void __cxa_end_catch();
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
}
static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
// void __cxa_call_unexepcted(void *thrown_exception);
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
std::vector<const llvm::Type*> Args(1, Int8PtrTy);
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
Args, false);
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
}
llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
std::vector<const llvm::Type*> Args(1, Int8PtrTy);
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), Args,
false);
if (CGM.getLangOptions().SjLjExceptions)
return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
}
static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
// void __terminate();
const llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false);
return CGF.CGM.CreateRuntimeFunction(FTy,
CGF.CGM.getLangOptions().CPlusPlus ? "_ZSt9terminatev" : "abort");
}
static const char *getCPersonalityFn(CodeGenFunction &CGF) {
return "__gcc_personality_v0";
}
static const char *getObjCPersonalityFn(CodeGenFunction &CGF) {
if (CGF.CGM.getLangOptions().NeXTRuntime) {
if (CGF.CGM.getLangOptions().ObjCNonFragileABI)
return "__objc_personality_v0";
else
return getCPersonalityFn(CGF);
} else {
return "__gnu_objc_personality_v0";
}
}
static const char *getCXXPersonalityFn(CodeGenFunction &CGF) {
if (CGF.CGM.getLangOptions().SjLjExceptions)
return "__gxx_personality_sj0";
else
return "__gxx_personality_v0";
}
/// Determines the personality function to use when both C++
/// and Objective-C exceptions are being caught.
static const char *getObjCXXPersonalityFn(CodeGenFunction &CGF) {
// The ObjC personality defers to the C++ personality for non-ObjC
// handlers. Unlike the C++ case, we use the same personality
// function on targets using (backend-driven) SJLJ EH.
if (CGF.CGM.getLangOptions().NeXTRuntime) {
if (CGF.CGM.getLangOptions().ObjCNonFragileABI)
return "__objc_personality_v0";
// In the fragile ABI, just use C++ exception handling and hope
// they're not doing crazy exception mixing.
else
return getCXXPersonalityFn(CGF);
}
// I'm pretty sure the GNU runtime doesn't support mixed EH.
// TODO: we don't necessarily need mixed EH here; remember what
// kind of exceptions we actually try to catch in this function.
CGF.CGM.ErrorUnsupported(CGF.CurCodeDecl,
"the GNU Objective C runtime does not support "
"catching C++ and Objective C exceptions in the "
"same function");
// Use the C++ personality just to avoid returning null.
return getCXXPersonalityFn(CGF);
}
static llvm::Constant *getPersonalityFn(CodeGenFunction &CGF) {
const char *Name;
const LangOptions &Opts = CGF.CGM.getLangOptions();
if (Opts.CPlusPlus && Opts.ObjC1)
Name = getObjCXXPersonalityFn(CGF);
else if (Opts.CPlusPlus)
Name = getCXXPersonalityFn(CGF);
else if (Opts.ObjC1)
Name = getObjCPersonalityFn(CGF);
else
Name = getCPersonalityFn(CGF);
llvm::Constant *Personality =
CGF.CGM.CreateRuntimeFunction(llvm::FunctionType::get(
llvm::Type::getInt32Ty(
CGF.CGM.getLLVMContext()),
true),
Name);
return llvm::ConstantExpr::getBitCast(Personality, CGF.CGM.PtrToInt8Ty);
}
/// Returns the value to inject into a selector to indicate the
/// presence of a catch-all.
static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
// Possibly we should use @llvm.eh.catch.all.value here.
return llvm::ConstantPointerNull::get(CGF.CGM.PtrToInt8Ty);
}
/// Returns the value to inject into a selector to indicate the
/// presence of a cleanup.
static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) {
return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
}
// Emits an exception expression into the given location. This
// differs from EmitAnyExprToMem only in that, if a final copy-ctor
// call is required, an exception within that copy ctor causes
// std::terminate to be invoked.
static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *E,
llvm::Value *ExnLoc) {
// We want to release the allocated exception object if this
// expression throws. We do this by pushing an EH-only cleanup
// block which, furthermore, deactivates itself after the expression
// is complete.
llvm::AllocaInst *ShouldFreeVar =
CGF.CreateTempAlloca(llvm::Type::getInt1Ty(CGF.getLLVMContext()),
"should-free-exnobj.var");
CGF.InitTempAlloca(ShouldFreeVar,
llvm::ConstantInt::getFalse(CGF.getLLVMContext()));
// A variable holding the exception pointer. This is necessary
// because the throw expression does not necessarily dominate the
// cleanup, for example if it appears in a conditional expression.
llvm::AllocaInst *ExnLocVar =
CGF.CreateTempAlloca(ExnLoc->getType(), "exnobj.var");
// Make sure the exception object is cleaned up if there's an
// exception during initialization.
// FIXME: StmtExprs probably force this to include a non-EH
// handler.
{
CodeGenFunction::CleanupBlock Cleanup(CGF, CodeGenFunction::EHCleanup);
llvm::BasicBlock *FreeBB = CGF.createBasicBlock("free-exnobj");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("free-exnobj.done");
llvm::Value *ShouldFree = CGF.Builder.CreateLoad(ShouldFreeVar,
"should-free-exnobj");
CGF.Builder.CreateCondBr(ShouldFree, FreeBB, DoneBB);
CGF.EmitBlock(FreeBB);
llvm::Value *ExnLocLocal = CGF.Builder.CreateLoad(ExnLocVar, "exnobj");
CGF.Builder.CreateCall(getFreeExceptionFn(CGF), ExnLocLocal)
->setDoesNotThrow();
CGF.EmitBlock(DoneBB);
}
EHScopeStack::stable_iterator Cleanup = CGF.EHStack.stable_begin();
CGF.Builder.CreateStore(ExnLoc, ExnLocVar);
CGF.Builder.CreateStore(llvm::ConstantInt::getTrue(CGF.getLLVMContext()),
ShouldFreeVar);
// __cxa_allocate_exception returns a void*; we need to cast this
// to the appropriate type for the object.
const llvm::Type *Ty = CGF.ConvertType(E->getType())->getPointerTo();
llvm::Value *TypedExnLoc = CGF.Builder.CreateBitCast(ExnLoc, Ty);
// FIXME: this isn't quite right! If there's a final unelided call
// to a copy constructor, then according to [except.terminate]p1 we
// must call std::terminate() if that constructor throws, because
// technically that copy occurs after the exception expression is
// evaluated but before the exception is caught. But the best way
// to handle that is to teach EmitAggExpr to do the final copy
// differently if it can't be elided.
CGF.EmitAnyExprToMem(E, TypedExnLoc, /*Volatile*/ false);
CGF.Builder.CreateStore(llvm::ConstantInt::getFalse(CGF.getLLVMContext()),
ShouldFreeVar);
// Technically, the exception object is like a temporary; it has to
// be cleaned up when its full-expression is complete.
// Unfortunately, the AST represents full-expressions by creating a
// CXXExprWithTemporaries, which it only does when there are actually
// temporaries.
//
// If any cleanups have been added since we pushed ours, they must
// be from temporaries; this will get popped at the same time.
// Otherwise we need to pop ours off. FIXME: this is very brittle.
if (Cleanup == CGF.EHStack.stable_begin())
CGF.PopCleanupBlock();
}
llvm::Value *CodeGenFunction::getExceptionSlot() {
if (!ExceptionSlot) {
const llvm::Type *i8p = llvm::Type::getInt8PtrTy(getLLVMContext());
ExceptionSlot = CreateTempAlloca(i8p, "exn.slot");
}
return ExceptionSlot;
}
void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
if (!E->getSubExpr()) {
if (getInvokeDest()) {
Builder.CreateInvoke(getReThrowFn(*this),
getUnreachableBlock(),
getInvokeDest())
->setDoesNotReturn();
} else {
Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
Builder.CreateUnreachable();
}
// Clear the insertion point to indicate we are in unreachable code.
Builder.ClearInsertionPoint();
return;
}
QualType ThrowType = E->getSubExpr()->getType();
// Now allocate the exception object.
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
llvm::CallInst *ExceptionPtr =
Builder.CreateCall(AllocExceptionFn,
llvm::ConstantInt::get(SizeTy, TypeSize),
"exception");
ExceptionPtr->setDoesNotThrow();
EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
// Now throw the exception.
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, true);
// The address of the destructor. If the exception type has a
// trivial destructor (or isn't a record), we just pass null.
llvm::Constant *Dtor = 0;
if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
if (!Record->hasTrivialDestructor()) {
CXXDestructorDecl *DtorD = Record->getDestructor();
Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
}
}
if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
if (getInvokeDest()) {
llvm::InvokeInst *ThrowCall =
Builder.CreateInvoke3(getThrowFn(*this),
getUnreachableBlock(), getInvokeDest(),
ExceptionPtr, TypeInfo, Dtor);
ThrowCall->setDoesNotReturn();
} else {
llvm::CallInst *ThrowCall =
Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
ThrowCall->setDoesNotReturn();
Builder.CreateUnreachable();
}
// Clear the insertion point to indicate we are in unreachable code.
Builder.ClearInsertionPoint();
// FIXME: For now, emit a dummy basic block because expr emitters in generally
// are not ready to handle emitting expressions at unreachable points.
EnsureInsertPoint();
}
void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
if (!Exceptions)
return;
const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
if (FD == 0)
return;
const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
if (Proto == 0)
return;
assert(!Proto->hasAnyExceptionSpec() && "function with parameter pack");
if (!Proto->hasExceptionSpec())
return;
unsigned NumExceptions = Proto->getNumExceptions();
EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
for (unsigned I = 0; I != NumExceptions; ++I) {
QualType Ty = Proto->getExceptionType(I);
QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, true);
Filter->setFilter(I, EHType);
}
}
void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
if (!Exceptions)
return;
const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
if (FD == 0)
return;
const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
if (Proto == 0)
return;
if (!Proto->hasExceptionSpec())
return;
EHStack.popFilter();
}
void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
EnterCXXTryStmt(S);
EmitStmt(S.getTryBlock());
ExitCXXTryStmt(S);
}
void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
unsigned NumHandlers = S.getNumHandlers();
EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
for (unsigned I = 0; I != NumHandlers; ++I) {
const CXXCatchStmt *C = S.getHandler(I);
llvm::BasicBlock *Handler = createBasicBlock("catch");
if (C->getExceptionDecl()) {
// FIXME: Dropping the reference type on the type into makes it
// impossible to correctly implement catch-by-reference
// semantics for pointers. Unfortunately, this is what all
// existing compilers do, and it's not clear that the standard
// personality routine is capable of doing this right. See C++ DR 388:
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
QualType CaughtType = C->getCaughtType();
CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
llvm::Value *TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, true);
CatchScope->setHandler(I, TypeInfo, Handler);
} else {
// No exception decl indicates '...', a catch-all.
CatchScope->setCatchAllHandler(I, Handler);
}
}
}
/// Check whether this is a non-EH scope, i.e. a scope which doesn't
/// affect exception handling. Currently, the only non-EH scopes are
/// normal-only cleanup scopes.
static bool isNonEHScope(const EHScope &S) {
return isa<EHCleanupScope>(S) && !cast<EHCleanupScope>(S).isEHCleanup();
}
llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
assert(EHStack.requiresLandingPad());
assert(!EHStack.empty());
// Check the innermost scope for a cached landing pad. If this is
// a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
if (LP) return LP;
// Build the landing pad for this scope.
LP = EmitLandingPad();
assert(LP);
// Cache the landing pad on the innermost scope. If this is a
// non-EH scope, cache the landing pad on the enclosing scope, too.
for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
ir->setCachedLandingPad(LP);
if (!isNonEHScope(*ir)) break;
}
return LP;
}
llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
assert(EHStack.requiresLandingPad());
// This function contains a hack to work around a design flaw in
// LLVM's EH IR which breaks semantics after inlining. This same
// hack is implemented in llvm-gcc.
//
// The LLVM EH abstraction is basically a thin veneer over the
// traditional GCC zero-cost design: for each range of instructions
// in the function, there is (at most) one "landing pad" with an
// associated chain of EH actions. A language-specific personality
// function interprets this chain of actions and (1) decides whether
// or not to resume execution at the landing pad and (2) if so,
// provides an integer indicating why it's stopping. In LLVM IR,
// the association of a landing pad with a range of instructions is
// achieved via an invoke instruction, the chain of actions becomes
// the arguments to the @llvm.eh.selector call, and the selector
// call returns the integer indicator. Other than the required
// presence of two intrinsic function calls in the landing pad,
// the IR exactly describes the layout of the output code.
//
// A principal advantage of this design is that it is completely
// language-agnostic; in theory, the LLVM optimizers can treat
// landing pads neutrally, and targets need only know how to lower
// the intrinsics to have a functioning exceptions system (assuming
// that platform exceptions follow something approximately like the
// GCC design). Unfortunately, landing pads cannot be combined in a
// language-agnostic way: given selectors A and B, there is no way
// to make a single landing pad which faithfully represents the
// semantics of propagating an exception first through A, then
// through B, without knowing how the personality will interpret the
// (lowered form of the) selectors. This means that inlining has no
// choice but to crudely chain invokes (i.e., to ignore invokes in
// the inlined function, but to turn all unwindable calls into
// invokes), which is only semantically valid if every unwind stops
// at every landing pad.
//
// Therefore, the invoke-inline hack is to guarantee that every
// landing pad has a catch-all.
const bool UseInvokeInlineHack = true;
for (EHScopeStack::iterator ir = EHStack.begin(); ; ) {
assert(ir != EHStack.end() &&
"stack requiring landing pad is nothing but non-EH scopes?");
// If this is a terminate scope, just use the singleton terminate
// landing pad.
if (isa<EHTerminateScope>(*ir))
return getTerminateLandingPad();
// If this isn't an EH scope, iterate; otherwise break out.
if (!isNonEHScope(*ir)) break;
++ir;
// We haven't checked this scope for a cached landing pad yet.
if (llvm::BasicBlock *LP = ir->getCachedLandingPad())
return LP;
}
// Save the current IR generation state.
CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
// Create and configure the landing pad.
llvm::BasicBlock *LP = createBasicBlock("lpad");
EmitBlock(LP);
// Save the exception pointer. It's safe to use a single exception
// pointer per function because EH cleanups can never have nested
// try/catches.
llvm::CallInst *Exn =
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
Exn->setDoesNotThrow();
Builder.CreateStore(Exn, getExceptionSlot());
// Build the selector arguments.
llvm::SmallVector<llvm::Value*, 8> EHSelector;
EHSelector.push_back(Exn);
EHSelector.push_back(getPersonalityFn(*this));
// Accumulate all the handlers in scope.
llvm::DenseMap<llvm::Value*, JumpDest> EHHandlers;
JumpDest CatchAll;
bool HasEHCleanup = false;
bool HasEHFilter = false;
llvm::SmallVector<llvm::Value*, 8> EHFilters;
for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
I != E; ++I) {
switch (I->getKind()) {
case EHScope::Cleanup:
if (!HasEHCleanup)
HasEHCleanup = cast<EHCleanupScope>(*I).isEHCleanup();
// We otherwise don't care about cleanups.
continue;
case EHScope::Filter: {
assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
assert(!CatchAll.Block && "EH filter reached after catch-all");
// Filter scopes get added to the selector in wierd ways.
EHFilterScope &Filter = cast<EHFilterScope>(*I);
HasEHFilter = true;
// Add all the filter values which we aren't already explicitly
// catching.
for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) {
llvm::Value *FV = Filter.getFilter(I);
if (!EHHandlers.count(FV))
EHFilters.push_back(FV);
}
goto done;
}
case EHScope::Terminate:
// Terminate scopes are basically catch-alls.
assert(!CatchAll.Block);
CatchAll.Block = getTerminateHandler();
CatchAll.ScopeDepth = EHStack.getEnclosingEHCleanup(I);
goto done;
case EHScope::Catch:
break;
}
EHCatchScope &Catch = cast<EHCatchScope>(*I);
for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) {
EHCatchScope::Handler Handler = Catch.getHandler(HI);
// Catch-all. We should only have one of these per catch.
if (!Handler.Type) {
assert(!CatchAll.Block);
CatchAll.Block = Handler.Block;
CatchAll.ScopeDepth = EHStack.getEnclosingEHCleanup(I);
continue;
}
// Check whether we already have a handler for this type.
JumpDest &Dest = EHHandlers[Handler.Type];
if (Dest.Block) continue;
EHSelector.push_back(Handler.Type);
Dest.Block = Handler.Block;
Dest.ScopeDepth = EHStack.getEnclosingEHCleanup(I);
}
// Stop if we found a catch-all.
if (CatchAll.Block) break;
}
done:
unsigned LastToEmitInLoop = EHSelector.size();
// If we have a catch-all, add null to the selector.
if (CatchAll.Block) {
EHSelector.push_back(getCatchAllValue(CGF));
// If we have an EH filter, we need to add those handlers in the
// right place in the selector, which is to say, at the end.
} else if (HasEHFilter) {
// Create a filter expression: an integer constant saying how many
// filters there are (+1 to avoid ambiguity with 0 for cleanup),
// followed by the filter types. The personality routine only
// lands here if the filter doesn't match.
EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(),
EHFilters.size() + 1));
EHSelector.append(EHFilters.begin(), EHFilters.end());
// Also check whether we need a cleanup.
if (UseInvokeInlineHack || HasEHCleanup)
EHSelector.push_back(UseInvokeInlineHack
? getCatchAllValue(CGF)
: getCleanupValue(CGF));
// Otherwise, signal that we at least have cleanups.
} else if (UseInvokeInlineHack || HasEHCleanup) {
EHSelector.push_back(UseInvokeInlineHack
? getCatchAllValue(CGF)
: getCleanupValue(CGF));
} else {
assert(LastToEmitInLoop > 2);
LastToEmitInLoop--;
}
assert(EHSelector.size() >= 3 && "selector call has only two arguments!");
// Tell the backend how to generate the landing pad.
llvm::CallInst *Selection =
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
EHSelector.begin(), EHSelector.end(), "eh.selector");
Selection->setDoesNotThrow();
// Select the right handler.
llvm::Value *llvm_eh_typeid_for =
CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
// The results of llvm_eh_typeid_for aren't reliable --- at least
// not locally --- so we basically have to do this as an 'if' chain.
// We walk through the first N-1 catch clauses, testing and chaining,
// and then fall into the final clause (which is either a cleanup, a
// filter (possibly with a cleanup), a catch-all, or another catch).
for (unsigned I = 2; I != LastToEmitInLoop; ++I) {
llvm::Value *Type = EHSelector[I];
JumpDest Dest = EHHandlers[Type];
assert(Dest.Block && "no handler entry for value in selector?");
// Figure out where to branch on a match. As a debug code-size
// optimization, if the scope depth matches the innermost cleanup,
// we branch directly to the catch handler.
llvm::BasicBlock *Match = Dest.Block;
bool MatchNeedsCleanup = Dest.ScopeDepth != EHStack.getInnermostEHCleanup();
if (MatchNeedsCleanup)
Match = createBasicBlock("eh.match");
llvm::BasicBlock *Next = createBasicBlock("eh.next");
// Check whether the exception matches.
llvm::CallInst *Id
= Builder.CreateCall(llvm_eh_typeid_for,
Builder.CreateBitCast(Type, CGM.PtrToInt8Ty));
Id->setDoesNotThrow();
Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id),
Match, Next);
// Emit match code if necessary.
if (MatchNeedsCleanup) {
EmitBlock(Match);
EmitBranchThroughEHCleanup(Dest);
}
// Continue to the next match.
EmitBlock(Next);
}
// Emit the final case in the selector.
// This might be a catch-all....
if (CatchAll.Block) {
assert(isa<llvm::ConstantPointerNull>(EHSelector.back()));
EmitBranchThroughEHCleanup(CatchAll);
// ...or an EH filter...
} else if (HasEHFilter) {
llvm::Value *SavedSelection = Selection;
// First, unwind out to the outermost scope if necessary.
if (EHStack.hasEHCleanups()) {
// The end here might not dominate the beginning, so we might need to
// save the selector if we need it.
llvm::AllocaInst *SelectorVar = 0;
if (HasEHCleanup) {
SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var");
Builder.CreateStore(Selection, SelectorVar);
}
llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont");
EmitBranchThroughEHCleanup(JumpDest(CleanupContBB, EHStack.stable_end()));
EmitBlock(CleanupContBB);
if (HasEHCleanup)
SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector");
}
// If there was a cleanup, we'll need to actually check whether we
// landed here because the filter triggered.
if (UseInvokeInlineHack || HasEHCleanup) {
llvm::BasicBlock *RethrowBB = createBasicBlock("cleanup");
llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected");
llvm::Constant *Zero = llvm::ConstantInt::get(Builder.getInt32Ty(), 0);
llvm::Value *FailsFilter =
Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails");
Builder.CreateCondBr(FailsFilter, UnexpectedBB, RethrowBB);
// The rethrow block is where we land if this was a cleanup.
// TODO: can this be _Unwind_Resume if the InvokeInlineHack is off?
EmitBlock(RethrowBB);
Builder.CreateCall(getUnwindResumeOrRethrowFn(),
Builder.CreateLoad(getExceptionSlot()))
->setDoesNotReturn();
Builder.CreateUnreachable();
EmitBlock(UnexpectedBB);
}
// Call __cxa_call_unexpected. This doesn't need to be an invoke
// because __cxa_call_unexpected magically filters exceptions
// according to the last landing pad the exception was thrown
// into. Seriously.
Builder.CreateCall(getUnexpectedFn(*this),
Builder.CreateLoad(getExceptionSlot()))
->setDoesNotReturn();
Builder.CreateUnreachable();
// ...or a normal catch handler...
} else if (!UseInvokeInlineHack && !HasEHCleanup) {
llvm::Value *Type = EHSelector.back();
EmitBranchThroughEHCleanup(EHHandlers[Type]);
// ...or a cleanup.
} else {
// We emit a jump to a notional label at the outermost unwind state.
llvm::BasicBlock *Unwind = createBasicBlock("eh.resume");
JumpDest Dest(Unwind, EHStack.stable_end());
EmitBranchThroughEHCleanup(Dest);
// The unwind block. We have to reload the exception here because
// we might have unwound through arbitrary blocks, so the landing
// pad might not dominate.
EmitBlock(Unwind);
// This can always be a call because we necessarily didn't find
// anything on the EH stack which needs our help.
Builder.CreateCall(getUnwindResumeOrRethrowFn(),
Builder.CreateLoad(getExceptionSlot()))
->setDoesNotReturn();
Builder.CreateUnreachable();
}
// Restore the old IR generation state.
Builder.restoreIP(SavedIP);
return LP;
}
/// Emits a call to __cxa_begin_catch and enters a cleanup to call
/// __cxa_end_catch.
static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, llvm::Value *Exn) {
llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
Call->setDoesNotThrow();
{
CodeGenFunction::CleanupBlock EndCatchCleanup(CGF,
CodeGenFunction::NormalAndEHCleanup);
// __cxa_end_catch never throws, so this can just be a call.
CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
}
return Call;
}
/// A "special initializer" callback for initializing a catch
/// parameter during catch initialization.
static void InitCatchParam(CodeGenFunction &CGF,
const VarDecl &CatchParam,
llvm::Value *ParamAddr) {
// Load the exception from where the landing pad saved it.
llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
CanQualType CatchType =
CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
const llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
// If we're catching by reference, we can just cast the object
// pointer to the appropriate pointer.
if (isa<ReferenceType>(CatchType)) {
// __cxa_begin_catch returns the adjusted object pointer.
llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn);
llvm::Value *ExnCast =
CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
CGF.Builder.CreateStore(ExnCast, ParamAddr);
return;
}
// Non-aggregates (plus complexes).
bool IsComplex = false;
if (!CGF.hasAggregateLLVMType(CatchType) ||
(IsComplex = CatchType->isAnyComplexType())) {
llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn);
// If the catch type is a pointer type, __cxa_begin_catch returns
// the pointer by value.
if (CatchType->hasPointerRepresentation()) {
llvm::Value *CastExn =
CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
CGF.Builder.CreateStore(CastExn, ParamAddr);
return;
}
// Otherwise, it returns a pointer into the exception object.
const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
if (IsComplex) {
CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
ParamAddr, /*volatile*/ false);
} else {
llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, CatchType);
}
return;
}
// FIXME: this *really* needs to be done via a proper, Sema-emitted
// initializer expression.
CXXRecordDecl *RD = CatchType.getTypePtr()->getAsCXXRecordDecl();
assert(RD && "aggregate catch type was not a record!");
const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
if (RD->hasTrivialCopyConstructor()) {
llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn);
llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
CGF.EmitAggregateCopy(ParamAddr, Cast, CatchType);
return;
}
// We have to call __cxa_get_exception_ptr to get the adjusted
// pointer before copying.
llvm::CallInst *AdjustedExn =
CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
AdjustedExn->setDoesNotThrow();
llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
CXXConstructorDecl *CD = RD->getCopyConstructor(CGF.getContext(), 0);
assert(CD && "record has no copy constructor!");
llvm::Value *CopyCtor = CGF.CGM.GetAddrOfCXXConstructor(CD, Ctor_Complete);
CallArgList CallArgs;
CallArgs.push_back(std::make_pair(RValue::get(ParamAddr),
CD->getThisType(CGF.getContext())));
CallArgs.push_back(std::make_pair(RValue::get(Cast),
CD->getParamDecl(0)->getType()));
const FunctionProtoType *FPT
= CD->getType()->getAs<FunctionProtoType>();
// Call the copy ctor in a terminate scope.
CGF.EHStack.pushTerminate();
CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(CallArgs, FPT),
CopyCtor, ReturnValueSlot(), CallArgs, CD);
CGF.EHStack.popTerminate();
// Finally we can call __cxa_begin_catch.
CallBeginCatch(CGF, Exn);
}
/// Begins a catch statement by initializing the catch variable and
/// calling __cxa_begin_catch.
static void BeginCatch(CodeGenFunction &CGF,
const CXXCatchStmt *S) {
// We have to be very careful with the ordering of cleanups here:
// C++ [except.throw]p4:
// The destruction [of the exception temporary] occurs
// immediately after the destruction of the object declared in
// the exception-declaration in the handler.
//
// So the precise ordering is:
// 1. Construct catch variable.
// 2. __cxa_begin_catch
// 3. Enter __cxa_end_catch cleanup
// 4. Enter dtor cleanup
//
// We do this by initializing the exception variable with a
// "special initializer", InitCatchParam. Delegation sequence:
// - ExitCXXTryStmt opens a RunCleanupsScope
// - EmitLocalBlockVarDecl creates the variable and debug info
// - InitCatchParam initializes the variable from the exception
// - CallBeginCatch calls __cxa_begin_catch
// - CallBeginCatch enters the __cxa_end_catch cleanup
// - EmitLocalBlockVarDecl enters the variable destructor cleanup
// - EmitCXXTryStmt emits the code for the catch body
// - EmitCXXTryStmt close the RunCleanupsScope
VarDecl *CatchParam = S->getExceptionDecl();
if (!CatchParam) {
llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
CallBeginCatch(CGF, Exn);
return;
}
// Emit the local.
CGF.EmitLocalBlockVarDecl(*CatchParam, &InitCatchParam);
}
void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
unsigned NumHandlers = S.getNumHandlers();
EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
assert(CatchScope.getNumHandlers() == NumHandlers);
// Copy the handler blocks off before we pop the EH stack. Emitting
// the handlers might scribble on this memory.
llvm::SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
memcpy(Handlers.data(), CatchScope.begin(),
NumHandlers * sizeof(EHCatchScope::Handler));
EHStack.popCatch();
// The fall-through block.
llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
// We just emitted the body of the try; jump to the continue block.
if (HaveInsertPoint())
Builder.CreateBr(ContBB);
// Determine if we need an implicit rethrow for all these catch handlers.
bool ImplicitRethrow = false;
if (IsFnTryBlock)
ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
isa<CXXConstructorDecl>(CurCodeDecl);
for (unsigned I = 0; I != NumHandlers; ++I) {
llvm::BasicBlock *CatchBlock = Handlers[I].Block;
EmitBlock(CatchBlock);
// Catch the exception if this isn't a catch-all.
const CXXCatchStmt *C = S.getHandler(I);
// Enter a cleanup scope, including the catch variable and the
// end-catch.
RunCleanupsScope CatchScope(*this);
// Initialize the catch variable and set up the cleanups.
BeginCatch(*this, C);
// If there's an implicit rethrow, push a normal "cleanup" to call
// _cxa_rethrow. This needs to happen before _cxa_end_catch is
// called.
if (ImplicitRethrow) {
CleanupBlock Rethrow(*this, NormalCleanup);
EmitCallOrInvoke(getReThrowFn(*this), 0, 0);
}
// Perform the body of the catch.
EmitStmt(C->getHandlerBlock());
// Fall out through the catch cleanups.
CatchScope.ForceCleanup();
// Branch out of the try.
if (HaveInsertPoint())
Builder.CreateBr(ContBB);
}
EmitBlock(ContBB);
}
/// Enters a finally block for an implementation using zero-cost
/// exceptions. This is mostly general, but hard-codes some
/// language/ABI-specific behavior in the catch-all sections.
CodeGenFunction::FinallyInfo
CodeGenFunction::EnterFinallyBlock(const Stmt *Body,
llvm::Constant *BeginCatchFn,
llvm::Constant *EndCatchFn,
llvm::Constant *RethrowFn) {
assert((BeginCatchFn != 0) == (EndCatchFn != 0) &&
"begin/end catch functions not paired");
assert(RethrowFn && "rethrow function is required");
// The rethrow function has one of the following two types:
// void (*)()
// void (*)(void*)
// In the latter case we need to pass it the exception object.
// But we can't use the exception slot because the @finally might
// have a landing pad (which would overwrite the exception slot).
const llvm::FunctionType *RethrowFnTy =
cast<llvm::FunctionType>(
cast<llvm::PointerType>(RethrowFn->getType())
->getElementType());
llvm::Value *SavedExnVar = 0;
if (RethrowFnTy->getNumParams())
SavedExnVar = CreateTempAlloca(Builder.getInt8PtrTy(), "finally.exn");
// A finally block is a statement which must be executed on any edge
// out of a given scope. Unlike a cleanup, the finally block may
// contain arbitrary control flow leading out of itself. In
// addition, finally blocks should always be executed, even if there
// are no catch handlers higher on the stack. Therefore, we
// surround the protected scope with a combination of a normal
// cleanup (to catch attempts to break out of the block via normal
// control flow) and an EH catch-all (semantically "outside" any try
// statement to which the finally block might have been attached).
// The finally block itself is generated in the context of a cleanup
// which conditionally leaves the catch-all.
FinallyInfo Info;
// Jump destination for performing the finally block on an exception
// edge. We'll never actually reach this block, so unreachable is
// fine.
JumpDest RethrowDest = getJumpDestInCurrentScope(getUnreachableBlock());
// Whether the finally block is being executed for EH purposes.
llvm::AllocaInst *ForEHVar = CreateTempAlloca(CGF.Builder.getInt1Ty(),
"finally.for-eh");
InitTempAlloca(ForEHVar, llvm::ConstantInt::getFalse(getLLVMContext()));
// Enter a normal cleanup which will perform the @finally block.
{
CodeGenFunction::CleanupBlock
NormalCleanup(*this, CodeGenFunction::NormalCleanup);
// Enter a cleanup to call the end-catch function if one was provided.
if (EndCatchFn) {
CodeGenFunction::CleanupBlock
FinallyExitCleanup(CGF, CodeGenFunction::NormalAndEHCleanup);
llvm::BasicBlock *EndCatchBB = createBasicBlock("finally.endcatch");
llvm::BasicBlock *CleanupContBB = createBasicBlock("finally.cleanup.cont");
llvm::Value *ShouldEndCatch =
Builder.CreateLoad(ForEHVar, "finally.endcatch");
Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
EmitBlock(EndCatchBB);
Builder.CreateCall(EndCatchFn)->setDoesNotThrow();
EmitBlock(CleanupContBB);
}
// Emit the finally block.
EmitStmt(Body);
// If the end of the finally is reachable, check whether this was
// for EH. If so, rethrow.
if (HaveInsertPoint()) {
llvm::BasicBlock *RethrowBB = createBasicBlock("finally.rethrow");
llvm::BasicBlock *ContBB = createBasicBlock("finally.cont");
llvm::Value *ShouldRethrow =
Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
EmitBlock(RethrowBB);
if (SavedExnVar) {
llvm::Value *Args[] = { Builder.CreateLoad(SavedExnVar) };
EmitCallOrInvoke(RethrowFn, Args, Args+1);
} else {
EmitCallOrInvoke(RethrowFn, 0, 0);
}
Builder.CreateUnreachable();
EmitBlock(ContBB);
}
// Leave the end-catch cleanup. As an optimization, pretend that
// the fallthrough path was inaccessible; we've dynamically proven
// that we're not in the EH case along that path.
if (EndCatchFn) {
CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
PopCleanupBlock();
Builder.restoreIP(SavedIP);
}
// Now make sure we actually have an insertion point or the
// cleanup gods will hate us.
EnsureInsertPoint();
}
// Enter a catch-all scope.
llvm::BasicBlock *CatchAllBB = createBasicBlock("finally.catchall");
CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
Builder.SetInsertPoint(CatchAllBB);
// If there's a begin-catch function, call it.
if (BeginCatchFn) {
Builder.CreateCall(BeginCatchFn, Builder.CreateLoad(getExceptionSlot()))
->setDoesNotThrow();
}
// If we need to remember the exception pointer to rethrow later, do so.
if (SavedExnVar) {
llvm::Value *SavedExn = Builder.CreateLoad(getExceptionSlot());
Builder.CreateStore(SavedExn, SavedExnVar);
}
// Tell the finally block that we're in EH.
Builder.CreateStore(llvm::ConstantInt::getTrue(getLLVMContext()), ForEHVar);
// Thread a jump through the finally cleanup.
EmitBranchThroughCleanup(RethrowDest);
Builder.restoreIP(SavedIP);
EHCatchScope *CatchScope = EHStack.pushCatch(1);
CatchScope->setCatchAllHandler(0, CatchAllBB);
return Info;
}
void CodeGenFunction::ExitFinallyBlock(FinallyInfo &Info) {
// Leave the finally catch-all.
EHCatchScope &Catch = cast<EHCatchScope>(*EHStack.begin());
llvm::BasicBlock *CatchAllBB = Catch.getHandler(0).Block;
EHStack.popCatch();
// And leave the normal cleanup.
PopCleanupBlock();
CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
EmitBlock(CatchAllBB, true);
Builder.restoreIP(SavedIP);
}
llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
if (TerminateLandingPad)
return TerminateLandingPad;
CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
// This will get inserted at the end of the function.
TerminateLandingPad = createBasicBlock("terminate.lpad");
Builder.SetInsertPoint(TerminateLandingPad);
// Tell the backend that this is a landing pad.
llvm::CallInst *Exn =
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
Exn->setDoesNotThrow();
// Tell the backend what the exception table should be:
// nothing but a catch-all.
llvm::Value *Args[3] = { Exn, getPersonalityFn(*this),
getCatchAllValue(*this) };
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
Args, Args+3, "eh.selector")
->setDoesNotThrow();
llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
TerminateCall->setDoesNotReturn();
TerminateCall->setDoesNotThrow();
CGF.Builder.CreateUnreachable();
// Restore the saved insertion state.
Builder.restoreIP(SavedIP);
return TerminateLandingPad;
}
llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
if (TerminateHandler)
return TerminateHandler;
CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
// Set up the terminate handler. This block is inserted at the very
// end of the function by FinishFunction.
TerminateHandler = createBasicBlock("terminate.handler");
Builder.SetInsertPoint(TerminateHandler);
llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
TerminateCall->setDoesNotReturn();
TerminateCall->setDoesNotThrow();
Builder.CreateUnreachable();
// Restore the saved insertion state.
Builder.restoreIP(SavedIP);
return TerminateHandler;
}
CodeGenFunction::CleanupBlock::CleanupBlock(CodeGenFunction &CGF,
CleanupKind Kind)
: CGF(CGF), SavedIP(CGF.Builder.saveIP()), NormalCleanupExitBB(0) {
llvm::BasicBlock *EntryBB = CGF.createBasicBlock("cleanup");
CGF.Builder.SetInsertPoint(EntryBB);
switch (Kind) {
case NormalAndEHCleanup:
NormalCleanupEntryBB = EHCleanupEntryBB = EntryBB;
break;
case NormalCleanup:
NormalCleanupEntryBB = EntryBB;
EHCleanupEntryBB = 0;
break;
case EHCleanup:
NormalCleanupEntryBB = 0;
EHCleanupEntryBB = EntryBB;
CGF.EHStack.pushTerminate();
break;
}
}
void CodeGenFunction::CleanupBlock::beginEHCleanup() {
assert(EHCleanupEntryBB == 0 && "already started an EH cleanup");
NormalCleanupExitBB = CGF.Builder.GetInsertBlock();
assert(NormalCleanupExitBB && "end of normal cleanup is unreachable");
EHCleanupEntryBB = CGF.createBasicBlock("eh.cleanup");
CGF.Builder.SetInsertPoint(EHCleanupEntryBB);
CGF.EHStack.pushTerminate();
}
CodeGenFunction::CleanupBlock::~CleanupBlock() {
llvm::BasicBlock *EHCleanupExitBB = 0;
// If we're currently writing the EH cleanup...
if (EHCleanupEntryBB) {
// Set the EH cleanup exit block.
EHCleanupExitBB = CGF.Builder.GetInsertBlock();
assert(EHCleanupExitBB && "end of EH cleanup is unreachable");
// If we're actually writing both at once, set the normal exit, too.
if (EHCleanupEntryBB == NormalCleanupEntryBB)
NormalCleanupExitBB = EHCleanupExitBB;
// Otherwise, we must have pushed a terminate handler.
else
CGF.EHStack.popTerminate();
// Otherwise, just set the normal cleanup exit block.
} else {
NormalCleanupExitBB = CGF.Builder.GetInsertBlock();
assert(NormalCleanupExitBB && "end of normal cleanup is unreachable");
}
CGF.EHStack.pushCleanup(NormalCleanupEntryBB, NormalCleanupExitBB,
EHCleanupEntryBB, EHCleanupExitBB);
CGF.Builder.restoreIP(SavedIP);
}