| //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // A intra-procedural analysis for thread safety (e.g. deadlocks and race |
| // conditions), based off of an annotation system. |
| // |
| // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more |
| // information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/Analyses/ThreadSafety.h" |
| #include "clang/Analysis/Analyses/PostOrderCFGView.h" |
| #include "clang/Analysis/AnalysisContext.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Analysis/CFGStmtMap.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/OperatorKinds.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/ImmutableMap.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <utility> |
| #include <vector> |
| |
| using namespace clang; |
| using namespace thread_safety; |
| |
| // Key method definition |
| ThreadSafetyHandler::~ThreadSafetyHandler() {} |
| |
| namespace { |
| |
| /// SExpr implements a simple expression language that is used to store, |
| /// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr |
| /// does not capture surface syntax, and it does not distinguish between |
| /// C++ concepts, like pointers and references, that have no real semantic |
| /// differences. This simplicity allows SExprs to be meaningfully compared, |
| /// e.g. |
| /// (x) = x |
| /// (*this).foo = this->foo |
| /// *&a = a |
| /// |
| /// Thread-safety analysis works by comparing lock expressions. Within the |
| /// body of a function, an expression such as "x->foo->bar.mu" will resolve to |
| /// a particular mutex object at run-time. Subsequent occurrences of the same |
| /// expression (where "same" means syntactic equality) will refer to the same |
| /// run-time object if three conditions hold: |
| /// (1) Local variables in the expression, such as "x" have not changed. |
| /// (2) Values on the heap that affect the expression have not changed. |
| /// (3) The expression involves only pure function calls. |
| /// |
| /// The current implementation assumes, but does not verify, that multiple uses |
| /// of the same lock expression satisfies these criteria. |
| class SExpr { |
| private: |
| enum ExprOp { |
| EOP_Nop, ///< No-op |
| EOP_Wildcard, ///< Matches anything. |
| EOP_Universal, ///< Universal lock. |
| EOP_This, ///< This keyword. |
| EOP_NVar, ///< Named variable. |
| EOP_LVar, ///< Local variable. |
| EOP_Dot, ///< Field access |
| EOP_Call, ///< Function call |
| EOP_MCall, ///< Method call |
| EOP_Index, ///< Array index |
| EOP_Unary, ///< Unary operation |
| EOP_Binary, ///< Binary operation |
| EOP_Unknown ///< Catchall for everything else |
| }; |
| |
| |
| class SExprNode { |
| private: |
| unsigned char Op; ///< Opcode of the root node |
| unsigned char Flags; ///< Additional opcode-specific data |
| unsigned short Sz; ///< Number of child nodes |
| const void* Data; ///< Additional opcode-specific data |
| |
| public: |
| SExprNode(ExprOp O, unsigned F, const void* D) |
| : Op(static_cast<unsigned char>(O)), |
| Flags(static_cast<unsigned char>(F)), Sz(1), Data(D) |
| { } |
| |
| unsigned size() const { return Sz; } |
| void setSize(unsigned S) { Sz = S; } |
| |
| ExprOp kind() const { return static_cast<ExprOp>(Op); } |
| |
| const NamedDecl* getNamedDecl() const { |
| assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot); |
| return reinterpret_cast<const NamedDecl*>(Data); |
| } |
| |
| const NamedDecl* getFunctionDecl() const { |
| assert(Op == EOP_Call || Op == EOP_MCall); |
| return reinterpret_cast<const NamedDecl*>(Data); |
| } |
| |
| bool isArrow() const { return Op == EOP_Dot && Flags == 1; } |
| void setArrow(bool A) { Flags = A ? 1 : 0; } |
| |
| unsigned arity() const { |
| switch (Op) { |
| case EOP_Nop: return 0; |
| case EOP_Wildcard: return 0; |
| case EOP_Universal: return 0; |
| case EOP_NVar: return 0; |
| case EOP_LVar: return 0; |
| case EOP_This: return 0; |
| case EOP_Dot: return 1; |
| case EOP_Call: return Flags+1; // First arg is function. |
| case EOP_MCall: return Flags+1; // First arg is implicit obj. |
| case EOP_Index: return 2; |
| case EOP_Unary: return 1; |
| case EOP_Binary: return 2; |
| case EOP_Unknown: return Flags; |
| } |
| return 0; |
| } |
| |
| bool operator==(const SExprNode& Other) const { |
| // Ignore flags and size -- they don't matter. |
| return (Op == Other.Op && |
| Data == Other.Data); |
| } |
| |
| bool operator!=(const SExprNode& Other) const { |
| return !(*this == Other); |
| } |
| |
| bool matches(const SExprNode& Other) const { |
| return (*this == Other) || |
| (Op == EOP_Wildcard) || |
| (Other.Op == EOP_Wildcard); |
| } |
| }; |
| |
| |
| /// \brief Encapsulates the lexical context of a function call. The lexical |
| /// context includes the arguments to the call, including the implicit object |
| /// argument. When an attribute containing a mutex expression is attached to |
| /// a method, the expression may refer to formal parameters of the method. |
| /// Actual arguments must be substituted for formal parameters to derive |
| /// the appropriate mutex expression in the lexical context where the function |
| /// is called. PrevCtx holds the context in which the arguments themselves |
| /// should be evaluated; multiple calling contexts can be chained together |
| /// by the lock_returned attribute. |
| struct CallingContext { |
| const NamedDecl* AttrDecl; // The decl to which the attribute is attached. |
| Expr* SelfArg; // Implicit object argument -- e.g. 'this' |
| bool SelfArrow; // is Self referred to with -> or .? |
| unsigned NumArgs; // Number of funArgs |
| Expr** FunArgs; // Function arguments |
| CallingContext* PrevCtx; // The previous context; or 0 if none. |
| |
| CallingContext(const NamedDecl *D = 0, Expr *S = 0, |
| unsigned N = 0, Expr **A = 0, CallingContext *P = 0) |
| : AttrDecl(D), SelfArg(S), SelfArrow(false), |
| NumArgs(N), FunArgs(A), PrevCtx(P) |
| { } |
| }; |
| |
| typedef SmallVector<SExprNode, 4> NodeVector; |
| |
| private: |
| // A SExpr is a list of SExprNodes in prefix order. The Size field allows |
| // the list to be traversed as a tree. |
| NodeVector NodeVec; |
| |
| private: |
| unsigned makeNop() { |
| NodeVec.push_back(SExprNode(EOP_Nop, 0, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeWildcard() { |
| NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeUniversal() { |
| NodeVec.push_back(SExprNode(EOP_Universal, 0, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeNamedVar(const NamedDecl *D) { |
| NodeVec.push_back(SExprNode(EOP_NVar, 0, D)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeLocalVar(const NamedDecl *D) { |
| NodeVec.push_back(SExprNode(EOP_LVar, 0, D)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeThis() { |
| NodeVec.push_back(SExprNode(EOP_This, 0, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeDot(const NamedDecl *D, bool Arrow) { |
| NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeCall(unsigned NumArgs, const NamedDecl *D) { |
| NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) { |
| NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeIndex() { |
| NodeVec.push_back(SExprNode(EOP_Index, 0, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeUnary() { |
| NodeVec.push_back(SExprNode(EOP_Unary, 0, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeBinary() { |
| NodeVec.push_back(SExprNode(EOP_Binary, 0, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| unsigned makeUnknown(unsigned Arity) { |
| NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0)); |
| return NodeVec.size()-1; |
| } |
| |
| /// Build an SExpr from the given C++ expression. |
| /// Recursive function that terminates on DeclRefExpr. |
| /// Note: this function merely creates a SExpr; it does not check to |
| /// ensure that the original expression is a valid mutex expression. |
| /// |
| /// NDeref returns the number of Derefence and AddressOf operations |
| /// preceeding the Expr; this is used to decide whether to pretty-print |
| /// SExprs with . or ->. |
| unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) { |
| if (!Exp) |
| return 0; |
| |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) { |
| NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); |
| ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND); |
| if (PV) { |
| FunctionDecl *FD = |
| cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); |
| unsigned i = PV->getFunctionScopeIndex(); |
| |
| if (CallCtx && CallCtx->FunArgs && |
| FD == CallCtx->AttrDecl->getCanonicalDecl()) { |
| // Substitute call arguments for references to function parameters |
| assert(i < CallCtx->NumArgs); |
| return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref); |
| } |
| // Map the param back to the param of the original function declaration. |
| makeNamedVar(FD->getParamDecl(i)); |
| return 1; |
| } |
| // Not a function parameter -- just store the reference. |
| makeNamedVar(ND); |
| return 1; |
| } else if (isa<CXXThisExpr>(Exp)) { |
| // Substitute parent for 'this' |
| if (CallCtx && CallCtx->SelfArg) { |
| if (!CallCtx->SelfArrow && NDeref) |
| // 'this' is a pointer, but self is not, so need to take address. |
| --(*NDeref); |
| return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref); |
| } |
| else { |
| makeThis(); |
| return 1; |
| } |
| } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { |
| NamedDecl *ND = ME->getMemberDecl(); |
| int ImplicitDeref = ME->isArrow() ? 1 : 0; |
| unsigned Root = makeDot(ND, false); |
| unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref); |
| NodeVec[Root].setArrow(ImplicitDeref > 0); |
| NodeVec[Root].setSize(Sz + 1); |
| return Sz + 1; |
| } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) { |
| // When calling a function with a lock_returned attribute, replace |
| // the function call with the expression in lock_returned. |
| CXXMethodDecl* MD = |
| cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl()); |
| if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) { |
| CallingContext LRCallCtx(CMCE->getMethodDecl()); |
| LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument(); |
| LRCallCtx.SelfArrow = |
| dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow(); |
| LRCallCtx.NumArgs = CMCE->getNumArgs(); |
| LRCallCtx.FunArgs = CMCE->getArgs(); |
| LRCallCtx.PrevCtx = CallCtx; |
| return buildSExpr(At->getArg(), &LRCallCtx); |
| } |
| // Hack to treat smart pointers and iterators as pointers; |
| // ignore any method named get(). |
| if (CMCE->getMethodDecl()->getNameAsString() == "get" && |
| CMCE->getNumArgs() == 0) { |
| if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow()) |
| ++(*NDeref); |
| return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref); |
| } |
| unsigned NumCallArgs = CMCE->getNumArgs(); |
| unsigned Root = |
| makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl()); |
| unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx); |
| Expr** CallArgs = CMCE->getArgs(); |
| for (unsigned i = 0; i < NumCallArgs; ++i) { |
| Sz += buildSExpr(CallArgs[i], CallCtx); |
| } |
| NodeVec[Root].setSize(Sz + 1); |
| return Sz + 1; |
| } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) { |
| FunctionDecl* FD = |
| cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl()); |
| if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { |
| CallingContext LRCallCtx(CE->getDirectCallee()); |
| LRCallCtx.NumArgs = CE->getNumArgs(); |
| LRCallCtx.FunArgs = CE->getArgs(); |
| LRCallCtx.PrevCtx = CallCtx; |
| return buildSExpr(At->getArg(), &LRCallCtx); |
| } |
| // Treat smart pointers and iterators as pointers; |
| // ignore the * and -> operators. |
| if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) { |
| OverloadedOperatorKind k = OE->getOperator(); |
| if (k == OO_Star) { |
| if (NDeref) ++(*NDeref); |
| return buildSExpr(OE->getArg(0), CallCtx, NDeref); |
| } |
| else if (k == OO_Arrow) { |
| return buildSExpr(OE->getArg(0), CallCtx, NDeref); |
| } |
| } |
| unsigned NumCallArgs = CE->getNumArgs(); |
| unsigned Root = makeCall(NumCallArgs, 0); |
| unsigned Sz = buildSExpr(CE->getCallee(), CallCtx); |
| Expr** CallArgs = CE->getArgs(); |
| for (unsigned i = 0; i < NumCallArgs; ++i) { |
| Sz += buildSExpr(CallArgs[i], CallCtx); |
| } |
| NodeVec[Root].setSize(Sz+1); |
| return Sz+1; |
| } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) { |
| unsigned Root = makeBinary(); |
| unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx); |
| Sz += buildSExpr(BOE->getRHS(), CallCtx); |
| NodeVec[Root].setSize(Sz); |
| return Sz; |
| } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) { |
| // Ignore & and * operators -- they're no-ops. |
| // However, we try to figure out whether the expression is a pointer, |
| // so we can use . and -> appropriately in error messages. |
| if (UOE->getOpcode() == UO_Deref) { |
| if (NDeref) ++(*NDeref); |
| return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); |
| } |
| if (UOE->getOpcode() == UO_AddrOf) { |
| if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) { |
| if (DRE->getDecl()->isCXXInstanceMember()) { |
| // This is a pointer-to-member expression, e.g. &MyClass::mu_. |
| // We interpret this syntax specially, as a wildcard. |
| unsigned Root = makeDot(DRE->getDecl(), false); |
| makeWildcard(); |
| NodeVec[Root].setSize(2); |
| return 2; |
| } |
| } |
| if (NDeref) --(*NDeref); |
| return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); |
| } |
| unsigned Root = makeUnary(); |
| unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx); |
| NodeVec[Root].setSize(Sz); |
| return Sz; |
| } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) { |
| unsigned Root = makeIndex(); |
| unsigned Sz = buildSExpr(ASE->getBase(), CallCtx); |
| Sz += buildSExpr(ASE->getIdx(), CallCtx); |
| NodeVec[Root].setSize(Sz); |
| return Sz; |
| } else if (AbstractConditionalOperator *CE = |
| dyn_cast<AbstractConditionalOperator>(Exp)) { |
| unsigned Root = makeUnknown(3); |
| unsigned Sz = buildSExpr(CE->getCond(), CallCtx); |
| Sz += buildSExpr(CE->getTrueExpr(), CallCtx); |
| Sz += buildSExpr(CE->getFalseExpr(), CallCtx); |
| NodeVec[Root].setSize(Sz); |
| return Sz; |
| } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) { |
| unsigned Root = makeUnknown(3); |
| unsigned Sz = buildSExpr(CE->getCond(), CallCtx); |
| Sz += buildSExpr(CE->getLHS(), CallCtx); |
| Sz += buildSExpr(CE->getRHS(), CallCtx); |
| NodeVec[Root].setSize(Sz); |
| return Sz; |
| } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) { |
| return buildSExpr(CE->getSubExpr(), CallCtx, NDeref); |
| } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { |
| return buildSExpr(PE->getSubExpr(), CallCtx, NDeref); |
| } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) { |
| return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref); |
| } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) { |
| return buildSExpr(E->getSubExpr(), CallCtx, NDeref); |
| } else if (isa<CharacterLiteral>(Exp) || |
| isa<CXXNullPtrLiteralExpr>(Exp) || |
| isa<GNUNullExpr>(Exp) || |
| isa<CXXBoolLiteralExpr>(Exp) || |
| isa<FloatingLiteral>(Exp) || |
| isa<ImaginaryLiteral>(Exp) || |
| isa<IntegerLiteral>(Exp) || |
| isa<StringLiteral>(Exp) || |
| isa<ObjCStringLiteral>(Exp)) { |
| makeNop(); |
| return 1; // FIXME: Ignore literals for now |
| } else { |
| makeNop(); |
| return 1; // Ignore. FIXME: mark as invalid expression? |
| } |
| } |
| |
| /// \brief Construct a SExpr from an expression. |
| /// \param MutexExp The original mutex expression within an attribute |
| /// \param DeclExp An expression involving the Decl on which the attribute |
| /// occurs. |
| /// \param D The declaration to which the lock/unlock attribute is attached. |
| void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) { |
| CallingContext CallCtx(D); |
| |
| if (MutexExp) { |
| if (StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) { |
| if (SLit->getString() == StringRef("*")) |
| // The "*" expr is a universal lock, which essentially turns off |
| // checks until it is removed from the lockset. |
| makeUniversal(); |
| else |
| // Ignore other string literals for now. |
| makeNop(); |
| return; |
| } |
| } |
| |
| // If we are processing a raw attribute expression, with no substitutions. |
| if (DeclExp == 0) { |
| buildSExpr(MutexExp, 0); |
| return; |
| } |
| |
| // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute |
| // for formal parameters when we call buildMutexID later. |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { |
| CallCtx.SelfArg = ME->getBase(); |
| CallCtx.SelfArrow = ME->isArrow(); |
| } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { |
| CallCtx.SelfArg = CE->getImplicitObjectArgument(); |
| CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow(); |
| CallCtx.NumArgs = CE->getNumArgs(); |
| CallCtx.FunArgs = CE->getArgs(); |
| } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { |
| CallCtx.NumArgs = CE->getNumArgs(); |
| CallCtx.FunArgs = CE->getArgs(); |
| } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) { |
| CallCtx.SelfArg = 0; // FIXME -- get the parent from DeclStmt |
| CallCtx.NumArgs = CE->getNumArgs(); |
| CallCtx.FunArgs = CE->getArgs(); |
| } else if (D && isa<CXXDestructorDecl>(D)) { |
| // There's no such thing as a "destructor call" in the AST. |
| CallCtx.SelfArg = DeclExp; |
| } |
| |
| // If the attribute has no arguments, then assume the argument is "this". |
| if (MutexExp == 0) { |
| buildSExpr(CallCtx.SelfArg, 0); |
| return; |
| } |
| |
| // For most attributes. |
| buildSExpr(MutexExp, &CallCtx); |
| } |
| |
| /// \brief Get index of next sibling of node i. |
| unsigned getNextSibling(unsigned i) const { |
| return i + NodeVec[i].size(); |
| } |
| |
| public: |
| explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); } |
| |
| /// \param MutexExp The original mutex expression within an attribute |
| /// \param DeclExp An expression involving the Decl on which the attribute |
| /// occurs. |
| /// \param D The declaration to which the lock/unlock attribute is attached. |
| /// Caller must check isValid() after construction. |
| SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) { |
| buildSExprFromExpr(MutexExp, DeclExp, D); |
| } |
| |
| /// Return true if this is a valid decl sequence. |
| /// Caller must call this by hand after construction to handle errors. |
| bool isValid() const { |
| return !NodeVec.empty(); |
| } |
| |
| bool shouldIgnore() const { |
| // Nop is a mutex that we have decided to deliberately ignore. |
| assert(NodeVec.size() > 0 && "Invalid Mutex"); |
| return NodeVec[0].kind() == EOP_Nop; |
| } |
| |
| bool isUniversal() const { |
| assert(NodeVec.size() > 0 && "Invalid Mutex"); |
| return NodeVec[0].kind() == EOP_Universal; |
| } |
| |
| /// Issue a warning about an invalid lock expression |
| static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp, |
| Expr *DeclExp, const NamedDecl* D) { |
| SourceLocation Loc; |
| if (DeclExp) |
| Loc = DeclExp->getExprLoc(); |
| |
| // FIXME: add a note about the attribute location in MutexExp or D |
| if (Loc.isValid()) |
| Handler.handleInvalidLockExp(Loc); |
| } |
| |
| bool operator==(const SExpr &other) const { |
| return NodeVec == other.NodeVec; |
| } |
| |
| bool operator!=(const SExpr &other) const { |
| return !(*this == other); |
| } |
| |
| bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const { |
| if (NodeVec[i].matches(Other.NodeVec[j])) { |
| unsigned ni = NodeVec[i].arity(); |
| unsigned nj = Other.NodeVec[j].arity(); |
| unsigned n = (ni < nj) ? ni : nj; |
| bool Result = true; |
| unsigned ci = i+1; // first child of i |
| unsigned cj = j+1; // first child of j |
| for (unsigned k = 0; k < n; |
| ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) { |
| Result = Result && matches(Other, ci, cj); |
| } |
| return Result; |
| } |
| return false; |
| } |
| |
| // A partial match between a.mu and b.mu returns true a and b have the same |
| // type (and thus mu refers to the same mutex declaration), regardless of |
| // whether a and b are different objects or not. |
| bool partiallyMatches(const SExpr &Other) const { |
| if (NodeVec[0].kind() == EOP_Dot) |
| return NodeVec[0].matches(Other.NodeVec[0]); |
| return false; |
| } |
| |
| /// \brief Pretty print a lock expression for use in error messages. |
| std::string toString(unsigned i = 0) const { |
| assert(isValid()); |
| if (i >= NodeVec.size()) |
| return ""; |
| |
| const SExprNode* N = &NodeVec[i]; |
| switch (N->kind()) { |
| case EOP_Nop: |
| return "_"; |
| case EOP_Wildcard: |
| return "(?)"; |
| case EOP_Universal: |
| return "*"; |
| case EOP_This: |
| return "this"; |
| case EOP_NVar: |
| case EOP_LVar: { |
| return N->getNamedDecl()->getNameAsString(); |
| } |
| case EOP_Dot: { |
| if (NodeVec[i+1].kind() == EOP_Wildcard) { |
| std::string S = "&"; |
| S += N->getNamedDecl()->getQualifiedNameAsString(); |
| return S; |
| } |
| std::string FieldName = N->getNamedDecl()->getNameAsString(); |
| if (NodeVec[i+1].kind() == EOP_This) |
| return FieldName; |
| |
| std::string S = toString(i+1); |
| if (N->isArrow()) |
| return S + "->" + FieldName; |
| else |
| return S + "." + FieldName; |
| } |
| case EOP_Call: { |
| std::string S = toString(i+1) + "("; |
| unsigned NumArgs = N->arity()-1; |
| unsigned ci = getNextSibling(i+1); |
| for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) { |
| S += toString(ci); |
| if (k+1 < NumArgs) S += ","; |
| } |
| S += ")"; |
| return S; |
| } |
| case EOP_MCall: { |
| std::string S = ""; |
| if (NodeVec[i+1].kind() != EOP_This) |
| S = toString(i+1) + "."; |
| if (const NamedDecl *D = N->getFunctionDecl()) |
| S += D->getNameAsString() + "("; |
| else |
| S += "#("; |
| unsigned NumArgs = N->arity()-1; |
| unsigned ci = getNextSibling(i+1); |
| for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) { |
| S += toString(ci); |
| if (k+1 < NumArgs) S += ","; |
| } |
| S += ")"; |
| return S; |
| } |
| case EOP_Index: { |
| std::string S1 = toString(i+1); |
| std::string S2 = toString(i+1 + NodeVec[i+1].size()); |
| return S1 + "[" + S2 + "]"; |
| } |
| case EOP_Unary: { |
| std::string S = toString(i+1); |
| return "#" + S; |
| } |
| case EOP_Binary: { |
| std::string S1 = toString(i+1); |
| std::string S2 = toString(i+1 + NodeVec[i+1].size()); |
| return "(" + S1 + "#" + S2 + ")"; |
| } |
| case EOP_Unknown: { |
| unsigned NumChildren = N->arity(); |
| if (NumChildren == 0) |
| return "(...)"; |
| std::string S = "("; |
| unsigned ci = i+1; |
| for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) { |
| S += toString(ci); |
| if (j+1 < NumChildren) S += "#"; |
| } |
| S += ")"; |
| return S; |
| } |
| } |
| return ""; |
| } |
| }; |
| |
| |
| |
| /// \brief A short list of SExprs |
| class MutexIDList : public SmallVector<SExpr, 3> { |
| public: |
| /// \brief Return true if the list contains the specified SExpr |
| /// Performs a linear search, because these lists are almost always very small. |
| bool contains(const SExpr& M) { |
| for (iterator I=begin(),E=end(); I != E; ++I) |
| if ((*I) == M) return true; |
| return false; |
| } |
| |
| /// \brief Push M onto list, bud discard duplicates |
| void push_back_nodup(const SExpr& M) { |
| if (!contains(M)) push_back(M); |
| } |
| }; |
| |
| |
| |
| /// \brief This is a helper class that stores info about the most recent |
| /// accquire of a Lock. |
| /// |
| /// The main body of the analysis maps MutexIDs to LockDatas. |
| struct LockData { |
| SourceLocation AcquireLoc; |
| |
| /// \brief LKind stores whether a lock is held shared or exclusively. |
| /// Note that this analysis does not currently support either re-entrant |
| /// locking or lock "upgrading" and "downgrading" between exclusive and |
| /// shared. |
| /// |
| /// FIXME: add support for re-entrant locking and lock up/downgrading |
| LockKind LKind; |
| bool Managed; // for ScopedLockable objects |
| SExpr UnderlyingMutex; // for ScopedLockable objects |
| |
| LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false) |
| : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M), |
| UnderlyingMutex(Decl::EmptyShell()) |
| {} |
| |
| LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu) |
| : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false), |
| UnderlyingMutex(Mu) |
| {} |
| |
| bool operator==(const LockData &other) const { |
| return AcquireLoc == other.AcquireLoc && LKind == other.LKind; |
| } |
| |
| bool operator!=(const LockData &other) const { |
| return !(*this == other); |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.AddInteger(AcquireLoc.getRawEncoding()); |
| ID.AddInteger(LKind); |
| } |
| |
| bool isAtLeast(LockKind LK) { |
| return (LK == LK_Shared) || (LKind == LK_Exclusive); |
| } |
| }; |
| |
| |
| /// \brief A FactEntry stores a single fact that is known at a particular point |
| /// in the program execution. Currently, this is information regarding a lock |
| /// that is held at that point. |
| struct FactEntry { |
| SExpr MutID; |
| LockData LDat; |
| |
| FactEntry(const SExpr& M, const LockData& L) |
| : MutID(M), LDat(L) |
| { } |
| }; |
| |
| |
| typedef unsigned short FactID; |
| |
| /// \brief FactManager manages the memory for all facts that are created during |
| /// the analysis of a single routine. |
| class FactManager { |
| private: |
| std::vector<FactEntry> Facts; |
| |
| public: |
| FactID newLock(const SExpr& M, const LockData& L) { |
| Facts.push_back(FactEntry(M,L)); |
| return static_cast<unsigned short>(Facts.size() - 1); |
| } |
| |
| const FactEntry& operator[](FactID F) const { return Facts[F]; } |
| FactEntry& operator[](FactID F) { return Facts[F]; } |
| }; |
| |
| |
| /// \brief A FactSet is the set of facts that are known to be true at a |
| /// particular program point. FactSets must be small, because they are |
| /// frequently copied, and are thus implemented as a set of indices into a |
| /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 |
| /// locks, so we can get away with doing a linear search for lookup. Note |
| /// that a hashtable or map is inappropriate in this case, because lookups |
| /// may involve partial pattern matches, rather than exact matches. |
| class FactSet { |
| private: |
| typedef SmallVector<FactID, 4> FactVec; |
| |
| FactVec FactIDs; |
| |
| public: |
| typedef FactVec::iterator iterator; |
| typedef FactVec::const_iterator const_iterator; |
| |
| iterator begin() { return FactIDs.begin(); } |
| const_iterator begin() const { return FactIDs.begin(); } |
| |
| iterator end() { return FactIDs.end(); } |
| const_iterator end() const { return FactIDs.end(); } |
| |
| bool isEmpty() const { return FactIDs.size() == 0; } |
| |
| FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) { |
| FactID F = FM.newLock(M, L); |
| FactIDs.push_back(F); |
| return F; |
| } |
| |
| bool removeLock(FactManager& FM, const SExpr& M) { |
| unsigned n = FactIDs.size(); |
| if (n == 0) |
| return false; |
| |
| for (unsigned i = 0; i < n-1; ++i) { |
| if (FM[FactIDs[i]].MutID.matches(M)) { |
| FactIDs[i] = FactIDs[n-1]; |
| FactIDs.pop_back(); |
| return true; |
| } |
| } |
| if (FM[FactIDs[n-1]].MutID.matches(M)) { |
| FactIDs.pop_back(); |
| return true; |
| } |
| return false; |
| } |
| |
| LockData* findLock(FactManager &FM, const SExpr &M) const { |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| const SExpr &Exp = FM[*I].MutID; |
| if (Exp.matches(M)) |
| return &FM[*I].LDat; |
| } |
| return 0; |
| } |
| |
| LockData* findLockUniv(FactManager &FM, const SExpr &M) const { |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| const SExpr &Exp = FM[*I].MutID; |
| if (Exp.matches(M) || Exp.isUniversal()) |
| return &FM[*I].LDat; |
| } |
| return 0; |
| } |
| |
| FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const { |
| for (const_iterator I=begin(), E=end(); I != E; ++I) { |
| const SExpr& Exp = FM[*I].MutID; |
| if (Exp.partiallyMatches(M)) return &FM[*I]; |
| } |
| return 0; |
| } |
| }; |
| |
| |
| |
| /// A Lockset maps each SExpr (defined above) to information about how it has |
| /// been locked. |
| typedef llvm::ImmutableMap<SExpr, LockData> Lockset; |
| typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; |
| |
| class LocalVariableMap; |
| |
| /// A side (entry or exit) of a CFG node. |
| enum CFGBlockSide { CBS_Entry, CBS_Exit }; |
| |
| /// CFGBlockInfo is a struct which contains all the information that is |
| /// maintained for each block in the CFG. See LocalVariableMap for more |
| /// information about the contexts. |
| struct CFGBlockInfo { |
| FactSet EntrySet; // Lockset held at entry to block |
| FactSet ExitSet; // Lockset held at exit from block |
| LocalVarContext EntryContext; // Context held at entry to block |
| LocalVarContext ExitContext; // Context held at exit from block |
| SourceLocation EntryLoc; // Location of first statement in block |
| SourceLocation ExitLoc; // Location of last statement in block. |
| unsigned EntryIndex; // Used to replay contexts later |
| |
| const FactSet &getSet(CFGBlockSide Side) const { |
| return Side == CBS_Entry ? EntrySet : ExitSet; |
| } |
| SourceLocation getLocation(CFGBlockSide Side) const { |
| return Side == CBS_Entry ? EntryLoc : ExitLoc; |
| } |
| |
| private: |
| CFGBlockInfo(LocalVarContext EmptyCtx) |
| : EntryContext(EmptyCtx), ExitContext(EmptyCtx) |
| { } |
| |
| public: |
| static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); |
| }; |
| |
| |
| |
| // A LocalVariableMap maintains a map from local variables to their currently |
| // valid definitions. It provides SSA-like functionality when traversing the |
| // CFG. Like SSA, each definition or assignment to a variable is assigned a |
| // unique name (an integer), which acts as the SSA name for that definition. |
| // The total set of names is shared among all CFG basic blocks. |
| // Unlike SSA, we do not rewrite expressions to replace local variables declrefs |
| // with their SSA-names. Instead, we compute a Context for each point in the |
| // code, which maps local variables to the appropriate SSA-name. This map |
| // changes with each assignment. |
| // |
| // The map is computed in a single pass over the CFG. Subsequent analyses can |
| // then query the map to find the appropriate Context for a statement, and use |
| // that Context to look up the definitions of variables. |
| class LocalVariableMap { |
| public: |
| typedef LocalVarContext Context; |
| |
| /// A VarDefinition consists of an expression, representing the value of the |
| /// variable, along with the context in which that expression should be |
| /// interpreted. A reference VarDefinition does not itself contain this |
| /// information, but instead contains a pointer to a previous VarDefinition. |
| struct VarDefinition { |
| public: |
| friend class LocalVariableMap; |
| |
| const NamedDecl *Dec; // The original declaration for this variable. |
| const Expr *Exp; // The expression for this variable, OR |
| unsigned Ref; // Reference to another VarDefinition |
| Context Ctx; // The map with which Exp should be interpreted. |
| |
| bool isReference() { return !Exp; } |
| |
| private: |
| // Create ordinary variable definition |
| VarDefinition(const NamedDecl *D, const Expr *E, Context C) |
| : Dec(D), Exp(E), Ref(0), Ctx(C) |
| { } |
| |
| // Create reference to previous definition |
| VarDefinition(const NamedDecl *D, unsigned R, Context C) |
| : Dec(D), Exp(0), Ref(R), Ctx(C) |
| { } |
| }; |
| |
| private: |
| Context::Factory ContextFactory; |
| std::vector<VarDefinition> VarDefinitions; |
| std::vector<unsigned> CtxIndices; |
| std::vector<std::pair<Stmt*, Context> > SavedContexts; |
| |
| public: |
| LocalVariableMap() { |
| // index 0 is a placeholder for undefined variables (aka phi-nodes). |
| VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext())); |
| } |
| |
| /// Look up a definition, within the given context. |
| const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { |
| const unsigned *i = Ctx.lookup(D); |
| if (!i) |
| return 0; |
| assert(*i < VarDefinitions.size()); |
| return &VarDefinitions[*i]; |
| } |
| |
| /// Look up the definition for D within the given context. Returns |
| /// NULL if the expression is not statically known. If successful, also |
| /// modifies Ctx to hold the context of the return Expr. |
| const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { |
| const unsigned *P = Ctx.lookup(D); |
| if (!P) |
| return 0; |
| |
| unsigned i = *P; |
| while (i > 0) { |
| if (VarDefinitions[i].Exp) { |
| Ctx = VarDefinitions[i].Ctx; |
| return VarDefinitions[i].Exp; |
| } |
| i = VarDefinitions[i].Ref; |
| } |
| return 0; |
| } |
| |
| Context getEmptyContext() { return ContextFactory.getEmptyMap(); } |
| |
| /// Return the next context after processing S. This function is used by |
| /// clients of the class to get the appropriate context when traversing the |
| /// CFG. It must be called for every assignment or DeclStmt. |
| Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { |
| if (SavedContexts[CtxIndex+1].first == S) { |
| CtxIndex++; |
| Context Result = SavedContexts[CtxIndex].second; |
| return Result; |
| } |
| return C; |
| } |
| |
| void dumpVarDefinitionName(unsigned i) { |
| if (i == 0) { |
| llvm::errs() << "Undefined"; |
| return; |
| } |
| const NamedDecl *Dec = VarDefinitions[i].Dec; |
| if (!Dec) { |
| llvm::errs() << "<<NULL>>"; |
| return; |
| } |
| Dec->printName(llvm::errs()); |
| llvm::errs() << "." << i << " " << ((const void*) Dec); |
| } |
| |
| /// Dumps an ASCII representation of the variable map to llvm::errs() |
| void dump() { |
| for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { |
| const Expr *Exp = VarDefinitions[i].Exp; |
| unsigned Ref = VarDefinitions[i].Ref; |
| |
| dumpVarDefinitionName(i); |
| llvm::errs() << " = "; |
| if (Exp) Exp->dump(); |
| else { |
| dumpVarDefinitionName(Ref); |
| llvm::errs() << "\n"; |
| } |
| } |
| } |
| |
| /// Dumps an ASCII representation of a Context to llvm::errs() |
| void dumpContext(Context C) { |
| for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { |
| const NamedDecl *D = I.getKey(); |
| D->printName(llvm::errs()); |
| const unsigned *i = C.lookup(D); |
| llvm::errs() << " -> "; |
| dumpVarDefinitionName(*i); |
| llvm::errs() << "\n"; |
| } |
| } |
| |
| /// Builds the variable map. |
| void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph, |
| std::vector<CFGBlockInfo> &BlockInfo); |
| |
| protected: |
| // Get the current context index |
| unsigned getContextIndex() { return SavedContexts.size()-1; } |
| |
| // Save the current context for later replay |
| void saveContext(Stmt *S, Context C) { |
| SavedContexts.push_back(std::make_pair(S,C)); |
| } |
| |
| // Adds a new definition to the given context, and returns a new context. |
| // This method should be called when declaring a new variable. |
| Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { |
| assert(!Ctx.contains(D)); |
| unsigned newID = VarDefinitions.size(); |
| Context NewCtx = ContextFactory.add(Ctx, D, newID); |
| VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); |
| return NewCtx; |
| } |
| |
| // Add a new reference to an existing definition. |
| Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { |
| unsigned newID = VarDefinitions.size(); |
| Context NewCtx = ContextFactory.add(Ctx, D, newID); |
| VarDefinitions.push_back(VarDefinition(D, i, Ctx)); |
| return NewCtx; |
| } |
| |
| // Updates a definition only if that definition is already in the map. |
| // This method should be called when assigning to an existing variable. |
| Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { |
| if (Ctx.contains(D)) { |
| unsigned newID = VarDefinitions.size(); |
| Context NewCtx = ContextFactory.remove(Ctx, D); |
| NewCtx = ContextFactory.add(NewCtx, D, newID); |
| VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); |
| return NewCtx; |
| } |
| return Ctx; |
| } |
| |
| // Removes a definition from the context, but keeps the variable name |
| // as a valid variable. The index 0 is a placeholder for cleared definitions. |
| Context clearDefinition(const NamedDecl *D, Context Ctx) { |
| Context NewCtx = Ctx; |
| if (NewCtx.contains(D)) { |
| NewCtx = ContextFactory.remove(NewCtx, D); |
| NewCtx = ContextFactory.add(NewCtx, D, 0); |
| } |
| return NewCtx; |
| } |
| |
| // Remove a definition entirely frmo the context. |
| Context removeDefinition(const NamedDecl *D, Context Ctx) { |
| Context NewCtx = Ctx; |
| if (NewCtx.contains(D)) { |
| NewCtx = ContextFactory.remove(NewCtx, D); |
| } |
| return NewCtx; |
| } |
| |
| Context intersectContexts(Context C1, Context C2); |
| Context createReferenceContext(Context C); |
| void intersectBackEdge(Context C1, Context C2); |
| |
| friend class VarMapBuilder; |
| }; |
| |
| |
| // This has to be defined after LocalVariableMap. |
| CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { |
| return CFGBlockInfo(M.getEmptyContext()); |
| } |
| |
| |
| /// Visitor which builds a LocalVariableMap |
| class VarMapBuilder : public StmtVisitor<VarMapBuilder> { |
| public: |
| LocalVariableMap* VMap; |
| LocalVariableMap::Context Ctx; |
| |
| VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) |
| : VMap(VM), Ctx(C) {} |
| |
| void VisitDeclStmt(DeclStmt *S); |
| void VisitBinaryOperator(BinaryOperator *BO); |
| }; |
| |
| |
| // Add new local variables to the variable map |
| void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { |
| bool modifiedCtx = false; |
| DeclGroupRef DGrp = S->getDeclGroup(); |
| for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { |
| if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { |
| Expr *E = VD->getInit(); |
| |
| // Add local variables with trivial type to the variable map |
| QualType T = VD->getType(); |
| if (T.isTrivialType(VD->getASTContext())) { |
| Ctx = VMap->addDefinition(VD, E, Ctx); |
| modifiedCtx = true; |
| } |
| } |
| } |
| if (modifiedCtx) |
| VMap->saveContext(S, Ctx); |
| } |
| |
| // Update local variable definitions in variable map |
| void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { |
| if (!BO->isAssignmentOp()) |
| return; |
| |
| Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); |
| |
| // Update the variable map and current context. |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { |
| ValueDecl *VDec = DRE->getDecl(); |
| if (Ctx.lookup(VDec)) { |
| if (BO->getOpcode() == BO_Assign) |
| Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); |
| else |
| // FIXME -- handle compound assignment operators |
| Ctx = VMap->clearDefinition(VDec, Ctx); |
| VMap->saveContext(BO, Ctx); |
| } |
| } |
| } |
| |
| |
| // Computes the intersection of two contexts. The intersection is the |
| // set of variables which have the same definition in both contexts; |
| // variables with different definitions are discarded. |
| LocalVariableMap::Context |
| LocalVariableMap::intersectContexts(Context C1, Context C2) { |
| Context Result = C1; |
| for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { |
| const NamedDecl *Dec = I.getKey(); |
| unsigned i1 = I.getData(); |
| const unsigned *i2 = C2.lookup(Dec); |
| if (!i2) // variable doesn't exist on second path |
| Result = removeDefinition(Dec, Result); |
| else if (*i2 != i1) // variable exists, but has different definition |
| Result = clearDefinition(Dec, Result); |
| } |
| return Result; |
| } |
| |
| // For every variable in C, create a new variable that refers to the |
| // definition in C. Return a new context that contains these new variables. |
| // (We use this for a naive implementation of SSA on loop back-edges.) |
| LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { |
| Context Result = getEmptyContext(); |
| for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { |
| const NamedDecl *Dec = I.getKey(); |
| unsigned i = I.getData(); |
| Result = addReference(Dec, i, Result); |
| } |
| return Result; |
| } |
| |
| // This routine also takes the intersection of C1 and C2, but it does so by |
| // altering the VarDefinitions. C1 must be the result of an earlier call to |
| // createReferenceContext. |
| void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { |
| for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { |
| const NamedDecl *Dec = I.getKey(); |
| unsigned i1 = I.getData(); |
| VarDefinition *VDef = &VarDefinitions[i1]; |
| assert(VDef->isReference()); |
| |
| const unsigned *i2 = C2.lookup(Dec); |
| if (!i2 || (*i2 != i1)) |
| VDef->Ref = 0; // Mark this variable as undefined |
| } |
| } |
| |
| |
| // Traverse the CFG in topological order, so all predecessors of a block |
| // (excluding back-edges) are visited before the block itself. At |
| // each point in the code, we calculate a Context, which holds the set of |
| // variable definitions which are visible at that point in execution. |
| // Visible variables are mapped to their definitions using an array that |
| // contains all definitions. |
| // |
| // At join points in the CFG, the set is computed as the intersection of |
| // the incoming sets along each edge, E.g. |
| // |
| // { Context | VarDefinitions } |
| // int x = 0; { x -> x1 | x1 = 0 } |
| // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } |
| // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } |
| // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } |
| // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } |
| // |
| // This is essentially a simpler and more naive version of the standard SSA |
| // algorithm. Those definitions that remain in the intersection are from blocks |
| // that strictly dominate the current block. We do not bother to insert proper |
| // phi nodes, because they are not used in our analysis; instead, wherever |
| // a phi node would be required, we simply remove that definition from the |
| // context (E.g. x above). |
| // |
| // The initial traversal does not capture back-edges, so those need to be |
| // handled on a separate pass. Whenever the first pass encounters an |
| // incoming back edge, it duplicates the context, creating new definitions |
| // that refer back to the originals. (These correspond to places where SSA |
| // might have to insert a phi node.) On the second pass, these definitions are |
| // set to NULL if the variable has changed on the back-edge (i.e. a phi |
| // node was actually required.) E.g. |
| // |
| // { Context | VarDefinitions } |
| // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } |
| // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } |
| // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } |
| // ... { y -> y1 | x3 = 2, x2 = 1, ... } |
| // |
| void LocalVariableMap::traverseCFG(CFG *CFGraph, |
| PostOrderCFGView *SortedGraph, |
| std::vector<CFGBlockInfo> &BlockInfo) { |
| PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); |
| |
| CtxIndices.resize(CFGraph->getNumBlockIDs()); |
| |
| for (PostOrderCFGView::iterator I = SortedGraph->begin(), |
| E = SortedGraph->end(); I!= E; ++I) { |
| const CFGBlock *CurrBlock = *I; |
| int CurrBlockID = CurrBlock->getBlockID(); |
| CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; |
| |
| VisitedBlocks.insert(CurrBlock); |
| |
| // Calculate the entry context for the current block |
| bool HasBackEdges = false; |
| bool CtxInit = true; |
| for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), |
| PE = CurrBlock->pred_end(); PI != PE; ++PI) { |
| // if *PI -> CurrBlock is a back edge, so skip it |
| if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) { |
| HasBackEdges = true; |
| continue; |
| } |
| |
| int PrevBlockID = (*PI)->getBlockID(); |
| CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
| |
| if (CtxInit) { |
| CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; |
| CtxInit = false; |
| } |
| else { |
| CurrBlockInfo->EntryContext = |
| intersectContexts(CurrBlockInfo->EntryContext, |
| PrevBlockInfo->ExitContext); |
| } |
| } |
| |
| // Duplicate the context if we have back-edges, so we can call |
| // intersectBackEdges later. |
| if (HasBackEdges) |
| CurrBlockInfo->EntryContext = |
| createReferenceContext(CurrBlockInfo->EntryContext); |
| |
| // Create a starting context index for the current block |
| saveContext(0, CurrBlockInfo->EntryContext); |
| CurrBlockInfo->EntryIndex = getContextIndex(); |
| |
| // Visit all the statements in the basic block. |
| VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); |
| for (CFGBlock::const_iterator BI = CurrBlock->begin(), |
| BE = CurrBlock->end(); BI != BE; ++BI) { |
| switch (BI->getKind()) { |
| case CFGElement::Statement: { |
| const CFGStmt *CS = cast<CFGStmt>(&*BI); |
| VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt())); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| CurrBlockInfo->ExitContext = VMapBuilder.Ctx; |
| |
| // Mark variables on back edges as "unknown" if they've been changed. |
| for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), |
| SE = CurrBlock->succ_end(); SI != SE; ++SI) { |
| // if CurrBlock -> *SI is *not* a back edge |
| if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) |
| continue; |
| |
| CFGBlock *FirstLoopBlock = *SI; |
| Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; |
| Context LoopEnd = CurrBlockInfo->ExitContext; |
| intersectBackEdge(LoopBegin, LoopEnd); |
| } |
| } |
| |
| // Put an extra entry at the end of the indexed context array |
| unsigned exitID = CFGraph->getExit().getBlockID(); |
| saveContext(0, BlockInfo[exitID].ExitContext); |
| } |
| |
| /// Find the appropriate source locations to use when producing diagnostics for |
| /// each block in the CFG. |
| static void findBlockLocations(CFG *CFGraph, |
| PostOrderCFGView *SortedGraph, |
| std::vector<CFGBlockInfo> &BlockInfo) { |
| for (PostOrderCFGView::iterator I = SortedGraph->begin(), |
| E = SortedGraph->end(); I!= E; ++I) { |
| const CFGBlock *CurrBlock = *I; |
| CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; |
| |
| // Find the source location of the last statement in the block, if the |
| // block is not empty. |
| if (const Stmt *S = CurrBlock->getTerminator()) { |
| CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); |
| } else { |
| for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), |
| BE = CurrBlock->rend(); BI != BE; ++BI) { |
| // FIXME: Handle other CFGElement kinds. |
| if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) { |
| CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); |
| break; |
| } |
| } |
| } |
| |
| if (!CurrBlockInfo->ExitLoc.isInvalid()) { |
| // This block contains at least one statement. Find the source location |
| // of the first statement in the block. |
| for (CFGBlock::const_iterator BI = CurrBlock->begin(), |
| BE = CurrBlock->end(); BI != BE; ++BI) { |
| // FIXME: Handle other CFGElement kinds. |
| if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) { |
| CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); |
| break; |
| } |
| } |
| } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && |
| CurrBlock != &CFGraph->getExit()) { |
| // The block is empty, and has a single predecessor. Use its exit |
| // location. |
| CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = |
| BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; |
| } |
| } |
| } |
| |
| /// \brief Class which implements the core thread safety analysis routines. |
| class ThreadSafetyAnalyzer { |
| friend class BuildLockset; |
| |
| ThreadSafetyHandler &Handler; |
| LocalVariableMap LocalVarMap; |
| FactManager FactMan; |
| std::vector<CFGBlockInfo> BlockInfo; |
| |
| public: |
| ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {} |
| |
| void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat); |
| void removeLock(FactSet &FSet, const SExpr &Mutex, |
| SourceLocation UnlockLoc, bool FullyRemove=false); |
| |
| template <typename AttrType> |
| void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, |
| const NamedDecl *D); |
| |
| template <class AttrType> |
| void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, |
| const NamedDecl *D, |
| const CFGBlock *PredBlock, const CFGBlock *CurrBlock, |
| Expr *BrE, bool Neg); |
| |
| const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, |
| bool &Negate); |
| |
| void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, |
| const CFGBlock* PredBlock, |
| const CFGBlock *CurrBlock); |
| |
| void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, |
| SourceLocation JoinLoc, |
| LockErrorKind LEK1, LockErrorKind LEK2, |
| bool Modify=true); |
| |
| void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, |
| SourceLocation JoinLoc, LockErrorKind LEK1, |
| bool Modify=true) { |
| intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); |
| } |
| |
| void runAnalysis(AnalysisDeclContext &AC); |
| }; |
| |
| |
| /// \brief Add a new lock to the lockset, warning if the lock is already there. |
| /// \param Mutex -- the Mutex expression for the lock |
| /// \param LDat -- the LockData for the lock |
| void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex, |
| const LockData &LDat) { |
| // FIXME: deal with acquired before/after annotations. |
| // FIXME: Don't always warn when we have support for reentrant locks. |
| if (Mutex.shouldIgnore()) |
| return; |
| |
| if (FSet.findLock(FactMan, Mutex)) { |
| Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc); |
| } else { |
| FSet.addLock(FactMan, Mutex, LDat); |
| } |
| } |
| |
| |
| /// \brief Remove a lock from the lockset, warning if the lock is not there. |
| /// \param Mutex The lock expression corresponding to the lock to be removed |
| /// \param UnlockLoc The source location of the unlock (only used in error msg) |
| void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, |
| const SExpr &Mutex, |
| SourceLocation UnlockLoc, |
| bool FullyRemove) { |
| if (Mutex.shouldIgnore()) |
| return; |
| |
| const LockData *LDat = FSet.findLock(FactMan, Mutex); |
| if (!LDat) { |
| Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc); |
| return; |
| } |
| |
| if (LDat->UnderlyingMutex.isValid()) { |
| // This is scoped lockable object, which manages the real mutex. |
| if (FullyRemove) { |
| // We're destroying the managing object. |
| // Remove the underlying mutex if it exists; but don't warn. |
| if (FSet.findLock(FactMan, LDat->UnderlyingMutex)) |
| FSet.removeLock(FactMan, LDat->UnderlyingMutex); |
| } else { |
| // We're releasing the underlying mutex, but not destroying the |
| // managing object. Warn on dual release. |
| if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) { |
| Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(), |
| UnlockLoc); |
| } |
| FSet.removeLock(FactMan, LDat->UnderlyingMutex); |
| return; |
| } |
| } |
| FSet.removeLock(FactMan, Mutex); |
| } |
| |
| |
| /// \brief Extract the list of mutexIDs from the attribute on an expression, |
| /// and push them onto Mtxs, discarding any duplicates. |
| template <typename AttrType> |
| void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, |
| Expr *Exp, const NamedDecl *D) { |
| typedef typename AttrType::args_iterator iterator_type; |
| |
| if (Attr->args_size() == 0) { |
| // The mutex held is the "this" object. |
| SExpr Mu(0, Exp, D); |
| if (!Mu.isValid()) |
| SExpr::warnInvalidLock(Handler, 0, Exp, D); |
| else |
| Mtxs.push_back_nodup(Mu); |
| return; |
| } |
| |
| for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) { |
| SExpr Mu(*I, Exp, D); |
| if (!Mu.isValid()) |
| SExpr::warnInvalidLock(Handler, *I, Exp, D); |
| else |
| Mtxs.push_back_nodup(Mu); |
| } |
| } |
| |
| |
| /// \brief Extract the list of mutexIDs from a trylock attribute. If the |
| /// trylock applies to the given edge, then push them onto Mtxs, discarding |
| /// any duplicates. |
| template <class AttrType> |
| void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, |
| Expr *Exp, const NamedDecl *D, |
| const CFGBlock *PredBlock, |
| const CFGBlock *CurrBlock, |
| Expr *BrE, bool Neg) { |
| // Find out which branch has the lock |
| bool branch = 0; |
| if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) { |
| branch = BLE->getValue(); |
| } |
| else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) { |
| branch = ILE->getValue().getBoolValue(); |
| } |
| int branchnum = branch ? 0 : 1; |
| if (Neg) branchnum = !branchnum; |
| |
| // If we've taken the trylock branch, then add the lock |
| int i = 0; |
| for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), |
| SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { |
| if (*SI == CurrBlock && i == branchnum) { |
| getMutexIDs(Mtxs, Attr, Exp, D); |
| } |
| } |
| } |
| |
| |
| bool getStaticBooleanValue(Expr* E, bool& TCond) { |
| if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { |
| TCond = false; |
| return true; |
| } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { |
| TCond = BLE->getValue(); |
| return true; |
| } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { |
| TCond = ILE->getValue().getBoolValue(); |
| return true; |
| } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { |
| return getStaticBooleanValue(CE->getSubExpr(), TCond); |
| } |
| return false; |
| } |
| |
| |
| // If Cond can be traced back to a function call, return the call expression. |
| // The negate variable should be called with false, and will be set to true |
| // if the function call is negated, e.g. if (!mu.tryLock(...)) |
| const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, |
| LocalVarContext C, |
| bool &Negate) { |
| if (!Cond) |
| return 0; |
| |
| if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { |
| return CallExp; |
| } |
| else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { |
| return getTrylockCallExpr(PE->getSubExpr(), C, Negate); |
| } |
| else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { |
| return getTrylockCallExpr(CE->getSubExpr(), C, Negate); |
| } |
| else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { |
| return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); |
| } |
| else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { |
| const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); |
| return getTrylockCallExpr(E, C, Negate); |
| } |
| else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { |
| if (UOP->getOpcode() == UO_LNot) { |
| Negate = !Negate; |
| return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); |
| } |
| return 0; |
| } |
| else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { |
| if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { |
| if (BOP->getOpcode() == BO_NE) |
| Negate = !Negate; |
| |
| bool TCond = false; |
| if (getStaticBooleanValue(BOP->getRHS(), TCond)) { |
| if (!TCond) Negate = !Negate; |
| return getTrylockCallExpr(BOP->getLHS(), C, Negate); |
| } |
| else if (getStaticBooleanValue(BOP->getLHS(), TCond)) { |
| if (!TCond) Negate = !Negate; |
| return getTrylockCallExpr(BOP->getRHS(), C, Negate); |
| } |
| return 0; |
| } |
| return 0; |
| } |
| // FIXME -- handle && and || as well. |
| return 0; |
| } |
| |
| |
| /// \brief Find the lockset that holds on the edge between PredBlock |
| /// and CurrBlock. The edge set is the exit set of PredBlock (passed |
| /// as the ExitSet parameter) plus any trylocks, which are conditionally held. |
| void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, |
| const FactSet &ExitSet, |
| const CFGBlock *PredBlock, |
| const CFGBlock *CurrBlock) { |
| Result = ExitSet; |
| |
| if (!PredBlock->getTerminatorCondition()) |
| return; |
| |
| bool Negate = false; |
| const Stmt *Cond = PredBlock->getTerminatorCondition(); |
| const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; |
| const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; |
| |
| CallExpr *Exp = |
| const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); |
| if (!Exp) |
| return; |
| |
| NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); |
| if(!FunDecl || !FunDecl->hasAttrs()) |
| return; |
| |
| |
| MutexIDList ExclusiveLocksToAdd; |
| MutexIDList SharedLocksToAdd; |
| |
| // If the condition is a call to a Trylock function, then grab the attributes |
| AttrVec &ArgAttrs = FunDecl->getAttrs(); |
| for (unsigned i = 0; i < ArgAttrs.size(); ++i) { |
| Attr *Attr = ArgAttrs[i]; |
| switch (Attr->getKind()) { |
| case attr::ExclusiveTrylockFunction: { |
| ExclusiveTrylockFunctionAttr *A = |
| cast<ExclusiveTrylockFunctionAttr>(Attr); |
| getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, |
| PredBlock, CurrBlock, A->getSuccessValue(), Negate); |
| break; |
| } |
| case attr::SharedTrylockFunction: { |
| SharedTrylockFunctionAttr *A = |
| cast<SharedTrylockFunctionAttr>(Attr); |
| getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, |
| PredBlock, CurrBlock, A->getSuccessValue(), Negate); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| // Add and remove locks. |
| SourceLocation Loc = Exp->getExprLoc(); |
| for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { |
| addLock(Result, ExclusiveLocksToAdd[i], |
| LockData(Loc, LK_Exclusive)); |
| } |
| for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { |
| addLock(Result, SharedLocksToAdd[i], |
| LockData(Loc, LK_Shared)); |
| } |
| } |
| |
| |
| /// \brief We use this class to visit different types of expressions in |
| /// CFGBlocks, and build up the lockset. |
| /// An expression may cause us to add or remove locks from the lockset, or else |
| /// output error messages related to missing locks. |
| /// FIXME: In future, we may be able to not inherit from a visitor. |
| class BuildLockset : public StmtVisitor<BuildLockset> { |
| friend class ThreadSafetyAnalyzer; |
| |
| ThreadSafetyAnalyzer *Analyzer; |
| FactSet FSet; |
| LocalVariableMap::Context LVarCtx; |
| unsigned CtxIndex; |
| |
| // Helper functions |
| const ValueDecl *getValueDecl(Expr *Exp); |
| |
| void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK, |
| Expr *MutexExp, ProtectedOperationKind POK); |
| void warnIfMutexHeld(const NamedDecl *D, Expr *Exp, Expr *MutexExp); |
| |
| void checkAccess(Expr *Exp, AccessKind AK); |
| void checkDereference(Expr *Exp, AccessKind AK); |
| void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0); |
| |
| public: |
| BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) |
| : StmtVisitor<BuildLockset>(), |
| Analyzer(Anlzr), |
| FSet(Info.EntrySet), |
| LVarCtx(Info.EntryContext), |
| CtxIndex(Info.EntryIndex) |
| {} |
| |
| void VisitUnaryOperator(UnaryOperator *UO); |
| void VisitBinaryOperator(BinaryOperator *BO); |
| void VisitCastExpr(CastExpr *CE); |
| void VisitCallExpr(CallExpr *Exp); |
| void VisitCXXConstructExpr(CXXConstructExpr *Exp); |
| void VisitDeclStmt(DeclStmt *S); |
| }; |
| |
| |
| /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs |
| const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) { |
| if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp)) |
| return DR->getDecl(); |
| |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) |
| return ME->getMemberDecl(); |
| |
| return 0; |
| } |
| |
| /// \brief Warn if the LSet does not contain a lock sufficient to protect access |
| /// of at least the passed in AccessKind. |
| void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, |
| AccessKind AK, Expr *MutexExp, |
| ProtectedOperationKind POK) { |
| LockKind LK = getLockKindFromAccessKind(AK); |
| |
| SExpr Mutex(MutexExp, Exp, D); |
| if (!Mutex.isValid()) { |
| SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D); |
| return; |
| } else if (Mutex.shouldIgnore()) { |
| return; |
| } |
| |
| LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex); |
| bool NoError = true; |
| if (!LDat) { |
| // No exact match found. Look for a partial match. |
| FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex); |
| if (FEntry) { |
| // Warn that there's no precise match. |
| LDat = &FEntry->LDat; |
| std::string PartMatchStr = FEntry->MutID.toString(); |
| StringRef PartMatchName(PartMatchStr); |
| Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, |
| Exp->getExprLoc(), &PartMatchName); |
| } else { |
| // Warn that there's no match at all. |
| Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, |
| Exp->getExprLoc()); |
| } |
| NoError = false; |
| } |
| // Make sure the mutex we found is the right kind. |
| if (NoError && LDat && !LDat->isAtLeast(LK)) |
| Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, |
| Exp->getExprLoc()); |
| } |
| |
| /// \brief Warn if the LSet contains the given lock. |
| void BuildLockset::warnIfMutexHeld(const NamedDecl *D, Expr* Exp, |
| Expr *MutexExp) { |
| SExpr Mutex(MutexExp, Exp, D); |
| if (!Mutex.isValid()) { |
| SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D); |
| return; |
| } |
| |
| LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex); |
| if (LDat) { |
| std::string DeclName = D->getNameAsString(); |
| StringRef DeclNameSR (DeclName); |
| Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(), |
| Exp->getExprLoc()); |
| } |
| } |
| |
| |
| /// \brief This method identifies variable dereferences and checks pt_guarded_by |
| /// and pt_guarded_var annotations. Note that we only check these annotations |
| /// at the time a pointer is dereferenced. |
| /// FIXME: We need to check for other types of pointer dereferences |
| /// (e.g. [], ->) and deal with them here. |
| /// \param Exp An expression that has been read or written. |
| void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) { |
| UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp); |
| if (!UO || UO->getOpcode() != clang::UO_Deref) |
| return; |
| Exp = UO->getSubExpr()->IgnoreParenCasts(); |
| |
| const ValueDecl *D = getValueDecl(Exp); |
| if(!D || !D->hasAttrs()) |
| return; |
| |
| if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty()) |
| Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK, |
| Exp->getExprLoc()); |
| |
| const AttrVec &ArgAttrs = D->getAttrs(); |
| for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) |
| if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i])) |
| warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference); |
| } |
| |
| /// \brief Checks guarded_by and guarded_var attributes. |
| /// Whenever we identify an access (read or write) of a DeclRefExpr or |
| /// MemberExpr, we need to check whether there are any guarded_by or |
| /// guarded_var attributes, and make sure we hold the appropriate mutexes. |
| void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) { |
| const ValueDecl *D = getValueDecl(Exp); |
| if(!D || !D->hasAttrs()) |
| return; |
| |
| if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty()) |
| Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK, |
| Exp->getExprLoc()); |
| |
| const AttrVec &ArgAttrs = D->getAttrs(); |
| for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) |
| if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i])) |
| warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess); |
| } |
| |
| /// \brief Process a function call, method call, constructor call, |
| /// or destructor call. This involves looking at the attributes on the |
| /// corresponding function/method/constructor/destructor, issuing warnings, |
| /// and updating the locksets accordingly. |
| /// |
| /// FIXME: For classes annotated with one of the guarded annotations, we need |
| /// to treat const method calls as reads and non-const method calls as writes, |
| /// and check that the appropriate locks are held. Non-const method calls with |
| /// the same signature as const method calls can be also treated as reads. |
| /// |
| void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { |
| const AttrVec &ArgAttrs = D->getAttrs(); |
| MutexIDList ExclusiveLocksToAdd; |
| MutexIDList SharedLocksToAdd; |
| MutexIDList LocksToRemove; |
| |
| for(unsigned i = 0; i < ArgAttrs.size(); ++i) { |
| Attr *At = const_cast<Attr*>(ArgAttrs[i]); |
| switch (At->getKind()) { |
| // When we encounter an exclusive lock function, we need to add the lock |
| // to our lockset with kind exclusive. |
| case attr::ExclusiveLockFunction: { |
| ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At); |
| Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D); |
| break; |
| } |
| |
| // When we encounter a shared lock function, we need to add the lock |
| // to our lockset with kind shared. |
| case attr::SharedLockFunction: { |
| SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At); |
| Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D); |
| break; |
| } |
| |
| // When we encounter an unlock function, we need to remove unlocked |
| // mutexes from the lockset, and flag a warning if they are not there. |
| case attr::UnlockFunction: { |
| UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At); |
| Analyzer->getMutexIDs(LocksToRemove, A, Exp, D); |
| break; |
| } |
| |
| case attr::ExclusiveLocksRequired: { |
| ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At); |
| |
| for (ExclusiveLocksRequiredAttr::args_iterator |
| I = A->args_begin(), E = A->args_end(); I != E; ++I) |
| warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall); |
| break; |
| } |
| |
| case attr::SharedLocksRequired: { |
| SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At); |
| |
| for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(), |
| E = A->args_end(); I != E; ++I) |
| warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall); |
| break; |
| } |
| |
| case attr::LocksExcluded: { |
| LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); |
| |
| for (LocksExcludedAttr::args_iterator I = A->args_begin(), |
| E = A->args_end(); I != E; ++I) { |
| warnIfMutexHeld(D, Exp, *I); |
| } |
| break; |
| } |
| |
| // Ignore other (non thread-safety) attributes |
| default: |
| break; |
| } |
| } |
| |
| // Figure out if we're calling the constructor of scoped lockable class |
| bool isScopedVar = false; |
| if (VD) { |
| if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { |
| const CXXRecordDecl* PD = CD->getParent(); |
| if (PD && PD->getAttr<ScopedLockableAttr>()) |
| isScopedVar = true; |
| } |
| } |
| |
| // Add locks. |
| SourceLocation Loc = Exp->getExprLoc(); |
| for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { |
| Analyzer->addLock(FSet, ExclusiveLocksToAdd[i], |
| LockData(Loc, LK_Exclusive, isScopedVar)); |
| } |
| for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { |
| Analyzer->addLock(FSet, SharedLocksToAdd[i], |
| LockData(Loc, LK_Shared, isScopedVar)); |
| } |
| |
| // Add the managing object as a dummy mutex, mapped to the underlying mutex. |
| // FIXME -- this doesn't work if we acquire multiple locks. |
| if (isScopedVar) { |
| SourceLocation MLoc = VD->getLocation(); |
| DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); |
| SExpr SMutex(&DRE, 0, 0); |
| |
| for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { |
| Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive, |
| ExclusiveLocksToAdd[i])); |
| } |
| for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { |
| Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared, |
| SharedLocksToAdd[i])); |
| } |
| } |
| |
| // Remove locks. |
| // FIXME -- should only fully remove if the attribute refers to 'this'. |
| bool Dtor = isa<CXXDestructorDecl>(D); |
| for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) { |
| Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor); |
| } |
| } |
| |
| |
| /// \brief For unary operations which read and write a variable, we need to |
| /// check whether we hold any required mutexes. Reads are checked in |
| /// VisitCastExpr. |
| void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { |
| switch (UO->getOpcode()) { |
| case clang::UO_PostDec: |
| case clang::UO_PostInc: |
| case clang::UO_PreDec: |
| case clang::UO_PreInc: { |
| Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts(); |
| checkAccess(SubExp, AK_Written); |
| checkDereference(SubExp, AK_Written); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /// For binary operations which assign to a variable (writes), we need to check |
| /// whether we hold any required mutexes. |
| /// FIXME: Deal with non-primitive types. |
| void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { |
| if (!BO->isAssignmentOp()) |
| return; |
| |
| // adjust the context |
| LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); |
| |
| Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); |
| checkAccess(LHSExp, AK_Written); |
| checkDereference(LHSExp, AK_Written); |
| } |
| |
| /// Whenever we do an LValue to Rvalue cast, we are reading a variable and |
| /// need to ensure we hold any required mutexes. |
| /// FIXME: Deal with non-primitive types. |
| void BuildLockset::VisitCastExpr(CastExpr *CE) { |
| if (CE->getCastKind() != CK_LValueToRValue) |
| return; |
| Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts(); |
| checkAccess(SubExp, AK_Read); |
| checkDereference(SubExp, AK_Read); |
| } |
| |
| |
| void BuildLockset::VisitCallExpr(CallExpr *Exp) { |
| NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); |
| if(!D || !D->hasAttrs()) |
| return; |
| handleCall(Exp, D); |
| } |
| |
| void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { |
| // FIXME -- only handles constructors in DeclStmt below. |
| } |
| |
| void BuildLockset::VisitDeclStmt(DeclStmt *S) { |
| // adjust the context |
| LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); |
| |
| DeclGroupRef DGrp = S->getDeclGroup(); |
| for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { |
| Decl *D = *I; |
| if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { |
| Expr *E = VD->getInit(); |
| // handle constructors that involve temporaries |
| if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) |
| E = EWC->getSubExpr(); |
| |
| if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { |
| NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); |
| if (!CtorD || !CtorD->hasAttrs()) |
| return; |
| handleCall(CE, CtorD, VD); |
| } |
| } |
| } |
| } |
| |
| |
| |
| /// \brief Compute the intersection of two locksets and issue warnings for any |
| /// locks in the symmetric difference. |
| /// |
| /// This function is used at a merge point in the CFG when comparing the lockset |
| /// of each branch being merged. For example, given the following sequence: |
| /// A; if () then B; else C; D; we need to check that the lockset after B and C |
| /// are the same. In the event of a difference, we use the intersection of these |
| /// two locksets at the start of D. |
| /// |
| /// \param FSet1 The first lockset. |
| /// \param FSet2 The second lockset. |
| /// \param JoinLoc The location of the join point for error reporting |
| /// \param LEK1 The error message to report if a mutex is missing from LSet1 |
| /// \param LEK2 The error message to report if a mutex is missing from Lset2 |
| void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, |
| const FactSet &FSet2, |
| SourceLocation JoinLoc, |
| LockErrorKind LEK1, |
| LockErrorKind LEK2, |
| bool Modify) { |
| FactSet FSet1Orig = FSet1; |
| |
| for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end(); |
| I != E; ++I) { |
| const SExpr &FSet2Mutex = FactMan[*I].MutID; |
| const LockData &LDat2 = FactMan[*I].LDat; |
| |
| if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) { |
| if (LDat1->LKind != LDat2.LKind) { |
| Handler.handleExclusiveAndShared(FSet2Mutex.toString(), |
| LDat2.AcquireLoc, |
| LDat1->AcquireLoc); |
| if (Modify && LDat1->LKind != LK_Exclusive) { |
| FSet1.removeLock(FactMan, FSet2Mutex); |
| FSet1.addLock(FactMan, FSet2Mutex, LDat2); |
| } |
| } |
| } else { |
| if (LDat2.UnderlyingMutex.isValid()) { |
| if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) { |
| // If this is a scoped lock that manages another mutex, and if the |
| // underlying mutex is still held, then warn about the underlying |
| // mutex. |
| Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(), |
| LDat2.AcquireLoc, |
| JoinLoc, LEK1); |
| } |
| } |
| else if (!LDat2.Managed && !FSet2Mutex.isUniversal()) |
| Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(), |
| LDat2.AcquireLoc, |
| JoinLoc, LEK1); |
| } |
| } |
| |
| for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end(); |
| I != E; ++I) { |
| const SExpr &FSet1Mutex = FactMan[*I].MutID; |
| const LockData &LDat1 = FactMan[*I].LDat; |
| |
| if (!FSet2.findLock(FactMan, FSet1Mutex)) { |
| if (LDat1.UnderlyingMutex.isValid()) { |
| if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) { |
| // If this is a scoped lock that manages another mutex, and if the |
| // underlying mutex is still held, then warn about the underlying |
| // mutex. |
| Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(), |
| LDat1.AcquireLoc, |
| JoinLoc, LEK1); |
| } |
| } |
| else if (!LDat1.Managed && !FSet1Mutex.isUniversal()) |
| Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(), |
| LDat1.AcquireLoc, |
| JoinLoc, LEK2); |
| if (Modify) |
| FSet1.removeLock(FactMan, FSet1Mutex); |
| } |
| } |
| } |
| |
| |
| |
| /// \brief Check a function's CFG for thread-safety violations. |
| /// |
| /// We traverse the blocks in the CFG, compute the set of mutexes that are held |
| /// at the end of each block, and issue warnings for thread safety violations. |
| /// Each block in the CFG is traversed exactly once. |
| void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { |
| CFG *CFGraph = AC.getCFG(); |
| if (!CFGraph) return; |
| const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl()); |
| |
| // AC.dumpCFG(true); |
| |
| if (!D) |
| return; // Ignore anonymous functions for now. |
| if (D->getAttr<NoThreadSafetyAnalysisAttr>()) |
| return; |
| // FIXME: Do something a bit more intelligent inside constructor and |
| // destructor code. Constructors and destructors must assume unique access |
| // to 'this', so checks on member variable access is disabled, but we should |
| // still enable checks on other objects. |
| if (isa<CXXConstructorDecl>(D)) |
| return; // Don't check inside constructors. |
| if (isa<CXXDestructorDecl>(D)) |
| return; // Don't check inside destructors. |
| |
| BlockInfo.resize(CFGraph->getNumBlockIDs(), |
| CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); |
| |
| // We need to explore the CFG via a "topological" ordering. |
| // That way, we will be guaranteed to have information about required |
| // predecessor locksets when exploring a new block. |
| PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>(); |
| PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); |
| |
| // Compute SSA names for local variables |
| LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); |
| |
| // Fill in source locations for all CFGBlocks. |
| findBlockLocations(CFGraph, SortedGraph, BlockInfo); |
| |
| // Add locks from exclusive_locks_required and shared_locks_required |
| // to initial lockset. Also turn off checking for lock and unlock functions. |
| // FIXME: is there a more intelligent way to check lock/unlock functions? |
| if (!SortedGraph->empty() && D->hasAttrs()) { |
| const CFGBlock *FirstBlock = *SortedGraph->begin(); |
| FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; |
| const AttrVec &ArgAttrs = D->getAttrs(); |
| |
| MutexIDList ExclusiveLocksToAdd; |
| MutexIDList SharedLocksToAdd; |
| |
| SourceLocation Loc = D->getLocation(); |
| for (unsigned i = 0; i < ArgAttrs.size(); ++i) { |
| Attr *Attr = ArgAttrs[i]; |
| Loc = Attr->getLocation(); |
| if (ExclusiveLocksRequiredAttr *A |
| = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) { |
| getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D); |
| } else if (SharedLocksRequiredAttr *A |
| = dyn_cast<SharedLocksRequiredAttr>(Attr)) { |
| getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D); |
| } else if (isa<UnlockFunctionAttr>(Attr)) { |
| // Don't try to check unlock functions for now |
| return; |
| } else if (isa<ExclusiveLockFunctionAttr>(Attr)) { |
| // Don't try to check lock functions for now |
| return; |
| } else if (isa<SharedLockFunctionAttr>(Attr)) { |
| // Don't try to check lock functions for now |
| return; |
| } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { |
| // Don't try to check trylock functions for now |
| return; |
| } else if (isa<SharedTrylockFunctionAttr>(Attr)) { |
| // Don't try to check trylock functions for now |
| return; |
| } |
| } |
| |
| // FIXME -- Loc can be wrong here. |
| for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { |
| addLock(InitialLockset, ExclusiveLocksToAdd[i], |
| LockData(Loc, LK_Exclusive)); |
| } |
| for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { |
| addLock(InitialLockset, SharedLocksToAdd[i], |
| LockData(Loc, LK_Shared)); |
| } |
| } |
| |
| for (PostOrderCFGView::iterator I = SortedGraph->begin(), |
| E = SortedGraph->end(); I!= E; ++I) { |
| const CFGBlock *CurrBlock = *I; |
| int CurrBlockID = CurrBlock->getBlockID(); |
| CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; |
| |
| // Use the default initial lockset in case there are no predecessors. |
| VisitedBlocks.insert(CurrBlock); |
| |
| // Iterate through the predecessor blocks and warn if the lockset for all |
| // predecessors is not the same. We take the entry lockset of the current |
| // block to be the intersection of all previous locksets. |
| // FIXME: By keeping the intersection, we may output more errors in future |
| // for a lock which is not in the intersection, but was in the union. We |
| // may want to also keep the union in future. As an example, let's say |
| // the intersection contains Mutex L, and the union contains L and M. |
| // Later we unlock M. At this point, we would output an error because we |
| // never locked M; although the real error is probably that we forgot to |
| // lock M on all code paths. Conversely, let's say that later we lock M. |
| // In this case, we should compare against the intersection instead of the |
| // union because the real error is probably that we forgot to unlock M on |
| // all code paths. |
| bool LocksetInitialized = false; |
| llvm::SmallVector<CFGBlock*, 8> SpecialBlocks; |
| for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), |
| PE = CurrBlock->pred_end(); PI != PE; ++PI) { |
| |
| // if *PI -> CurrBlock is a back edge |
| if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) |
| continue; |
| |
| // Ignore edges from blocks that can't return. |
| if ((*PI)->hasNoReturnElement()) |
| continue; |
| |
| // If the previous block ended in a 'continue' or 'break' statement, then |
| // a difference in locksets is probably due to a bug in that block, rather |
| // than in some other predecessor. In that case, keep the other |
| // predecessor's lockset. |
| if (const Stmt *Terminator = (*PI)->getTerminator()) { |
| if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { |
| SpecialBlocks.push_back(*PI); |
| continue; |
| } |
| } |
| |
| int PrevBlockID = (*PI)->getBlockID(); |
| CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
| FactSet PrevLockset; |
| getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); |
| |
| if (!LocksetInitialized) { |
| CurrBlockInfo->EntrySet = PrevLockset; |
| LocksetInitialized = true; |
| } else { |
| intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, |
| CurrBlockInfo->EntryLoc, |
| LEK_LockedSomePredecessors); |
| } |
| } |
| |
| // Process continue and break blocks. Assume that the lockset for the |
| // resulting block is unaffected by any discrepancies in them. |
| for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size(); |
| SpecialI < SpecialN; ++SpecialI) { |
| CFGBlock *PrevBlock = SpecialBlocks[SpecialI]; |
| int PrevBlockID = PrevBlock->getBlockID(); |
| CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
| |
| if (!LocksetInitialized) { |
| CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; |
| LocksetInitialized = true; |
| } else { |
| // Determine whether this edge is a loop terminator for diagnostic |
| // purposes. FIXME: A 'break' statement might be a loop terminator, but |
| // it might also be part of a switch. Also, a subsequent destructor |
| // might add to the lockset, in which case the real issue might be a |
| // double lock on the other path. |
| const Stmt *Terminator = PrevBlock->getTerminator(); |
| bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); |
| |
| FactSet PrevLockset; |
| getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, |
| PrevBlock, CurrBlock); |
| |
| // Do not update EntrySet. |
| intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, |
| PrevBlockInfo->ExitLoc, |
| IsLoop ? LEK_LockedSomeLoopIterations |
| : LEK_LockedSomePredecessors, |
| false); |
| } |
| } |
| |
| BuildLockset LocksetBuilder(this, *CurrBlockInfo); |
| |
| // Visit all the statements in the basic block. |
| for (CFGBlock::const_iterator BI = CurrBlock->begin(), |
| BE = CurrBlock->end(); BI != BE; ++BI) { |
| switch (BI->getKind()) { |
| case CFGElement::Statement: { |
| const CFGStmt *CS = cast<CFGStmt>(&*BI); |
| LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt())); |
| break; |
| } |
| // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. |
| case CFGElement::AutomaticObjectDtor: { |
| const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI); |
| CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>( |
| AD->getDestructorDecl(AC.getASTContext())); |
| if (!DD->hasAttrs()) |
| break; |
| |
| // Create a dummy expression, |
| VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl()); |
| DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, |
| AD->getTriggerStmt()->getLocEnd()); |
| LocksetBuilder.handleCall(&DRE, DD); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| CurrBlockInfo->ExitSet = LocksetBuilder.FSet; |
| |
| // For every back edge from CurrBlock (the end of the loop) to another block |
| // (FirstLoopBlock) we need to check that the Lockset of Block is equal to |
| // the one held at the beginning of FirstLoopBlock. We can look up the |
| // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. |
| for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), |
| SE = CurrBlock->succ_end(); SI != SE; ++SI) { |
| |
| // if CurrBlock -> *SI is *not* a back edge |
| if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) |
| continue; |
| |
| CFGBlock *FirstLoopBlock = *SI; |
| CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; |
| CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; |
| intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, |
| PreLoop->EntryLoc, |
| LEK_LockedSomeLoopIterations, |
| false); |
| } |
| } |
| |
| CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; |
| CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; |
| |
| // FIXME: Should we call this function for all blocks which exit the function? |
| intersectAndWarn(Initial->EntrySet, Final->ExitSet, |
| Final->ExitLoc, |
| LEK_LockedAtEndOfFunction, |
| LEK_NotLockedAtEndOfFunction, |
| false); |
| } |
| |
| } // end anonymous namespace |
| |
| |
| namespace clang { |
| namespace thread_safety { |
| |
| /// \brief Check a function's CFG for thread-safety violations. |
| /// |
| /// We traverse the blocks in the CFG, compute the set of mutexes that are held |
| /// at the end of each block, and issue warnings for thread safety violations. |
| /// Each block in the CFG is traversed exactly once. |
| void runThreadSafetyAnalysis(AnalysisDeclContext &AC, |
| ThreadSafetyHandler &Handler) { |
| ThreadSafetyAnalyzer Analyzer(Handler); |
| Analyzer.runAnalysis(AC); |
| } |
| |
| /// \brief Helper function that returns a LockKind required for the given level |
| /// of access. |
| LockKind getLockKindFromAccessKind(AccessKind AK) { |
| switch (AK) { |
| case AK_Read : |
| return LK_Shared; |
| case AK_Written : |
| return LK_Exclusive; |
| } |
| llvm_unreachable("Unknown AccessKind"); |
| } |
| |
| }} // end namespace clang::thread_safety |