| // SimpleSValuator.cpp - A basic SValuator ------------------------*- C++ -*--// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SimpleSValuator, a basic implementation of SValuator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/PathSensitive/SValuator.h" |
| #include "clang/Analysis/PathSensitive/GRState.h" |
| |
| using namespace clang; |
| |
| namespace { |
| class SimpleSValuator : public SValuator { |
| protected: |
| virtual SVal EvalCastNL(NonLoc val, QualType castTy); |
| virtual SVal EvalCastL(Loc val, QualType castTy); |
| |
| public: |
| SimpleSValuator(ValueManager &valMgr) : SValuator(valMgr) {} |
| virtual ~SimpleSValuator() {} |
| |
| virtual SVal EvalMinus(NonLoc val); |
| virtual SVal EvalComplement(NonLoc val); |
| virtual SVal EvalBinOpNN(const GRState *state, BinaryOperator::Opcode op, |
| NonLoc lhs, NonLoc rhs, QualType resultTy); |
| virtual SVal EvalBinOpLL(BinaryOperator::Opcode op, Loc lhs, Loc rhs, |
| QualType resultTy); |
| virtual SVal EvalBinOpLN(const GRState *state, BinaryOperator::Opcode op, |
| Loc lhs, NonLoc rhs, QualType resultTy); |
| }; |
| } // end anonymous namespace |
| |
| SValuator *clang::CreateSimpleSValuator(ValueManager &valMgr) { |
| return new SimpleSValuator(valMgr); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function for Casts. |
| //===----------------------------------------------------------------------===// |
| |
| SVal SimpleSValuator::EvalCastNL(NonLoc val, QualType castTy) { |
| |
| bool isLocType = Loc::IsLocType(castTy); |
| |
| if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) { |
| if (isLocType) |
| return LI->getLoc(); |
| |
| ASTContext &Ctx = ValMgr.getContext(); |
| |
| // FIXME: Support promotions/truncations. |
| if (Ctx.getTypeSize(castTy) == Ctx.getTypeSize(Ctx.VoidPtrTy)) |
| return val; |
| |
| return UnknownVal(); |
| } |
| |
| if (const SymExpr *se = val.getAsSymbolicExpression()) { |
| ASTContext &Ctx = ValMgr.getContext(); |
| QualType T = Ctx.getCanonicalType(se->getType(Ctx)); |
| if (T == Ctx.getCanonicalType(castTy)) |
| return val; |
| |
| // FIXME: Remove this hack when we support symbolic truncation/extension. |
| // HACK: If both castTy and T are integers, ignore the cast. This is |
| // not a permanent solution. Eventually we want to precisely handle |
| // extension/truncation of symbolic integers. This prevents us from losing |
| // precision when we assign 'x = y' and 'y' is symbolic and x and y are |
| // different integer types. |
| if (T->isIntegerType() && castTy->isIntegerType()) |
| return val; |
| |
| return UnknownVal(); |
| } |
| |
| if (!isa<nonloc::ConcreteInt>(val)) |
| return UnknownVal(); |
| |
| // Only handle casts from integers to integers. |
| if (!isLocType && !castTy->isIntegerType()) |
| return UnknownVal(); |
| |
| llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue(); |
| i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy)); |
| i.extOrTrunc(ValMgr.getContext().getTypeSize(castTy)); |
| |
| if (isLocType) |
| return ValMgr.makeIntLocVal(i); |
| else |
| return ValMgr.makeIntVal(i); |
| } |
| |
| SVal SimpleSValuator::EvalCastL(Loc val, QualType castTy) { |
| |
| // Casts from pointers -> pointers, just return the lval. |
| // |
| // Casts from pointers -> references, just return the lval. These |
| // can be introduced by the frontend for corner cases, e.g |
| // casting from va_list* to __builtin_va_list&. |
| // |
| if (Loc::IsLocType(castTy) || castTy->isReferenceType()) |
| return val; |
| |
| // FIXME: Handle transparent unions where a value can be "transparently" |
| // lifted into a union type. |
| if (castTy->isUnionType()) |
| return UnknownVal(); |
| |
| assert(castTy->isIntegerType()); |
| unsigned BitWidth = ValMgr.getContext().getTypeSize(castTy); |
| |
| if (!isa<loc::ConcreteInt>(val)) |
| return ValMgr.makeLocAsInteger(val, BitWidth); |
| |
| llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue(); |
| i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy)); |
| i.extOrTrunc(BitWidth); |
| return ValMgr.makeIntVal(i); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function for unary operators. |
| //===----------------------------------------------------------------------===// |
| |
| SVal SimpleSValuator::EvalMinus(NonLoc val) { |
| switch (val.getSubKind()) { |
| case nonloc::ConcreteIntKind: |
| return cast<nonloc::ConcreteInt>(val).evalMinus(ValMgr); |
| default: |
| return UnknownVal(); |
| } |
| } |
| |
| SVal SimpleSValuator::EvalComplement(NonLoc X) { |
| switch (X.getSubKind()) { |
| case nonloc::ConcreteIntKind: |
| return cast<nonloc::ConcreteInt>(X).evalComplement(ValMgr); |
| default: |
| return UnknownVal(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function for binary operators. |
| //===----------------------------------------------------------------------===// |
| |
| static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) { |
| switch (op) { |
| default: |
| assert(false && "Invalid opcode."); |
| case BinaryOperator::LT: return BinaryOperator::GE; |
| case BinaryOperator::GT: return BinaryOperator::LE; |
| case BinaryOperator::LE: return BinaryOperator::GT; |
| case BinaryOperator::GE: return BinaryOperator::LT; |
| case BinaryOperator::EQ: return BinaryOperator::NE; |
| case BinaryOperator::NE: return BinaryOperator::EQ; |
| } |
| } |
| |
| // Equality operators for Locs. |
| // FIXME: All this logic will be revamped when we have MemRegion::getLocation() |
| // implemented. |
| |
| static SVal EvalEquality(ValueManager &ValMgr, Loc lhs, Loc rhs, bool isEqual, |
| QualType resultTy) { |
| |
| switch (lhs.getSubKind()) { |
| default: |
| assert(false && "EQ/NE not implemented for this Loc."); |
| return UnknownVal(); |
| |
| case loc::ConcreteIntKind: { |
| if (SymbolRef rSym = rhs.getAsSymbol()) |
| return ValMgr.makeNonLoc(rSym, |
| isEqual ? BinaryOperator::EQ |
| : BinaryOperator::NE, |
| cast<loc::ConcreteInt>(lhs).getValue(), |
| resultTy); |
| break; |
| } |
| case loc::MemRegionKind: { |
| if (SymbolRef lSym = lhs.getAsLocSymbol()) { |
| if (isa<loc::ConcreteInt>(rhs)) { |
| return ValMgr.makeNonLoc(lSym, |
| isEqual ? BinaryOperator::EQ |
| : BinaryOperator::NE, |
| cast<loc::ConcreteInt>(rhs).getValue(), |
| resultTy); |
| } |
| } |
| break; |
| } |
| |
| case loc::GotoLabelKind: |
| break; |
| } |
| |
| return ValMgr.makeTruthVal(isEqual ? lhs == rhs : lhs != rhs, resultTy); |
| } |
| |
| SVal SimpleSValuator::EvalBinOpNN(const GRState *state, |
| BinaryOperator::Opcode op, |
| NonLoc lhs, NonLoc rhs, |
| QualType resultTy) { |
| // Handle trivial case where left-side and right-side are the same. |
| if (lhs == rhs) |
| switch (op) { |
| default: |
| break; |
| case BinaryOperator::EQ: |
| case BinaryOperator::LE: |
| case BinaryOperator::GE: |
| return ValMgr.makeTruthVal(true, resultTy); |
| case BinaryOperator::LT: |
| case BinaryOperator::GT: |
| case BinaryOperator::NE: |
| return ValMgr.makeTruthVal(false, resultTy); |
| } |
| |
| while (1) { |
| switch (lhs.getSubKind()) { |
| default: |
| return UnknownVal(); |
| case nonloc::LocAsIntegerKind: { |
| Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc(); |
| switch (rhs.getSubKind()) { |
| case nonloc::LocAsIntegerKind: |
| return EvalBinOpLL(op, lhsL, cast<nonloc::LocAsInteger>(rhs).getLoc(), |
| resultTy); |
| case nonloc::ConcreteIntKind: { |
| // Transform the integer into a location and compare. |
| ASTContext& Ctx = ValMgr.getContext(); |
| llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue(); |
| i.setIsUnsigned(true); |
| i.extOrTrunc(Ctx.getTypeSize(Ctx.VoidPtrTy)); |
| return EvalBinOpLL(op, lhsL, ValMgr.makeLoc(i), resultTy); |
| } |
| default: |
| switch (op) { |
| case BinaryOperator::EQ: |
| return ValMgr.makeTruthVal(false, resultTy); |
| case BinaryOperator::NE: |
| return ValMgr.makeTruthVal(true, resultTy); |
| default: |
| // This case also handles pointer arithmetic. |
| return UnknownVal(); |
| } |
| } |
| } |
| case nonloc::SymExprValKind: { |
| // Logical not? |
| if (!(op == BinaryOperator::EQ && rhs.isZeroConstant())) |
| return UnknownVal(); |
| |
| const SymExpr *symExpr = |
| cast<nonloc::SymExprVal>(lhs).getSymbolicExpression(); |
| |
| // Only handle ($sym op constant) for now. |
| if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(symExpr)) { |
| BinaryOperator::Opcode opc = symIntExpr->getOpcode(); |
| switch (opc) { |
| case BinaryOperator::LAnd: |
| case BinaryOperator::LOr: |
| assert(false && "Logical operators handled by branching logic."); |
| return UnknownVal(); |
| case BinaryOperator::Assign: |
| case BinaryOperator::MulAssign: |
| case BinaryOperator::DivAssign: |
| case BinaryOperator::RemAssign: |
| case BinaryOperator::AddAssign: |
| case BinaryOperator::SubAssign: |
| case BinaryOperator::ShlAssign: |
| case BinaryOperator::ShrAssign: |
| case BinaryOperator::AndAssign: |
| case BinaryOperator::XorAssign: |
| case BinaryOperator::OrAssign: |
| case BinaryOperator::Comma: |
| assert(false && "'=' and ',' operators handled by GRExprEngine."); |
| return UnknownVal(); |
| case BinaryOperator::PtrMemD: |
| case BinaryOperator::PtrMemI: |
| assert(false && "Pointer arithmetic not handled here."); |
| return UnknownVal(); |
| case BinaryOperator::Mul: |
| case BinaryOperator::Div: |
| case BinaryOperator::Rem: |
| case BinaryOperator::Add: |
| case BinaryOperator::Sub: |
| case BinaryOperator::Shl: |
| case BinaryOperator::Shr: |
| case BinaryOperator::And: |
| case BinaryOperator::Xor: |
| case BinaryOperator::Or: |
| // Not handled yet. |
| return UnknownVal(); |
| case BinaryOperator::LT: |
| case BinaryOperator::GT: |
| case BinaryOperator::LE: |
| case BinaryOperator::GE: |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| opc = NegateComparison(opc); |
| assert(symIntExpr->getType(ValMgr.getContext()) == resultTy); |
| return ValMgr.makeNonLoc(symIntExpr->getLHS(), opc, |
| symIntExpr->getRHS(), resultTy); |
| } |
| } |
| } |
| case nonloc::ConcreteIntKind: { |
| if (isa<nonloc::ConcreteInt>(rhs)) { |
| const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs); |
| return lhsInt.evalBinOp(ValMgr, op, cast<nonloc::ConcreteInt>(rhs)); |
| } |
| else { |
| // Swap the left and right sides and flip the operator if doing so |
| // allows us to better reason about the expression (this is a form |
| // of expression canonicalization). |
| NonLoc tmp = rhs; |
| rhs = lhs; |
| lhs = tmp; |
| |
| switch (op) { |
| case BinaryOperator::LT: op = BinaryOperator::GT; continue; |
| case BinaryOperator::GT: op = BinaryOperator::LT; continue; |
| case BinaryOperator::LE: op = BinaryOperator::GE; continue; |
| case BinaryOperator::GE: op = BinaryOperator::LE; continue; |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| case BinaryOperator::Add: |
| case BinaryOperator::Mul: |
| continue; |
| default: |
| return UnknownVal(); |
| } |
| } |
| } |
| case nonloc::SymbolValKind: { |
| nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs); |
| SymbolRef Sym = slhs->getSymbol(); |
| |
| // Does the symbol simplify to a constant? If so, "fold" the constant |
| // by setting 'lhs' to a ConcreteInt and try again. |
| if (Sym->getType(ValMgr.getContext())->isIntegerType()) |
| if (const llvm::APSInt *Constant = state->getSymVal(Sym)) { |
| // The symbol evaluates to a constant. If necessary, promote the |
| // folded constant (LHS) to the result type. |
| BasicValueFactory &BVF = ValMgr.getBasicValueFactory(); |
| const llvm::APSInt &lhs_I = BVF.Convert(resultTy, *Constant); |
| lhs = nonloc::ConcreteInt(lhs_I); |
| |
| // Also promote the RHS (if necessary). |
| |
| // For shifts, it necessary promote the RHS to the result type. |
| if (BinaryOperator::isShiftOp(op)) |
| continue; |
| |
| // Other operators: do an implicit conversion. This shouldn't be |
| // necessary once we support truncation/extension of symbolic values. |
| if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){ |
| rhs = nonloc::ConcreteInt(BVF.Convert(resultTy, rhs_I->getValue())); |
| } |
| |
| continue; |
| } |
| |
| if (isa<nonloc::ConcreteInt>(rhs)) { |
| return ValMgr.makeNonLoc(slhs->getSymbol(), op, |
| cast<nonloc::ConcreteInt>(rhs).getValue(), |
| resultTy); |
| } |
| |
| return UnknownVal(); |
| } |
| } |
| } |
| } |
| |
| SVal SimpleSValuator::EvalBinOpLL(BinaryOperator::Opcode op, Loc lhs, Loc rhs, |
| QualType resultTy) { |
| switch (op) { |
| default: |
| return UnknownVal(); |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| return EvalEquality(ValMgr, lhs, rhs, op == BinaryOperator::EQ, resultTy); |
| case BinaryOperator::LT: |
| case BinaryOperator::GT: |
| // FIXME: Generalize. For now, just handle the trivial case where |
| // the two locations are identical. |
| if (lhs == rhs) |
| return ValMgr.makeTruthVal(false, resultTy); |
| return UnknownVal(); |
| } |
| } |
| |
| SVal SimpleSValuator::EvalBinOpLN(const GRState *state, |
| BinaryOperator::Opcode op, |
| Loc lhs, NonLoc rhs, QualType resultTy) { |
| // Special case: 'rhs' is an integer that has the same width as a pointer and |
| // we are using the integer location in a comparison. Normally this cannot be |
| // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32 |
| // can generate comparisons that trigger this code. |
| // FIXME: Are all locations guaranteed to have pointer width? |
| if (BinaryOperator::isEqualityOp(op)) { |
| if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) { |
| const llvm::APSInt *x = &rhsInt->getValue(); |
| ASTContext &ctx = ValMgr.getContext(); |
| if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) { |
| // Convert the signedness of the integer (if necessary). |
| if (x->isSigned()) |
| x = &ValMgr.getBasicValueFactory().getValue(*x, true); |
| |
| return EvalBinOpLL(op, lhs, loc::ConcreteInt(*x), resultTy); |
| } |
| } |
| } |
| |
| // Delegate pointer arithmetic to the StoreManager. |
| return state->getStateManager().getStoreManager().EvalBinOp(state, op, lhs, |
| rhs, resultTy); |
| } |