| //===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes wrap the information about a call or function |
| // definition used to handle ABI compliancy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCall.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Attributes.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetData.h" |
| |
| #include "ABIInfo.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| /***/ |
| |
| // FIXME: Use iterator and sidestep silly type array creation. |
| |
| const |
| CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) { |
| return getFunctionInfo(FTNP->getResultType(), |
| llvm::SmallVector<QualType, 16>()); |
| } |
| |
| const |
| CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) { |
| llvm::SmallVector<QualType, 16> ArgTys; |
| // FIXME: Kill copy. |
| for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) |
| ArgTys.push_back(FTP->getArgType(i)); |
| return getFunctionInfo(FTP->getResultType(), ArgTys); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { |
| llvm::SmallVector<QualType, 16> ArgTys; |
| // Add the 'this' pointer. |
| ArgTys.push_back(MD->getThisType(Context)); |
| |
| const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType(); |
| for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) |
| ArgTys.push_back(FTP->getArgType(i)); |
| return getFunctionInfo(FTP->getResultType(), ArgTys); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (MD->isInstance()) |
| return getFunctionInfo(MD); |
| } |
| |
| const FunctionType *FTy = FD->getType()->getAsFunctionType(); |
| if (const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FTy)) |
| return getFunctionInfo(FTP); |
| return getFunctionInfo(cast<FunctionNoProtoType>(FTy)); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { |
| llvm::SmallVector<QualType, 16> ArgTys; |
| ArgTys.push_back(MD->getSelfDecl()->getType()); |
| ArgTys.push_back(Context.getObjCSelType()); |
| // FIXME: Kill copy? |
| for (ObjCMethodDecl::param_iterator i = MD->param_begin(), |
| e = MD->param_end(); i != e; ++i) |
| ArgTys.push_back((*i)->getType()); |
| return getFunctionInfo(MD->getResultType(), ArgTys); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, |
| const CallArgList &Args) { |
| // FIXME: Kill copy. |
| llvm::SmallVector<QualType, 16> ArgTys; |
| for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i) |
| ArgTys.push_back(i->second); |
| return getFunctionInfo(ResTy, ArgTys); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, |
| const FunctionArgList &Args) { |
| // FIXME: Kill copy. |
| llvm::SmallVector<QualType, 16> ArgTys; |
| for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i) |
| ArgTys.push_back(i->second); |
| return getFunctionInfo(ResTy, ArgTys); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, |
| const llvm::SmallVector<QualType, 16> &ArgTys) { |
| // Lookup or create unique function info. |
| llvm::FoldingSetNodeID ID; |
| CGFunctionInfo::Profile(ID, ResTy, ArgTys.begin(), ArgTys.end()); |
| |
| void *InsertPos = 0; |
| CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); |
| if (FI) |
| return *FI; |
| |
| // Construct the function info. |
| FI = new CGFunctionInfo(ResTy, ArgTys); |
| FunctionInfos.InsertNode(FI, InsertPos); |
| |
| // Compute ABI information. |
| getABIInfo().computeInfo(*FI, getContext()); |
| |
| return *FI; |
| } |
| |
| /***/ |
| |
| ABIInfo::~ABIInfo() {} |
| |
| void ABIArgInfo::dump() const { |
| fprintf(stderr, "(ABIArgInfo Kind="); |
| switch (TheKind) { |
| case Direct: |
| fprintf(stderr, "Direct"); |
| break; |
| case Ignore: |
| fprintf(stderr, "Ignore"); |
| break; |
| case Coerce: |
| fprintf(stderr, "Coerce Type="); |
| getCoerceToType()->print(llvm::errs()); |
| break; |
| case Indirect: |
| fprintf(stderr, "Indirect Align=%d", getIndirectAlign()); |
| break; |
| case Expand: |
| fprintf(stderr, "Expand"); |
| break; |
| } |
| fprintf(stderr, ")\n"); |
| } |
| |
| /***/ |
| |
| /// isEmptyRecord - Return true iff a structure has no non-empty |
| /// members. Note that a structure with a flexible array member is not |
| /// considered empty. |
| static bool isEmptyRecord(ASTContext &Context, QualType T) { |
| const RecordType *RT = T->getAsRecordType(); |
| if (!RT) |
| return 0; |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| e = RD->field_end(Context); i != e; ++i) { |
| const FieldDecl *FD = *i; |
| if (!isEmptyRecord(Context, FD->getType())) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isSingleElementStruct - Determine if a structure is a "single |
| /// element struct", i.e. it has exactly one non-empty field or |
| /// exactly one field which is itself a single element |
| /// struct. Structures with flexible array members are never |
| /// considered single element structs. |
| /// |
| /// \return The field declaration for the single non-empty field, if |
| /// it exists. |
| static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { |
| const RecordType *RT = T->getAsStructureType(); |
| if (!RT) |
| return 0; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return 0; |
| |
| const Type *Found = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| e = RD->field_end(Context); i != e; ++i) { |
| const FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // Treat single element arrays as the element |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) |
| if (AT->getSize().getZExtValue() == 1) |
| FT = AT->getElementType(); |
| |
| if (isEmptyRecord(Context, FT)) { |
| // Ignore |
| } else if (Found) { |
| return 0; |
| } else if (!CodeGenFunction::hasAggregateLLVMType(FT)) { |
| Found = FT.getTypePtr(); |
| } else { |
| Found = isSingleElementStruct(FT, Context); |
| if (!Found) |
| return 0; |
| } |
| } |
| |
| return Found; |
| } |
| |
| static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { |
| if (!Ty->getAsBuiltinType() && !Ty->isPointerType()) |
| return false; |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| return Size == 32 || Size == 64; |
| } |
| |
| static bool areAllFields32Or64BitBasicType(const RecordDecl *RD, |
| ASTContext &Context) { |
| for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| e = RD->field_end(Context); i != e; ++i) { |
| const FieldDecl *FD = *i; |
| |
| if (!is32Or64BitBasicType(FD->getType(), Context)) |
| return false; |
| |
| // FIXME: Reject bitfields wholesale; there are two problems, we |
| // don't know how to expand them yet, and the predicate for |
| // telling if a bitfield still counts as "basic" is more |
| // complicated than what we were doing previously. |
| if (FD->isBitField()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| /// DefaultABIInfo - The default implementation for ABI specific |
| /// details. This implementation provides information which results in |
| /// self-consistent and sensible LLVM IR generation, but does not |
| /// conform to any particular ABI. |
| class DefaultABIInfo : public ABIInfo { |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, |
| ASTContext &Context) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type, Context); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| /// X86_32ABIInfo - The X86-32 ABI information. |
| class X86_32ABIInfo : public ABIInfo { |
| ASTContext &Context; |
| bool IsDarwin; |
| |
| static bool isRegisterSize(unsigned Size) { |
| return (Size == 8 || Size == 16 || Size == 32 || Size == 64); |
| } |
| |
| static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); |
| |
| public: |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, |
| ASTContext &Context) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type, Context); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| |
| X86_32ABIInfo(ASTContext &Context, bool d) |
| : ABIInfo(), Context(Context), IsDarwin(d) {} |
| }; |
| } |
| |
| |
| /// shouldReturnTypeInRegister - Determine if the given type should be |
| /// passed in a register (for the Darwin ABI). |
| bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, |
| ASTContext &Context) { |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // Type must be register sized. |
| if (!isRegisterSize(Size)) |
| return false; |
| |
| if (Ty->isVectorType()) { |
| // 64- and 128- bit vectors inside structures are not returned in |
| // registers. |
| if (Size == 64 || Size == 128) |
| return false; |
| |
| return true; |
| } |
| |
| // If this is a builtin, pointer, or complex type, it is ok. |
| if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType()) |
| return true; |
| |
| // Arrays are treated like records. |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) |
| return shouldReturnTypeInRegister(AT->getElementType(), Context); |
| |
| // Otherwise, it must be a record type. |
| const RecordType *RT = Ty->getAsRecordType(); |
| if (!RT) return false; |
| |
| // Structure types are passed in register if all fields would be |
| // passed in a register. |
| for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context), |
| e = RT->getDecl()->field_end(Context); i != e; ++i) { |
| const FieldDecl *FD = *i; |
| |
| // FIXME: Reject bitfields wholesale for now; this is incorrect. |
| if (FD->isBitField()) |
| return false; |
| |
| // Empty structures are ignored. |
| if (isEmptyRecord(Context, FD->getType())) |
| continue; |
| |
| // Check fields recursively. |
| if (!shouldReturnTypeInRegister(FD->getType(), Context)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context) const { |
| if (RetTy->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } else if (const VectorType *VT = RetTy->getAsVectorType()) { |
| // On Darwin, some vectors are returned in registers. |
| if (IsDarwin) { |
| uint64_t Size = Context.getTypeSize(RetTy); |
| |
| // 128-bit vectors are a special case; they are returned in |
| // registers and we need to make sure to pick a type the LLVM |
| // backend will like. |
| if (Size == 128) |
| return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty, |
| 2)); |
| |
| // Always return in register if it fits in a general purpose |
| // register, or if it is 64 bits and has a single element. |
| if ((Size == 8 || Size == 16 || Size == 32) || |
| (Size == 64 && VT->getNumElements() == 1)) |
| return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); |
| |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| // Outside of Darwin, structs and unions are always indirect. |
| if (!IsDarwin && !RetTy->isAnyComplexType()) |
| return ABIArgInfo::getIndirect(0); |
| // Classify "single element" structs as their element type. |
| if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { |
| if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) { |
| // FIXME: This is gross, it would be nice if we could just |
| // pass back SeltTy and have clients deal with it. Is it worth |
| // supporting coerce to both LLVM and clang Types? |
| if (BT->isIntegerType()) { |
| uint64_t Size = Context.getTypeSize(SeltTy); |
| return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size)); |
| } else if (BT->getKind() == BuiltinType::Float) { |
| return ABIArgInfo::getCoerce(llvm::Type::FloatTy); |
| } else if (BT->getKind() == BuiltinType::Double) { |
| return ABIArgInfo::getCoerce(llvm::Type::DoubleTy); |
| } |
| } else if (SeltTy->isPointerType()) { |
| // FIXME: It would be really nice if this could come out as |
| // the proper pointer type. |
| llvm::Type *PtrTy = |
| llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| return ABIArgInfo::getCoerce(PtrTy); |
| } else if (SeltTy->isVectorType()) { |
| // 64- and 128-bit vectors are never returned in a |
| // register when inside a structure. |
| uint64_t Size = Context.getTypeSize(RetTy); |
| if (Size == 64 || Size == 128) |
| return ABIArgInfo::getIndirect(0); |
| |
| return classifyReturnType(QualType(SeltTy, 0), Context); |
| } |
| } |
| |
| uint64_t Size = Context.getTypeSize(RetTy); |
| if (isRegisterSize(Size)) { |
| // Always return in register for unions for now. |
| // FIXME: This is wrong, but better than treating as a |
| // structure. |
| if (RetTy->isUnionType()) |
| return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); |
| |
| // Small structures which are register sized are generally returned |
| // in a register. |
| if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) |
| return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); |
| } |
| |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context) const { |
| // FIXME: Set alignment on indirect arguments. |
| if (CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| // Structures with flexible arrays are always indirect. |
| if (const RecordType *RT = Ty->getAsStructureType()) |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return ABIArgInfo::getIndirect(0); |
| |
| // Ignore empty structs. |
| uint64_t Size = Context.getTypeSize(Ty); |
| if (Ty->isStructureType() && Size == 0) |
| return ABIArgInfo::getIgnore(); |
| |
| // Expand structs with size <= 128-bits which consist only of |
| // basic types (int, long long, float, double, xxx*). This is |
| // non-recursive and does not ignore empty fields. |
| if (const RecordType *RT = Ty->getAsStructureType()) { |
| if (Context.getTypeSize(Ty) <= 4*32 && |
| areAllFields32Or64BitBasicType(RT->getDecl(), Context)) |
| return ABIArgInfo::getExpand(); |
| } |
| |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| |
| llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| "ap"); |
| llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| |
| uint64_t Offset = |
| llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| llvm::Value *NextAddr = |
| Builder.CreateGEP(Addr, |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), |
| "ap.next"); |
| Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| |
| return AddrTyped; |
| } |
| |
| namespace { |
| /// X86_64ABIInfo - The X86_64 ABI information. |
| class X86_64ABIInfo : public ABIInfo { |
| enum Class { |
| Integer = 0, |
| SSE, |
| SSEUp, |
| X87, |
| X87Up, |
| ComplexX87, |
| NoClass, |
| Memory |
| }; |
| |
| /// merge - Implement the X86_64 ABI merging algorithm. |
| /// |
| /// Merge an accumulating classification \arg Accum with a field |
| /// classification \arg Field. |
| /// |
| /// \param Accum - The accumulating classification. This should |
| /// always be either NoClass or the result of a previous merge |
| /// call. In addition, this should never be Memory (the caller |
| /// should just return Memory for the aggregate). |
| Class merge(Class Accum, Class Field) const; |
| |
| /// classify - Determine the x86_64 register classes in which the |
| /// given type T should be passed. |
| /// |
| /// \param Lo - The classification for the parts of the type |
| /// residing in the low word of the containing object. |
| /// |
| /// \param Hi - The classification for the parts of the type |
| /// residing in the high word of the containing object. |
| /// |
| /// \param OffsetBase - The bit offset of this type in the |
| /// containing object. Some parameters are classified different |
| /// depending on whether they straddle an eightbyte boundary. |
| /// |
| /// If a word is unused its result will be NoClass; if a type should |
| /// be passed in Memory then at least the classification of \arg Lo |
| /// will be Memory. |
| /// |
| /// The \arg Lo class will be NoClass iff the argument is ignored. |
| /// |
| /// If the \arg Lo class is ComplexX87, then the \arg Hi class will |
| /// also be ComplexX87. |
| void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, |
| Class &Lo, Class &Hi) const; |
| |
| /// getCoerceResult - Given a source type \arg Ty and an LLVM type |
| /// to coerce to, chose the best way to pass Ty in the same place |
| /// that \arg CoerceTo would be passed, but while keeping the |
| /// emitted code as simple as possible. |
| /// |
| /// FIXME: Note, this should be cleaned up to just take an |
| /// enumeration of all the ways we might want to pass things, |
| /// instead of constructing an LLVM type. This makes this code more |
| /// explicit, and it makes it clearer that we are also doing this |
| /// for correctness in the case of passing scalar types. |
| ABIArgInfo getCoerceResult(QualType Ty, |
| const llvm::Type *CoerceTo, |
| ASTContext &Context) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context) const; |
| |
| ABIArgInfo classifyArgumentType(QualType Ty, |
| ASTContext &Context, |
| unsigned &neededInt, |
| unsigned &neededSSE) const; |
| |
| public: |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| } |
| |
| X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, |
| Class Field) const { |
| // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is |
| // classified recursively so that always two fields are |
| // considered. The resulting class is calculated according to |
| // the classes of the fields in the eightbyte: |
| // |
| // (a) If both classes are equal, this is the resulting class. |
| // |
| // (b) If one of the classes is NO_CLASS, the resulting class is |
| // the other class. |
| // |
| // (c) If one of the classes is MEMORY, the result is the MEMORY |
| // class. |
| // |
| // (d) If one of the classes is INTEGER, the result is the |
| // INTEGER. |
| // |
| // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, |
| // MEMORY is used as class. |
| // |
| // (f) Otherwise class SSE is used. |
| |
| // Accum should never be memory (we should have returned) or |
| // ComplexX87 (because this cannot be passed in a structure). |
| assert((Accum != Memory && Accum != ComplexX87) && |
| "Invalid accumulated classification during merge."); |
| if (Accum == Field || Field == NoClass) |
| return Accum; |
| else if (Field == Memory) |
| return Memory; |
| else if (Accum == NoClass) |
| return Field; |
| else if (Accum == Integer || Field == Integer) |
| return Integer; |
| else if (Field == X87 || Field == X87Up || Field == ComplexX87) |
| return Memory; |
| else |
| return SSE; |
| } |
| |
| void X86_64ABIInfo::classify(QualType Ty, |
| ASTContext &Context, |
| uint64_t OffsetBase, |
| Class &Lo, Class &Hi) const { |
| // FIXME: This code can be simplified by introducing a simple value |
| // class for Class pairs with appropriate constructor methods for |
| // the various situations. |
| |
| // FIXME: Some of the split computations are wrong; unaligned |
| // vectors shouldn't be passed in registers for example, so there is |
| // no chance they can straddle an eightbyte. Verify & simplify. |
| |
| Lo = Hi = NoClass; |
| |
| Class &Current = OffsetBase < 64 ? Lo : Hi; |
| Current = Memory; |
| |
| if (const BuiltinType *BT = Ty->getAsBuiltinType()) { |
| BuiltinType::Kind k = BT->getKind(); |
| |
| if (k == BuiltinType::Void) { |
| Current = NoClass; |
| } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { |
| Current = Integer; |
| } else if (k == BuiltinType::Float || k == BuiltinType::Double) { |
| Current = SSE; |
| } else if (k == BuiltinType::LongDouble) { |
| Lo = X87; |
| Hi = X87Up; |
| } |
| // FIXME: _Decimal32 and _Decimal64 are SSE. |
| // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). |
| // FIXME: __int128 is (Integer, Integer). |
| } else if (const EnumType *ET = Ty->getAsEnumType()) { |
| // Classify the underlying integer type. |
| classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); |
| } else if (Ty->hasPointerRepresentation()) { |
| Current = Integer; |
| } else if (const VectorType *VT = Ty->getAsVectorType()) { |
| uint64_t Size = Context.getTypeSize(VT); |
| if (Size == 32) { |
| // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x |
| // float> as integer. |
| Current = Integer; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| uint64_t EB_Real = (OffsetBase) / 64; |
| uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; |
| if (EB_Real != EB_Imag) |
| Hi = Lo; |
| } else if (Size == 64) { |
| // gcc passes <1 x double> in memory. :( |
| if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) |
| return; |
| |
| // gcc passes <1 x long long> as INTEGER. |
| if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) |
| Current = Integer; |
| else |
| Current = SSE; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| if (OffsetBase && OffsetBase != 64) |
| Hi = Lo; |
| } else if (Size == 128) { |
| Lo = SSE; |
| Hi = SSEUp; |
| } |
| } else if (const ComplexType *CT = Ty->getAsComplexType()) { |
| QualType ET = Context.getCanonicalType(CT->getElementType()); |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| if (ET->isIntegralType()) { |
| if (Size <= 64) |
| Current = Integer; |
| else if (Size <= 128) |
| Lo = Hi = Integer; |
| } else if (ET == Context.FloatTy) |
| Current = SSE; |
| else if (ET == Context.DoubleTy) |
| Lo = Hi = SSE; |
| else if (ET == Context.LongDoubleTy) |
| Current = ComplexX87; |
| |
| // If this complex type crosses an eightbyte boundary then it |
| // should be split. |
| uint64_t EB_Real = (OffsetBase) / 64; |
| uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; |
| if (Hi == NoClass && EB_Real != EB_Imag) |
| Hi = Lo; |
| } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
| // Arrays are treated like structures. |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than two eightbytes, ..., it has class MEMORY. |
| if (Size > 128) |
| return; |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| // fields, it has class MEMORY. |
| // |
| // Only need to check alignment of array base. |
| if (OffsetBase % Context.getTypeAlign(AT->getElementType())) |
| return; |
| |
| // Otherwise implement simplified merge. We could be smarter about |
| // this, but it isn't worth it and would be harder to verify. |
| Current = NoClass; |
| uint64_t EltSize = Context.getTypeSize(AT->getElementType()); |
| uint64_t ArraySize = AT->getSize().getZExtValue(); |
| for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { |
| Class FieldLo, FieldHi; |
| classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| // Do post merger cleanup (see below). Only case we worry about is Memory. |
| if (Hi == Memory) |
| Lo = Memory; |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); |
| } else if (const RecordType *RT = Ty->getAsRecordType()) { |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than two eightbytes, ..., it has class MEMORY. |
| if (Size > 128) |
| return; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| |
| // Assume variable sized types are passed in memory. |
| if (RD->hasFlexibleArrayMember()) |
| return; |
| |
| const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| |
| // Reset Lo class, this will be recomputed. |
| Current = NoClass; |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| e = RD->field_end(Context); i != e; ++i, ++idx) { |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| bool BitField = i->isBitField(); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| // fields, it has class MEMORY. |
| // |
| // Note, skip this test for bitfields, see below. |
| if (!BitField && Offset % Context.getTypeAlign(i->getType())) { |
| Lo = Memory; |
| return; |
| } |
| |
| // Classify this field. |
| // |
| // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate |
| // exceeds a single eightbyte, each is classified |
| // separately. Each eightbyte gets initialized to class |
| // NO_CLASS. |
| Class FieldLo, FieldHi; |
| |
| // Bitfields require special handling, they do not force the |
| // structure to be passed in memory even if unaligned, and |
| // therefore they can straddle an eightbyte. |
| if (BitField) { |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| uint64_t Size = |
| i->getBitWidth()->getIntegerConstantExprValue(Context).getZExtValue(); |
| |
| uint64_t EB_Lo = Offset / 64; |
| uint64_t EB_Hi = (Offset + Size - 1) / 64; |
| FieldLo = FieldHi = NoClass; |
| if (EB_Lo) { |
| assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); |
| FieldLo = NoClass; |
| FieldHi = Integer; |
| } else { |
| FieldLo = Integer; |
| FieldHi = EB_Hi ? Integer : NoClass; |
| } |
| } else |
| classify(i->getType(), Context, Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: |
| // |
| // (a) If one of the classes is MEMORY, the whole argument is |
| // passed in memory. |
| // |
| // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. |
| |
| // The first of these conditions is guaranteed by how we implement |
| // the merge (just bail). |
| // |
| // The second condition occurs in the case of unions; for example |
| // union { _Complex double; unsigned; }. |
| if (Hi == Memory) |
| Lo = Memory; |
| if (Hi == SSEUp && Lo != SSE) |
| Hi = SSE; |
| } |
| } |
| |
| ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, |
| const llvm::Type *CoerceTo, |
| ASTContext &Context) const { |
| if (CoerceTo == llvm::Type::Int64Ty) { |
| // Integer and pointer types will end up in a general purpose |
| // register. |
| if (Ty->isIntegralType() || Ty->isPointerType()) |
| return ABIArgInfo::getDirect(); |
| |
| } else if (CoerceTo == llvm::Type::DoubleTy) { |
| // FIXME: It would probably be better to make CGFunctionInfo only |
| // map using canonical types than to canonize here. |
| QualType CTy = Context.getCanonicalType(Ty); |
| |
| // Float and double end up in a single SSE reg. |
| if (CTy == Context.FloatTy || CTy == Context.DoubleTy) |
| return ABIArgInfo::getDirect(); |
| |
| } |
| |
| return ABIArgInfo::getCoerce(CoerceTo); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context) const { |
| // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the |
| // classification algorithm. |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(RetTy, Context, 0, Lo, Hi); |
| |
| // Check some invariants. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| const llvm::Type *ResType = 0; |
| switch (Lo) { |
| case NoClass: |
| return ABIArgInfo::getIgnore(); |
| |
| case SSEUp: |
| case X87Up: |
| assert(0 && "Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via |
| // hidden argument. |
| case Memory: |
| return ABIArgInfo::getIndirect(0); |
| |
| // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next |
| // available register of the sequence %rax, %rdx is used. |
| case Integer: |
| ResType = llvm::Type::Int64Ty; break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next |
| // available SSE register of the sequence %xmm0, %xmm1 is used. |
| case SSE: |
| ResType = llvm::Type::DoubleTy; break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is |
| // returned on the X87 stack in %st0 as 80-bit x87 number. |
| case X87: |
| ResType = llvm::Type::X86_FP80Ty; break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real |
| // part of the value is returned in %st0 and the imaginary part in |
| // %st1. |
| case ComplexX87: |
| assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); |
| ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty, |
| llvm::Type::X86_FP80Ty, |
| NULL); |
| break; |
| } |
| |
| switch (Hi) { |
| // Memory was handled previously and X87 should |
| // never occur as a hi class. |
| case Memory: |
| case X87: |
| assert(0 && "Invalid classification for hi word."); |
| |
| case ComplexX87: // Previously handled. |
| case NoClass: break; |
| |
| case Integer: |
| ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); |
| break; |
| case SSE: |
| ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte |
| // is passed in the upper half of the last used SSE register. |
| // |
| // SSEUP should always be preceeded by SSE, just widen. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification."); |
| ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is |
| // returned together with the previous X87 value in %st0. |
| case X87Up: |
| // If X87Up is preceeded by X87, we don't need to do |
| // anything. However, in some cases with unions it may not be |
| // preceeded by X87. In such situations we follow gcc and pass the |
| // extra bits in an SSE reg. |
| if (Lo != X87) |
| ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); |
| break; |
| } |
| |
| return getCoerceResult(RetTy, ResType, Context); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, |
| unsigned &neededInt, |
| unsigned &neededSSE) const { |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(Ty, Context, 0, Lo, Hi); |
| |
| // Check some invariants. |
| // FIXME: Enforce these by construction. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| neededInt = 0; |
| neededSSE = 0; |
| const llvm::Type *ResType = 0; |
| switch (Lo) { |
| case NoClass: |
| return ABIArgInfo::getIgnore(); |
| |
| // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument |
| // on the stack. |
| case Memory: |
| |
| // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or |
| // COMPLEX_X87, it is passed in memory. |
| case X87: |
| case ComplexX87: |
| return ABIArgInfo::getIndirect(0); |
| |
| case SSEUp: |
| case X87Up: |
| assert(0 && "Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next |
| // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 |
| // and %r9 is used. |
| case Integer: |
| ++neededInt; |
| ResType = llvm::Type::Int64Ty; |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next |
| // available SSE register is used, the registers are taken in the |
| // order from %xmm0 to %xmm7. |
| case SSE: |
| ++neededSSE; |
| ResType = llvm::Type::DoubleTy; |
| break; |
| } |
| |
| switch (Hi) { |
| // Memory was handled previously, ComplexX87 and X87 should |
| // never occur as hi classes, and X87Up must be preceed by X87, |
| // which is passed in memory. |
| case Memory: |
| case X87: |
| case ComplexX87: |
| assert(0 && "Invalid classification for hi word."); |
| break; |
| |
| case NoClass: break; |
| case Integer: |
| ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); |
| ++neededInt; |
| break; |
| |
| // X87Up generally doesn't occur here (long double is passed in |
| // memory), except in situations involving unions. |
| case X87Up: |
| case SSE: |
| ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); |
| ++neededSSE; |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the |
| // eightbyte is passed in the upper half of the last used SSE |
| // register. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification."); |
| ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); |
| break; |
| } |
| |
| return getCoerceResult(Ty, ResType, Context); |
| } |
| |
| void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| |
| // Keep track of the number of assigned registers. |
| unsigned freeIntRegs = 6, freeSSERegs = 8; |
| |
| // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers |
| // get assigned (in left-to-right order) for passing as follows... |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) { |
| unsigned neededInt, neededSSE; |
| it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE); |
| |
| // AMD64-ABI 3.2.3p3: If there are no registers available for any |
| // eightbyte of an argument, the whole argument is passed on the |
| // stack. If registers have already been assigned for some |
| // eightbytes of such an argument, the assignments get reverted. |
| if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { |
| freeIntRegs -= neededInt; |
| freeSSERegs -= neededSSE; |
| } else { |
| it->info = ABIArgInfo::getIndirect(0); |
| } |
| } |
| } |
| |
| static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, |
| QualType Ty, |
| CodeGenFunction &CGF) { |
| llvm::Value *overflow_arg_area_p = |
| CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); |
| llvm::Value *overflow_arg_area = |
| CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); |
| |
| // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 |
| // byte boundary if alignment needed by type exceeds 8 byte boundary. |
| uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; |
| if (Align > 8) { |
| // Note that we follow the ABI & gcc here, even though the type |
| // could in theory have an alignment greater than 16. This case |
| // shouldn't ever matter in practice. |
| |
| // overflow_arg_area = (overflow_arg_area + 15) & ~15; |
| llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15); |
| overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); |
| llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, |
| llvm::Type::Int64Ty); |
| llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL); |
| overflow_arg_area = |
| CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), |
| overflow_arg_area->getType(), |
| "overflow_arg_area.align"); |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. |
| const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *Res = |
| CGF.Builder.CreateBitCast(overflow_arg_area, |
| llvm::PointerType::getUnqual(LTy)); |
| |
| // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: |
| // l->overflow_arg_area + sizeof(type). |
| // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to |
| // an 8 byte boundary. |
| |
| uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; |
| llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| (SizeInBytes + 7) & ~7); |
| overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, |
| "overflow_arg_area.next"); |
| CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); |
| |
| // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. |
| return Res; |
| } |
| |
| llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| // Assume that va_list type is correct; should be pointer to LLVM type: |
| // struct { |
| // i32 gp_offset; |
| // i32 fp_offset; |
| // i8* overflow_arg_area; |
| // i8* reg_save_area; |
| // }; |
| unsigned neededInt, neededSSE; |
| ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), |
| neededInt, neededSSE); |
| |
| // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed |
| // in the registers. If not go to step 7. |
| if (!neededInt && !neededSSE) |
| return EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| |
| // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of |
| // general purpose registers needed to pass type and num_fp to hold |
| // the number of floating point registers needed. |
| |
| // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into |
| // registers. In the case: l->gp_offset > 48 - num_gp * 8 or |
| // l->fp_offset > 304 - num_fp * 16 go to step 7. |
| // |
| // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of |
| // register save space). |
| |
| llvm::Value *InRegs = 0; |
| llvm::Value *gp_offset_p = 0, *gp_offset = 0; |
| llvm::Value *fp_offset_p = 0, *fp_offset = 0; |
| if (neededInt) { |
| gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); |
| gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); |
| InRegs = |
| CGF.Builder.CreateICmpULE(gp_offset, |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| 48 - neededInt * 8), |
| "fits_in_gp"); |
| } |
| |
| if (neededSSE) { |
| fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); |
| fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); |
| llvm::Value *FitsInFP = |
| CGF.Builder.CreateICmpULE(fp_offset, |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| 176 - neededSSE * 16), |
| "fits_in_fp"); |
| InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; |
| } |
| |
| llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
| llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
| CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
| |
| // Emit code to load the value if it was passed in registers. |
| |
| CGF.EmitBlock(InRegBlock); |
| |
| // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with |
| // an offset of l->gp_offset and/or l->fp_offset. This may require |
| // copying to a temporary location in case the parameter is passed |
| // in different register classes or requires an alignment greater |
| // than 8 for general purpose registers and 16 for XMM registers. |
| // |
| // FIXME: This really results in shameful code when we end up |
| // needing to collect arguments from different places; often what |
| // should result in a simple assembling of a structure from |
| // scattered addresses has many more loads than necessary. Can we |
| // clean this up? |
| const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *RegAddr = |
| CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), |
| "reg_save_area"); |
| if (neededInt && neededSSE) { |
| // FIXME: Cleanup. |
| assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); |
| const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); |
| llvm::Value *Tmp = CGF.CreateTempAlloca(ST); |
| assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); |
| const llvm::Type *TyLo = ST->getElementType(0); |
| const llvm::Type *TyHi = ST->getElementType(1); |
| assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) && |
| "Unexpected ABI info for mixed regs"); |
| const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); |
| const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); |
| llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr; |
| llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr; |
| llvm::Value *V = |
| CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| |
| RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); |
| } else if (neededInt) { |
| RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| llvm::PointerType::getUnqual(LTy)); |
| } else { |
| if (neededSSE == 1) { |
| RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| llvm::PointerType::getUnqual(LTy)); |
| } else { |
| assert(neededSSE == 2 && "Invalid number of needed registers!"); |
| // SSE registers are spaced 16 bytes apart in the register save |
| // area, we need to collect the two eightbytes together. |
| llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| llvm::Value *RegAddrHi = |
| CGF.Builder.CreateGEP(RegAddrLo, |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, 16)); |
| const llvm::Type *DblPtrTy = |
| llvm::PointerType::getUnqual(llvm::Type::DoubleTy); |
| const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy, |
| llvm::Type::DoubleTy, |
| NULL); |
| llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, |
| DblPtrTy)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, |
| DblPtrTy)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| RegAddr = CGF.Builder.CreateBitCast(Tmp, |
| llvm::PointerType::getUnqual(LTy)); |
| } |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 5. Set: |
| // l->gp_offset = l->gp_offset + num_gp * 8 |
| // l->fp_offset = l->fp_offset + num_fp * 16. |
| if (neededInt) { |
| llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| neededInt * 8); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), |
| gp_offset_p); |
| } |
| if (neededSSE) { |
| llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| neededSSE * 16); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), |
| fp_offset_p); |
| } |
| CGF.EmitBranch(ContBlock); |
| |
| // Emit code to load the value if it was passed in memory. |
| |
| CGF.EmitBlock(InMemBlock); |
| llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| |
| // Return the appropriate result. |
| |
| CGF.EmitBlock(ContBlock); |
| llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), |
| "vaarg.addr"); |
| ResAddr->reserveOperandSpace(2); |
| ResAddr->addIncoming(RegAddr, InRegBlock); |
| ResAddr->addIncoming(MemAddr, InMemBlock); |
| |
| return ResAddr; |
| } |
| |
| class ARMABIInfo : public ABIInfo { |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, |
| ASTContext &Context) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) { |
| it->info = classifyArgumentType(it->type, Context); |
| } |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context) const { |
| if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| return ABIArgInfo::getDirect(); |
| } |
| // FIXME: This is kind of nasty... but there isn't much choice |
| // because the ARM backend doesn't support byval. |
| // FIXME: This doesn't handle alignment > 64 bits. |
| const llvm::Type* ElemTy; |
| unsigned SizeRegs; |
| if (Context.getTypeAlign(Ty) > 32) { |
| ElemTy = llvm::Type::Int64Ty; |
| SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; |
| } else { |
| ElemTy = llvm::Type::Int32Ty; |
| SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; |
| } |
| std::vector<const llvm::Type*> LLVMFields; |
| LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); |
| const llvm::Type* STy = llvm::StructType::get(LLVMFields, true); |
| return ABIArgInfo::getCoerce(STy); |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context) const { |
| if (RetTy->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| // Aggregates <= 4 bytes are returned in r0; other aggregates |
| // are returned indirectly. |
| uint64_t Size = Context.getTypeSize(RetTy); |
| if (Size <= 32) |
| return ABIArgInfo::getCoerce(llvm::Type::Int32Ty); |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| |
| llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| // FIXME: Need to handle alignment |
| const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| "ap"); |
| llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| |
| uint64_t Offset = |
| llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| llvm::Value *NextAddr = |
| Builder.CreateGEP(Addr, |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), |
| "ap.next"); |
| Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| |
| return AddrTyped; |
| } |
| |
| ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context) const { |
| if (RetTy->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| |
| ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context) const { |
| if (CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| |
| llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| return 0; |
| } |
| |
| const ABIInfo &CodeGenTypes::getABIInfo() const { |
| if (TheABIInfo) |
| return *TheABIInfo; |
| |
| // For now we just cache this in the CodeGenTypes and don't bother |
| // to free it. |
| const char *TargetPrefix = getContext().Target.getTargetPrefix(); |
| if (strcmp(TargetPrefix, "x86") == 0) { |
| bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin"); |
| switch (getContext().Target.getPointerWidth(0)) { |
| case 32: |
| return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin)); |
| case 64: |
| return *(TheABIInfo = new X86_64ABIInfo()); |
| } |
| } else if (strcmp(TargetPrefix, "arm") == 0) { |
| // FIXME: Support for OABI? |
| return *(TheABIInfo = new ARMABIInfo()); |
| } |
| |
| return *(TheABIInfo = new DefaultABIInfo); |
| } |
| |
| /***/ |
| |
| CGFunctionInfo::CGFunctionInfo(QualType ResTy, |
| const llvm::SmallVector<QualType, 16> &ArgTys) { |
| NumArgs = ArgTys.size(); |
| Args = new ArgInfo[1 + NumArgs]; |
| Args[0].type = ResTy; |
| for (unsigned i = 0; i < NumArgs; ++i) |
| Args[1 + i].type = ArgTys[i]; |
| } |
| |
| /***/ |
| |
| void CodeGenTypes::GetExpandedTypes(QualType Ty, |
| std::vector<const llvm::Type*> &ArgTys) { |
| const RecordType *RT = Ty->getAsStructureType(); |
| assert(RT && "Can only expand structure types."); |
| const RecordDecl *RD = RT->getDecl(); |
| assert(!RD->hasFlexibleArrayMember() && |
| "Cannot expand structure with flexible array."); |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| e = RD->field_end(Context); i != e; ++i) { |
| const FieldDecl *FD = *i; |
| assert(!FD->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| |
| QualType FT = FD->getType(); |
| if (CodeGenFunction::hasAggregateLLVMType(FT)) { |
| GetExpandedTypes(FT, ArgTys); |
| } else { |
| ArgTys.push_back(ConvertType(FT)); |
| } |
| } |
| } |
| |
| llvm::Function::arg_iterator |
| CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, |
| llvm::Function::arg_iterator AI) { |
| const RecordType *RT = Ty->getAsStructureType(); |
| assert(RT && "Can only expand structure types."); |
| |
| RecordDecl *RD = RT->getDecl(); |
| assert(LV.isSimple() && |
| "Unexpected non-simple lvalue during struct expansion."); |
| llvm::Value *Addr = LV.getAddress(); |
| for (RecordDecl::field_iterator i = RD->field_begin(getContext()), |
| e = RD->field_end(getContext()); i != e; ++i) { |
| FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // FIXME: What are the right qualifiers here? |
| LValue LV = EmitLValueForField(Addr, FD, false, 0); |
| if (CodeGenFunction::hasAggregateLLVMType(FT)) { |
| AI = ExpandTypeFromArgs(FT, LV, AI); |
| } else { |
| EmitStoreThroughLValue(RValue::get(AI), LV, FT); |
| ++AI; |
| } |
| } |
| |
| return AI; |
| } |
| |
| void |
| CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, |
| llvm::SmallVector<llvm::Value*, 16> &Args) { |
| const RecordType *RT = Ty->getAsStructureType(); |
| assert(RT && "Can only expand structure types."); |
| |
| RecordDecl *RD = RT->getDecl(); |
| assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); |
| llvm::Value *Addr = RV.getAggregateAddr(); |
| for (RecordDecl::field_iterator i = RD->field_begin(getContext()), |
| e = RD->field_end(getContext()); i != e; ++i) { |
| FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // FIXME: What are the right qualifiers here? |
| LValue LV = EmitLValueForField(Addr, FD, false, 0); |
| if (CodeGenFunction::hasAggregateLLVMType(FT)) { |
| ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args); |
| } else { |
| RValue RV = EmitLoadOfLValue(LV, FT); |
| assert(RV.isScalar() && |
| "Unexpected non-scalar rvalue during struct expansion."); |
| Args.push_back(RV.getScalarVal()); |
| } |
| } |
| } |
| |
| /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as |
| /// a pointer to an object of type \arg Ty. |
| /// |
| /// This safely handles the case when the src type is smaller than the |
| /// destination type; in this situation the values of bits which not |
| /// present in the src are undefined. |
| static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, |
| const llvm::Type *Ty, |
| CodeGenFunction &CGF) { |
| const llvm::Type *SrcTy = |
| cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); |
| uint64_t SrcSize = CGF.CGM.getTargetData().getTypePaddedSize(SrcTy); |
| uint64_t DstSize = CGF.CGM.getTargetData().getTypePaddedSize(Ty); |
| |
| // If load is legal, just bitcast the src pointer. |
| if (SrcSize == DstSize) { |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); |
| // FIXME: Use better alignment / avoid requiring aligned load. |
| Load->setAlignment(1); |
| return Load; |
| } else { |
| assert(SrcSize < DstSize && "Coercion is losing source bits!"); |
| |
| // Otherwise do coercion through memory. This is stupid, but |
| // simple. |
| llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); |
| llvm::StoreInst *Store = |
| CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); |
| // FIXME: Use better alignment / avoid requiring aligned store. |
| Store->setAlignment(1); |
| return CGF.Builder.CreateLoad(Tmp); |
| } |
| } |
| |
| /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, |
| /// where the source and destination may have different types. |
| /// |
| /// This safely handles the case when the src type is larger than the |
| /// destination type; the upper bits of the src will be lost. |
| static void CreateCoercedStore(llvm::Value *Src, |
| llvm::Value *DstPtr, |
| CodeGenFunction &CGF) { |
| const llvm::Type *SrcTy = Src->getType(); |
| const llvm::Type *DstTy = |
| cast<llvm::PointerType>(DstPtr->getType())->getElementType(); |
| |
| uint64_t SrcSize = CGF.CGM.getTargetData().getTypePaddedSize(SrcTy); |
| uint64_t DstSize = CGF.CGM.getTargetData().getTypePaddedSize(DstTy); |
| |
| // If store is legal, just bitcast the src pointer. |
| if (SrcSize == DstSize) { |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); |
| // FIXME: Use better alignment / avoid requiring aligned store. |
| CGF.Builder.CreateStore(Src, Casted)->setAlignment(1); |
| } else { |
| assert(SrcSize > DstSize && "Coercion is missing bits!"); |
| |
| // Otherwise do coercion through memory. This is stupid, but |
| // simple. |
| llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); |
| CGF.Builder.CreateStore(Src, Tmp); |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); |
| // FIXME: Use better alignment / avoid requiring aligned load. |
| Load->setAlignment(1); |
| CGF.Builder.CreateStore(Load, DstPtr); |
| } |
| } |
| |
| /***/ |
| |
| bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) { |
| return FI.getReturnInfo().isIndirect(); |
| } |
| |
| const llvm::FunctionType * |
| CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) { |
| std::vector<const llvm::Type*> ArgTys; |
| |
| const llvm::Type *ResultType = 0; |
| |
| QualType RetTy = FI.getReturnType(); |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| |
| case ABIArgInfo::Direct: |
| ResultType = ConvertType(RetTy); |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| assert(!RetAI.getIndirectAlign() && "Align unused on indirect return."); |
| ResultType = llvm::Type::VoidTy; |
| const llvm::Type *STy = ConvertType(RetTy); |
| ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); |
| break; |
| } |
| |
| case ABIArgInfo::Ignore: |
| ResultType = llvm::Type::VoidTy; |
| break; |
| |
| case ABIArgInfo::Coerce: |
| ResultType = RetAI.getCoerceToType(); |
| break; |
| } |
| |
| for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| ie = FI.arg_end(); it != ie; ++it) { |
| const ABIArgInfo &AI = it->info; |
| |
| switch (AI.getKind()) { |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Coerce: |
| ArgTys.push_back(AI.getCoerceToType()); |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| // indirect arguments are always on the stack, which is addr space #0. |
| const llvm::Type *LTy = ConvertTypeForMem(it->type); |
| ArgTys.push_back(llvm::PointerType::getUnqual(LTy)); |
| break; |
| } |
| |
| case ABIArgInfo::Direct: |
| ArgTys.push_back(ConvertType(it->type)); |
| break; |
| |
| case ABIArgInfo::Expand: |
| GetExpandedTypes(it->type, ArgTys); |
| break; |
| } |
| } |
| |
| return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic); |
| } |
| |
| void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, |
| const Decl *TargetDecl, |
| AttributeListType &PAL) { |
| unsigned FuncAttrs = 0; |
| unsigned RetAttrs = 0; |
| |
| // FIXME: handle sseregparm someday... |
| if (TargetDecl) { |
| if (TargetDecl->getAttr<NoThrowAttr>()) |
| FuncAttrs |= llvm::Attribute::NoUnwind; |
| if (TargetDecl->getAttr<NoReturnAttr>()) |
| FuncAttrs |= llvm::Attribute::NoReturn; |
| if (TargetDecl->getAttr<ConstAttr>()) |
| FuncAttrs |= llvm::Attribute::ReadNone; |
| else if (TargetDecl->getAttr<PureAttr>()) |
| FuncAttrs |= llvm::Attribute::ReadOnly; |
| } |
| |
| QualType RetTy = FI.getReturnType(); |
| unsigned Index = 1; |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Direct: |
| if (RetTy->isPromotableIntegerType()) { |
| if (RetTy->isSignedIntegerType()) { |
| RetAttrs |= llvm::Attribute::SExt; |
| } else if (RetTy->isUnsignedIntegerType()) { |
| RetAttrs |= llvm::Attribute::ZExt; |
| } |
| } |
| break; |
| |
| case ABIArgInfo::Indirect: |
| PAL.push_back(llvm::AttributeWithIndex::get(Index, |
| llvm::Attribute::StructRet | |
| llvm::Attribute::NoAlias)); |
| ++Index; |
| // sret disables readnone and readonly |
| FuncAttrs &= ~(llvm::Attribute::ReadOnly | |
| llvm::Attribute::ReadNone); |
| break; |
| |
| case ABIArgInfo::Ignore: |
| case ABIArgInfo::Coerce: |
| break; |
| |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| } |
| |
| if (RetAttrs) |
| PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); |
| |
| // FIXME: we need to honour command line settings also... |
| // FIXME: RegParm should be reduced in case of nested functions and/or global |
| // register variable. |
| signed RegParm = 0; |
| if (TargetDecl) |
| if (const RegparmAttr *RegParmAttr = TargetDecl->getAttr<RegparmAttr>()) |
| RegParm = RegParmAttr->getNumParams(); |
| |
| unsigned PointerWidth = getContext().Target.getPointerWidth(0); |
| for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| ie = FI.arg_end(); it != ie; ++it) { |
| QualType ParamType = it->type; |
| const ABIArgInfo &AI = it->info; |
| unsigned Attributes = 0; |
| |
| switch (AI.getKind()) { |
| case ABIArgInfo::Coerce: |
| break; |
| |
| case ABIArgInfo::Indirect: |
| Attributes |= llvm::Attribute::ByVal; |
| Attributes |= |
| llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); |
| // byval disables readnone and readonly. |
| FuncAttrs &= ~(llvm::Attribute::ReadOnly | |
| llvm::Attribute::ReadNone); |
| break; |
| |
| case ABIArgInfo::Direct: |
| if (ParamType->isPromotableIntegerType()) { |
| if (ParamType->isSignedIntegerType()) { |
| Attributes |= llvm::Attribute::SExt; |
| } else if (ParamType->isUnsignedIntegerType()) { |
| Attributes |= llvm::Attribute::ZExt; |
| } |
| } |
| if (RegParm > 0 && |
| (ParamType->isIntegerType() || ParamType->isPointerType())) { |
| RegParm -= |
| (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; |
| if (RegParm >= 0) |
| Attributes |= llvm::Attribute::InReg; |
| } |
| // FIXME: handle sseregparm someday... |
| break; |
| |
| case ABIArgInfo::Ignore: |
| // Skip increment, no matching LLVM parameter. |
| continue; |
| |
| case ABIArgInfo::Expand: { |
| std::vector<const llvm::Type*> Tys; |
| // FIXME: This is rather inefficient. Do we ever actually need |
| // to do anything here? The result should be just reconstructed |
| // on the other side, so extension should be a non-issue. |
| getTypes().GetExpandedTypes(ParamType, Tys); |
| Index += Tys.size(); |
| continue; |
| } |
| } |
| |
| if (Attributes) |
| PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); |
| ++Index; |
| } |
| if (FuncAttrs) |
| PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); |
| } |
| |
| void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, |
| llvm::Function *Fn, |
| const FunctionArgList &Args) { |
| // FIXME: We no longer need the types from FunctionArgList; lift up |
| // and simplify. |
| |
| // Emit allocs for param decls. Give the LLVM Argument nodes names. |
| llvm::Function::arg_iterator AI = Fn->arg_begin(); |
| |
| // Name the struct return argument. |
| if (CGM.ReturnTypeUsesSret(FI)) { |
| AI->setName("agg.result"); |
| ++AI; |
| } |
| |
| assert(FI.arg_size() == Args.size() && |
| "Mismatch between function signature & arguments."); |
| CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); |
| for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i, ++info_it) { |
| const VarDecl *Arg = i->first; |
| QualType Ty = info_it->type; |
| const ABIArgInfo &ArgI = info_it->info; |
| |
| switch (ArgI.getKind()) { |
| case ABIArgInfo::Indirect: { |
| llvm::Value* V = AI; |
| if (hasAggregateLLVMType(Ty)) { |
| // Do nothing, aggregates and complex variables are accessed by |
| // reference. |
| } else { |
| // Load scalar value from indirect argument. |
| V = EmitLoadOfScalar(V, false, Ty); |
| if (!getContext().typesAreCompatible(Ty, Arg->getType())) { |
| // This must be a promotion, for something like |
| // "void a(x) short x; {..." |
| V = EmitScalarConversion(V, Ty, Arg->getType()); |
| } |
| } |
| EmitParmDecl(*Arg, V); |
| break; |
| } |
| |
| case ABIArgInfo::Direct: { |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| llvm::Value* V = AI; |
| if (hasAggregateLLVMType(Ty)) { |
| // Create a temporary alloca to hold the argument; the rest of |
| // codegen expects to access aggregates & complex values by |
| // reference. |
| V = CreateTempAlloca(ConvertTypeForMem(Ty)); |
| Builder.CreateStore(AI, V); |
| } else { |
| if (!getContext().typesAreCompatible(Ty, Arg->getType())) { |
| // This must be a promotion, for something like |
| // "void a(x) short x; {..." |
| V = EmitScalarConversion(V, Ty, Arg->getType()); |
| } |
| } |
| EmitParmDecl(*Arg, V); |
| break; |
| } |
| |
| case ABIArgInfo::Expand: { |
| // If this structure was expanded into multiple arguments then |
| // we need to create a temporary and reconstruct it from the |
| // arguments. |
| std::string Name = Arg->getNameAsString(); |
| llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty), |
| (Name + ".addr").c_str()); |
| // FIXME: What are the right qualifiers here? |
| llvm::Function::arg_iterator End = |
| ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI); |
| EmitParmDecl(*Arg, Temp); |
| |
| // Name the arguments used in expansion and increment AI. |
| unsigned Index = 0; |
| for (; AI != End; ++AI, ++Index) |
| AI->setName(Name + "." + llvm::utostr(Index)); |
| continue; |
| } |
| |
| case ABIArgInfo::Ignore: |
| // Initialize the local variable appropriately. |
| if (hasAggregateLLVMType(Ty)) { |
| EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty))); |
| } else { |
| EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType()))); |
| } |
| |
| // Skip increment, no matching LLVM parameter. |
| continue; |
| |
| case ABIArgInfo::Coerce: { |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| // FIXME: This is very wasteful; EmitParmDecl is just going to |
| // drop the result in a new alloca anyway, so we could just |
| // store into that directly if we broke the abstraction down |
| // more. |
| llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce"); |
| CreateCoercedStore(AI, V, *this); |
| // Match to what EmitParmDecl is expecting for this type. |
| if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| V = EmitLoadOfScalar(V, false, Ty); |
| if (!getContext().typesAreCompatible(Ty, Arg->getType())) { |
| // This must be a promotion, for something like |
| // "void a(x) short x; {..." |
| V = EmitScalarConversion(V, Ty, Arg->getType()); |
| } |
| } |
| EmitParmDecl(*Arg, V); |
| break; |
| } |
| } |
| |
| ++AI; |
| } |
| assert(AI == Fn->arg_end() && "Argument mismatch!"); |
| } |
| |
| void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, |
| llvm::Value *ReturnValue) { |
| llvm::Value *RV = 0; |
| |
| // Functions with no result always return void. |
| if (ReturnValue) { |
| QualType RetTy = FI.getReturnType(); |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Indirect: |
| if (RetTy->isAnyComplexType()) { |
| ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); |
| StoreComplexToAddr(RT, CurFn->arg_begin(), false); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy); |
| } else { |
| EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), |
| false); |
| } |
| break; |
| |
| case ABIArgInfo::Direct: |
| // The internal return value temp always will have |
| // pointer-to-return-type type. |
| RV = Builder.CreateLoad(ReturnValue); |
| break; |
| |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Coerce: |
| RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this); |
| break; |
| |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| } |
| } |
| |
| if (RV) { |
| Builder.CreateRet(RV); |
| } else { |
| Builder.CreateRetVoid(); |
| } |
| } |
| |
| RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) { |
| return EmitAnyExprToTemp(E); |
| } |
| |
| void CodeGenFunction::EmitCallArgs(CallArgList& Args, |
| const FunctionProtoType *FPT, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd) { |
| CallExpr::const_arg_iterator Arg = ArgBeg; |
| |
| // First, use the function argument types. |
| if (FPT) { |
| for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(), |
| E = FPT->arg_type_end(); I != E; ++I, ++Arg) { |
| assert(getContext().getCanonicalType(I->getNonReferenceType()). |
| getTypePtr() == |
| getContext().getCanonicalType(Arg->getType()).getTypePtr() && |
| "type mismatch in call argument!"); |
| |
| QualType ArgType = *I; |
| Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType), |
| ArgType)); |
| } |
| |
| assert(Arg == ArgEnd || FPT->isVariadic() && |
| "Extra arguments in non-variadic function!"); |
| } |
| |
| // If we still have any arguments, emit them using the type of the argument. |
| for (; Arg != ArgEnd; ++Arg) { |
| QualType ArgType = Arg->getType(); |
| Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType), |
| ArgType)); |
| } |
| } |
| |
| RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, |
| llvm::Value *Callee, |
| const CallArgList &CallArgs, |
| const Decl *TargetDecl) { |
| // FIXME: We no longer need the types from CallArgs; lift up and |
| // simplify. |
| llvm::SmallVector<llvm::Value*, 16> Args; |
| |
| // Handle struct-return functions by passing a pointer to the |
| // location that we would like to return into. |
| QualType RetTy = CallInfo.getReturnType(); |
| const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); |
| if (CGM.ReturnTypeUsesSret(CallInfo)) { |
| // Create a temporary alloca to hold the result of the call. :( |
| Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy))); |
| } |
| |
| assert(CallInfo.arg_size() == CallArgs.size() && |
| "Mismatch between function signature & arguments."); |
| CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); |
| for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); |
| I != E; ++I, ++info_it) { |
| const ABIArgInfo &ArgInfo = info_it->info; |
| RValue RV = I->first; |
| |
| switch (ArgInfo.getKind()) { |
| case ABIArgInfo::Indirect: |
| if (RV.isScalar() || RV.isComplex()) { |
| // Make a temporary alloca to pass the argument. |
| Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second))); |
| if (RV.isScalar()) |
| EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false); |
| else |
| StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); |
| } else { |
| Args.push_back(RV.getAggregateAddr()); |
| } |
| break; |
| |
| case ABIArgInfo::Direct: |
| if (RV.isScalar()) { |
| Args.push_back(RV.getScalarVal()); |
| } else if (RV.isComplex()) { |
| llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second)); |
| Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0); |
| Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1); |
| Args.push_back(Tmp); |
| } else { |
| Args.push_back(Builder.CreateLoad(RV.getAggregateAddr())); |
| } |
| break; |
| |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Coerce: { |
| // FIXME: Avoid the conversion through memory if possible. |
| llvm::Value *SrcPtr; |
| if (RV.isScalar()) { |
| SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); |
| EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false); |
| } else if (RV.isComplex()) { |
| SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); |
| StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); |
| } else |
| SrcPtr = RV.getAggregateAddr(); |
| Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), |
| *this)); |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| ExpandTypeToArgs(I->second, RV, Args); |
| break; |
| } |
| } |
| |
| llvm::BasicBlock *InvokeDest = getInvokeDest(); |
| CodeGen::AttributeListType AttributeList; |
| CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList); |
| llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), |
| AttributeList.end()); |
| |
| llvm::CallSite CS; |
| if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) { |
| CS = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size()); |
| } else { |
| llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); |
| CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, |
| &Args[0], &Args[0]+Args.size()); |
| EmitBlock(Cont); |
| } |
| |
| CS.setAttributes(Attrs); |
| if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee)) |
| CS.setCallingConv(F->getCallingConv()); |
| |
| // If the call doesn't return, finish the basic block and clear the |
| // insertion point; this allows the rest of IRgen to discard |
| // unreachable code. |
| if (CS.doesNotReturn()) { |
| Builder.CreateUnreachable(); |
| Builder.ClearInsertionPoint(); |
| |
| // FIXME: For now, emit a dummy basic block because expr |
| // emitters in generally are not ready to handle emitting |
| // expressions at unreachable points. |
| EnsureInsertPoint(); |
| |
| // Return a reasonable RValue. |
| return GetUndefRValue(RetTy); |
| } |
| |
| llvm::Instruction *CI = CS.getInstruction(); |
| if (Builder.isNamePreserving() && CI->getType() != llvm::Type::VoidTy) |
| CI->setName("call"); |
| |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Indirect: |
| if (RetTy->isAnyComplexType()) |
| return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) |
| return RValue::getAggregate(Args[0]); |
| return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy)); |
| |
| case ABIArgInfo::Direct: |
| if (RetTy->isAnyComplexType()) { |
| llvm::Value *Real = Builder.CreateExtractValue(CI, 0); |
| llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp"); |
| Builder.CreateStore(CI, V); |
| return RValue::getAggregate(V); |
| } |
| return RValue::get(CI); |
| |
| case ABIArgInfo::Ignore: |
| // If we are ignoring an argument that had a result, make sure to |
| // construct the appropriate return value for our caller. |
| return GetUndefRValue(RetTy); |
| |
| case ABIArgInfo::Coerce: { |
| // FIXME: Avoid the conversion through memory if possible. |
| llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce"); |
| CreateCoercedStore(CI, V, *this); |
| if (RetTy->isAnyComplexType()) |
| return RValue::getComplex(LoadComplexFromAddr(V, false)); |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) |
| return RValue::getAggregate(V); |
| return RValue::get(EmitLoadOfScalar(V, false, RetTy)); |
| } |
| |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| } |
| |
| assert(0 && "Unhandled ABIArgInfo::Kind"); |
| return RValue::get(0); |
| } |
| |
| /* VarArg handling */ |
| |
| llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { |
| return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); |
| } |