blob: fc5f5934b0e51b1916a6646ac978297d38a05e08 [file] [log] [blame]
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ related Decl classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
CXXRecordDecl *PrevDecl,
SourceLocation TKL)
: RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL),
UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
Abstract(false), HasTrivialConstructor(true),
HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
HasTrivialDestructor(true), ComputedVisibleConversions(false),
Bases(0), NumBases(0), VBases(0), NumVBases(0),
Conversions(DC, DeclarationName()),
VisibleConversions(DC, DeclarationName()),
TemplateOrInstantiation() { }
CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL,
CXXRecordDecl* PrevDecl,
bool DelayTypeCreation) {
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id,
PrevDecl, TKL);
// FIXME: DelayTypeCreation seems like such a hack
if (!DelayTypeCreation)
C.getTypeDeclType(R, PrevDecl);
return R;
}
CXXRecordDecl::~CXXRecordDecl() {
}
void CXXRecordDecl::Destroy(ASTContext &C) {
C.Deallocate(Bases);
C.Deallocate(VBases);
this->RecordDecl::Destroy(C);
}
void
CXXRecordDecl::setBases(ASTContext &C,
CXXBaseSpecifier const * const *Bases,
unsigned NumBases) {
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...]
// no base classes [...].
Aggregate = false;
if (this->Bases)
C.Deallocate(this->Bases);
int vbaseCount = 0;
llvm::SmallVector<const CXXBaseSpecifier*, 8> UniqueVbases;
bool hasDirectVirtualBase = false;
this->Bases = new(C) CXXBaseSpecifier [NumBases];
this->NumBases = NumBases;
for (unsigned i = 0; i < NumBases; ++i) {
this->Bases[i] = *Bases[i];
// Keep track of inherited vbases for this base class.
const CXXBaseSpecifier *Base = Bases[i];
QualType BaseType = Base->getType();
// Skip template types.
// FIXME. This means that this list must be rebuilt during template
// instantiation.
if (BaseType->isDependentType())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
if (Base->isVirtual())
hasDirectVirtualBase = true;
for (CXXRecordDecl::base_class_iterator VBase =
BaseClassDecl->vbases_begin(),
E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
// Add this vbase to the array of vbases for current class if it is
// not already in the list.
// FIXME. Note that we do a linear search as number of such classes are
// very few.
int i;
for (i = 0; i < vbaseCount; ++i)
if (UniqueVbases[i]->getType() == VBase->getType())
break;
if (i == vbaseCount) {
UniqueVbases.push_back(VBase);
++vbaseCount;
}
}
}
if (hasDirectVirtualBase) {
// Iterate one more time through the direct bases and add the virtual
// base to the list of vritual bases for current class.
for (unsigned i = 0; i < NumBases; ++i) {
const CXXBaseSpecifier *VBase = Bases[i];
if (!VBase->isVirtual())
continue;
int j;
for (j = 0; j < vbaseCount; ++j)
if (UniqueVbases[j]->getType() == VBase->getType())
break;
if (j == vbaseCount) {
UniqueVbases.push_back(VBase);
++vbaseCount;
}
}
}
if (vbaseCount > 0) {
// build AST for inhireted, direct or indirect, virtual bases.
this->VBases = new (C) CXXBaseSpecifier [vbaseCount];
this->NumVBases = vbaseCount;
for (int i = 0; i < vbaseCount; i++) {
QualType QT = UniqueVbases[i]->getType();
CXXRecordDecl *VBaseClassDecl
= cast<CXXRecordDecl>(QT->getAs<RecordType>()->getDecl());
this->VBases[i] =
CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
VBaseClassDecl->getTagKind() == RecordDecl::TK_class,
UniqueVbases[i]->getAccessSpecifier(), QT);
}
}
}
bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const {
return getCopyConstructor(Context, Qualifiers::Const) != 0;
}
CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context,
unsigned TypeQuals) const{
QualType ClassType
= Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType));
unsigned FoundTQs;
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
Con != ConEnd; ++Con) {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor if [...]
if (isa<FunctionTemplateDecl>(*Con))
continue;
if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(Context,
FoundTQs)) {
if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
(!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
return cast<CXXConstructorDecl>(*Con);
}
}
return 0;
}
bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context,
const CXXMethodDecl *& MD) const {
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
const_cast<CXXRecordDecl*>(this)));
DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal);
DeclContext::lookup_const_iterator Op, OpEnd;
for (llvm::tie(Op, OpEnd) = this->lookup(OpName);
Op != OpEnd; ++Op) {
// C++ [class.copy]p9:
// A user-declared copy assignment operator is a non-static non-template
// member function of class X with exactly one parameter of type X, X&,
// const X&, volatile X& or const volatile X&.
const CXXMethodDecl* Method = cast<CXXMethodDecl>(*Op);
if (Method->isStatic())
continue;
// TODO: Skip templates? Or is this implicitly done due to parameter types?
const FunctionProtoType *FnType =
Method->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no prototype.");
// Don't assert on this; an invalid decl might have been left in the AST.
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
continue;
bool AcceptsConst = true;
QualType ArgType = FnType->getArgType(0);
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
ArgType = Ref->getPointeeType();
// Is it a non-const lvalue reference?
if (!ArgType.isConstQualified())
AcceptsConst = false;
}
if (Context.getCanonicalType(ArgType).getUnqualifiedType() != ClassType)
continue;
MD = Method;
// We have a single argument of type cv X or cv X&, i.e. we've found the
// copy assignment operator. Return whether it accepts const arguments.
return AcceptsConst;
}
assert(isInvalidDecl() &&
"No copy assignment operator declared in valid code.");
return false;
}
void
CXXRecordDecl::addedConstructor(ASTContext &Context,
CXXConstructorDecl *ConDecl) {
assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl");
// Note that we have a user-declared constructor.
UserDeclaredConstructor = true;
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with no
// user-declared constructors (12.1) [...].
Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class [...]
PlainOldData = false;
// C++ [class.ctor]p5:
// A constructor is trivial if it is an implicitly-declared default
// constructor.
// FIXME: C++0x: don't do this for "= default" default constructors.
HasTrivialConstructor = false;
// Note when we have a user-declared copy constructor, which will
// suppress the implicit declaration of a copy constructor.
if (ConDecl->isCopyConstructor(Context)) {
UserDeclaredCopyConstructor = true;
// C++ [class.copy]p6:
// A copy constructor is trivial if it is implicitly declared.
// FIXME: C++0x: don't do this for "= default" copy constructors.
HasTrivialCopyConstructor = false;
}
}
void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
CXXMethodDecl *OpDecl) {
// We're interested specifically in copy assignment operators.
const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no proto function type.");
assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
QualType ArgType = FnType->getArgType(0);
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>())
ArgType = Ref->getPointeeType();
ArgType = ArgType.getUnqualifiedType();
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
const_cast<CXXRecordDecl*>(this)));
if (ClassType != Context.getCanonicalType(ArgType))
return;
// This is a copy assignment operator.
// Suppress the implicit declaration of a copy constructor.
UserDeclaredCopyAssignment = true;
// C++ [class.copy]p11:
// A copy assignment operator is trivial if it is implicitly declared.
// FIXME: C++0x: don't do this for "= default" copy operators.
HasTrivialCopyAssignment = false;
// C++ [class]p4:
// A POD-struct is an aggregate class that [...] has no user-defined copy
// assignment operator [...].
PlainOldData = false;
}
void
CXXRecordDecl::collectConversionFunctions(
llvm::SmallPtrSet<QualType, 8>& ConversionsTypeSet) {
OverloadedFunctionDecl *TopConversions = getConversionFunctions();
for (OverloadedFunctionDecl::function_iterator
TFunc = TopConversions->function_begin(),
TFuncEnd = TopConversions->function_end();
TFunc != TFuncEnd; ++TFunc) {
NamedDecl *TopConv = TFunc->get();
QualType TConvType;
if (FunctionTemplateDecl *TConversionTemplate =
dyn_cast<FunctionTemplateDecl>(TopConv))
TConvType =
getASTContext().getCanonicalType(
TConversionTemplate->getTemplatedDecl()->getResultType());
else
TConvType =
getASTContext().getCanonicalType(
cast<CXXConversionDecl>(TopConv)->getConversionType());
ConversionsTypeSet.insert(TConvType);
}
}
/// getNestedVisibleConversionFunctions - imports unique conversion
/// functions from base classes into the visible conversion function
/// list of the class 'RD'. This is a private helper method.
/// TopConversionsTypeSet is the set of conversion functions of the class
/// we are interested in. HiddenConversionTypes is set of conversion functions
/// of the immediate derived class which hides the conversion functions found
/// in current class.
void
CXXRecordDecl::getNestedVisibleConversionFunctions(CXXRecordDecl *RD,
const llvm::SmallPtrSet<QualType, 8> &TopConversionsTypeSet,
const llvm::SmallPtrSet<QualType, 8> &HiddenConversionTypes) {
bool inTopClass = (RD == this);
QualType ClassType = getASTContext().getTypeDeclType(this);
if (const RecordType *Record = ClassType->getAs<RecordType>()) {
OverloadedFunctionDecl *Conversions
= cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
for (OverloadedFunctionDecl::function_iterator
Func = Conversions->function_begin(),
FuncEnd = Conversions->function_end();
Func != FuncEnd; ++Func) {
NamedDecl *Conv = Func->get();
// Only those conversions not exact match of conversions in current
// class are candidateconversion routines.
QualType ConvType;
if (FunctionTemplateDecl *ConversionTemplate =
dyn_cast<FunctionTemplateDecl>(Conv))
ConvType =
getASTContext().getCanonicalType(
ConversionTemplate->getTemplatedDecl()->getResultType());
else
ConvType =
getASTContext().getCanonicalType(
cast<CXXConversionDecl>(Conv)->getConversionType());
// We only add conversion functions found in the base class if they
// are not hidden by those found in HiddenConversionTypes which are
// the conversion functions in its derived class.
if (inTopClass ||
(!TopConversionsTypeSet.count(ConvType) &&
!HiddenConversionTypes.count(ConvType)) ) {
if (FunctionTemplateDecl *ConversionTemplate =
dyn_cast<FunctionTemplateDecl>(Conv))
RD->addVisibleConversionFunction(ConversionTemplate);
else
RD->addVisibleConversionFunction(cast<CXXConversionDecl>(Conv));
}
}
}
if (getNumBases() == 0 && getNumVBases() == 0)
return;
llvm::SmallPtrSet<QualType, 8> ConversionFunctions;
if (!inTopClass)
collectConversionFunctions(ConversionFunctions);
for (CXXRecordDecl::base_class_iterator VBase = vbases_begin(),
E = vbases_end(); VBase != E; ++VBase) {
CXXRecordDecl *VBaseClassDecl
= cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
VBaseClassDecl->getNestedVisibleConversionFunctions(RD,
TopConversionsTypeSet,
(inTopClass ? TopConversionsTypeSet : ConversionFunctions));
}
for (CXXRecordDecl::base_class_iterator Base = bases_begin(),
E = bases_end(); Base != E; ++Base) {
if (Base->isVirtual())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
BaseClassDecl->getNestedVisibleConversionFunctions(RD,
TopConversionsTypeSet,
(inTopClass ? TopConversionsTypeSet : ConversionFunctions));
}
}
/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
OverloadedFunctionDecl *
CXXRecordDecl::getVisibleConversionFunctions() {
// If root class, all conversions are visible.
if (bases_begin() == bases_end())
return &Conversions;
// If visible conversion list is already evaluated, return it.
if (ComputedVisibleConversions)
return &VisibleConversions;
llvm::SmallPtrSet<QualType, 8> TopConversionsTypeSet;
collectConversionFunctions(TopConversionsTypeSet);
getNestedVisibleConversionFunctions(this, TopConversionsTypeSet,
TopConversionsTypeSet);
ComputedVisibleConversions = true;
return &VisibleConversions;
}
void CXXRecordDecl::addVisibleConversionFunction(
CXXConversionDecl *ConvDecl) {
assert(!ConvDecl->getDescribedFunctionTemplate() &&
"Conversion function templates should cast to FunctionTemplateDecl.");
VisibleConversions.addOverload(ConvDecl);
}
void CXXRecordDecl::addVisibleConversionFunction(
FunctionTemplateDecl *ConvDecl) {
assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
"Function template is not a conversion function template");
VisibleConversions.addOverload(ConvDecl);
}
void CXXRecordDecl::addConversionFunction(CXXConversionDecl *ConvDecl) {
assert(!ConvDecl->getDescribedFunctionTemplate() &&
"Conversion function templates should cast to FunctionTemplateDecl.");
Conversions.addOverload(ConvDecl);
}
void CXXRecordDecl::addConversionFunction(FunctionTemplateDecl *ConvDecl) {
assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
"Function template is not a conversion function template");
Conversions.addOverload(ConvDecl);
}
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
if (MemberSpecializationInfo *MSInfo
= TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>())
return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
return 0;
}
void
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK) {
assert(TemplateOrInstantiation.isNull() &&
"Previous template or instantiation?");
assert(!isa<ClassTemplateSpecializationDecl>(this));
TemplateOrInstantiation
= new (getASTContext()) MemberSpecializationInfo(RD, TSK);
}
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this))
return Spec->getSpecializationKind();
if (MemberSpecializationInfo *MSInfo
= TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>())
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this)) {
Spec->setSpecializationKind(TSK);
return;
}
if (MemberSpecializationInfo *MSInfo
= TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>()) {
MSInfo->setTemplateSpecializationKind(TSK);
return;
}
assert(false && "Not a class template or member class specialization");
}
CXXConstructorDecl *
CXXRecordDecl::getDefaultConstructor(ASTContext &Context) {
QualType ClassType = Context.getTypeDeclType(this);
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType.getUnqualifiedType()));
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = lookup(ConstructorName);
Con != ConEnd; ++Con) {
// FIXME: In C++0x, a constructor template can be a default constructor.
if (isa<FunctionTemplateDecl>(*Con))
continue;
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if (Constructor->isDefaultConstructor())
return Constructor;
}
return 0;
}
const CXXDestructorDecl *
CXXRecordDecl::getDestructor(ASTContext &Context) {
QualType ClassType = Context.getTypeDeclType(this);
DeclarationName Name
= Context.DeclarationNames.getCXXDestructorName(
Context.getCanonicalType(ClassType));
DeclContext::lookup_iterator I, E;
llvm::tie(I, E) = lookup(Name);
assert(I != E && "Did not find a destructor!");
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
assert(++I == E && "Found more than one destructor!");
return Dtor;
}
CXXMethodDecl *
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, DeclaratorInfo *DInfo,
bool isStatic, bool isInline) {
return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, DInfo,
isStatic, isInline);
}
bool CXXMethodDecl::isUsualDeallocationFunction() const {
if (getOverloadedOperator() != OO_Delete &&
getOverloadedOperator() != OO_Array_Delete)
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// If a class T has a member deallocation function named operator delete
// with exactly one parameter, then that function is a usual (non-placement)
// deallocation function. [...]
if (getNumParams() == 1)
return true;
// C++ [basic.stc.dynamic.deallocation]p2:
// [...] If class T does not declare such an operator delete but does
// declare a member deallocation function named operator delete with
// exactly two parameters, the second of which has type std::size_t (18.1),
// then this function is a usual deallocation function.
ASTContext &Context = getASTContext();
if (getNumParams() != 2 ||
!Context.hasSameType(getParamDecl(1)->getType(), Context.getSizeType()))
return false;
// This function is a usual deallocation function if there are no
// single-parameter deallocation functions of the same kind.
for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
R.first != R.second; ++R.first) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
if (FD->getNumParams() == 1)
return false;
}
return true;
}
typedef llvm::DenseMap<const CXXMethodDecl*,
std::vector<const CXXMethodDecl *> *>
OverriddenMethodsMapTy;
// FIXME: We hate static data. This doesn't survive PCH saving/loading, and
// the vtable building code uses it at CG time.
static OverriddenMethodsMapTy *OverriddenMethods = 0;
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
// FIXME: The CXXMethodDecl dtor needs to remove and free the entry.
if (!OverriddenMethods)
OverriddenMethods = new OverriddenMethodsMapTy();
std::vector<const CXXMethodDecl *> *&Methods = (*OverriddenMethods)[this];
if (!Methods)
Methods = new std::vector<const CXXMethodDecl *>;
Methods->push_back(MD);
}
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
if (!OverriddenMethods)
return 0;
OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
if (it == OverriddenMethods->end() || it->second->empty())
return 0;
return &(*it->second)[0];
}
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
if (!OverriddenMethods)
return 0;
OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
if (it == OverriddenMethods->end() || it->second->empty())
return 0;
return &(*it->second)[0] + it->second->size();
}
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
// If the member function is declared const, the type of this is const X*,
// if the member function is declared volatile, the type of this is
// volatile X*, and if the member function is declared const volatile,
// the type of this is const volatile X*.
assert(isInstance() && "No 'this' for static methods!");
QualType ClassTy;
if (ClassTemplateDecl *TD = getParent()->getDescribedClassTemplate())
ClassTy = TD->getInjectedClassNameType(C);
else
ClassTy = C.getTagDeclType(getParent());
ClassTy = C.getQualifiedType(ClassTy,
Qualifiers::fromCVRMask(getTypeQualifiers()));
return C.getPointerType(ClassTy);
}
CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(QualType BaseType, Expr **Args, unsigned NumArgs,
CXXConstructorDecl *C,
SourceLocation L, SourceLocation R)
: Args(0), NumArgs(0), CtorOrAnonUnion(), IdLoc(L), RParenLoc(R) {
BaseOrMember = reinterpret_cast<uintptr_t>(BaseType.getTypePtr());
assert((BaseOrMember & 0x01) == 0 && "Invalid base class type pointer");
BaseOrMember |= 0x01;
if (NumArgs > 0) {
this->NumArgs = NumArgs;
// FIXME. Allocation via Context
this->Args = new Stmt*[NumArgs];
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
this->Args[Idx] = Args[Idx];
}
CtorOrAnonUnion = C;
}
CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs,
CXXConstructorDecl *C,
SourceLocation L, SourceLocation R)
: Args(0), NumArgs(0), CtorOrAnonUnion(), IdLoc(L), RParenLoc(R) {
BaseOrMember = reinterpret_cast<uintptr_t>(Member);
assert((BaseOrMember & 0x01) == 0 && "Invalid member pointer");
if (NumArgs > 0) {
this->NumArgs = NumArgs;
this->Args = new Stmt*[NumArgs];
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
this->Args[Idx] = Args[Idx];
}
CtorOrAnonUnion = C;
}
CXXBaseOrMemberInitializer::~CXXBaseOrMemberInitializer() {
delete [] Args;
}
CXXConstructorDecl *
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, DeclaratorInfo *DInfo,
bool isExplicit,
bool isInline, bool isImplicitlyDeclared) {
assert(N.getNameKind() == DeclarationName::CXXConstructorName &&
"Name must refer to a constructor");
return new (C) CXXConstructorDecl(RD, L, N, T, DInfo, isExplicit, isInline,
isImplicitlyDeclared);
}
bool CXXConstructorDecl::isDefaultConstructor() const {
// C++ [class.ctor]p5:
// A default constructor for a class X is a constructor of class
// X that can be called without an argument.
return (getNumParams() == 0) ||
(getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
}
bool
CXXConstructorDecl::isCopyConstructor(ASTContext &Context,
unsigned &TypeQuals) const {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor
// if its first parameter is of type X&, const X&, volatile X& or
// const volatile X&, and either there are no other parameters
// or else all other parameters have default arguments (8.3.6).
if ((getNumParams() < 1) ||
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()))
return false;
const ParmVarDecl *Param = getParamDecl(0);
// Do we have a reference type? Rvalue references don't count.
const LValueReferenceType *ParamRefType =
Param->getType()->getAs<LValueReferenceType>();
if (!ParamRefType)
return false;
// Is it a reference to our class type?
CanQualType PointeeType
= Context.getCanonicalType(ParamRefType->getPointeeType());
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (PointeeType.getUnqualifiedType() != ClassTy)
return false;
// FIXME: other qualifiers?
// We have a copy constructor.
TypeQuals = PointeeType.getCVRQualifiers();
return true;
}
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
// C++ [class.conv.ctor]p1:
// A constructor declared without the function-specifier explicit
// that can be called with a single parameter specifies a
// conversion from the type of its first parameter to the type of
// its class. Such a constructor is called a converting
// constructor.
if (isExplicit() && !AllowExplicit)
return false;
return (getNumParams() == 0 &&
getType()->getAs<FunctionProtoType>()->isVariadic()) ||
(getNumParams() == 1) ||
(getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
}
CXXDestructorDecl *
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isInline,
bool isImplicitlyDeclared) {
assert(N.getNameKind() == DeclarationName::CXXDestructorName &&
"Name must refer to a destructor");
return new (C) CXXDestructorDecl(RD, L, N, T, isInline,
isImplicitlyDeclared);
}
void
CXXDestructorDecl::Destroy(ASTContext& C) {
C.Deallocate(BaseOrMemberDestructions);
CXXMethodDecl::Destroy(C);
}
void
CXXConstructorDecl::Destroy(ASTContext& C) {
C.Deallocate(BaseOrMemberInitializers);
CXXMethodDecl::Destroy(C);
}
CXXConversionDecl *
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, DeclaratorInfo *DInfo,
bool isInline, bool isExplicit) {
assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName &&
"Name must refer to a conversion function");
return new (C) CXXConversionDecl(RD, L, N, T, DInfo, isInline, isExplicit);
}
OverloadedFunctionDecl *
OverloadedFunctionDecl::Create(ASTContext &C, DeclContext *DC,
DeclarationName N) {
return new (C) OverloadedFunctionDecl(DC, N);
}
OverloadIterator::OverloadIterator(NamedDecl *ND) : D(0) {
if (!ND)
return;
if (isa<FunctionDecl>(ND) || isa<FunctionTemplateDecl>(ND))
D = ND;
else if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(ND)) {
if (Ovl->size() != 0) {
D = ND;
Iter = Ovl->function_begin();
}
}
}
void OverloadedFunctionDecl::addOverload(AnyFunctionDecl F) {
Functions.push_back(F);
this->setLocation(F.get()->getLocation());
}
OverloadIterator::reference OverloadIterator::operator*() const {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
return FD;
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
return FTD;
assert(isa<OverloadedFunctionDecl>(D));
return *Iter;
}
OverloadIterator &OverloadIterator::operator++() {
if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
D = 0;
return *this;
}
if (++Iter == cast<OverloadedFunctionDecl>(D)->function_end())
D = 0;
return *this;
}
bool OverloadIterator::Equals(const OverloadIterator &Other) const {
if (!D || !Other.D)
return D == Other.D;
if (D != Other.D)
return false;
return !isa<OverloadedFunctionDecl>(D) || Iter == Other.Iter;
}
FriendDecl *FriendDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
FriendUnion Friend,
SourceLocation FriendL) {
#ifndef NDEBUG
if (Friend.is<NamedDecl*>()) {
NamedDecl *D = Friend.get<NamedDecl*>();
assert(isa<FunctionDecl>(D) ||
isa<CXXRecordDecl>(D) ||
isa<FunctionTemplateDecl>(D) ||
isa<ClassTemplateDecl>(D));
assert(D->getFriendObjectKind());
}
#endif
return new (C) FriendDecl(DC, L, Friend, FriendL);
}
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
DeclContext *DC,
SourceLocation L,
LanguageIDs Lang, bool Braces) {
return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
}
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc,
NamespaceDecl *Used,
DeclContext *CommonAncestor) {
return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange,
Qualifier, IdentLoc, Used, CommonAncestor);
}
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc,
NamedDecl *Namespace) {
return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange,
Qualifier, IdentLoc, Namespace);
}
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, SourceRange NNR, SourceLocation TargetNL,
SourceLocation UL, NamedDecl* Target,
NestedNameSpecifier* TargetNNS, bool IsTypeNameArg) {
return new (C) UsingDecl(DC, L, NNR, TargetNL, UL, Target,
TargetNNS, IsTypeNameArg);
}
UnresolvedUsingDecl *UnresolvedUsingDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceRange TargetNNR,
NestedNameSpecifier *TargetNNS,
SourceLocation TargetNameLoc,
DeclarationName TargetName,
bool IsTypeNameArg) {
return new (C) UnresolvedUsingDecl(DC, UsingLoc, TargetNNR, TargetNNS,
TargetNameLoc, TargetName, IsTypeNameArg);
}
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, Expr *AssertExpr,
StringLiteral *Message) {
return new (C) StaticAssertDecl(DC, L, AssertExpr, Message);
}
void StaticAssertDecl::Destroy(ASTContext& C) {
AssertExpr->Destroy(C);
Message->Destroy(C);
this->~StaticAssertDecl();
C.Deallocate((void *)this);
}
StaticAssertDecl::~StaticAssertDecl() {
}
static const char *getAccessName(AccessSpecifier AS) {
switch (AS) {
default:
case AS_none:
assert("Invalid access specifier!");
return 0;
case AS_public:
return "public";
case AS_private:
return "private";
case AS_protected:
return "protected";
}
}
const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS) {
return DB << getAccessName(AS);
}