blob: 2ab693e183eddfeb007fe70ac9101dfccadec246 [file] [log] [blame]
//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the main API hooks in the Clang-C Source Indexing
// library.
//
//===----------------------------------------------------------------------===//
#include "CIndexer.h"
#include "CXCursor.h"
#include "CXTranslationUnit.h"
#include "CXString.h"
#include "CXType.h"
#include "CXSourceLocation.h"
#include "CIndexDiagnostic.h"
#include "CursorVisitor.h"
#include "clang/Basic/Version.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Frontend/ASTUnit.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringSwitch.h"
#include "clang/Analysis/Support/SaveAndRestore.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using namespace clang::cxcursor;
using namespace clang::cxstring;
using namespace clang::cxtu;
CXTranslationUnit cxtu::MakeCXTranslationUnit(ASTUnit *TU) {
if (!TU)
return 0;
CXTranslationUnit D = new CXTranslationUnitImpl();
D->TUData = TU;
D->StringPool = createCXStringPool();
D->Diagnostics = 0;
return D;
}
cxtu::CXTUOwner::~CXTUOwner() {
if (TU)
clang_disposeTranslationUnit(TU);
}
/// \brief Compare two source ranges to determine their relative position in
/// the translation unit.
static RangeComparisonResult RangeCompare(SourceManager &SM,
SourceRange R1,
SourceRange R2) {
assert(R1.isValid() && "First range is invalid?");
assert(R2.isValid() && "Second range is invalid?");
if (R1.getEnd() != R2.getBegin() &&
SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin()))
return RangeBefore;
if (R2.getEnd() != R1.getBegin() &&
SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin()))
return RangeAfter;
return RangeOverlap;
}
/// \brief Determine if a source location falls within, before, or after a
/// a given source range.
static RangeComparisonResult LocationCompare(SourceManager &SM,
SourceLocation L, SourceRange R) {
assert(R.isValid() && "First range is invalid?");
assert(L.isValid() && "Second range is invalid?");
if (L == R.getBegin() || L == R.getEnd())
return RangeOverlap;
if (SM.isBeforeInTranslationUnit(L, R.getBegin()))
return RangeBefore;
if (SM.isBeforeInTranslationUnit(R.getEnd(), L))
return RangeAfter;
return RangeOverlap;
}
/// \brief Translate a Clang source range into a CIndex source range.
///
/// Clang internally represents ranges where the end location points to the
/// start of the token at the end. However, for external clients it is more
/// useful to have a CXSourceRange be a proper half-open interval. This routine
/// does the appropriate translation.
CXSourceRange cxloc::translateSourceRange(const SourceManager &SM,
const LangOptions &LangOpts,
const CharSourceRange &R) {
// We want the last character in this location, so we will adjust the
// location accordingly.
SourceLocation EndLoc = R.getEnd();
if (EndLoc.isValid() && EndLoc.isMacroID())
EndLoc = SM.getExpansionRange(EndLoc).second;
if (R.isTokenRange() && !EndLoc.isInvalid() && EndLoc.isFileID()) {
unsigned Length = Lexer::MeasureTokenLength(EndLoc, SM, LangOpts);
EndLoc = EndLoc.getLocWithOffset(Length);
}
CXSourceRange Result = { { (void *)&SM, (void *)&LangOpts },
R.getBegin().getRawEncoding(),
EndLoc.getRawEncoding() };
return Result;
}
//===----------------------------------------------------------------------===//
// Cursor visitor.
//===----------------------------------------------------------------------===//
static SourceRange getRawCursorExtent(CXCursor C);
static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr);
RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) {
return RangeCompare(AU->getSourceManager(), R, RegionOfInterest);
}
/// \brief Visit the given cursor and, if requested by the visitor,
/// its children.
///
/// \param Cursor the cursor to visit.
///
/// \param CheckRegionOfInterest if true, then the caller already checked that
/// this cursor is within the region of interest.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) {
if (clang_isInvalid(Cursor.kind))
return false;
if (clang_isDeclaration(Cursor.kind)) {
Decl *D = getCursorDecl(Cursor);
if (!D) {
assert(0 && "Invalid declaration cursor");
return true; // abort.
}
// Ignore implicit declarations, unless it's an objc method because
// currently we should report implicit methods for properties when indexing.
if (D->isImplicit() && !isa<ObjCMethodDecl>(D))
return false;
}
// If we have a range of interest, and this cursor doesn't intersect with it,
// we're done.
if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) {
SourceRange Range = getRawCursorExtent(Cursor);
if (Range.isInvalid() || CompareRegionOfInterest(Range))
return false;
}
switch (Visitor(Cursor, Parent, ClientData)) {
case CXChildVisit_Break:
return true;
case CXChildVisit_Continue:
return false;
case CXChildVisit_Recurse:
return VisitChildren(Cursor);
}
llvm_unreachable("Invalid CXChildVisitResult!");
}
static bool visitPreprocessedEntitiesInRange(SourceRange R,
PreprocessingRecord &PPRec,
CursorVisitor &Visitor) {
SourceManager &SM = Visitor.getASTUnit()->getSourceManager();
FileID FID;
if (!Visitor.shouldVisitIncludedEntities()) {
// If the begin/end of the range lie in the same FileID, do the optimization
// where we skip preprocessed entities that do not come from the same FileID.
FID = SM.getFileID(SM.getFileLoc(R.getBegin()));
if (FID != SM.getFileID(SM.getFileLoc(R.getEnd())))
FID = FileID();
}
std::pair<PreprocessingRecord::iterator, PreprocessingRecord::iterator>
Entities = PPRec.getPreprocessedEntitiesInRange(R);
return Visitor.visitPreprocessedEntities(Entities.first, Entities.second,
PPRec, FID);
}
void CursorVisitor::visitFileRegion() {
if (RegionOfInterest.isInvalid())
return;
ASTUnit *Unit = static_cast<ASTUnit *>(TU->TUData);
SourceManager &SM = Unit->getSourceManager();
std::pair<FileID, unsigned>
Begin = SM.getDecomposedLoc(SM.getFileLoc(RegionOfInterest.getBegin())),
End = SM.getDecomposedLoc(SM.getFileLoc(RegionOfInterest.getEnd()));
if (End.first != Begin.first) {
// If the end does not reside in the same file, try to recover by
// picking the end of the file of begin location.
End.first = Begin.first;
End.second = SM.getFileIDSize(Begin.first);
}
assert(Begin.first == End.first);
if (Begin.second > End.second)
return;
FileID File = Begin.first;
unsigned Offset = Begin.second;
unsigned Length = End.second - Begin.second;
if (!VisitDeclsOnly && !VisitPreprocessorLast)
if (visitPreprocessedEntitiesInRegion())
return; // visitation break.
visitDeclsFromFileRegion(File, Offset, Length);
if (!VisitDeclsOnly && VisitPreprocessorLast)
visitPreprocessedEntitiesInRegion();
}
static bool isInLexicalContext(Decl *D, DeclContext *DC) {
if (!DC)
return false;
for (DeclContext *DeclDC = D->getLexicalDeclContext();
DeclDC; DeclDC = DeclDC->getLexicalParent()) {
if (DeclDC == DC)
return true;
}
return false;
}
void CursorVisitor::visitDeclsFromFileRegion(FileID File,
unsigned Offset, unsigned Length) {
ASTUnit *Unit = static_cast<ASTUnit *>(TU->TUData);
SourceManager &SM = Unit->getSourceManager();
SourceRange Range = RegionOfInterest;
SmallVector<Decl *, 16> Decls;
Unit->findFileRegionDecls(File, Offset, Length, Decls);
// If we didn't find any file level decls for the file, try looking at the
// file that it was included from.
while (Decls.empty() || Decls.front()->isTopLevelDeclInObjCContainer()) {
bool Invalid = false;
const SrcMgr::SLocEntry &SLEntry = SM.getSLocEntry(File, &Invalid);
if (Invalid)
return;
SourceLocation Outer;
if (SLEntry.isFile())
Outer = SLEntry.getFile().getIncludeLoc();
else
Outer = SLEntry.getExpansion().getExpansionLocStart();
if (Outer.isInvalid())
return;
llvm::tie(File, Offset) = SM.getDecomposedExpansionLoc(Outer);
Length = 0;
Unit->findFileRegionDecls(File, Offset, Length, Decls);
}
assert(!Decls.empty());
bool VisitedAtLeastOnce = false;
DeclContext *CurDC = 0;
SmallVector<Decl *, 16>::iterator DIt = Decls.begin();
for (SmallVector<Decl *, 16>::iterator DE = Decls.end(); DIt != DE; ++DIt) {
Decl *D = *DIt;
if (D->getSourceRange().isInvalid())
continue;
if (isInLexicalContext(D, CurDC))
continue;
CurDC = dyn_cast<DeclContext>(D);
if (TagDecl *TD = dyn_cast<TagDecl>(D))
if (!TD->isFreeStanding())
continue;
RangeComparisonResult CompRes = RangeCompare(SM, D->getSourceRange(),Range);
if (CompRes == RangeBefore)
continue;
if (CompRes == RangeAfter)
break;
assert(CompRes == RangeOverlap);
VisitedAtLeastOnce = true;
if (isa<ObjCContainerDecl>(D)) {
FileDI_current = &DIt;
FileDE_current = DE;
} else {
FileDI_current = 0;
}
if (Visit(MakeCXCursor(D, TU, Range), /*CheckedRegionOfInterest=*/true))
break;
}
if (VisitedAtLeastOnce)
return;
// No Decls overlapped with the range. Move up the lexical context until there
// is a context that contains the range or we reach the translation unit
// level.
DeclContext *DC = DIt == Decls.begin() ? (*DIt)->getLexicalDeclContext()
: (*(DIt-1))->getLexicalDeclContext();
while (DC && !DC->isTranslationUnit()) {
Decl *D = cast<Decl>(DC);
SourceRange CurDeclRange = D->getSourceRange();
if (CurDeclRange.isInvalid())
break;
if (RangeCompare(SM, CurDeclRange, Range) == RangeOverlap) {
Visit(MakeCXCursor(D, TU, Range), /*CheckedRegionOfInterest=*/true);
break;
}
DC = D->getLexicalDeclContext();
}
}
bool CursorVisitor::visitPreprocessedEntitiesInRegion() {
if (!AU->getPreprocessor().getPreprocessingRecord())
return false;
PreprocessingRecord &PPRec
= *AU->getPreprocessor().getPreprocessingRecord();
SourceManager &SM = AU->getSourceManager();
if (RegionOfInterest.isValid()) {
SourceRange MappedRange = AU->mapRangeToPreamble(RegionOfInterest);
SourceLocation B = MappedRange.getBegin();
SourceLocation E = MappedRange.getEnd();
if (AU->isInPreambleFileID(B)) {
if (SM.isLoadedSourceLocation(E))
return visitPreprocessedEntitiesInRange(SourceRange(B, E),
PPRec, *this);
// Beginning of range lies in the preamble but it also extends beyond
// it into the main file. Split the range into 2 parts, one covering
// the preamble and another covering the main file. This allows subsequent
// calls to visitPreprocessedEntitiesInRange to accept a source range that
// lies in the same FileID, allowing it to skip preprocessed entities that
// do not come from the same FileID.
bool breaked =
visitPreprocessedEntitiesInRange(
SourceRange(B, AU->getEndOfPreambleFileID()),
PPRec, *this);
if (breaked) return true;
return visitPreprocessedEntitiesInRange(
SourceRange(AU->getStartOfMainFileID(), E),
PPRec, *this);
}
return visitPreprocessedEntitiesInRange(SourceRange(B, E), PPRec, *this);
}
bool OnlyLocalDecls
= !AU->isMainFileAST() && AU->getOnlyLocalDecls();
if (OnlyLocalDecls)
return visitPreprocessedEntities(PPRec.local_begin(), PPRec.local_end(),
PPRec);
return visitPreprocessedEntities(PPRec.begin(), PPRec.end(), PPRec);
}
template<typename InputIterator>
bool CursorVisitor::visitPreprocessedEntities(InputIterator First,
InputIterator Last,
PreprocessingRecord &PPRec,
FileID FID) {
for (; First != Last; ++First) {
if (!FID.isInvalid() && !PPRec.isEntityInFileID(First, FID))
continue;
PreprocessedEntity *PPE = *First;
if (MacroExpansion *ME = dyn_cast<MacroExpansion>(PPE)) {
if (Visit(MakeMacroExpansionCursor(ME, TU)))
return true;
continue;
}
if (MacroDefinition *MD = dyn_cast<MacroDefinition>(PPE)) {
if (Visit(MakeMacroDefinitionCursor(MD, TU)))
return true;
continue;
}
if (InclusionDirective *ID = dyn_cast<InclusionDirective>(PPE)) {
if (Visit(MakeInclusionDirectiveCursor(ID, TU)))
return true;
continue;
}
}
return false;
}
/// \brief Visit the children of the given cursor.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::VisitChildren(CXCursor Cursor) {
if (clang_isReference(Cursor.kind) &&
Cursor.kind != CXCursor_CXXBaseSpecifier) {
// By definition, references have no children.
return false;
}
// Set the Parent field to Cursor, then back to its old value once we're
// done.
SetParentRAII SetParent(Parent, StmtParent, Cursor);
if (clang_isDeclaration(Cursor.kind)) {
Decl *D = getCursorDecl(Cursor);
if (!D)
return false;
return VisitAttributes(D) || Visit(D);
}
if (clang_isStatement(Cursor.kind)) {
if (Stmt *S = getCursorStmt(Cursor))
return Visit(S);
return false;
}
if (clang_isExpression(Cursor.kind)) {
if (Expr *E = getCursorExpr(Cursor))
return Visit(E);
return false;
}
if (clang_isTranslationUnit(Cursor.kind)) {
CXTranslationUnit tu = getCursorTU(Cursor);
ASTUnit *CXXUnit = static_cast<ASTUnit*>(tu->TUData);
int VisitOrder[2] = { VisitPreprocessorLast, !VisitPreprocessorLast };
for (unsigned I = 0; I != 2; ++I) {
if (VisitOrder[I]) {
if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() &&
RegionOfInterest.isInvalid()) {
for (ASTUnit::top_level_iterator TL = CXXUnit->top_level_begin(),
TLEnd = CXXUnit->top_level_end();
TL != TLEnd; ++TL) {
if (Visit(MakeCXCursor(*TL, tu, RegionOfInterest), true))
return true;
}
} else if (VisitDeclContext(
CXXUnit->getASTContext().getTranslationUnitDecl()))
return true;
continue;
}
// Walk the preprocessing record.
if (CXXUnit->getPreprocessor().getPreprocessingRecord())
visitPreprocessedEntitiesInRegion();
}
return false;
}
if (Cursor.kind == CXCursor_CXXBaseSpecifier) {
if (CXXBaseSpecifier *Base = getCursorCXXBaseSpecifier(Cursor)) {
if (TypeSourceInfo *BaseTSInfo = Base->getTypeSourceInfo()) {
return Visit(BaseTSInfo->getTypeLoc());
}
}
}
if (Cursor.kind == CXCursor_IBOutletCollectionAttr) {
IBOutletCollectionAttr *A =
cast<IBOutletCollectionAttr>(cxcursor::getCursorAttr(Cursor));
if (const ObjCInterfaceType *InterT = A->getInterface()->getAs<ObjCInterfaceType>())
return Visit(cxcursor::MakeCursorObjCClassRef(InterT->getInterface(),
A->getInterfaceLoc(), TU));
}
// Nothing to visit at the moment.
return false;
}
bool CursorVisitor::VisitBlockDecl(BlockDecl *B) {
if (TypeSourceInfo *TSInfo = B->getSignatureAsWritten())
if (Visit(TSInfo->getTypeLoc()))
return true;
if (Stmt *Body = B->getBody())
return Visit(MakeCXCursor(Body, StmtParent, TU, RegionOfInterest));
return false;
}
llvm::Optional<bool> CursorVisitor::shouldVisitCursor(CXCursor Cursor) {
if (RegionOfInterest.isValid()) {
SourceRange Range = getFullCursorExtent(Cursor, AU->getSourceManager());
if (Range.isInvalid())
return llvm::Optional<bool>();
switch (CompareRegionOfInterest(Range)) {
case RangeBefore:
// This declaration comes before the region of interest; skip it.
return llvm::Optional<bool>();
case RangeAfter:
// This declaration comes after the region of interest; we're done.
return false;
case RangeOverlap:
// This declaration overlaps the region of interest; visit it.
break;
}
}
return true;
}
bool CursorVisitor::VisitDeclContext(DeclContext *DC) {
DeclContext::decl_iterator I = DC->decls_begin(), E = DC->decls_end();
// FIXME: Eventually remove. This part of a hack to support proper
// iteration over all Decls contained lexically within an ObjC container.
SaveAndRestore<DeclContext::decl_iterator*> DI_saved(DI_current, &I);
SaveAndRestore<DeclContext::decl_iterator> DE_saved(DE_current, E);
for ( ; I != E; ++I) {
Decl *D = *I;
if (D->getLexicalDeclContext() != DC)
continue;
CXCursor Cursor = MakeCXCursor(D, TU, RegionOfInterest);
// FIXME: ObjCClassRef/ObjCProtocolRef for forward class/protocol
// declarations is a mismatch with the compiler semantics.
if (Cursor.kind == CXCursor_ObjCInterfaceDecl) {
ObjCInterfaceDecl *ID = cast<ObjCInterfaceDecl>(D);
if (!ID->isThisDeclarationADefinition())
Cursor = MakeCursorObjCClassRef(ID, ID->getLocation(), TU);
} else if (Cursor.kind == CXCursor_ObjCProtocolDecl) {
ObjCProtocolDecl *PD = cast<ObjCProtocolDecl>(D);
if (!PD->isThisDeclarationADefinition())
Cursor = MakeCursorObjCProtocolRef(PD, PD->getLocation(), TU);
}
const llvm::Optional<bool> &V = shouldVisitCursor(Cursor);
if (!V.hasValue())
continue;
if (!V.getValue())
return false;
if (Visit(Cursor, true))
return true;
}
return false;
}
bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
llvm_unreachable("Translation units are visited directly by Visit()");
}
bool CursorVisitor::VisitTypeAliasDecl(TypeAliasDecl *D) {
if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) {
if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitTagDecl(TagDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D) {
bool ShouldVisitBody = false;
switch (D->getSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// Nothing to visit
return false;
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
break;
case TSK_ExplicitSpecialization:
ShouldVisitBody = true;
break;
}
// Visit the template arguments used in the specialization.
if (TypeSourceInfo *SpecType = D->getTypeAsWritten()) {
TypeLoc TL = SpecType->getTypeLoc();
if (TemplateSpecializationTypeLoc *TSTLoc
= dyn_cast<TemplateSpecializationTypeLoc>(&TL)) {
for (unsigned I = 0, N = TSTLoc->getNumArgs(); I != N; ++I)
if (VisitTemplateArgumentLoc(TSTLoc->getArgLoc(I)))
return true;
}
}
if (ShouldVisitBody && VisitCXXRecordDecl(D))
return true;
return false;
}
bool CursorVisitor::VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
// FIXME: Visit the "outer" template parameter lists on the TagDecl
// before visiting these template parameters.
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
// Visit the partial specialization arguments.
const TemplateArgumentLoc *TemplateArgs = D->getTemplateArgsAsWritten();
for (unsigned I = 0, N = D->getNumTemplateArgsAsWritten(); I != N; ++I)
if (VisitTemplateArgumentLoc(TemplateArgs[I]))
return true;
return VisitCXXRecordDecl(D);
}
bool CursorVisitor::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
// Visit the default argument.
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
if (TypeSourceInfo *DefArg = D->getDefaultArgumentInfo())
if (Visit(DefArg->getTypeLoc()))
return true;
return false;
}
bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) {
if (Expr *Init = D->getInitExpr())
return Visit(MakeCXCursor(Init, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) {
if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
// Visit the nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = DD->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return false;
}
/// \brief Compare two base or member initializers based on their source order.
static int CompareCXXCtorInitializers(const void* Xp, const void *Yp) {
CXXCtorInitializer const * const *X
= static_cast<CXXCtorInitializer const * const *>(Xp);
CXXCtorInitializer const * const *Y
= static_cast<CXXCtorInitializer const * const *>(Yp);
if ((*X)->getSourceOrder() < (*Y)->getSourceOrder())
return -1;
else if ((*X)->getSourceOrder() > (*Y)->getSourceOrder())
return 1;
else
return 0;
}
bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) {
if (TypeSourceInfo *TSInfo = ND->getTypeSourceInfo()) {
// Visit the function declaration's syntactic components in the order
// written. This requires a bit of work.
TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
FunctionTypeLoc *FTL = dyn_cast<FunctionTypeLoc>(&TL);
// If we have a function declared directly (without the use of a typedef),
// visit just the return type. Otherwise, just visit the function's type
// now.
if ((FTL && !isa<CXXConversionDecl>(ND) && Visit(FTL->getResultLoc())) ||
(!FTL && Visit(TL)))
return true;
// Visit the nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = ND->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit the declaration name.
if (VisitDeclarationNameInfo(ND->getNameInfo()))
return true;
// FIXME: Visit explicitly-specified template arguments!
// Visit the function parameters, if we have a function type.
if (FTL && VisitFunctionTypeLoc(*FTL, true))
return true;
// FIXME: Attributes?
}
if (ND->doesThisDeclarationHaveABody() && !ND->isLateTemplateParsed()) {
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(ND)) {
// Find the initializers that were written in the source.
SmallVector<CXXCtorInitializer *, 4> WrittenInits;
for (CXXConstructorDecl::init_iterator I = Constructor->init_begin(),
IEnd = Constructor->init_end();
I != IEnd; ++I) {
if (!(*I)->isWritten())
continue;
WrittenInits.push_back(*I);
}
// Sort the initializers in source order
llvm::array_pod_sort(WrittenInits.begin(), WrittenInits.end(),
&CompareCXXCtorInitializers);
// Visit the initializers in source order
for (unsigned I = 0, N = WrittenInits.size(); I != N; ++I) {
CXXCtorInitializer *Init = WrittenInits[I];
if (Init->isAnyMemberInitializer()) {
if (Visit(MakeCursorMemberRef(Init->getAnyMember(),
Init->getMemberLocation(), TU)))
return true;
} else if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) {
if (Visit(TInfo->getTypeLoc()))
return true;
}
// Visit the initializer value.
if (Expr *Initializer = Init->getInit())
if (Visit(MakeCXCursor(Initializer, ND, TU, RegionOfInterest)))
return true;
}
}
if (Visit(MakeCXCursor(ND->getBody(), StmtParent, TU, RegionOfInterest)))
return true;
}
return false;
}
bool CursorVisitor::VisitFieldDecl(FieldDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *BitWidth = D->getBitWidth())
return Visit(MakeCXCursor(BitWidth, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitVarDecl(VarDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *Init = D->getInit())
return Visit(MakeCXCursor(Init, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
if (Expr *DefArg = D->getDefaultArgument())
return Visit(MakeCXCursor(DefArg, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
// FIXME: Visit the "outer" template parameter lists on the FunctionDecl
// before visiting these template parameters.
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
return VisitFunctionDecl(D->getTemplatedDecl());
}
bool CursorVisitor::VisitClassTemplateDecl(ClassTemplateDecl *D) {
// FIXME: Visit the "outer" template parameter lists on the TagDecl
// before visiting these template parameters.
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
return VisitCXXRecordDecl(D->getTemplatedDecl());
}
bool CursorVisitor::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited() &&
VisitTemplateArgumentLoc(D->getDefaultArgument()))
return true;
return false;
}
bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) {
if (TypeSourceInfo *TSInfo = ND->getResultTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
for (ObjCMethodDecl::param_iterator P = ND->param_begin(),
PEnd = ND->param_end();
P != PEnd; ++P) {
if (Visit(MakeCXCursor(*P, TU, RegionOfInterest)))
return true;
}
if (ND->isThisDeclarationADefinition() &&
Visit(MakeCXCursor(ND->getBody(), StmtParent, TU, RegionOfInterest)))
return true;
return false;
}
template <typename DeclIt>
static void addRangedDeclsInContainer(DeclIt *DI_current, DeclIt DE_current,
SourceManager &SM, SourceLocation EndLoc,
SmallVectorImpl<Decl *> &Decls) {
DeclIt next = *DI_current;
while (++next != DE_current) {
Decl *D_next = *next;
if (!D_next)
break;
SourceLocation L = D_next->getLocStart();
if (!L.isValid())
break;
if (SM.isBeforeInTranslationUnit(L, EndLoc)) {
*DI_current = next;
Decls.push_back(D_next);
continue;
}
break;
}
}
namespace {
struct ContainerDeclsSort {
SourceManager &SM;
ContainerDeclsSort(SourceManager &sm) : SM(sm) {}
bool operator()(Decl *A, Decl *B) {
SourceLocation L_A = A->getLocStart();
SourceLocation L_B = B->getLocStart();
assert(L_A.isValid() && L_B.isValid());
return SM.isBeforeInTranslationUnit(L_A, L_B);
}
};
}
bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) {
// FIXME: Eventually convert back to just 'VisitDeclContext()'. Essentially
// an @implementation can lexically contain Decls that are not properly
// nested in the AST. When we identify such cases, we need to retrofit
// this nesting here.
if (!DI_current && !FileDI_current)
return VisitDeclContext(D);
// Scan the Decls that immediately come after the container
// in the current DeclContext. If any fall within the
// container's lexical region, stash them into a vector
// for later processing.
SmallVector<Decl *, 24> DeclsInContainer;
SourceLocation EndLoc = D->getSourceRange().getEnd();
SourceManager &SM = AU->getSourceManager();
if (EndLoc.isValid()) {
if (DI_current) {
addRangedDeclsInContainer(DI_current, DE_current, SM, EndLoc,
DeclsInContainer);
} else {
addRangedDeclsInContainer(FileDI_current, FileDE_current, SM, EndLoc,
DeclsInContainer);
}
}
// The common case.
if (DeclsInContainer.empty())
return VisitDeclContext(D);
// Get all the Decls in the DeclContext, and sort them with the
// additional ones we've collected. Then visit them.
for (DeclContext::decl_iterator I = D->decls_begin(), E = D->decls_end();
I!=E; ++I) {
Decl *subDecl = *I;
if (!subDecl || subDecl->getLexicalDeclContext() != D ||
subDecl->getLocStart().isInvalid())
continue;
DeclsInContainer.push_back(subDecl);
}
// Now sort the Decls so that they appear in lexical order.
std::sort(DeclsInContainer.begin(), DeclsInContainer.end(),
ContainerDeclsSort(SM));
// Now visit the decls.
for (SmallVectorImpl<Decl*>::iterator I = DeclsInContainer.begin(),
E = DeclsInContainer.end(); I != E; ++I) {
CXCursor Cursor = MakeCXCursor(*I, TU, RegionOfInterest);
const llvm::Optional<bool> &V = shouldVisitCursor(Cursor);
if (!V.hasValue())
continue;
if (!V.getValue())
return false;
if (Visit(Cursor, true))
return true;
}
return false;
}
bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) {
if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(),
TU)))
return true;
ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin();
for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(),
E = ND->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(ND);
}
bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) {
if (!PID->isThisDeclarationADefinition())
return Visit(MakeCursorObjCProtocolRef(PID, PID->getLocation(), TU));
ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin();
for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(),
E = PID->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(PID);
}
bool CursorVisitor::VisitObjCPropertyDecl(ObjCPropertyDecl *PD) {
if (PD->getTypeSourceInfo() && Visit(PD->getTypeSourceInfo()->getTypeLoc()))
return true;
// FIXME: This implements a workaround with @property declarations also being
// installed in the DeclContext for the @interface. Eventually this code
// should be removed.
ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(PD->getDeclContext());
if (!CDecl || !CDecl->IsClassExtension())
return false;
ObjCInterfaceDecl *ID = CDecl->getClassInterface();
if (!ID)
return false;
IdentifierInfo *PropertyId = PD->getIdentifier();
ObjCPropertyDecl *prevDecl =
ObjCPropertyDecl::findPropertyDecl(cast<DeclContext>(ID), PropertyId);
if (!prevDecl)
return false;
// Visit synthesized methods since they will be skipped when visiting
// the @interface.
if (ObjCMethodDecl *MD = prevDecl->getGetterMethodDecl())
if (MD->isSynthesized() && MD->getLexicalDeclContext() == CDecl)
if (Visit(MakeCXCursor(MD, TU, RegionOfInterest)))
return true;
if (ObjCMethodDecl *MD = prevDecl->getSetterMethodDecl())
if (MD->isSynthesized() && MD->getLexicalDeclContext() == CDecl)
if (Visit(MakeCXCursor(MD, TU, RegionOfInterest)))
return true;
return false;
}
bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
if (!D->isThisDeclarationADefinition()) {
// Forward declaration is treated like a reference.
return Visit(MakeCursorObjCClassRef(D, D->getLocation(), TU));
}
// Issue callbacks for super class.
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin();
for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(),
E = D->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) {
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
// 'ID' could be null when dealing with invalid code.
if (ObjCInterfaceDecl *ID = D->getClassInterface())
if (Visit(MakeCursorObjCClassRef(ID, D->getLocation(), TU)))
return true;
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
#if 0
// Issue callbacks for super class.
// FIXME: No source location information!
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
#endif
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *PD) {
if (ObjCIvarDecl *Ivar = PD->getPropertyIvarDecl())
return Visit(MakeCursorMemberRef(Ivar, PD->getPropertyIvarDeclLoc(), TU));
return false;
}
bool CursorVisitor::VisitNamespaceDecl(NamespaceDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return Visit(MakeCursorNamespaceRef(D->getAliasedNamespace(),
D->getTargetNameLoc(), TU));
}
bool CursorVisitor::VisitUsingDecl(UsingDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) {
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
}
if (Visit(MakeCursorOverloadedDeclRef(D, D->getLocation(), TU)))
return true;
return VisitDeclarationNameInfo(D->getNameInfo());
}
bool CursorVisitor::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return Visit(MakeCursorNamespaceRef(D->getNominatedNamespaceAsWritten(),
D->getIdentLocation(), TU));
}
bool CursorVisitor::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) {
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
}
return VisitDeclarationNameInfo(D->getNameInfo());
}
bool CursorVisitor::VisitUnresolvedUsingTypenameDecl(
UnresolvedUsingTypenameDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return false;
}
bool CursorVisitor::VisitDeclarationNameInfo(DeclarationNameInfo Name) {
switch (Name.getName().getNameKind()) {
case clang::DeclarationName::Identifier:
case clang::DeclarationName::CXXLiteralOperatorName:
case clang::DeclarationName::CXXOperatorName:
case clang::DeclarationName::CXXUsingDirective:
return false;
case clang::DeclarationName::CXXConstructorName:
case clang::DeclarationName::CXXDestructorName:
case clang::DeclarationName::CXXConversionFunctionName:
if (TypeSourceInfo *TSInfo = Name.getNamedTypeInfo())
return Visit(TSInfo->getTypeLoc());
return false;
case clang::DeclarationName::ObjCZeroArgSelector:
case clang::DeclarationName::ObjCOneArgSelector:
case clang::DeclarationName::ObjCMultiArgSelector:
// FIXME: Per-identifier location info?
return false;
}
llvm_unreachable("Invalid DeclarationName::Kind!");
}
bool CursorVisitor::VisitNestedNameSpecifier(NestedNameSpecifier *NNS,
SourceRange Range) {
// FIXME: This whole routine is a hack to work around the lack of proper
// source information in nested-name-specifiers (PR5791). Since we do have
// a beginning source location, we can visit the first component of the
// nested-name-specifier, if it's a single-token component.
if (!NNS)
return false;
// Get the first component in the nested-name-specifier.
while (NestedNameSpecifier *Prefix = NNS->getPrefix())
NNS = Prefix;
switch (NNS->getKind()) {
case NestedNameSpecifier::Namespace:
return Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(), Range.getBegin(),
TU));
case NestedNameSpecifier::NamespaceAlias:
return Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(),
Range.getBegin(), TU));
case NestedNameSpecifier::TypeSpec: {
// If the type has a form where we know that the beginning of the source
// range matches up with a reference cursor. Visit the appropriate reference
// cursor.
const Type *T = NNS->getAsType();
if (const TypedefType *Typedef = dyn_cast<TypedefType>(T))
return Visit(MakeCursorTypeRef(Typedef->getDecl(), Range.getBegin(), TU));
if (const TagType *Tag = dyn_cast<TagType>(T))
return Visit(MakeCursorTypeRef(Tag->getDecl(), Range.getBegin(), TU));
if (const TemplateSpecializationType *TST
= dyn_cast<TemplateSpecializationType>(T))
return VisitTemplateName(TST->getTemplateName(), Range.getBegin());
break;
}
case NestedNameSpecifier::TypeSpecWithTemplate:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Identifier:
break;
}
return false;
}
bool
CursorVisitor::VisitNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) {
SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
for (; Qualifier; Qualifier = Qualifier.getPrefix())
Qualifiers.push_back(Qualifier);
while (!Qualifiers.empty()) {
NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
NestedNameSpecifier *NNS = Q.getNestedNameSpecifier();
switch (NNS->getKind()) {
case NestedNameSpecifier::Namespace:
if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(),
Q.getLocalBeginLoc(),
TU)))
return true;
break;
case NestedNameSpecifier::NamespaceAlias:
if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(),
Q.getLocalBeginLoc(),
TU)))
return true;
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (Visit(Q.getTypeLoc()))
return true;
break;
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Identifier:
break;
}
}
return false;
}
bool CursorVisitor::VisitTemplateParameters(
const TemplateParameterList *Params) {
if (!Params)
return false;
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (Visit(MakeCXCursor(*P, TU, RegionOfInterest)))
return true;
}
return false;
}
bool CursorVisitor::VisitTemplateName(TemplateName Name, SourceLocation Loc) {
switch (Name.getKind()) {
case TemplateName::Template:
return Visit(MakeCursorTemplateRef(Name.getAsTemplateDecl(), Loc, TU));
case TemplateName::OverloadedTemplate:
// Visit the overloaded template set.
if (Visit(MakeCursorOverloadedDeclRef(Name, Loc, TU)))
return true;
return false;
case TemplateName::DependentTemplate:
// FIXME: Visit nested-name-specifier.
return false;
case TemplateName::QualifiedTemplate:
// FIXME: Visit nested-name-specifier.
return Visit(MakeCursorTemplateRef(
Name.getAsQualifiedTemplateName()->getDecl(),
Loc, TU));
case TemplateName::SubstTemplateTemplateParm:
return Visit(MakeCursorTemplateRef(
Name.getAsSubstTemplateTemplateParm()->getParameter(),
Loc, TU));
case TemplateName::SubstTemplateTemplateParmPack:
return Visit(MakeCursorTemplateRef(
Name.getAsSubstTemplateTemplateParmPack()->getParameterPack(),
Loc, TU));
}
llvm_unreachable("Invalid TemplateName::Kind!");
}
bool CursorVisitor::VisitTemplateArgumentLoc(const TemplateArgumentLoc &TAL) {
switch (TAL.getArgument().getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Pack:
return false;
case TemplateArgument::Type:
if (TypeSourceInfo *TSInfo = TAL.getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
case TemplateArgument::Declaration:
if (Expr *E = TAL.getSourceDeclExpression())
return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest));
return false;
case TemplateArgument::Expression:
if (Expr *E = TAL.getSourceExpression())
return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest));
return false;
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (VisitNestedNameSpecifierLoc(TAL.getTemplateQualifierLoc()))
return true;
return VisitTemplateName(TAL.getArgument().getAsTemplateOrTemplatePattern(),
TAL.getTemplateNameLoc());
}
llvm_unreachable("Invalid TemplateArgument::Kind!");
}
bool CursorVisitor::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
return Visit(TL.getUnqualifiedLoc());
}
bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
ASTContext &Context = AU->getASTContext();
// Some builtin types (such as Objective-C's "id", "sel", and
// "Class") have associated declarations. Create cursors for those.
QualType VisitType;
switch (TL.getTypePtr()->getKind()) {
case BuiltinType::Void:
case BuiltinType::NullPtr:
case BuiltinType::Dependent:
#define BUILTIN_TYPE(Id, SingletonId)
#define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
#define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
#define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
break;
case BuiltinType::ObjCId:
VisitType = Context.getObjCIdType();
break;
case BuiltinType::ObjCClass:
VisitType = Context.getObjCClassType();
break;
case BuiltinType::ObjCSel:
VisitType = Context.getObjCSelType();
break;
}
if (!VisitType.isNull()) {
if (const TypedefType *Typedef = VisitType->getAs<TypedefType>())
return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(),
TU));
}
return false;
}
bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getTypedefNameDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) {
if (TL.isDefinition())
return Visit(MakeCXCursor(TL.getDecl(), TU, RegionOfInterest));
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseLoc()))
return true;
for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) {
if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I),
TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitParenTypeLoc(ParenTypeLoc TL) {
return Visit(TL.getInnerLoc());
}
bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
return Visit(TL.getModifiedLoc());
}
bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL,
bool SkipResultType) {
if (!SkipResultType && Visit(TL.getResultLoc()))
return true;
for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I)
if (Decl *D = TL.getArg(I))
if (Visit(MakeCXCursor(D, TU, RegionOfInterest)))
return true;
return false;
}
bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) {
if (Visit(TL.getElementLoc()))
return true;
if (Expr *Size = TL.getSizeExpr())
return Visit(MakeCXCursor(Size, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
// Visit the template name.
if (VisitTemplateName(TL.getTypePtr()->getTemplateName(),
TL.getTemplateNameLoc()))
return true;
// Visit the template arguments.
for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I)
if (VisitTemplateArgumentLoc(TL.getArgLoc(I)))
return true;
return false;
}
bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU));
}
bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc()))
return true;
return false;
}
bool CursorVisitor::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
// Visit the nested-name-specifier, if there is one.
if (TL.getQualifierLoc() &&
VisitNestedNameSpecifierLoc(TL.getQualifierLoc()))
return true;
// Visit the template arguments.
for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I)
if (VisitTemplateArgumentLoc(TL.getArgLoc(I)))
return true;
return false;
}
bool CursorVisitor::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc()))
return true;
return Visit(TL.getNamedTypeLoc());
}
bool CursorVisitor::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
return Visit(TL.getPatternLoc());
}
bool CursorVisitor::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
if (Expr *E = TL.getUnderlyingExpr())
return Visit(MakeCXCursor(E, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
return Visit(TL.getValueLoc());
}
#define DEFAULT_TYPELOC_IMPL(CLASS, PARENT) \
bool CursorVisitor::Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
return Visit##PARENT##Loc(TL); \
}
DEFAULT_TYPELOC_IMPL(Complex, Type)
DEFAULT_TYPELOC_IMPL(ConstantArray, ArrayType)
DEFAULT_TYPELOC_IMPL(IncompleteArray, ArrayType)
DEFAULT_TYPELOC_IMPL(VariableArray, ArrayType)
DEFAULT_TYPELOC_IMPL(DependentSizedArray, ArrayType)
DEFAULT_TYPELOC_IMPL(DependentSizedExtVector, Type)
DEFAULT_TYPELOC_IMPL(Vector, Type)
DEFAULT_TYPELOC_IMPL(ExtVector, VectorType)
DEFAULT_TYPELOC_IMPL(FunctionProto, FunctionType)
DEFAULT_TYPELOC_IMPL(FunctionNoProto, FunctionType)
DEFAULT_TYPELOC_IMPL(Record, TagType)
DEFAULT_TYPELOC_IMPL(Enum, TagType)
DEFAULT_TYPELOC_IMPL(SubstTemplateTypeParm, Type)
DEFAULT_TYPELOC_IMPL(SubstTemplateTypeParmPack, Type)
DEFAULT_TYPELOC_IMPL(Auto, Type)
bool CursorVisitor::VisitCXXRecordDecl(CXXRecordDecl *D) {
// Visit the nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
if (D->isCompleteDefinition()) {
for (CXXRecordDecl::base_class_iterator I = D->bases_begin(),
E = D->bases_end(); I != E; ++I) {
if (Visit(cxcursor::MakeCursorCXXBaseSpecifier(I, TU)))
return true;
}
}
return VisitTagDecl(D);
}
bool CursorVisitor::VisitAttributes(Decl *D) {
for (AttrVec::const_iterator i = D->attr_begin(), e = D->attr_end();
i != e; ++i)
if (Visit(MakeCXCursor(*i, D, TU)))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Data-recursive visitor methods.
//===----------------------------------------------------------------------===//
namespace {
#define DEF_JOB(NAME, DATA, KIND)\
class NAME : public VisitorJob {\
public:\
NAME(DATA *d, CXCursor parent) : VisitorJob(parent, VisitorJob::KIND, d) {} \
static bool classof(const VisitorJob *VJ) { return VJ->getKind() == KIND; }\
DATA *get() const { return static_cast<DATA*>(data[0]); }\
};
DEF_JOB(StmtVisit, Stmt, StmtVisitKind)
DEF_JOB(MemberExprParts, MemberExpr, MemberExprPartsKind)
DEF_JOB(DeclRefExprParts, DeclRefExpr, DeclRefExprPartsKind)
DEF_JOB(OverloadExprParts, OverloadExpr, OverloadExprPartsKind)
DEF_JOB(ExplicitTemplateArgsVisit, ASTTemplateArgumentListInfo,
ExplicitTemplateArgsVisitKind)
DEF_JOB(SizeOfPackExprParts, SizeOfPackExpr, SizeOfPackExprPartsKind)
DEF_JOB(LambdaExprParts, LambdaExpr, LambdaExprPartsKind)
#undef DEF_JOB
class DeclVisit : public VisitorJob {
public:
DeclVisit(Decl *d, CXCursor parent, bool isFirst) :
VisitorJob(parent, VisitorJob::DeclVisitKind,
d, isFirst ? (void*) 1 : (void*) 0) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == DeclVisitKind;
}
Decl *get() const { return static_cast<Decl*>(data[0]); }
bool isFirst() const { return data[1] ? true : false; }
};
class TypeLocVisit : public VisitorJob {
public:
TypeLocVisit(TypeLoc tl, CXCursor parent) :
VisitorJob(parent, VisitorJob::TypeLocVisitKind,
tl.getType().getAsOpaquePtr(), tl.getOpaqueData()) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == TypeLocVisitKind;
}
TypeLoc get() const {
QualType T = QualType::getFromOpaquePtr(data[0]);
return TypeLoc(T, data[1]);
}
};
class LabelRefVisit : public VisitorJob {
public:
LabelRefVisit(LabelDecl *LD, SourceLocation labelLoc, CXCursor parent)
: VisitorJob(parent, VisitorJob::LabelRefVisitKind, LD,
labelLoc.getPtrEncoding()) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::LabelRefVisitKind;
}
LabelDecl *get() const { return static_cast<LabelDecl*>(data[0]); }
SourceLocation getLoc() const {
return SourceLocation::getFromPtrEncoding(data[1]); }
};
class NestedNameSpecifierLocVisit : public VisitorJob {
public:
NestedNameSpecifierLocVisit(NestedNameSpecifierLoc Qualifier, CXCursor parent)
: VisitorJob(parent, VisitorJob::NestedNameSpecifierLocVisitKind,
Qualifier.getNestedNameSpecifier(),
Qualifier.getOpaqueData()) { }
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::NestedNameSpecifierLocVisitKind;
}
NestedNameSpecifierLoc get() const {
return NestedNameSpecifierLoc(static_cast<NestedNameSpecifier*>(data[0]),
data[1]);
}
};
class DeclarationNameInfoVisit : public VisitorJob {
public:
DeclarationNameInfoVisit(Stmt *S, CXCursor parent)
: VisitorJob(parent, VisitorJob::DeclarationNameInfoVisitKind, S) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::DeclarationNameInfoVisitKind;
}
DeclarationNameInfo get() const {
Stmt *S = static_cast<Stmt*>(data[0]);
switch (S->getStmtClass()) {
default:
llvm_unreachable("Unhandled Stmt");
case clang::Stmt::MSDependentExistsStmtClass:
return cast<MSDependentExistsStmt>(S)->getNameInfo();
case Stmt::CXXDependentScopeMemberExprClass:
return cast<CXXDependentScopeMemberExpr>(S)->getMemberNameInfo();
case Stmt::DependentScopeDeclRefExprClass:
return cast<DependentScopeDeclRefExpr>(S)->getNameInfo();
}
}
};
class MemberRefVisit : public VisitorJob {
public:
MemberRefVisit(FieldDecl *D, SourceLocation L, CXCursor parent)
: VisitorJob(parent, VisitorJob::MemberRefVisitKind, D,
L.getPtrEncoding()) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::MemberRefVisitKind;
}
FieldDecl *get() const {
return static_cast<FieldDecl*>(data[0]);
}
SourceLocation getLoc() const {
return SourceLocation::getFromRawEncoding((unsigned)(uintptr_t) data[1]);
}
};
class EnqueueVisitor : public StmtVisitor<EnqueueVisitor, void> {
VisitorWorkList &WL;
CXCursor Parent;
public:
EnqueueVisitor(VisitorWorkList &wl, CXCursor parent)
: WL(wl), Parent(parent) {}
void VisitAddrLabelExpr(AddrLabelExpr *E);
void VisitBlockExpr(BlockExpr *B);
void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
void VisitCompoundStmt(CompoundStmt *S);
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { /* Do nothing. */ }
void VisitMSDependentExistsStmt(MSDependentExistsStmt *S);
void VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E);
void VisitCXXNewExpr(CXXNewExpr *E);
void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E);
void VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E);
void VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E);
void VisitCXXTypeidExpr(CXXTypeidExpr *E);
void VisitCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr *E);
void VisitCXXUuidofExpr(CXXUuidofExpr *E);
void VisitCXXCatchStmt(CXXCatchStmt *S);
void VisitDeclRefExpr(DeclRefExpr *D);
void VisitDeclStmt(DeclStmt *S);
void VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E);
void VisitDesignatedInitExpr(DesignatedInitExpr *E);
void VisitExplicitCastExpr(ExplicitCastExpr *E);
void VisitForStmt(ForStmt *FS);
void VisitGotoStmt(GotoStmt *GS);
void VisitIfStmt(IfStmt *If);
void VisitInitListExpr(InitListExpr *IE);
void VisitMemberExpr(MemberExpr *M);
void VisitOffsetOfExpr(OffsetOfExpr *E);
void VisitObjCEncodeExpr(ObjCEncodeExpr *E);
void VisitObjCMessageExpr(ObjCMessageExpr *M);
void VisitOverloadExpr(OverloadExpr *E);
void VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E);
void VisitStmt(Stmt *S);
void VisitSwitchStmt(SwitchStmt *S);
void VisitWhileStmt(WhileStmt *W);
void VisitUnaryTypeTraitExpr(UnaryTypeTraitExpr *E);
void VisitBinaryTypeTraitExpr(BinaryTypeTraitExpr *E);
void VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E);
void VisitExpressionTraitExpr(ExpressionTraitExpr *E);
void VisitUnresolvedMemberExpr(UnresolvedMemberExpr *U);
void VisitVAArgExpr(VAArgExpr *E);
void VisitSizeOfPackExpr(SizeOfPackExpr *E);
void VisitPseudoObjectExpr(PseudoObjectExpr *E);
void VisitOpaqueValueExpr(OpaqueValueExpr *E);
void VisitLambdaExpr(LambdaExpr *E);
private:
void AddDeclarationNameInfo(Stmt *S);
void AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier);
void AddExplicitTemplateArgs(const ASTTemplateArgumentListInfo *A);
void AddMemberRef(FieldDecl *D, SourceLocation L);
void AddStmt(Stmt *S);
void AddDecl(Decl *D, bool isFirst = true);
void AddTypeLoc(TypeSourceInfo *TI);
void EnqueueChildren(Stmt *S);
};
} // end anonyous namespace
void EnqueueVisitor::AddDeclarationNameInfo(Stmt *S) {
// 'S' should always be non-null, since it comes from the
// statement we are visiting.
WL.push_back(DeclarationNameInfoVisit(S, Parent));
}
void
EnqueueVisitor::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) {
if (Qualifier)
WL.push_back(NestedNameSpecifierLocVisit(Qualifier, Parent));
}
void EnqueueVisitor::AddStmt(Stmt *S) {
if (S)
WL.push_back(StmtVisit(S, Parent));
}
void EnqueueVisitor::AddDecl(Decl *D, bool isFirst) {
if (D)
WL.push_back(DeclVisit(D, Parent, isFirst));
}
void EnqueueVisitor::
AddExplicitTemplateArgs(const ASTTemplateArgumentListInfo *A) {
if (A)
WL.push_back(ExplicitTemplateArgsVisit(
const_cast<ASTTemplateArgumentListInfo*>(A), Parent));
}
void EnqueueVisitor::AddMemberRef(FieldDecl *D, SourceLocation L) {
if (D)
WL.push_back(MemberRefVisit(D, L, Parent));
}
void EnqueueVisitor::AddTypeLoc(TypeSourceInfo *TI) {
if (TI)
WL.push_back(TypeLocVisit(TI->getTypeLoc(), Parent));
}
void EnqueueVisitor::EnqueueChildren(Stmt *S) {
unsigned size = WL.size();
for (Stmt::child_range Child = S->children(); Child; ++Child) {
AddStmt(*Child);
}
if (size == WL.size())
return;
// Now reverse the entries we just added. This will match the DFS
// ordering performed by the worklist.
VisitorWorkList::iterator I = WL.begin() + size, E = WL.end();
std::reverse(I, E);
}
void EnqueueVisitor::VisitAddrLabelExpr(AddrLabelExpr *E) {
WL.push_back(LabelRefVisit(E->getLabel(), E->getLabelLoc(), Parent));
}
void EnqueueVisitor::VisitBlockExpr(BlockExpr *B) {
AddDecl(B->getBlockDecl());
}
void EnqueueVisitor::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCompoundStmt(CompoundStmt *S) {
for (CompoundStmt::reverse_body_iterator I = S->body_rbegin(),
E = S->body_rend(); I != E; ++I) {
AddStmt(*I);
}
}
void EnqueueVisitor::
VisitMSDependentExistsStmt(MSDependentExistsStmt *S) {
AddStmt(S->getSubStmt());
AddDeclarationNameInfo(S);
if (NestedNameSpecifierLoc QualifierLoc = S->getQualifierLoc())
AddNestedNameSpecifierLoc(QualifierLoc);
}
void EnqueueVisitor::
VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs());
AddDeclarationNameInfo(E);
if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc())
AddNestedNameSpecifierLoc(QualifierLoc);
if (!E->isImplicitAccess())
AddStmt(E->getBase());
}
void EnqueueVisitor::VisitCXXNewExpr(CXXNewExpr *E) {
// Enqueue the initializer , if any.
AddStmt(E->getInitializer());
// Enqueue the array size, if any.
AddStmt(E->getArraySize());
// Enqueue the allocated type.
AddTypeLoc(E->getAllocatedTypeSourceInfo());
// Enqueue the placement arguments.
for (unsigned I = E->getNumPlacementArgs(); I > 0; --I)
AddStmt(E->getPlacementArg(I-1));
}
void EnqueueVisitor::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *CE) {
for (unsigned I = CE->getNumArgs(); I > 1 /* Yes, this is 1 */; --I)
AddStmt(CE->getArg(I-1));
AddStmt(CE->getCallee());
AddStmt(CE->getArg(0));
}
void EnqueueVisitor::VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E) {
// Visit the name of the type being destroyed.
AddTypeLoc(E->getDestroyedTypeInfo());
// Visit the scope type that looks disturbingly like the nested-name-specifier
// but isn't.
AddTypeLoc(E->getScopeTypeInfo());
// Visit the nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc())
AddNestedNameSpecifierLoc(QualifierLoc);
// Visit base expression.
AddStmt(E->getBase());
}
void EnqueueVisitor::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCXXTypeidExpr(CXXTypeidExpr *E) {
EnqueueChildren(E);
if (E->isTypeOperand())
AddTypeLoc(E->getTypeOperandSourceInfo());
}
void EnqueueVisitor::VisitCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr
*E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCXXUuidofExpr(CXXUuidofExpr *E) {
EnqueueChildren(E);
if (E->isTypeOperand())
AddTypeLoc(E->getTypeOperandSourceInfo());
}
void EnqueueVisitor::VisitCXXCatchStmt(CXXCatchStmt *S) {
EnqueueChildren(S);
AddDecl(S->getExceptionDecl());
}
void EnqueueVisitor::VisitDeclRefExpr(DeclRefExpr *DR) {
if (DR->hasExplicitTemplateArgs()) {
AddExplicitTemplateArgs(&DR->getExplicitTemplateArgs());
}
WL.push_back(DeclRefExprParts(DR, Parent));
}
void EnqueueVisitor::VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs());
AddDeclarationNameInfo(E);
AddNestedNameSpecifierLoc(E->getQualifierLoc());
}
void EnqueueVisitor::VisitDeclStmt(DeclStmt *S) {
unsigned size = WL.size();
bool isFirst = true;
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
AddDecl(*D, isFirst);
isFirst = false;
}
if (size == WL.size())
return;
// Now reverse the entries we just added. This will match the DFS
// ordering performed by the worklist.
VisitorWorkList::iterator I = WL.begin() + size, E = WL.end();
std::reverse(I, E);
}
void EnqueueVisitor::VisitDesignatedInitExpr(DesignatedInitExpr *E) {
AddStmt(E->getInit());
typedef DesignatedInitExpr::Designator Designator;
for (DesignatedInitExpr::reverse_designators_iterator
D = E->designators_rbegin(), DEnd = E->designators_rend();
D != DEnd; ++D) {
if (D->isFieldDesignator()) {
if (FieldDecl *Field = D->getField())
AddMemberRef(Field, D->getFieldLoc());
continue;
}
if (D->isArrayDesignator()) {
AddStmt(E->getArrayIndex(*D));
continue;
}
assert(D->isArrayRangeDesignator() && "Unknown designator kind");
AddStmt(E->getArrayRangeEnd(*D));
AddStmt(E->getArrayRangeStart(*D));
}
}
void EnqueueVisitor::VisitExplicitCastExpr(ExplicitCastExpr *E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeInfoAsWritten());
}
void EnqueueVisitor::VisitForStmt(ForStmt *FS) {
AddStmt(FS->getBody());
AddStmt(FS->getInc());
AddStmt(FS->getCond());
AddDecl(FS->getConditionVariable());
AddStmt(FS->getInit());
}
void EnqueueVisitor::VisitGotoStmt(GotoStmt *GS) {
WL.push_back(LabelRefVisit(GS->getLabel(), GS->getLabelLoc(), Parent));
}
void EnqueueVisitor::VisitIfStmt(IfStmt *If) {
AddStmt(If->getElse());
AddStmt(If->getThen());
AddStmt(If->getCond());
AddDecl(If->getConditionVariable());
}
void EnqueueVisitor::VisitInitListExpr(InitListExpr *IE) {
// We care about the syntactic form of the initializer list, only.
if (InitListExpr *Syntactic = IE->getSyntacticForm())
IE = Syntactic;
EnqueueChildren(IE);
}
void EnqueueVisitor::VisitMemberExpr(MemberExpr *M) {
WL.push_back(MemberExprParts(M, Parent));
// If the base of the member access expression is an implicit 'this', don't
// visit it.
// FIXME: If we ever want to show these implicit accesses, this will be
// unfortunate. However, clang_getCursor() relies on this behavior.
if (!M->isImplicitAccess())
AddStmt(M->getBase());
}
void EnqueueVisitor::VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
AddTypeLoc(E->getEncodedTypeSourceInfo());
}
void EnqueueVisitor::VisitObjCMessageExpr(ObjCMessageExpr *M) {
EnqueueChildren(M);
AddTypeLoc(M->getClassReceiverTypeInfo());
}
void EnqueueVisitor::VisitOffsetOfExpr(OffsetOfExpr *E) {
// Visit the components of the offsetof expression.
for (unsigned N = E->getNumComponents(), I = N; I > 0; --I) {
typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
const OffsetOfNode &Node = E->getComponent(I-1);
switch (Node.getKind()) {
case OffsetOfNode::Array:
AddStmt(E->getIndexExpr(Node.getArrayExprIndex()));
break;
case OffsetOfNode::Field:
AddMemberRef(Node.getField(), Node.getSourceRange().getEnd());
break;
case OffsetOfNode::Identifier:
case OffsetOfNode::Base:
continue;
}
}
// Visit the type into which we're computing the offset.
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitOverloadExpr(OverloadExpr *E) {
AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs());
WL.push_back(OverloadExprParts(E, Parent));
}
void EnqueueVisitor::VisitUnaryExprOrTypeTraitExpr(
UnaryExprOrTypeTraitExpr *E) {
EnqueueChildren(E);
if (E->isArgumentType())
AddTypeLoc(E->getArgumentTypeInfo());
}
void EnqueueVisitor::VisitStmt(Stmt *S) {
EnqueueChildren(S);
}
void EnqueueVisitor::VisitSwitchStmt(SwitchStmt *S) {
AddStmt(S->getBody());
AddStmt(S->getCond());
AddDecl(S->getConditionVariable());
}
void EnqueueVisitor::VisitWhileStmt(WhileStmt *W) {
AddStmt(W->getBody());
AddStmt(W->getCond());
AddDecl(W->getConditionVariable());
}
void EnqueueVisitor::VisitUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) {
AddTypeLoc(E->getQueriedTypeSourceInfo());
}
void EnqueueVisitor::VisitBinaryTypeTraitExpr(BinaryTypeTraitExpr *E) {
AddTypeLoc(E->getRhsTypeSourceInfo());
AddTypeLoc(E->getLhsTypeSourceInfo());
}
void EnqueueVisitor::VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
AddTypeLoc(E->getQueriedTypeSourceInfo());
}
void EnqueueVisitor::VisitExpressionTraitExpr(ExpressionTraitExpr *E) {
EnqueueChildren(E);
}
void EnqueueVisitor::VisitUnresolvedMemberExpr(UnresolvedMemberExpr *U) {
VisitOverloadExpr(U);
if (!U->isImplicitAccess())
AddStmt(U->getBase());
}
void EnqueueVisitor::VisitVAArgExpr(VAArgExpr *E) {
AddStmt(E->getSubExpr());
AddTypeLoc(E->getWrittenTypeInfo());
}
void EnqueueVisitor::VisitSizeOfPackExpr(SizeOfPackExpr *E) {
WL.push_back(SizeOfPackExprParts(E, Parent));
}
void EnqueueVisitor::VisitOpaqueValueExpr(OpaqueValueExpr *E) {
// If the opaque value has a source expression, just transparently
// visit that. This is useful for (e.g.) pseudo-object expressions.
if (Expr *SourceExpr = E->getSourceExpr())
return Visit(SourceExpr);
}
void EnqueueVisitor::VisitLambdaExpr(LambdaExpr *E) {
AddStmt(E->getBody());
WL.push_back(LambdaExprParts(E, Parent));
}
void EnqueueVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
// Treat the expression like its syntactic form.
Visit(E->getSyntacticForm());
}
void CursorVisitor::EnqueueWorkList(VisitorWorkList &WL, Stmt *S) {
EnqueueVisitor(WL, MakeCXCursor(S, StmtParent, TU,RegionOfInterest)).Visit(S);
}
bool CursorVisitor::IsInRegionOfInterest(CXCursor C) {
if (RegionOfInterest.isValid()) {
SourceRange Range = getRawCursorExtent(C);
if (Range.isInvalid() || CompareRegionOfInterest(Range))
return false;
}
return true;
}
bool CursorVisitor::RunVisitorWorkList(VisitorWorkList &WL) {
while (!WL.empty()) {
// Dequeue the worklist item.
VisitorJob LI = WL.back();
WL.pop_back();
// Set the Parent field, then back to its old value once we're done.
SetParentRAII SetParent(Parent, StmtParent, LI.getParent());
switch (LI.getKind()) {
case VisitorJob::DeclVisitKind: {
Decl *D = cast<DeclVisit>(&LI)->get();
if (!D)
continue;
// For now, perform default visitation for Decls.
if (Visit(MakeCXCursor(D, TU, RegionOfInterest,
cast<DeclVisit>(&LI)->isFirst())))
return true;
continue;
}
case VisitorJob::ExplicitTemplateArgsVisitKind: {
const ASTTemplateArgumentListInfo *ArgList =
cast<ExplicitTemplateArgsVisit>(&LI)->get();
for (const TemplateArgumentLoc *Arg = ArgList->getTemplateArgs(),
*ArgEnd = Arg + ArgList->NumTemplateArgs;
Arg != ArgEnd; ++Arg) {
if (VisitTemplateArgumentLoc(*Arg))
return true;
}
continue;
}
case VisitorJob::TypeLocVisitKind: {
// Perform default visitation for TypeLocs.
if (Visit(cast<TypeLocVisit>(&LI)->get()))
return true;
continue;
}
case VisitorJob::LabelRefVisitKind: {
LabelDecl *LS = cast<LabelRefVisit>(&LI)->get();
if (LabelStmt *stmt = LS->getStmt()) {
if (Visit(MakeCursorLabelRef(stmt, cast<LabelRefVisit>(&LI)->getLoc(),
TU))) {
return true;
}
}
continue;
}
case VisitorJob::NestedNameSpecifierLocVisitKind: {
NestedNameSpecifierLocVisit *V = cast<NestedNameSpecifierLocVisit>(&LI);
if (VisitNestedNameSpecifierLoc(V->get()))
return true;
continue;
}
case VisitorJob::DeclarationNameInfoVisitKind: {
if (VisitDeclarationNameInfo(cast<DeclarationNameInfoVisit>(&LI)
->get()))
return true;
continue;
}
case VisitorJob::MemberRefVisitKind: {
MemberRefVisit *V = cast<MemberRefVisit>(&LI);
if (Visit(MakeCursorMemberRef(V->get(), V->getLoc(), TU)))
return true;
continue;
}
case VisitorJob::StmtVisitKind: {
Stmt *S = cast<StmtVisit>(&LI)->get();
if (!S)
continue;
// Update the current cursor.
CXCursor Cursor = MakeCXCursor(S, StmtParent, TU, RegionOfInterest);
if (!IsInRegionOfInterest(Cursor))
continue;
switch (Visitor(Cursor, Parent, ClientData)) {
case CXChildVisit_Break: return true;
case CXChildVisit_Continue: break;
case CXChildVisit_Recurse:
EnqueueWorkList(WL, S);
break;
}
continue;
}
case VisitorJob::MemberExprPartsKind: {
// Handle the other pieces in the MemberExpr besides the base.
MemberExpr *M = cast<MemberExprParts>(&LI)->get();
// Visit the nested-name-specifier
if (NestedNameSpecifierLoc QualifierLoc = M->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit the declaration name.
if (VisitDeclarationNameInfo(M->getMemberNameInfo()))
return true;
// Visit the explicitly-specified template arguments, if any.
if (M->hasExplicitTemplateArgs()) {
for (const TemplateArgumentLoc *Arg = M->getTemplateArgs(),
*ArgEnd = Arg + M->getNumTemplateArgs();
Arg != ArgEnd; ++Arg) {
if (VisitTemplateArgumentLoc(*Arg))
return true;
}
}
continue;
}
case VisitorJob::DeclRefExprPartsKind: {
DeclRefExpr *DR = cast<DeclRefExprParts>(&LI)->get();
// Visit nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = DR->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit declaration name.
if (VisitDeclarationNameInfo(DR->getNameInfo()))
return true;
continue;
}
case VisitorJob::OverloadExprPartsKind: {
OverloadExpr *O = cast<OverloadExprParts>(&LI)->get();
// Visit the nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = O->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit the declaration name.
if (VisitDeclarationNameInfo(O->getNameInfo()))
return true;
// Visit the overloaded declaration reference.
if (Visit(MakeCursorOverloadedDeclRef(O, TU)))
return true;
continue;
}
case VisitorJob::SizeOfPackExprPartsKind: {
SizeOfPackExpr *E = cast<SizeOfPackExprParts>(&LI)->get();
NamedDecl *Pack = E->getPack();
if (isa<TemplateTypeParmDecl>(Pack)) {
if (Visit(MakeCursorTypeRef(cast<TemplateTypeParmDecl>(Pack),
E->getPackLoc(), TU)))
return true;
continue;
}
if (isa<TemplateTemplateParmDecl>(Pack)) {
if (Visit(MakeCursorTemplateRef(cast<TemplateTemplateParmDecl>(Pack),
E->getPackLoc(), TU)))
return true;
continue;
}
// Non-type template parameter packs and function parameter packs are
// treated like DeclRefExpr cursors.
continue;
}
case VisitorJob::LambdaExprPartsKind: {
// Visit captures.
LambdaExpr *E = cast<LambdaExprParts>(&LI)->get();
for (LambdaExpr::capture_iterator C = E->explicit_capture_begin(),
CEnd = E->explicit_capture_end();
C != CEnd; ++C) {
if (C->capturesThis())
continue;
if (Visit(MakeCursorVariableRef(C->getCapturedVar(),
C->getLocation(),
TU)))
return true;
}
// Visit parameters and return type, if present.
if (E->hasExplicitParameters() || E->hasExplicitResultType()) {
TypeLoc TL = E->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
if (E->hasExplicitParameters() && E->hasExplicitResultType()) {
// Visit the whole type.
if (Visit(TL))
return true;
} else if (isa<FunctionProtoTypeLoc>(TL)) {
FunctionProtoTypeLoc Proto = cast<FunctionProtoTypeLoc>(TL);
if (E->hasExplicitParameters()) {
// Visit parameters.
for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I)
if (Visit(MakeCXCursor(Proto.getArg(I), TU)))
return true;
} else {
// Visit result type.
if (Visit(Proto.getResultLoc()))
return true;
}
}
}
break;
}
}
}
return false;
}
bool CursorVisitor::Visit(Stmt *S) {
VisitorWorkList *WL = 0;
if (!WorkListFreeList.empty()) {
WL = WorkListFreeList.back();
WL->clear();
WorkListFreeList.pop_back();
}
else {
WL = new VisitorWorkList();
WorkListCache.push_back(WL);
}
EnqueueWorkList(*WL, S);
bool result = RunVisitorWorkList(*WL);
WorkListFreeList.push_back(WL);
return result;
}
namespace {
typedef llvm::SmallVector<SourceRange, 4> RefNamePieces;
RefNamePieces buildPieces(unsigned NameFlags, bool IsMemberRefExpr,
const DeclarationNameInfo &NI,
const SourceRange &QLoc,
const ASTTemplateArgumentListInfo *TemplateArgs = 0){
const bool WantQualifier = NameFlags & CXNameRange_WantQualifier;
const bool WantTemplateArgs = NameFlags & CXNameRange_WantTemplateArgs;
const bool WantSinglePiece = NameFlags & CXNameRange_WantSinglePiece;
const DeclarationName::NameKind Kind = NI.getName().getNameKind();
RefNamePieces Pieces;
if (WantQualifier && QLoc.isValid())
Pieces.push_back(QLoc);
if (Kind != DeclarationName::CXXOperatorName || IsMemberRefExpr)
Pieces.push_back(NI.getLoc());
if (WantTemplateArgs && TemplateArgs)
Pieces.push_back(SourceRange(TemplateArgs->LAngleLoc,
TemplateArgs->RAngleLoc));
if (Kind == DeclarationName::CXXOperatorName) {
Pieces.push_back(SourceLocation::getFromRawEncoding(
NI.getInfo().CXXOperatorName.BeginOpNameLoc));
Pieces.push_back(SourceLocation::getFromRawEncoding(
NI.getInfo().CXXOperatorName.EndOpNameLoc));
}
if (WantSinglePiece) {
SourceRange R(Pieces.front().getBegin(), Pieces.back().getEnd());
Pieces.clear();
Pieces.push_back(R);
}
return Pieces;
}
}
//===----------------------------------------------------------------------===//
// Misc. API hooks.
//===----------------------------------------------------------------------===//
static llvm::sys::Mutex EnableMultithreadingMutex;
static bool EnabledMultithreading;
static void fatal_error_handler(void *user_data, const std::string& reason) {
// Write the result out to stderr avoiding errs() because raw_ostreams can
// call report_fatal_error.
fprintf(stderr, "LIBCLANG FATAL ERROR: %s\n", reason.c_str());
::abort();
}
extern "C" {
CXIndex clang_createIndex(int excludeDeclarationsFromPCH,
int displayDiagnostics) {
// Disable pretty stack trace functionality, which will otherwise be a very
// poor citizen of the world and set up all sorts of signal handlers.
llvm::DisablePrettyStackTrace = true;
// We use crash recovery to make some of our APIs more reliable, implicitly
// enable it.
llvm::CrashRecoveryContext::Enable();
// Enable support for multithreading in LLVM.
{
llvm::sys::ScopedLock L(EnableMultithreadingMutex);
if (!EnabledMultithreading) {
llvm::install_fatal_error_handler(fatal_error_handler, 0);
llvm::llvm_start_multithreaded();
EnabledMultithreading = true;
}
}
CIndexer *CIdxr = new CIndexer();
if (excludeDeclarationsFromPCH)
CIdxr->setOnlyLocalDecls();
if (displayDiagnostics)
CIdxr->setDisplayDiagnostics();
return CIdxr;
}
void clang_disposeIndex(CXIndex CIdx) {
if (CIdx)
delete static_cast<CIndexer *>(CIdx);
}
void clang_toggleCrashRecovery(unsigned isEnabled) {
if (isEnabled)
llvm::CrashRecoveryContext::Enable();
else
llvm::CrashRecoveryContext::Disable();
}
CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx,
const char *ast_filename) {
if (!CIdx)
return 0;
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
FileSystemOptions FileSystemOpts;
FileSystemOpts.WorkingDir = CXXIdx->getWorkingDirectory();
llvm::IntrusiveRefCntPtr<DiagnosticsEngine> Diags;
ASTUnit *TU = ASTUnit::LoadFromASTFile(ast_filename, Diags, FileSystemOpts,
CXXIdx->getOnlyLocalDecls(),
0, 0, true);
return MakeCXTranslationUnit(TU);
}
unsigned clang_defaultEditingTranslationUnitOptions() {
return CXTranslationUnit_PrecompiledPreamble |
CXTranslationUnit_CacheCompletionResults;
}
CXTranslationUnit
clang_createTranslationUnitFromSourceFile(CXIndex CIdx,
const char *source_filename,
int num_command_line_args,
const char * const *command_line_args,
unsigned num_unsaved_files,
struct CXUnsavedFile *unsaved_files) {
unsigned Options = CXTranslationUnit_DetailedPreprocessingRecord |
CXTranslationUnit_NestedMacroExpansions;
return clang_parseTranslationUnit(CIdx, source_filename,
command_line_args, num_command_line_args,
unsaved_files, num_unsaved_files,
Options);
}
struct ParseTranslationUnitInfo {
CXIndex CIdx;
const char *source_filename;
const char *const *command_line_args;
int num_command_line_args;
struct CXUnsavedFile *unsaved_files;
unsigned num_unsaved_files;
unsigned options;
CXTranslationUnit result;
};
static void clang_parseTranslationUnit_Impl(void *UserData) {
ParseTranslationUnitInfo *PTUI =
static_cast<ParseTranslationUnitInfo*>(UserData);
CXIndex CIdx = PTUI->CIdx;
const char *source_filename = PTUI->source_filename;
const char * const *command_line_args = PTUI->command_line_args;
int num_command_line_args = PTUI->num_command_line_args;
struct CXUnsavedFile *unsaved_files = PTUI->unsaved_files;
unsigned num_unsaved_files = PTUI->num_unsaved_files;
unsigned options = PTUI->options;
PTUI->result = 0;
if (!CIdx)
return;
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
bool PrecompilePreamble = options & CXTranslationUnit_PrecompiledPreamble;
// FIXME: Add a flag for modules.
TranslationUnitKind TUKind
= (options & CXTranslationUnit_Incomplete)? TU_Prefix : TU_Complete;
bool CacheCodeCompetionResults
= options & CXTranslationUnit_CacheCompletionResults;
// Configure the diagnostics.
DiagnosticOptions DiagOpts;
llvm::IntrusiveRefCntPtr<DiagnosticsEngine>
Diags(CompilerInstance::createDiagnostics(DiagOpts, num_command_line_args,
command_line_args));
// Recover resources if we crash before exiting this function.
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.getPtr());
OwningPtr<std::vector<ASTUnit::RemappedFile> >
RemappedFiles(new std::vector<ASTUnit::RemappedFile>());
// Recover resources if we crash before exiting this function.
llvm::CrashRecoveryContextCleanupRegistrar<
std::vector<ASTUnit::RemappedFile> > RemappedCleanup(RemappedFiles.get());
for (unsigned I = 0; I != num_unsaved_files; ++I) {
StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length);
const llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename);
RemappedFiles->push_back(std::make_pair(unsaved_files[I].Filename,
Buffer));
}
OwningPtr<std::vector<const char *> >
Args(new std::vector<const char*>());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<std::vector<const char*> >
ArgsCleanup(Args.get());
// Since the Clang C library is primarily used by batch tools dealing with
// (often very broken) source code, where spell-checking can have a
// significant negative impact on performance (particularly when
// precompiled headers are involved), we disable it by default.
// Only do this if we haven't found a spell-checking-related argument.
bool FoundSpellCheckingArgument = false;
for (int I = 0; I != num_command_line_args; ++I) {
if (strcmp(command_line_args[I], "-fno-spell-checking") == 0 ||
strcmp(command_line_args[I], "-fspell-checking") == 0) {
FoundSpellCheckingArgument = true;
break;
}
}
if (!FoundSpellCheckingArgument)
Args->push_back("-fno-spell-checking");
Args->insert(Args->end(), command_line_args,
command_line_args + num_command_line_args);
// The 'source_filename' argument is optional. If the caller does not
// specify it then it is assumed that the source file is specified
// in the actual argument list.
// Put the source file after command_line_args otherwise if '-x' flag is
// present it will be unused.
if (source_filename)
Args->push_back(source_filename);
// Do we need the detailed preprocessing record?
bool NestedMacroExpansions = false;
if (options & CXTranslationUnit_DetailedPreprocessingRecord) {
Args->push_back("-Xclang");
Args->push_back("-detailed-preprocessing-record");
NestedMacroExpansions
= (options & CXTranslationUnit_NestedMacroExpansions);
}
unsigned NumErrors = Diags->getClient()->getNumErrors();
OwningPtr<ASTUnit> Unit(
ASTUnit::LoadFromCommandLine(Args->size() ? &(*Args)[0] : 0
/* vector::data() not portable */,
Args->size() ? (&(*Args)[0] + Args->size()) :0,
Diags,
CXXIdx->getClangResourcesPath(),
CXXIdx->getOnlyLocalDecls(),
/*CaptureDiagnostics=*/true,
RemappedFiles->size() ? &(*RemappedFiles)[0]:0,
RemappedFiles->size(),
/*RemappedFilesKeepOriginalName=*/true,
PrecompilePreamble,
TUKind,
CacheCodeCompetionResults,
NestedMacroExpansions));
if (NumErrors != Diags->getClient()->getNumErrors()) {
// Make sure to check that 'Unit' is non-NULL.
if (CXXIdx->getDisplayDiagnostics() && Unit.get()) {
for (ASTUnit::stored_diag_iterator D = Unit->stored_diag_begin(),
DEnd = Unit->stored_diag_end();
D != DEnd; ++D) {
CXStoredDiagnostic Diag(*D, Unit->getASTContext().getLangOptions());
CXString Msg = clang_formatDiagnostic(&Diag,
clang_defaultDiagnosticDisplayOptions());
fprintf(stderr, "%s\n", clang_getCString(Msg));
clang_disposeString(Msg);
}
#ifdef LLVM_ON_WIN32
// On Windows, force a flush, since there may be multiple copies of
// stderr and stdout in the file system, all with different buffers
// but writing to the same device.
fflush(stderr);
#endif
}
}
PTUI->result = MakeCXTranslationUnit(Unit.take());
}
CXTranslationUnit clang_parseTranslationUnit(CXIndex CIdx,
const char *source_filename,
const char * const *command_line_args,
int num_command_line_args,
struct CXUnsavedFile *unsaved_files,
unsigned num_unsaved_files,
unsigned options) {
ParseTranslationUnitInfo PTUI = { CIdx, source_filename, command_line_args,
num_command_line_args, unsaved_files,
num_unsaved_files, options, 0 };
llvm::CrashRecoveryContext CRC;
if (!RunSafely(CRC, clang_parseTranslationUnit_Impl, &PTUI)) {
fprintf(stderr, "libclang: crash detected during parsing: {\n");
fprintf(stderr, " 'source_filename' : '%s'\n", source_filename);
fprintf(stderr, " 'command_line_args' : [");
for (int i = 0; i != num_command_line_args; ++i) {
if (i)
fprintf(stderr, ", ");
fprintf(stderr, "'%s'", command_line_args[i]);
}
fprintf(stderr, "],\n");
fprintf(stderr, " 'unsaved_files' : [");
for (unsigned i = 0; i != num_unsaved_files; ++i) {
if (i)
fprintf(stderr, ", ");
fprintf(stderr, "('%s', '...', %ld)", unsaved_files[i].Filename,
unsaved_files[i].Length);
}
fprintf(stderr, "],\n");
fprintf(stderr, " 'options' : %d,\n", options);
fprintf(stderr, "}\n");
return 0;
} else if (getenv("LIBCLANG_RESOURCE_USAGE")) {
PrintLibclangResourceUsage(PTUI.result);
}
return PTUI.result;
}
unsigned clang_defaultSaveOptions(CXTranslationUnit TU) {
return CXSaveTranslationUnit_None;
}
int clang_saveTranslationUnit(CXTranslationUnit TU, const char *FileName,
unsigned options) {
if (!TU)
return CXSaveError_InvalidTU;
CXSaveError result = static_cast<ASTUnit *>(TU->TUData)->Save(FileName);
if (getenv("LIBCLANG_RESOURCE_USAGE"))
PrintLibclangResourceUsage(TU);
return result;
}
void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) {
if (CTUnit) {
// If the translation unit has been marked as unsafe to free, just discard
// it.
if (static_cast<ASTUnit *>(CTUnit->TUData)->isUnsafeToFree())
return;
delete static_cast<ASTUnit *>(CTUnit->TUData);
disposeCXStringPool(CTUnit->StringPool);
delete static_cast<CXDiagnosticSetImpl *>(CTUnit->Diagnostics);
delete CTUnit;
}
}
unsigned clang_defaultReparseOptions(CXTranslationUnit TU) {
return CXReparse_None;
}
struct ReparseTranslationUnitInfo {
CXTranslationUnit TU;
unsigned num_unsaved_files;
struct CXUnsavedFile *unsaved_files;
unsigned options;
int result;
};
static void clang_reparseTranslationUnit_Impl(void *UserData) {
ReparseTranslationUnitInfo *RTUI =
static_cast<ReparseTranslationUnitInfo*>(UserData);
CXTranslationUnit TU = RTUI->TU;
// Reset the associated diagnostics.
delete static_cast<CXDiagnosticSetImpl*>(TU->Diagnostics);
TU->Diagnostics = 0;
unsigned num_unsaved_files = RTUI->num_unsaved_files;
struct CXUnsavedFile *unsaved_files = RTUI->unsaved_files;
unsigned options = RTUI->options;
(void) options;
RTUI->result = 1;
if (!TU)
return;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
OwningPtr<std::vector<ASTUnit::RemappedFile> >
RemappedFiles(new std::vector<ASTUnit::RemappedFile>());
// Recover resources if we crash before exiting this function.
llvm::CrashRecoveryContextCleanupRegistrar<
std::vector<ASTUnit::RemappedFile> > RemappedCleanup(RemappedFiles.get());
for (unsigned I = 0; I != num_unsaved_files; ++I) {
StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length);
const llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename);
RemappedFiles->push_back(std::make_pair(unsaved_files[I].Filename,
Buffer));
}
if (!CXXUnit->Reparse(RemappedFiles->size() ? &(*RemappedFiles)[0] : 0,
RemappedFiles->size()))
RTUI->result = 0;
}
int clang_reparseTranslationUnit(CXTranslationUnit TU,
unsigned num_unsaved_files,
struct CXUnsavedFile *unsaved_files,
unsigned options) {
ReparseTranslationUnitInfo RTUI = { TU, num_unsaved_files, unsaved_files,
options, 0 };
if (getenv("LIBCLANG_NOTHREADS")) {
clang_reparseTranslationUnit_Impl(&RTUI);
return RTUI.result;
}
llvm::CrashRecoveryContext CRC;
if (!RunSafely(CRC, clang_reparseTranslationUnit_Impl, &RTUI)) {
fprintf(stderr, "libclang: crash detected during reparsing\n");
static_cast<ASTUnit *>(TU->TUData)->setUnsafeToFree(true);
return 1;
} else if (getenv("LIBCLANG_RESOURCE_USAGE"))
PrintLibclangResourceUsage(TU);
return RTUI.result;
}
CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) {
if (!CTUnit)
return createCXString("");
ASTUnit *CXXUnit = static_cast<ASTUnit *>(CTUnit->TUData);
return createCXString(CXXUnit->getOriginalSourceFileName(), true);
}
CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) {
CXCursor Result = { CXCursor_TranslationUnit, 0, { 0, 0, TU } };
return Result;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXFile Operations.
//===----------------------------------------------------------------------===//
extern "C" {
CXString clang_getFileName(CXFile SFile) {
if (!SFile)
return createCXString((const char*)NULL);
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return createCXString(FEnt->getName());
}
time_t clang_getFileTime(CXFile SFile) {
if (!SFile)
return 0;
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return FEnt->getModificationTime();
}
CXFile clang_getFile(CXTranslationUnit tu, const char *file_name) {
if (!tu)
return 0;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(tu->TUData);
FileManager &FMgr = CXXUnit->getFileManager();
return const_cast<FileEntry *>(FMgr.getFile(file_name));
}
unsigned clang_isFileMultipleIncludeGuarded(CXTranslationUnit tu, CXFile file) {
if (!tu || !file)
return 0;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(tu->TUData);
FileEntry *FEnt = static_cast<FileEntry *>(file);
return CXXUnit->getPreprocessor().getHeaderSearchInfo()
.isFileMultipleIncludeGuarded(FEnt);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXCursor Operations.
//===----------------------------------------------------------------------===//
static Decl *getDeclFromExpr(Stmt *E) {
if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
return getDeclFromExpr(CE->getSubExpr());
if (DeclRefExpr *RefExpr = dyn_cast<DeclRefExpr>(E))
return RefExpr->getDecl();
if (BlockDeclRefExpr *RefExpr = dyn_cast<BlockDeclRefExpr>(E))
return RefExpr->getDecl();
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
return ME->getMemberDecl();
if (ObjCIvarRefExpr *RE = dyn_cast<ObjCIvarRefExpr>(E))
return RE->getDecl();
if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(E))
return PRE->isExplicitProperty() ? PRE->getExplicitProperty() : 0;
if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
return getDeclFromExpr(POE->getSyntacticForm());
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
if (Expr *Src = OVE->getSourceExpr())
return getDeclFromExpr(Src);
if (CallExpr *CE = dyn_cast<CallExpr>(E))
return getDeclFromExpr(CE->getCallee());
if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
if (!CE->isElidable())
return CE->getConstructor();
if (ObjCMessageExpr *OME = dyn_cast<ObjCMessageExpr>(E))
return OME->getMethodDecl();
if (ObjCProtocolExpr *PE = dyn_cast<ObjCProtocolExpr>(E))
return PE->getProtocol();
if (SubstNonTypeTemplateParmPackExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmPackExpr>(E))
return NTTP->getParameterPack();
if (SizeOfPackExpr *SizeOfPack = dyn_cast<SizeOfPackExpr>(E))
if (isa<NonTypeTemplateParmDecl>(SizeOfPack->getPack()) ||
isa<ParmVarDecl>(SizeOfPack->getPack()))
return SizeOfPack->getPack();
return 0;
}
static SourceLocation getLocationFromExpr(Expr *E) {
if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
return getLocationFromExpr(CE->getSubExpr());
if (ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E))
return /*FIXME:*/Msg->getLeftLoc();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getLocation();
if (BlockDeclRefExpr *RefExpr = dyn_cast<BlockDeclRefExpr>(E))
return RefExpr->getLocation();
if (MemberExpr *Member = dyn_cast<MemberExpr>(E))
return Member->getMemberLoc();
if (ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E))
return Ivar->getLocation();
if (SizeOfPackExpr *SizeOfPack = dyn_cast<SizeOfPackExpr>(E))
return SizeOfPack->getPackLoc();
return E->getLocStart();
}
extern "C" {
unsigned clang_visitChildren(CXCursor parent,
CXCursorVisitor visitor,
CXClientData client_data) {
CursorVisitor CursorVis(getCursorTU(parent), visitor, client_data,
/*VisitPreprocessorLast=*/false);
return CursorVis.VisitChildren(parent);
}
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#if __has_feature(blocks)
typedef enum CXChildVisitResult
(^CXCursorVisitorBlock)(CXCursor cursor, CXCursor parent);
static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent,
CXClientData client_data) {
CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data;
return block(cursor, parent);
}
#else
// If we are compiled with a compiler that doesn't have native blocks support,
// define and call the block manually, so the
typedef struct _CXChildVisitResult
{
void *isa;
int flags;
int reserved;
enum CXChildVisitResult(*invoke)(struct _CXChildVisitResult*, CXCursor,
CXCursor);
} *CXCursorVisitorBlock;
static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent,
CXClientData client_data) {
CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data;
return block->invoke(block, cursor, parent);
}
#endif
unsigned clang_visitChildrenWithBlock(CXCursor parent,
CXCursorVisitorBlock block) {
return clang_visitChildren(parent, visitWithBlock, block);
}
static CXString getDeclSpelling(Decl *D) {
if (!D)
return createCXString("");
NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND) {
if (ObjCPropertyImplDecl *PropImpl =dyn_cast<ObjCPropertyImplDecl>(D))
if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl())
return createCXString(Property->getIdentifier()->getName());
return createCXString("");
}
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(ND))
return createCXString(OMD->getSelector().getAsString());
if (ObjCCategoryImplDecl *CIMP = dyn_cast<ObjCCategoryImplDecl>(ND))
// No, this isn't the same as the code below. getIdentifier() is non-virtual
// and returns different names. NamedDecl returns the class name and
// ObjCCategoryImplDecl returns the category name.
return createCXString(CIMP->getIdentifier()->getNameStart());
if (isa<UsingDirectiveDecl>(D))
return createCXString("");
SmallString<1024> S;
llvm::raw_svector_ostream os(S);
ND->printName(os);
return createCXString(os.str());
}
CXString clang_getCursorSpelling(CXCursor C) {
if (clang_isTranslationUnit(C.kind))
return clang_getTranslationUnitSpelling(
static_cast<CXTranslationUnit>(C.data[2]));
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first;
return createCXString(Super->getIdentifier()->getNameStart());
}
case CXCursor_ObjCClassRef: {
ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first;
return createCXString(Class->getIdentifier()->getNameStart());
}
case CXCursor_ObjCProtocolRef: {
ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first;
assert(OID && "getCursorSpelling(): Missing protocol decl");
return createCXString(OID->getIdentifier()->getNameStart());
}
case CXCursor_CXXBaseSpecifier: {
CXXBaseSpecifier *B = getCursorCXXBaseSpecifier(C);
return createCXString(B->getType().getAsString());
}
case CXCursor_TypeRef: {
TypeDecl *Type = getCursorTypeRef(C).first;
assert(Type && "Missing type decl");
return createCXString(getCursorContext(C).getTypeDeclType(Type).
getAsString());
}
case CXCursor_TemplateRef: {
TemplateDecl *Template = getCursorTemplateRef(C).first;
assert(Template && "Missing template decl");
return createCXString(Template->getNameAsString());
}
case CXCursor_NamespaceRef: {
NamedDecl *NS = getCursorNamespaceRef(C).first;
assert(NS && "Missing namespace decl");
return createCXString(NS->getNameAsString());
}
case CXCursor_MemberRef: {
FieldDecl *Field = getCursorMemberRef(C).first;
assert(Field && "Missing member decl");
return createCXString(Field->getNameAsString());
}
case CXCursor_LabelRef: {
LabelStmt *Label = getCursorLabelRef(C).first;
assert(Label && "Missing label");
return createCXString(Label->getName());
}
case CXCursor_OverloadedDeclRef: {
OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first;
if (Decl *D = Storage.dyn_cast<Decl *>()) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
return createCXString(ND->getNameAsString());
return createCXString("");
}
if (OverloadExpr *E = Storage.dyn_cast<OverloadExpr *>())
return createCXString(E->getName().getAsString());
OverloadedTemplateStorage *Ovl
= Storage.get<OverloadedTemplateStorage*>();
if (Ovl->size() == 0)
return createCXString("");
return createCXString((*Ovl->begin())->getNameAsString());
}
case CXCursor_VariableRef: {
VarDecl *Var = getCursorVariableRef(C).first;
assert(Var && "Missing variable decl");
return createCXString(Var->getNameAsString());
}
default:
return createCXString("<not implemented>");
}
}
if (clang_isExpression(C.kind)) {
Decl *D = getDeclFromExpr(getCursorExpr(C));
if (D)
return getDeclSpelling(D);
return createCXString("");
}
if (clang_isStatement(C.kind)) {
Stmt *S = getCursorStmt(C);
if (LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
return createCXString(Label->getName());
return createCXString("");
}
if (C.kind == CXCursor_MacroExpansion)
return createCXString(getCursorMacroExpansion(C)->getName()
->getNameStart());
if (C.kind == CXCursor_MacroDefinition)
return createCXString(getCursorMacroDefinition(C)->getName()
->getNameStart());
if (C.kind == CXCursor_InclusionDirective)
return createCXString(getCursorInclusionDirective(C)->getFileName());
if (clang_isDeclaration(C.kind))
return getDeclSpelling(getCursorDecl(C));
if (C.kind == CXCursor_AnnotateAttr) {
AnnotateAttr *AA = cast<AnnotateAttr>(cxcursor::getCursorAttr(C));
return createCXString(AA->getAnnotation());
}
if (C.kind == CXCursor_AsmLabelAttr) {
AsmLabelAttr *AA = cast<AsmLabelAttr>(cxcursor::getCursorAttr(C));
return createCXString(AA->getLabel());
}
return createCXString("");
}
CXString clang_getCursorDisplayName(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return clang_getCursorSpelling(C);
Decl *D = getCursorDecl(C);
if (!D)
return createCXString("");
PrintingPolicy Policy = getCursorContext(C).getPrintingPolicy();
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
D = FunTmpl->getTemplatedDecl();
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
SmallString<64> Str;
llvm::raw_svector_ostream OS(Str);
OS << *Function;
if (Function->getPrimaryTemplate())
OS << "<>";
OS << "(";
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) {
if (I)
OS << ", ";
OS << Function->getParamDecl(I)->getType().getAsString(Policy);
}
if (Function->isVariadic()) {
if (Function->getNumParams())
OS << ", ";
OS << "...";
}
OS << ")";
return createCXString(OS.str());
}
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(D)) {
SmallString<64> Str;
llvm::raw_svector_ostream OS(Str);
OS << *ClassTemplate;
OS << "<";
TemplateParameterList *Params = ClassTemplate->getTemplateParameters();
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
if (I)
OS << ", ";
NamedDecl *Param = Params->getParam(I);
if (Param->getIdentifier()) {
OS << Param->getIdentifier()->getName();
continue;
}
// There is no parameter name, which makes this tricky. Try to come up
// with something useful that isn't too long.
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
OS << (TTP->wasDeclaredWithTypename()? "typename" : "class");
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param))
OS << NTTP->getType().getAsString(Policy);
else
OS << "template<...> class";
}
OS << ">";
return createCXString(OS.str());
}
if (ClassTemplateSpecializationDecl *ClassSpec
= dyn_cast<ClassTemplateSpecializationDecl>(D)) {
// If the type was explicitly written, use that.
if (TypeSourceInfo *TSInfo = ClassSpec->getTypeAsWritten())
return createCXString(TSInfo->getType().getAsString(Policy));
SmallString<64> Str;
llvm::raw_svector_ostream OS(Str);
OS << *ClassSpec;
OS << TemplateSpecializationType::PrintTemplateArgumentList(
ClassSpec->getTemplateArgs().data(),
ClassSpec->getTemplateArgs().size(),
Policy);
return createCXString(OS.str());
}
return clang_getCursorSpelling(C);
}
CXString clang_getCursorKindSpelling(enum CXCursorKind Kind) {
switch (Kind) {
case CXCursor_FunctionDecl:
return createCXString("FunctionDecl");
case CXCursor_TypedefDecl:
return createCXString("TypedefDecl");
case CXCursor_EnumDecl:
return createCXString("EnumDecl");
case CXCursor_EnumConstantDecl:
return createCXString("EnumConstantDecl");
case CXCursor_StructDecl:
return createCXString("StructDecl");
case CXCursor_UnionDecl:
return createCXString("UnionDecl");
case CXCursor_ClassDecl:
return createCXString("ClassDecl");
case CXCursor_FieldDecl:
return createCXString("FieldDecl");
case CXCursor_VarDecl:
return createCXString("VarDecl");
case CXCursor_ParmDecl:
return createCXString("ParmDecl");
case CXCursor_ObjCInterfaceDecl:
return createCXString("ObjCInterfaceDecl");
case CXCursor_ObjCCategoryDecl:
return createCXString("ObjCCategoryDecl");
case CXCursor_ObjCProtocolDecl:
return createCXString("ObjCProtocolDecl");
case CXCursor_ObjCPropertyDecl:
return createCXString("ObjCPropertyDecl");
case CXCursor_ObjCIvarDecl:
return createCXString("ObjCIvarDecl");
case CXCursor_ObjCInstanceMethodDecl:
return createCXString("ObjCInstanceMethodDecl");
case CXCursor_ObjCClassMethodDecl:
return createCXString("ObjCClassMethodDecl");
case CXCursor_ObjCImplementationDecl:
return createCXString("ObjCImplementationDecl");
case CXCursor_ObjCCategoryImplDecl:
return createCXString("ObjCCategoryImplDecl");
case CXCursor_CXXMethod:
return createCXString("CXXMethod");
case CXCursor_UnexposedDecl:
return createCXString("UnexposedDecl");
case CXCursor_ObjCSuperClassRef:
return createCXString("ObjCSuperClassRef");
case CXCursor_ObjCProtocolRef:
return createCXString("ObjCProtocolRef");
case CXCursor_ObjCClassRef:
return createCXString("ObjCClassRef");
case CXCursor_TypeRef:
return createCXString("TypeRef");
case CXCursor_TemplateRef:
return createCXString("TemplateRef");
case CXCursor_NamespaceRef:
return createCXString("NamespaceRef");
case CXCursor_MemberRef:
return createCXString("MemberRef");
case CXCursor_LabelRef:
return createCXString("LabelRef");
case CXCursor_OverloadedDeclRef:
return createCXString("OverloadedDeclRef");
case CXCursor_VariableRef:
return createCXString("VariableRef");
case CXCursor_IntegerLiteral:
return createCXString("IntegerLiteral");
case CXCursor_FloatingLiteral:
return createCXString("FloatingLiteral");
case CXCursor_ImaginaryLiteral:
return createCXString("ImaginaryLiteral");
case CXCursor_StringLiteral:
return createCXString("StringLiteral");
case CXCursor_CharacterLiteral:
return createCXString("CharacterLiteral");
case CXCursor_ParenExpr:
return createCXString("ParenExpr");
case CXCursor_UnaryOperator:
return createCXString("UnaryOperator");
case CXCursor_ArraySubscriptExpr:
return createCXString("ArraySubscriptExpr");
case CXCursor_BinaryOperator:
return createCXString("BinaryOperator");
case CXCursor_CompoundAssignOperator:
return createCXString("CompoundAssignOperator");
case CXCursor_ConditionalOperator:
return createCXString("ConditionalOperator");
case CXCursor_CStyleCastExpr:
return createCXString("CStyleCastExpr");
case CXCursor_CompoundLiteralExpr:
return createCXString("CompoundLiteralExpr");
case CXCursor_InitListExpr:
return createCXString("InitListExpr");
case CXCursor_AddrLabelExpr:
return createCXString("AddrLabelExpr");
case CXCursor_StmtExpr:
return createCXString("StmtExpr");
case CXCursor_GenericSelectionExpr:
return createCXString("GenericSelectionExpr");
case CXCursor_GNUNullExpr:
return createCXString("GNUNullExpr");
case CXCursor_CXXStaticCastExpr:
return createCXString("CXXStaticCastExpr");
case CXCursor_CXXDynamicCastExpr:
return createCXString("CXXDynamicCastExpr");
case CXCursor_CXXReinterpretCastExpr:
return createCXString("CXXReinterpretCastExpr");
case CXCursor_CXXConstCastExpr:
return createCXString("CXXConstCastExpr");
case CXCursor_CXXFunctionalCastExpr:
return createCXString("CXXFunctionalCastExpr");
case CXCursor_CXXTypeidExpr:
return createCXString("CXXTypeidExpr");
case CXCursor_CXXBoolLiteralExpr:
return createCXString("CXXBoolLiteralExpr");
case CXCursor_CXXNullPtrLiteralExpr:
return createCXString("CXXNullPtrLiteralExpr");
case CXCursor_CXXThisExpr:
return createCXString("CXXThisExpr");
case CXCursor_CXXThrowExpr:
return createCXString("CXXThrowExpr");
case CXCursor_CXXNewExpr:
return createCXString("CXXNewExpr");
case CXCursor_CXXDeleteExpr:
return createCXString("CXXDeleteExpr");
case CXCursor_UnaryExpr:
return createCXString("UnaryExpr");
case CXCursor_ObjCStringLiteral:
return createCXString("ObjCStringLiteral");
case CXCursor_ObjCEncodeExpr:
return createCXString("ObjCEncodeExpr");
case CXCursor_ObjCSelectorExpr:
return createCXString("ObjCSelectorExpr");
case CXCursor_ObjCProtocolExpr:
return createCXString("ObjCProtocolExpr");
case CXCursor_ObjCBridgedCastExpr:
return createCXString("ObjCBridgedCastExpr");
case CXCursor_BlockExpr:
return createCXString("BlockExpr");
case CXCursor_PackExpansionExpr:
return createCXString("PackExpansionExpr");
case CXCursor_SizeOfPackExpr:
return createCXString("SizeOfPackExpr");
case CXCursor_LambdaExpr:
return createCXString("LambdaExpr");
case CXCursor_UnexposedExpr:
return createCXString("UnexposedExpr");
case CXCursor_DeclRefExpr:
return createCXString("DeclRefExpr");
case CXCursor_MemberRefExpr:
return createCXString("MemberRefExpr");
case CXCursor_CallExpr:
return createCXString("CallExpr");
case CXCursor_ObjCMessageExpr:
return createCXString("ObjCMessageExpr");
case CXCursor_UnexposedStmt:
return createCXString("UnexposedStmt");
case CXCursor_DeclStmt:
return createCXString("DeclStmt");
case CXCursor_LabelStmt:
return createCXString("LabelStmt");
case CXCursor_CompoundStmt:
return createCXString("CompoundStmt");
case CXCursor_CaseStmt:
return createCXString("CaseStmt");
case CXCursor_DefaultStmt:
return createCXString("DefaultStmt");
case CXCursor_IfStmt:
return createCXString("IfStmt");
case CXCursor_SwitchStmt:
return createCXString("SwitchStmt");
case CXCursor_WhileStmt:
return createCXString("WhileStmt");
case CXCursor_DoStmt:
return createCXString("DoStmt");
case CXCursor_ForStmt:
return createCXString("ForStmt");
case CXCursor_GotoStmt:
return createCXString("GotoStmt");
case CXCursor_IndirectGotoStmt:
return createCXString("IndirectGotoStmt");
case CXCursor_ContinueStmt:
return createCXString("ContinueStmt");
case CXCursor_BreakStmt:
return createCXString("BreakStmt");
case CXCursor_ReturnStmt:
return createCXString("ReturnStmt");
case CXCursor_AsmStmt:
return createCXString("AsmStmt");
case CXCursor_ObjCAtTryStmt:
return createCXString("ObjCAtTryStmt");
case CXCursor_ObjCAtCatchStmt:
return createCXString("ObjCAtCatchStmt");
case CXCursor_ObjCAtFinallyStmt:
return createCXString("ObjCAtFinallyStmt");
case CXCursor_ObjCAtThrowStmt:
return createCXString("ObjCAtThrowStmt");
case CXCursor_ObjCAtSynchronizedStmt:
return createCXString("ObjCAtSynchronizedStmt");
case CXCursor_ObjCAutoreleasePoolStmt:
return createCXString("ObjCAutoreleasePoolStmt");
case CXCursor_ObjCForCollectionStmt:
return createCXString("ObjCForCollectionStmt");
case CXCursor_CXXCatchStmt:
return createCXString("CXXCatchStmt");
case CXCursor_CXXTryStmt:
return createCXString("CXXTryStmt");
case CXCursor_CXXForRangeStmt:
return createCXString("CXXForRangeStmt");
case CXCursor_SEHTryStmt:
return createCXString("SEHTryStmt");
case CXCursor_SEHExceptStmt:
return createCXString("SEHExceptStmt");
case CXCursor_SEHFinallyStmt:
return createCXString("SEHFinallyStmt");
case CXCursor_NullStmt:
return createCXString("NullStmt");
case CXCursor_InvalidFile:
return createCXString("InvalidFile");
case CXCursor_InvalidCode:
return createCXString("InvalidCode");
case CXCursor_NoDeclFound:
return createCXString("NoDeclFound");
case CXCursor_NotImplemented:
return createCXString("NotImplemented");
case CXCursor_TranslationUnit:
return createCXString("TranslationUnit");
case CXCursor_UnexposedAttr:
return createCXString("UnexposedAttr");
case CXCursor_IBActionAttr:
return createCXString("attribute(ibaction)");
case CXCursor_IBOutletAttr:
return createCXString("attribute(iboutlet)");
case CXCursor_IBOutletCollectionAttr:
return createCXString("attribute(iboutletcollection)");
case CXCursor_CXXFinalAttr:
return createCXString("attribute(final)");
case CXCursor_CXXOverrideAttr:
return createCXString("attribute(override)");
case CXCursor_AnnotateAttr:
return createCXString("attribute(annotate)");
case CXCursor_AsmLabelAttr:
return createCXString("asm label");
case CXCursor_PreprocessingDirective:
return createCXString("preprocessing directive");
case CXCursor_MacroDefinition:
return createCXString("macro definition");
case CXCursor_MacroExpansion:
return createCXString("macro expansion");
case CXCursor_InclusionDirective:
return createCXString("inclusion directive");
case CXCursor_Namespace:
return createCXString("Namespace");
case CXCursor_LinkageSpec:
return createCXString("LinkageSpec");
case CXCursor_CXXBaseSpecifier:
return createCXString("C++ base class specifier");
case CXCursor_Constructor:
return createCXString("CXXConstructor");
case CXCursor_Destructor:
return createCXString("CXXDestructor");
case CXCursor_ConversionFunction:
return createCXString("CXXConversion");
case CXCursor_TemplateTypeParameter:
return createCXString("TemplateTypeParameter");
case CXCursor_NonTypeTemplateParameter:
return createCXString("NonTypeTemplateParameter");
case CXCursor_TemplateTemplateParameter:
return createCXString("TemplateTemplateParameter");
case CXCursor_FunctionTemplate:
return createCXString("FunctionTemplate");
case CXCursor_ClassTemplate:
return createCXString("ClassTemplate");
case CXCursor_ClassTemplatePartialSpecialization:
return createCXString("ClassTemplatePartialSpecialization");
case CXCursor_NamespaceAlias:
return createCXString("NamespaceAlias");
case CXCursor_UsingDirective:
return createCXString("UsingDirective");
case CXCursor_UsingDeclaration:
return createCXString("UsingDeclaration");
case CXCursor_TypeAliasDecl:
return createCXString("TypeAliasDecl");
case CXCursor_ObjCSynthesizeDecl:
return createCXString("ObjCSynthesizeDecl");
case CXCursor_ObjCDynamicDecl:
return createCXString("ObjCDynamicDecl");
case CXCursor_CXXAccessSpecifier:
return createCXString("CXXAccessSpecifier");
}
llvm_unreachable("Unhandled CXCursorKind");
}
struct GetCursorData {
SourceLocation TokenBeginLoc;
bool PointsAtMacroArgExpansion;
CXCursor &BestCursor;
GetCursorData(SourceManager &SM,
SourceLocation tokenBegin, CXCursor &outputCursor)
: TokenBeginLoc(tokenBegin), BestCursor(outputCursor) {
PointsAtMacroArgExpansion = SM.isMacroArgExpansion(tokenBegin);
}
};
static enum CXChildVisitResult GetCursorVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
GetCursorData *Data = static_cast<GetCursorData *>(client_data);
CXCursor *BestCursor = &Data->BestCursor;
// If we point inside a macro argument we should provide info of what the
// token is so use the actual cursor, don't replace it with a macro expansion
// cursor.
if (cursor.kind == CXCursor_MacroExpansion && Data->PointsAtMacroArgExpansion)
return CXChildVisit_Recurse;
if (clang_isDeclaration(cursor.kind)) {
// Avoid having the implicit methods override the property decls.
if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(getCursorDecl(cursor)))
if (MD->isImplicit())
return CXChildVisit_Break;
}
if (clang_isExpression(cursor.kind) &&
clang_isDeclaration(BestCursor->kind)) {
if (Decl *D = getCursorDecl(*BestCursor)) {
// Avoid having the cursor of an expression replace the declaration cursor
// when the expression source range overlaps the declaration range.
// This can happen for C++ constructor expressions whose range generally
// include the variable declaration, e.g.:
// MyCXXClass foo; // Make sure pointing at 'foo' returns a VarDecl cursor.
if (D->getLocation().isValid() && Data->TokenBeginLoc.isValid() &&
D->getLocation() == Data->TokenBeginLoc)
return CXChildVisit_Break;
}
}
// If our current best cursor is the construction of a temporary object,
// don't replace that cursor with a type reference, because we want
// clang_getCursor() to point at the constructor.
if (clang_isExpression(BestCursor->kind) &&
isa<CXXTemporaryObjectExpr>(getCursorExpr(*BestCursor)) &&
cursor.kind == CXCursor_TypeRef) {
// Keep the cursor pointing at CXXTemporaryObjectExpr but also mark it
// as having the actual point on the type reference.
*BestCursor = getTypeRefedCallExprCursor(*BestCursor);
return CXChildVisit_Recurse;
}
*BestCursor = cursor;
return CXChildVisit_Recurse;
}
CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) {
if (!TU)
return clang_getNullCursor();
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
SourceLocation SLoc = cxloc::translateSourceLocation(Loc);
CXCursor Result = cxcursor::getCursor(TU, SLoc);
bool Logging = getenv("LIBCLANG_LOGGING");
if (Logging) {
CXFile SearchFile;
unsigned SearchLine, SearchColumn;
CXFile ResultFile;
unsigned ResultLine, ResultColumn;
CXString SearchFileName, ResultFileName, KindSpelling, USR;
const char *IsDef = clang_isCursorDefinition(Result)? " (Definition)" : "";
CXSourceLocation ResultLoc = clang_getCursorLocation(Result);
clang_getExpansionLocation(Loc, &SearchFile, &SearchLine, &SearchColumn, 0);
clang_getExpansionLocation(ResultLoc, &ResultFile, &ResultLine,
&ResultColumn, 0);
SearchFileName = clang_getFileName(SearchFile);
ResultFileName = clang_getFileName(ResultFile);
KindSpelling = clang_getCursorKindSpelling(Result.kind);
USR = clang_getCursorUSR(Result);
fprintf(stderr, "clang_getCursor(%s:%d:%d) = %s(%s:%d:%d):%s%s\n",
clang_getCString(SearchFileName), SearchLine, SearchColumn,
clang_getCString(KindSpelling),
clang_getCString(ResultFileName), ResultLine, ResultColumn,
clang_getCString(USR), IsDef);
clang_disposeString(SearchFileName);
clang_disposeString(ResultFileName);
clang_disposeString(KindSpelling);
clang_disposeString(USR);
CXCursor Definition = clang_getCursorDefinition(Result);
if (!clang_equalCursors(Definition, clang_getNullCursor())) {
CXSourceLocation DefinitionLoc = clang_getCursorLocation(Definition);
CXString DefinitionKindSpelling
= clang_getCursorKindSpelling(Definition.kind);
CXFile DefinitionFile;
unsigned DefinitionLine, DefinitionColumn;
clang_getExpansionLocation(DefinitionLoc, &DefinitionFile,
&DefinitionLine, &DefinitionColumn, 0);
CXString DefinitionFileName = clang_getFileName(DefinitionFile);
fprintf(stderr, " -> %s(%s:%d:%d)\n",
clang_getCString(DefinitionKindSpelling),
clang_getCString(DefinitionFileName),
DefinitionLine, DefinitionColumn);
clang_disposeString(DefinitionFileName);
clang_disposeString(DefinitionKindSpelling);
}
}
return Result;
}
CXCursor clang_getNullCursor(void) {
return MakeCXCursorInvalid(CXCursor_InvalidFile);
}
unsigned clang_equalCursors(CXCursor X, CXCursor Y) {
return X == Y;
}
unsigned clang_hashCursor(CXCursor C) {
unsigned Index = 0;
if (clang_isExpression(C.kind) || clang_isStatement(C.kind))
Index = 1;
return llvm::DenseMapInfo<std::pair<unsigned, void*> >::getHashValue(
std::make_pair(C.kind, C.data[Index]));
}
unsigned clang_isInvalid(enum CXCursorKind K) {
return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid;
}
unsigned clang_isDeclaration(enum CXCursorKind K) {
return K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl;
}
unsigned clang_isReference(enum CXCursorKind K) {
return K >= CXCursor_FirstRef && K <= CXCursor_LastRef;
}
unsigned clang_isExpression(enum CXCursorKind K) {
return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr;
}
unsigned clang_isStatement(enum CXCursorKind K) {
return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt;
}
unsigned clang_isAttribute(enum CXCursorKind K) {
return K >= CXCursor_FirstAttr && K <= CXCursor_LastAttr;
}
unsigned clang_isTranslationUnit(enum CXCursorKind K) {
return K == CXCursor_TranslationUnit;
}
unsigned clang_isPreprocessing(enum CXCursorKind K) {
return K >= CXCursor_FirstPreprocessing && K <= CXCursor_LastPreprocessing;
}
unsigned clang_isUnexposed(enum CXCursorKind K) {
switch (K) {
case CXCursor_UnexposedDecl:
case CXCursor_UnexposedExpr:
case CXCursor_UnexposedStmt:
case CXCursor_UnexposedAttr:
return true;
default:
return false;
}
}
CXCursorKind clang_getCursorKind(CXCursor C) {
return C.kind;
}
CXSourceLocation clang_getCursorLocation(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCSuperClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCProtocolRef: {
std::pair<ObjCProtocolDecl *, SourceLocation> P
= getCursorObjCProtocolRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_TypeRef: {
std::pair<TypeDecl *, SourceLocation> P = getCursorTypeRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_TemplateRef: {
std::pair<TemplateDecl *, SourceLocation> P = getCursorTemplateRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_NamespaceRef: {
std::pair<NamedDecl *, SourceLocation> P = getCursorNamespaceRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_MemberRef: {
std::pair<FieldDecl *, SourceLocation> P = getCursorMemberRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_VariableRef: {
std::pair<VarDecl *, SourceLocation> P = getCursorVariableRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_CXXBaseSpecifier: {
CXXBaseSpecifier *BaseSpec = getCursorCXXBaseSpecifier(C);
if (!BaseSpec)
return clang_getNullLocation();
if (TypeSourceInfo *TSInfo = BaseSpec->getTypeSourceInfo())
return cxloc::translateSourceLocation(getCursorContext(C),
TSInfo->getTypeLoc().getBeginLoc());
return cxloc::translateSourceLocation(getCursorContext(C),
BaseSpec->getSourceRange().getBegin());
}
case CXCursor_LabelRef: {
std::pair<LabelStmt *, SourceLocation> P = getCursorLabelRef(C);
return cxloc::translateSourceLocation(getCursorContext(C), P.second);
}
case CXCursor_OverloadedDeclRef:
return cxloc::translateSourceLocation(getCursorContext(C),
getCursorOverloadedDeclRef(C).second);
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return cxloc::translateSourceLocation(getCursorContext(C),
getLocationFromExpr(getCursorExpr(C)));
if (clang_isStatement(C.kind))
return cxloc::translateSourceLocation(getCursorContext(C),
getCursorStmt(C)->getLocStart());
if (C.kind == CXCursor_PreprocessingDirective) {
SourceLocation L = cxcursor::getCursorPreprocessingDirective(C).getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_MacroExpansion) {
SourceLocation L
= cxcursor::getCursorMacroExpansion(C)->getSourceRange().getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_MacroDefinition) {
SourceLocation L = cxcursor::getCursorMacroDefinition(C)->getLocation();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_InclusionDirective) {
SourceLocation L
= cxcursor::getCursorInclusionDirective(C)->getSourceRange().getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind < CXCursor_FirstDecl || C.kind > CXCursor_LastDecl)
return clang_getNullLocation();
Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullLocation();
SourceLocation Loc = D->getLocation();
// FIXME: Multiple variables declared in a single declaration
// currently lack the information needed to correctly determine their
// ranges when accounting for the type-specifier. We use context
// stored in the CXCursor to determine if the VarDecl is in a DeclGroup,
// and if so, whether it is the first decl.
if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!cxcursor::isFirstInDeclGroup(C))
Loc = VD->getLocation();
}
return cxloc::translateSourceLocation(getCursorContext(C), Loc);
}
} // end extern "C"
CXCursor cxcursor::getCursor(CXTranslationUnit TU, SourceLocation SLoc) {
assert(TU);
// Guard against an invalid SourceLocation, or we may assert in one
// of the following calls.
if (SLoc.isInvalid())
return clang_getNullCursor();
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
// Translate the given source location to make it point at the beginning of
// the token under the cursor.
SLoc = Lexer::GetBeginningOfToken(SLoc, CXXUnit->getSourceManager(),
CXXUnit->getASTContext().getLangOptions());
CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound);
if (SLoc.isValid()) {
GetCursorData ResultData(CXXUnit->getSourceManager(), SLoc, Result);
CursorVisitor CursorVis(TU, GetCursorVisitor, &ResultData,
/*VisitPreprocessorLast=*/true,
/*VisitIncludedEntities=*/false,
SourceLocation(SLoc));
CursorVis.visitFileRegion();
}
return Result;
}
static SourceRange getRawCursorExtent(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef:
return getCursorObjCSuperClassRef(C).second;
case CXCursor_ObjCProtocolRef:
return getCursorObjCProtocolRef(C).second;
case CXCursor_ObjCClassRef:
return getCursorObjCClassRef(C).second;
case CXCursor_TypeRef:
return getCursorTypeRef(C).second;
case CXCursor_TemplateRef:
return getCursorTemplateRef(C).second;
case CXCursor_NamespaceRef:
return getCursorNamespaceRef(C).second;
case CXCursor_MemberRef:
return getCursorMemberRef(C).second;
case CXCursor_CXXBaseSpecifier:
return getCursorCXXBaseSpecifier(C)->getSourceRange();
case CXCursor_LabelRef:
return getCursorLabelRef(C).second;
case CXCursor_OverloadedDeclRef:
return getCursorOverloadedDeclRef(C).second;
case CXCursor_VariableRef:
return getCursorVariableRef(C).second;
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return getCursorExpr(C)->getSourceRange();
if (clang_isStatement(C.kind))
return getCursorStmt(C)->getSourceRange();
if (clang_isAttribute(C.kind))
return getCursorAttr(C)->getRange();
if (C.kind == CXCursor_PreprocessingDirective)
return cxcursor::getCursorPreprocessingDirective(C);
if (C.kind == CXCursor_MacroExpansion) {
ASTUnit *TU = getCursorASTUnit(C);
SourceRange Range = cxcursor::getCursorMacroExpansion(C)->getSourceRange();
return TU->mapRangeFromPreamble(Range);
}
if (C.kind == CXCursor_MacroDefinition) {
ASTUnit *TU = getCursorASTUnit(C);
SourceRange Range = cxcursor::getCursorMacroDefinition(C)->getSourceRange();
return TU->mapRangeFromPreamble(Range);
}
if (C.kind == CXCursor_InclusionDirective) {
ASTUnit *TU = getCursorASTUnit(C);
SourceRange Range = cxcursor::getCursorInclusionDirective(C)->getSourceRange();
return TU->mapRangeFromPreamble(Range);
}
if (C.kind >= CXCursor_FirstDecl && C.kind <= CXCursor_LastDecl) {
Decl *D = cxcursor::getCursorDecl(C);
if (!D)
return SourceRange();
SourceRange R = D->getSourceRange();
// FIXME: Multiple variables declared in a single declaration
// currently lack the information needed to correctly determine their
// ranges when accounting for the type-specifier. We use context
// stored in the CXCursor to determine if the VarDecl is in a DeclGroup,
// and if so, whether it is the first decl.
if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!cxcursor::isFirstInDeclGroup(C))
R.setBegin(VD->getLocation());
}
return R;
}
return SourceRange();
}
/// \brief Retrieves the "raw" cursor extent, which is then extended to include
/// the decl-specifier-seq for declarations.
static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr) {
if (C.kind >= CXCursor_FirstDecl && C.kind <= CXCursor_LastDecl) {
Decl *D = cxcursor::getCursorDecl(C);
if (!D)
return SourceRange();
SourceRange R = D->getSourceRange();
// Adjust the start of the location for declarations preceded by
// declaration specifiers.
SourceLocation StartLoc;
if (const DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
if (TypeSourceInfo *TI = DD->getTypeSourceInfo())
StartLoc = TI->getTypeLoc().getSourceRange().getBegin();
} else if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(D)) {
if (TypeSourceInfo *TI = Typedef->getTypeSourceInfo())
StartLoc = TI->getTypeLoc().getSourceRange().getBegin();
}
if (StartLoc.isValid() && R.getBegin().isValid() &&
SrcMgr.isBeforeInTranslationUnit(StartLoc, R.getBegin()))
R.setBegin(StartLoc);
// FIXME: Multiple variables declared in a single declaration
// currently lack the information needed to correctly determine their
// ranges when accounting for the type-specifier. We use context
// stored in the CXCursor to determine if the VarDecl is in a DeclGroup,
// and if so, whether it is the first decl.
if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!cxcursor::isFirstInDeclGroup(C))
R.setBegin(VD->getLocation());
}
return R;
}
return getRawCursorExtent(C);
}
extern "C" {
CXSourceRange clang_getCursorExtent(CXCursor C) {
SourceRange R = getRawCursorExtent(C);
if (R.isInvalid())
return clang_getNullRange();
return cxloc::translateSourceRange(getCursorContext(C), R);
}
CXCursor clang_getCursorReferenced(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
CXTranslationUnit tu = getCursorTU(C);
if (clang_isDeclaration(C.kind)) {
Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullCursor();
if (UsingDecl *Using = dyn_cast<UsingDecl>(D))
return MakeCursorOverloadedDeclRef(Using, D->getLocation(), tu);
if (ObjCPropertyImplDecl *PropImpl =dyn_cast<ObjCPropertyImplDecl>(D))
if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl())
return MakeCXCursor(Property, tu);
return C;
}
if (clang_isExpression(C.kind)) {
Expr *E = getCursorExpr(C);
Decl *D = getDeclFromExpr(E);
if (D) {
CXCursor declCursor = MakeCXCursor(D, tu);
declCursor = getSelectorIdentifierCursor(getSelectorIdentifierIndex(C),
declCursor);
return declCursor;
}
if (OverloadExpr *Ovl = dyn_cast_or_null<OverloadExpr>(E))
return MakeCursorOverloadedDeclRef(Ovl, tu);
return clang_getNullCursor();
}
if (clang_isStatement(C.kind)) {
Stmt *S = getCursorStmt(C);
if (GotoStmt *Goto = dyn_cast_or_null<GotoStmt>(S))
if (LabelDecl *label = Goto->getLabel())
if (LabelStmt *labelS = label->getStmt())
return MakeCXCursor(labelS, getCursorDecl(C), tu);
return clang_getNullCursor();
}
if (C.kind == CXCursor_MacroExpansion) {
if (MacroDefinition *Def = getCursorMacroExpansion(C)->getDefinition())
return MakeMacroDefinitionCursor(Def, tu);
}
if (!clang_isReference(C.kind))
return clang_getNullCursor();
switch (C.kind) {
case CXCursor_ObjCSuperClassRef:
return MakeCXCursor(getCursorObjCSuperClassRef(C).first, tu);
case CXCursor_ObjCProtocolRef: {
ObjCProtocolDecl *Prot = getCursorObjCProtocolRef(C).first;
if (ObjCProtocolDecl *Def = Prot->getDefinition())
return MakeCXCursor(Def, tu);
return MakeCXCursor(Prot, tu);
}
case CXCursor_ObjCClassRef: {
ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first;
if (ObjCInterfaceDecl *Def = Class->getDefinition())
return MakeCXCursor(Def, tu);
return MakeCXCursor(Class, tu);
}
case CXCursor_TypeRef:
return MakeCXCursor(getCursorTypeRef(C).first, tu );
case CXCursor_TemplateRef:
return MakeCXCursor(getCursorTemplateRef(C).first, tu );
case CXCursor_NamespaceRef:
return MakeCXCursor(getCursorNamespaceRef(C).first, tu );
case CXCursor_MemberRef:
return MakeCXCursor(getCursorMemberRef(C).first, tu );
case CXCursor_CXXBaseSpecifier: {
CXXBaseSpecifier *B = cxcursor::getCursorCXXBaseSpecifier(C);
return clang_getTypeDeclaration(cxtype::MakeCXType(B->getType(),
tu ));
}
case CXCursor_LabelRef:
// FIXME: We end up faking the "parent" declaration here because we
// don't want to make CXCursor larger.
return MakeCXCursor(getCursorLabelRef(C).first,
static_cast<ASTUnit*>(tu->TUData)->getASTContext()
.getTranslationUnitDecl(),
tu);
case CXCursor_OverloadedDeclRef:
return C;
case CXCursor_VariableRef:
return MakeCXCursor(getCursorVariableRef(C).first, tu);
default:
// We would prefer to enumerate all non-reference cursor kinds here.
llvm_unreachable("Unhandled reference cursor kind");
}
}
CXCursor clang_getCursorDefinition(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
CXTranslationUnit TU = getCursorTU(C);
bool WasReference = false;
if (clang_isReference(C.kind) || clang_isExpression(C.kind)) {
C = clang_getCursorReferenced(C);
WasReference = true;
}
if (C.kind == CXCursor_MacroExpansion)
return clang_getCursorReferenced(C);
if (!clang_isDeclaration(C.kind))
return clang_getNullCursor();
Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullCursor();
switch (D->getKind()) {
// Declaration kinds that don't really separate the notions of
// declaration and definition.
case Decl::Namespace:
case Decl::Typedef:
case Decl::TypeAlias:
case Decl::TypeAliasTemplate:
case Decl::TemplateTypeParm:
case Decl::EnumConstant:
case Decl::Field:
case Decl::IndirectField:
case Decl::ObjCIvar:
case Decl::ObjCAtDefsField:
case Decl::ImplicitParam:
case Decl::ParmVar:
case Decl::NonTypeTemplateParm:
case Decl::TemplateTemplateParm:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::AccessSpec:
case Decl::LinkageSpec:
case Decl::ObjCPropertyImpl:
case Decl::FileScopeAsm:
case Decl::StaticAssert:
case Decl::Block:
case Decl::Label: // FIXME: Is this right??
case Decl::ClassScopeFunctionSpecialization:
case Decl::Import:
return C;
// Declaration kinds that don't make any sense here, but are
// nonetheless harmless.
case Decl::TranslationUnit:
break;
// Declaration kinds for which the definition is not resolvable.
case Decl::UnresolvedUsingTypename:
case Decl::UnresolvedUsingValue:
break;
case Decl::UsingDirective:
return MakeCXCursor(cast<UsingDirectiveDecl>(D)->getNominatedNamespace(),
TU);
case Decl::NamespaceAlias:
return MakeCXCursor(cast<NamespaceAliasDecl>(D)->getNamespace(), TU);
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
case Decl::ClassTemplateSpecialization:
case Decl::ClassTemplatePartialSpecialization:
if (TagDecl *Def = cast<TagDecl>(D)->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
case Decl::Function:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion: {
const FunctionDecl *Def = 0;
if (cast<FunctionDecl>(D)->getBody(Def))
return MakeCXCursor(const_cast<FunctionDecl *>(Def), TU);
return clang_getNullCursor();
}
case Decl::Var: {
// Ask the variable if it has a definition.
if (VarDecl *Def = cast<VarDecl>(D)->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
}
case Decl::FunctionTemplate: {
const FunctionDecl *Def = 0;
if (cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->getBody(Def))
return MakeCXCursor(Def->getDescribedFunctionTemplate(), TU);
return clang_getNullCursor();
}
case Decl::ClassTemplate: {
if (RecordDecl *Def = cast<ClassTemplateDecl>(D)->getTemplatedDecl()
->getDefinition())
return MakeCXCursor(cast<CXXRecordDecl>(Def)->getDescribedClassTemplate(),
TU);
return clang_getNullCursor();
}
case Decl::Using:
return MakeCursorOverloadedDeclRef(cast<UsingDecl>(D),
D->getLocation(), TU);
case Decl::UsingShadow:
return clang_getCursorDefinition(
MakeCXCursor(cast<UsingShadowDecl>(D)->getTargetDecl(),
TU));
case Decl::ObjCMethod: {
ObjCMethodDecl *Method = cast<ObjCMethodDecl>(D);
if (Method->isThisDeclarationADefinition())
return C;
// Dig out the method definition in the associated
// @implementation, if we have it.
// FIXME: The ASTs should make finding the definition easier.
if (ObjCInterfaceDecl *Class
= dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()))
if (ObjCImplementationDecl *ClassImpl = Class->getImplementation())
if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(),
Method->isInstanceMethod()))
if (Def->isThisDeclarationADefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
}
case Decl::ObjCCategory:
if (ObjCCategoryImplDecl *Impl
= cast<ObjCCategoryDecl>(D)->getImplementation())
return MakeCXCursor(Impl, TU);
return clang_getNullCursor();
case Decl::ObjCProtocol:
if (ObjCProtocolDecl *Def = cast<ObjCProtocolDecl>(D)->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
case Decl::ObjCInterface: {
// There are two notions of a "definition" for an Objective-C
// class: the interface and its implementation. When we resolved a
// reference to an Objective-C class, produce the @interface as
// the definition; when we were provided with the interface,
// produce the @implementation as the definition.
ObjCInterfaceDecl *IFace = cast<ObjCInterfaceDecl>(D);
if (WasReference) {
if (ObjCInterfaceDecl *Def = IFace->getDefinition())
return MakeCXCursor(Def, TU);
} else if (ObjCImplementationDecl *Impl = IFace->getImplementation())
return MakeCXCursor(Impl, TU);
return clang_getNullCursor();
}
case Decl::ObjCProperty:
// FIXME: We don't really know where to find the
// ObjCPropertyImplDecls that implement this property.
return clang_getNullCursor();
case Decl::ObjCCompatibleAlias:
if (ObjCInterfaceDecl *Class
= cast<ObjCCompatibleAliasDecl>(D)->getClassInterface())
if (ObjCInterfaceDecl *Def = Class->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
case Decl::Friend:
if (NamedDecl *Friend = cast<FriendDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, TU));
return clang_getNullCursor();
case Decl::FriendTemplate:
if (NamedDecl *Friend = cast<FriendTemplateDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, TU));
return clang_getNullCursor();
}
return clang_getNullCursor();
}
unsigned clang_isCursorDefinition(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
return clang_getCursorDefinition(C) == C;
}
CXCursor clang_getCanonicalCursor(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return C;
if (Decl *D = getCursorDecl(C)) {
if (ObjCCategoryImplDecl *CatImplD = dyn_cast<ObjCCategoryImplDecl>(D))
if (ObjCCategoryDecl *CatD = CatImplD->getCategoryDecl())
return MakeCXCursor(CatD, getCursorTU(C));
if (ObjCImplDecl *ImplD = dyn_cast<ObjCImplDecl>(D))
if (ObjCInterfaceDecl *IFD = ImplD->getClassInterface())
return MakeCXCursor(IFD, getCursorTU(C));
return MakeCXCursor(D->getCanonicalDecl(), getCursorTU(C));
}
return C;
}
unsigned clang_getNumOverloadedDecls(CXCursor C) {
if (C.kind != CXCursor_OverloadedDeclRef)
return 0;
OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first;
if (OverloadExpr *E = Storage.dyn_cast<OverloadExpr *>())
return E->getNumDecls();
if (OverloadedTemplateStorage *S
= Storage.dyn_cast<OverloadedTemplateStorage*>())
return S->size();
Decl *D = Storage.get<Decl*>();
if (UsingDecl *Using = dyn_cast<UsingDecl>(D))
return Using->shadow_size();
return 0;
}
CXCursor clang_getOverloadedDecl(CXCursor cursor, unsigned index) {
if (cursor.kind != CXCursor_OverloadedDeclRef)
return clang_getNullCursor();
if (index >= clang_getNumOverloadedDecls(cursor))
return clang_getNullCursor();
CXTranslationUnit TU = getCursorTU(cursor);
OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(cursor).first;
if (OverloadExpr *E = Storage.dyn_cast<OverloadExpr *>())
return MakeCXCursor(E->decls_begin()[index], TU);
if (OverloadedTemplateStorage *S
= Storage.dyn_cast<OverloadedTemplateStorage*>())
return MakeCXCursor(S->begin()[index], TU);
Decl *D = Storage.get<Decl*>();
if (UsingDecl *Using = dyn_cast<UsingDecl>(D)) {
// FIXME: This is, unfortunately, linear time.
UsingDecl::shadow_iterator Pos = Using->shadow_begin();
std::advance(Pos, index);
return MakeCXCursor(cast<UsingShadowDecl>(*Pos)->getTargetDecl(), TU);
}
return clang_getNullCursor();
}
void clang_getDefinitionSpellingAndExtent(CXCursor C,
const char **startBuf,
const char **endBuf,
unsigned *startLine,
unsigned *startColumn,
unsigned *endLine,
unsigned *endColumn) {
assert(getCursorDecl(C) && "CXCursor has null decl");
NamedDecl *ND = static_cast<NamedDecl *>(getCursorDecl(C));
FunctionDecl *FD = dyn_cast<FunctionDecl>(ND);
CompoundStmt *Body = dyn_cast<CompoundStmt>(FD->getBody());
SourceManager &SM = FD->getASTContext().getSourceManager();
*startBuf = SM.getCharacterData(Body->getLBracLoc());
*endBuf = SM.getCharacterData(Body->getRBracLoc());
*startLine = SM.getSpellingLineNumber(Body->getLBracLoc());
*startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc());
*endLine = SM.getSpellingLineNumber(Body->getRBracLoc());
*endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc());
}
CXSourceRange clang_getCursorReferenceNameRange(CXCursor C, unsigned NameFlags,
unsigned PieceIndex) {
RefNamePieces Pieces;
switch (C.kind) {
case CXCursor_MemberRefExpr:
if (MemberExpr *E = dyn_cast<MemberExpr>(getCursorExpr(C)))
Pieces = buildPieces(NameFlags, true, E->getMemberNameInfo(),
E->getQualifierLoc().getSourceRange());
break;
case CXCursor_DeclRefExpr:
if (DeclRefExpr *E = dyn_cast<DeclRefExpr>(getCursorExpr(C)))
Pieces = buildPieces(NameFlags, false, E->getNameInfo(),
E->getQualifierLoc().getSourceRange(),
E->getOptionalExplicitTemplateArgs());
break;
case CXCursor_CallExpr:
if (CXXOperatorCallExpr *OCE =
dyn_cast<CXXOperatorCallExpr>(getCursorExpr(C))) {
Expr *Callee = OCE->getCallee();
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Callee))
Callee = ICE->getSubExpr();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee))
Pieces = buildPieces(NameFlags, false, DRE->getNameInfo(),
DRE->getQualifierLoc().getSourceRange());
}
break;
default:
break;
}
if (Pieces.empty()) {
if (PieceIndex == 0)
return clang_getCursorExtent(C);
} else if (PieceIndex < Pieces.size()) {
SourceRange R = Pieces[PieceIndex];
if (R.isValid())
return cxloc::translateSourceRange(getCursorContext(C), R);
}
return clang_getNullRange();
}
void clang_enableStackTraces(void) {
llvm::sys::PrintStackTraceOnErrorSignal();
}
void clang_executeOnThread(void (*fn)(void*), void *user_data,
unsigned stack_size) {
llvm::llvm_execute_on_thread(fn, user_data, stack_size);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Token-based Operations.
//===----------------------------------------------------------------------===//
/* CXToken layout:
* int_data[0]: a CXTokenKind
* int_data[1]: starting token location
* int_data[2]: token length
* int_data[3]: reserved
* ptr_data: for identifiers and keywords, an IdentifierInfo*.
* otherwise unused.
*/
extern "C" {
CXTokenKind clang_getTokenKind(CXToken CXTok) {
return static_cast<CXTokenKind>(CXTok.int_data[0]);
}
CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) {
switch (clang_getTokenKind(CXTok)) {
case CXToken_Identifier:
case CXToken_Keyword:
// We know we have an IdentifierInfo*, so use that.
return createCXString(static_cast<IdentifierInfo *>(CXTok.ptr_data)
->getNameStart());
case CXToken_Literal: {
// We have stashed the starting pointer in the ptr_data field. Use it.
const char *Text = static_cast<const char *>(CXTok.ptr_data);
return createCXString(StringRef(Text, CXTok.int_data[2]));
}
case CXToken_Punctuation:
case CXToken_Comment:
break;
}
// We have to find the starting buffer pointer the hard way, by
// deconstructing the source location.
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
if (!CXXUnit)
return createCXString("");
SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]);
std::pair<FileID, unsigned> LocInfo
= CXXUnit->getSourceManager().getDecomposedSpellingLoc(Loc);
bool Invalid = false;
StringRef Buffer
= CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return createCXString("");
return createCXString(Buffer.substr(LocInfo.second, CXTok.int_data[2]));
}
CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) {
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
if (!CXXUnit)
return clang_getNullLocation();
return cxloc::translateSourceLocation(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) {
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
if (!CXXUnit)
return clang_getNullRange();
return cxloc::translateSourceRange(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
static void getTokens(ASTUnit *CXXUnit, SourceRange Range,
SmallVectorImpl<CXToken> &CXTokens) {
SourceManager &SourceMgr = CXXUnit->getSourceManager();
std::pair<FileID, unsigned> BeginLocInfo
= SourceMgr.getDecomposedLoc(Range.getBegin());
std::pair<FileID, unsigned> EndLocInfo
= SourceMgr.getDecomposedLoc(Range.getEnd());
// Cannot tokenize across files.
if (BeginLocInfo.first != EndLocInfo.first)
return;
// Create a lexer
bool Invalid = false;
StringRef Buffer
= SourceMgr.getBufferData(BeginLocInfo.first, &Invalid);
if (Invalid)
return;
Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first),
CXXUnit->getASTContext().getLangOptions(),
Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end());
Lex.SetCommentRetentionState(true);
// Lex tokens until we hit the end of the range.
const char *EffectiveBufferEnd = Buffer.data() + EndLocInfo.second;
Token Tok;
bool previousWasAt = false;
do {
// Lex the next token
Lex.LexFromRawLexer(Tok);
if (Tok.is(tok::eof))
break;
// Initialize the CXToken.
CXToken CXTok;
// - Common fields
CXTok.int_data[1] = Tok.getLocation().getRawEncoding();
CXTok.int_data[2] = Tok.getLength();
CXTok.int_data[3] = 0;
// - Kind-specific fields
if (Tok.isLiteral()) {
CXTok.int_data[0] = CXToken_Literal;
CXTok.ptr_data = (void *)Tok.getLiteralData();
} else if (Tok.is(tok::raw_identifier)) {
// Lookup the identifier to determine whether we have a keyword.
IdentifierInfo *II
= CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok);
if ((II->getObjCKeywordID() != tok::objc_not_keyword) && previousWasAt) {
CXTok.int_data[0] = CXToken_Keyword;
}
else {
CXTok.int_data[0] = Tok.is(tok::identifier)
? CXToken_Identifier
: CXToken_Keyword;
}
CXTok.ptr_data = II;
} else if (Tok.is(tok::comment)) {
CXTok.int_data[0] = CXToken_Comment;
CXTok.ptr_data = 0;
} else {
CXTok.int_data[0] = CXToken_Punctuation;
CXTok.ptr_data = 0;
}
CXTokens.push_back(CXTok);
previousWasAt = Tok.is(tok::at);
} while (Lex.getBufferLocation() <= EffectiveBufferEnd);
}
void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range,
CXToken **Tokens, unsigned *NumTokens) {
if (Tokens)
*Tokens = 0;
if (NumTokens)
*NumTokens = 0;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
if (!CXXUnit || !Tokens || !NumTokens)
return;
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
SourceRange R = cxloc::translateCXSourceRange(Range);
if (R.isInvalid())
return;
SmallVector<CXToken, 32> CXTokens;
getTokens(CXXUnit, R, CXTokens);
if (CXTokens.empty())
return;
*Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size());
memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size());
*NumTokens = CXTokens.size();
}
void clang_disposeTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens) {
free(Tokens);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Token annotation APIs.
//===----------------------------------------------------------------------===//
typedef llvm::DenseMap<unsigned, CXCursor> AnnotateTokensData;
static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data);
namespace {
class AnnotateTokensWorker {
AnnotateTokensData &Annotated;
CXToken *Tokens;
CXCursor *Cursors;
unsigned NumTokens;
unsigned TokIdx;
unsigned PreprocessingTokIdx;
CursorVisitor AnnotateVis;
SourceManager &SrcMgr;
bool HasContextSensitiveKeywords;
bool MoreTokens() const { return TokIdx < NumTokens; }
unsigned NextToken() const { return TokIdx; }
void AdvanceToken() { ++TokIdx; }
SourceLocation GetTokenLoc(unsigned tokI) {
return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[1]);
}
bool isFunctionMacroToken(unsigned tokI) const {
return Tokens[tokI].int_data[3] != 0;
}
SourceLocation getFunctionMacroTokenLoc(unsigned tokI) const {
return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[3]);
}
void annotateAndAdvanceTokens(CXCursor, RangeComparisonResult, SourceRange);
void annotateAndAdvanceFunctionMacroTokens(CXCursor, RangeComparisonResult,
SourceRange);
public:
AnnotateTokensWorker(AnnotateTokensData &annotated,
CXToken *tokens, CXCursor *cursors, unsigned numTokens,
CXTranslationUnit tu, SourceRange RegionOfInterest)
: Annotated(annotated), Tokens(tokens), Cursors(cursors),
NumTokens(numTokens), TokIdx(0), PreprocessingTokIdx(0),
AnnotateVis(tu,
AnnotateTokensVisitor, this,
/*VisitPreprocessorLast=*/true,
/*VisitIncludedEntities=*/false,
RegionOfInterest),
SrcMgr(static_cast<ASTUnit*>(tu->TUData)->getSourceManager()),
HasContextSensitiveKeywords(false) { }
void VisitChildren(CXCursor C) { AnnotateVis.VisitChildren(C); }
enum CXChildVisitResult Visit(CXCursor cursor, CXCursor parent);
void AnnotateTokens();
/// \brief Determine whether the annotator saw any cursors that have
/// context-sensitive keywords.
bool hasContextSensitiveKeywords() const {
return HasContextSensitiveKeywords;
}
};
}
void AnnotateTokensWorker::AnnotateTokens() {
// Walk the AST within the region of interest, annotating tokens
// along the way.
AnnotateVis.visitFileRegion();
for (unsigned I = 0 ; I < TokIdx ; ++I) {
AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]);
if (Pos != Annotated.end() &&
(clang_isInvalid(Cursors[I].kind) ||
Pos->second.kind != CXCursor_PreprocessingDirective))
Cursors[I] = Pos->second;
}
// Finish up annotating any tokens left.
if (!MoreTokens())
return;
const CXCursor &C = clang_getNullCursor();
for (unsigned I = TokIdx ; I < NumTokens ; ++I) {
if (I < PreprocessingTokIdx && clang_isPreprocessing(Cursors[I].kind))
continue;
AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]);
Cursors[I] = (Pos == Annotated.end()) ? C : Pos->second;
}
}
/// \brief It annotates and advances tokens with a cursor until the comparison
//// between the cursor location and the source range is the same as
/// \arg compResult.
///
/// Pass RangeBefore to annotate tokens with a cursor until a range is reached.
/// Pass RangeOverlap to annotate tokens inside a range.
void AnnotateTokensWorker::annotateAndAdvanceTokens(CXCursor updateC,
RangeComparisonResult compResult,
SourceRange range) {
while (MoreTokens()) {
const unsigned I = NextToken();
if (isFunctionMacroToken(I))
return annotateAndAdvanceFunctionMacroTokens(updateC, compResult, range);
SourceLocation TokLoc = GetTokenLoc(I);
if (LocationCompare(SrcMgr, TokLoc, range) == compResult) {
Cursors[I] = updateC;
AdvanceToken();
continue;
}
break;
}
}
/// \brief Special annotation handling for macro argument tokens.
void AnnotateTokensWorker::annotateAndAdvanceFunctionMacroTokens(
CXCursor updateC,
RangeComparisonResult compResult,
SourceRange range) {
assert(MoreTokens());
assert(isFunctionMacroToken(NextToken()) &&
"Should be called only for macro arg tokens");
// This works differently than annotateAndAdvanceTokens; because expanded
// macro arguments can have arbitrary translation-unit source order, we do not
// advance the token index one by one until a token fails the range test.
// We only advance once past all of the macro arg tokens if all of them
// pass the range test. If one of them fails we keep the token index pointing
// at the start of the macro arg tokens so that the failing token will be
// annotated by a subsequent annotation try.
bool atLeastOneCompFail = false;
unsigned I = NextToken();
for (; I < NumTokens && isFunctionMacroToken(I); ++I) {
SourceLocation TokLoc = getFunctionMacroTokenLoc(I);
if (TokLoc.isFileID())
continue; // not macro arg token, it's parens or comma.
if (LocationCompare(SrcMgr, TokLoc, range) == compResult) {
if (clang_isInvalid(clang_getCursorKind(Cursors[I])))
Cursors[I] = updateC;
} else
atLeastOneCompFail = true;
}
if (!atLeastOneCompFail)
TokIdx = I; // All of the tokens were handled, advance beyond all of them.
}
enum CXChildVisitResult
AnnotateTokensWorker::Visit(CXCursor cursor, CXCursor parent) {
CXSourceLocation Loc = clang_getCursorLocation(cursor);
SourceRange cursorRange = getRawCursorExtent(cursor);
if (cursorRange.isInvalid())
return CXChildVisit_Recurse;
if (!HasContextSensitiveKeywords) {
// Objective-C properties can have context-sensitive keywords.
if (cursor.kind == CXCursor_ObjCPropertyDecl) {
if (ObjCPropertyDecl *Property
= dyn_cast_or_null<ObjCPropertyDecl>(getCursorDecl(cursor)))
HasContextSensitiveKeywords = Property->getPropertyAttributesAsWritten() != 0;
}
// Objective-C methods can have context-sensitive keywords.
else if (cursor.kind == CXCursor_ObjCInstanceMethodDecl ||
cursor.kind == CXCursor_ObjCClassMethodDecl) {
if (ObjCMethodDecl *Method
= dyn_cast_or_null<ObjCMethodDecl>(getCursorDecl(cursor))) {
if (Method->getObjCDeclQualifier())
HasContextSensitiveKeywords = true;
else {
for (ObjCMethodDecl::param_iterator P = Method->param_begin(),
PEnd = Method->param_end();
P != PEnd; ++P) {
if ((*P)->getObjCDeclQualifier()) {
HasContextSensitiveKeywords = true;
break;
}
}
}
}
}
// C++ methods can have context-sensitive keywords.
else if (cursor.kind == CXCursor_CXXMethod) {
if (CXXMethodDecl *Method
= dyn_cast_or_null<CXXMethodDecl>(getCursorDecl(cursor))) {
if (Method->hasAttr<FinalAttr>() || Method->hasAttr<OverrideAttr>())
HasContextSensitiveKeywords = true;
}
}
// C++ classes can have context-sensitive keywords.
else if (cursor.kind == CXCursor_StructDecl ||
cursor.kind == CXCursor_ClassDecl ||
cursor.kind == CXCursor_ClassTemplate ||
cursor.kind == CXCursor_ClassTemplatePartialSpecialization) {
if (Decl *D = getCursorDecl(cursor))
if (D->hasAttr<FinalAttr>())
HasContextSensitiveKeywords = true;
}
}
if (clang_isPreprocessing(cursor.kind)) {
// For macro expansions, just note where the beginning of the macro
// expansion occurs.
if (cursor.kind == CXCursor_MacroExpansion) {
Annotated[Loc.int_data] = cursor;
return CXChildVisit_Recurse;
}
// Items in the preprocessing record are kept separate from items in
// declarations, so we keep a separate token index.
unsigned SavedTokIdx = TokIdx;
TokIdx = PreprocessingTokIdx;
// Skip tokens up until we catch up to the beginning of the preprocessing
// entry.
while (MoreTokens()) {
const unsigned I = NextToken();
SourceLocation TokLoc = GetTokenLoc(I);
switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) {
case RangeBefore:
AdvanceToken();
continue;
case RangeAfter:
case RangeOverlap:
break;
}
break;
}
// Look at all of the tokens within this range.
while (MoreTokens()) {
const unsigned I = NextToken();
SourceLocation TokLoc = GetTokenLoc(I);
switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) {
case RangeBefore:
llvm_unreachable("Infeasible");
case RangeAfter:
break;
case RangeOverlap:
Cursors[I] = cursor;
AdvanceToken();
continue;
}
break;
}
// Save the preprocessing token index; restore the non-preprocessing
// token index.
PreprocessingTokIdx = TokIdx;
TokIdx = SavedTokIdx;
return CXChildVisit_Recurse;
}
if (cursorRange.isInvalid())
return CXChildVisit_Continue;
SourceLocation L = SourceLocation::getFromRawEncoding(Loc.int_data);
// Adjust the annotated range based specific declarations.
const enum CXCursorKind cursorK = clang_getCursorKind(cursor);
if (cursorK >= CXCursor_FirstDecl && cursorK <= CXCursor_LastDecl) {
Decl *D = cxcursor::getCursorDecl(cursor);
SourceLocation StartLoc;
if (const DeclaratorDecl *DD = dyn_cast_or_null<DeclaratorDecl>(D)) {
if (TypeSourceInfo *TI = DD->getTypeSourceInfo())
StartLoc = TI->getTypeLoc().getSourceRange().getBegin();
} else if (TypedefDecl *Typedef = dyn_cast_or_null<TypedefDecl>(D)) {
if (TypeSourceInfo *TI = Typedef->getTypeSourceInfo())
StartLoc = TI->getTypeLoc().getSourceRange().getBegin();
}
if (StartLoc.isValid() && L.isValid() &&
SrcMgr.isBeforeInTranslationUnit(StartLoc, L))
cursorRange.setBegin(StartLoc);
}
// If the location of the cursor occurs within a macro instantiation, record
// the spelling location of the cursor in our annotation map. We can then
// paper over the token labelings during a post-processing step to try and
// get cursor mappings for tokens that are the *arguments* of a macro
// instantiation.
if (L.isMacroID()) {
unsigned rawEncoding = SrcMgr.getSpellingLoc(L).getRawEncoding();
// Only invalidate the old annotation if it isn't part of a preprocessing
// directive. Here we assume that the default construction of CXCursor
// results in CXCursor.kind being an initialized value (i.e., 0). If
// this isn't the case, we can fix by doing lookup + insertion.
CXCursor &oldC = Annotated[rawEncoding];
if (!clang_isPreprocessing(oldC.kind))
oldC = cursor;
}
const enum CXCursorKind K = clang_getCursorKind(parent);
const CXCursor updateC =
(clang_isInvalid(K) || K == CXCursor_TranslationUnit)
? clang_getNullCursor() : parent;
annotateAndAdvanceTokens(updateC, RangeBefore, cursorRange);
// Avoid having the cursor of an expression "overwrite" the annotation of the
// variable declaration that it belongs to.
// This can happen for C++ constructor expressions whose range generally
// include the variable declaration, e.g.:
// MyCXXClass foo; // Make sure we don't annotate 'foo' as a CallExpr cursor.
if (clang_isExpression(cursorK)) {
Expr *E = getCursorExpr(cursor);
if (Decl *D = getCursorParentDecl(cursor)) {
const unsigned I = NextToken();
if (E->getLocStart().isValid() && D->getLocation().isValid() &&
E->getLocStart() == D->getLocation() &&
E->getLocStart() == GetTokenLoc(I)) {
Cursors[I] = updateC;
AdvanceToken();
}
}
}
// Visit children to get their cursor information.
const unsigned BeforeChildren = NextToken();
VisitChildren(cursor);
const unsigned AfterChildren = NextToken();
// Scan the tokens that are at the end of the cursor, but are not captured
// but the child cursors.
annotateAndAdvanceTokens(cursor, RangeOverlap, cursorRange);
// Scan the tokens that are at the beginning of the cursor, but are not
// capture by the child cursors.
for (unsigned I = BeforeChildren; I != AfterChildren; ++I) {
if (!clang_isInvalid(clang_getCursorKind(Cursors[I])))
break;
Cursors[I] = cursor;
}
return CXChildVisit_Continue;
}
static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
return static_cast<AnnotateTokensWorker*>(client_data)->Visit(cursor, parent);
}
namespace {
/// \brief Uses the macro expansions in the preprocessing record to find
/// and mark tokens that are macro arguments. This info is used by the
/// AnnotateTokensWorker.
class MarkMacroArgTokensVisitor {
SourceManager &SM;
CXToken *Tokens;
unsigned NumTokens;
unsigned CurIdx;
public:
MarkMacroArgTokensVisitor(SourceManager &SM,
CXToken *tokens, unsigned numTokens)
: SM(SM), Tokens(tokens), NumTokens(numTokens), CurIdx(0) { }
CXChildVisitResult visit(CXCursor cursor, CXCursor parent) {
if (cursor.kind != CXCursor_MacroExpansion)
return CXChildVisit_Continue;
SourceRange macroRange = getCursorMacroExpansion(cursor)->getSourceRange();
if (macroRange.getBegin() == macroRange.getEnd())
return CXChildVisit_Continue; // it's not a function macro.
for (; CurIdx < NumTokens; ++CurIdx) {
if (!SM.isBeforeInTranslationUnit(getTokenLoc(CurIdx),
macroRange.getBegin()))
break;
}
if (CurIdx == NumTokens)
return CXChildVisit_Break;
for (; CurIdx < NumTokens; ++CurIdx) {
SourceLocation tokLoc = getTokenLoc(CurIdx);
if (!SM.isBeforeInTranslationUnit(tokLoc, macroRange.getEnd()))
break;
setFunctionMacroTokenLoc(CurIdx, SM.getMacroArgExpandedLocation(tokLoc));
}
if (CurIdx == NumTokens)
return CXChildVisit_Break;
return CXChildVisit_Continue;
}
private:
SourceLocation getTokenLoc(unsigned tokI) {
return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[1]);
}
void setFunctionMacroTokenLoc(unsigned tokI, SourceLocation loc) {
// The third field is reserved and currently not used. Use it here
// to mark macro arg expanded tokens with their expanded locations.
Tokens[tokI].int_data[3] = loc.getRawEncoding();
}
};
} // end anonymous namespace
static CXChildVisitResult
MarkMacroArgTokensVisitorDelegate(CXCursor cursor, CXCursor parent,
CXClientData client_data) {
return static_cast<MarkMacroArgTokensVisitor*>(client_data)->visit(cursor,
parent);
}
namespace {
struct clang_annotateTokens_Data {
CXTranslationUnit TU;
ASTUnit *CXXUnit;
CXToken *Tokens;
unsigned NumTokens;
CXCursor *Cursors;
};
}
static void annotatePreprocessorTokens(CXTranslationUnit TU,
SourceRange RegionOfInterest,
AnnotateTokensData &Annotated) {
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
SourceManager &SourceMgr = CXXUnit->getSourceManager();
std::pair<FileID, unsigned> BeginLocInfo
= SourceMgr.getDecomposedLoc(RegionOfInterest.getBegin());
std::pair<FileID, unsigned> EndLocInfo
= SourceMgr.getDecomposedLoc(RegionOfInterest.getEnd());
if (BeginLocInfo.first != EndLocInfo.first)
return;
StringRef Buffer;
bool Invalid = false;
Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid);
if (Buffer.empty() || Invalid)
return;
Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first),
CXXUnit->getASTContext().getLangOptions(),
Buffer.begin(), Buffer.data() + BeginLocInfo.second,
Buffer.end());
Lex.SetCommentRetentionState(true);
// Lex tokens in raw mode until we hit the end of the range, to avoid
// entering #includes or expanding macros.
while (true) {
Token Tok;
Lex.LexFromRawLexer(Tok);
reprocess:
if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
// We have found a preprocessing directive. Gobble it up so that we
// don't see it while preprocessing these tokens later, but keep track
// of all of the token locations inside this preprocessing directive so
// that we can annotate them appropriately.
//
// FIXME: Some simple tests here could identify macro definitions and
// #undefs, to provide specific cursor kinds for those.
SmallVector<SourceLocation, 32> Locations;
do {
Locations.push_back(Tok.getLocation());
Lex.LexFromRawLexer(Tok);
} while (!Tok.isAtStartOfLine() && !Tok.is(tok::eof));
using namespace cxcursor;
CXCursor Cursor
= MakePreprocessingDirectiveCursor(SourceRange(Locations.front(),
Locations.back()),
TU);
for (unsigned I = 0, N = Locations.size(); I != N; ++I) {
Annotated[Locations[I].getRawEncoding()] = Cursor;
}
if (Tok.isAtStartOfLine())
goto reprocess;
continue;
}
if (Tok.is(tok::eof))
break;
}
}
// This gets run a separate thread to avoid stack blowout.
static void clang_annotateTokensImpl(void *UserData) {
CXTranslationUnit TU = ((clang_annotateTokens_Data*)UserData)->TU;
ASTUnit *CXXUnit = ((clang_annotateTokens_Data*)UserData)->CXXUnit;
CXToken *Tokens = ((clang_annotateTokens_Data*)UserData)->Tokens;
const unsigned NumTokens = ((clang_annotateTokens_Data*)UserData)->NumTokens;
CXCursor *Cursors = ((clang_annotateTokens_Data*)UserData)->Cursors;
// Determine the region of interest, which contains all of the tokens.
SourceRange RegionOfInterest;
RegionOfInterest.setBegin(
cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[0])));
RegionOfInterest.setEnd(
cxloc::translateSourceLocation(clang_getTokenLocation(TU,
Tokens[NumTokens-1])));
// A mapping from the source locations found when re-lexing or traversing the
// region of interest to the corresponding cursors.
AnnotateTokensData Annotated;
// Relex the tokens within the source range to look for preprocessing
// directives.
annotatePreprocessorTokens(TU, RegionOfInterest, Annotated);
if (CXXUnit->getPreprocessor().getPreprocessingRecord()) {
// Search and mark tokens that are macro argument expansions.
MarkMacroArgTokensVisitor Visitor(CXXUnit->getSourceManager(),
Tokens, NumTokens);
CursorVisitor MacroArgMarker(TU,
MarkMacroArgTokensVisitorDelegate, &Visitor,
/*VisitPreprocessorLast=*/true,
/*VisitIncludedEntities=*/false,
RegionOfInterest);
MacroArgMarker.visitPreprocessedEntitiesInRegion();
}
// Annotate all of the source locations in the region of interest that map to
// a specific cursor.
AnnotateTokensWorker W(Annotated, Tokens, Cursors, NumTokens,
TU, RegionOfInterest);
// FIXME: We use a ridiculous stack size here because the data-recursion
// algorithm uses a large stack frame than the non-data recursive version,
// and AnnotationTokensWorker currently transforms the data-recursion
// algorithm back into a traditional recursion by explicitly calling
// VisitChildren(). We will need to remove this explicit recursive call.
W.AnnotateTokens();
// If we ran into any entities that involve context-sensitive keywords,
// take another pass through the tokens to mark them as such.
if (W.hasContextSensitiveKeywords()) {
for (unsigned I = 0; I != NumTokens; ++I) {
if (clang_getTokenKind(Tokens[I]) != CXToken_Identifier)
continue;
if (Cursors[I].kind == CXCursor_ObjCPropertyDecl) {
IdentifierInfo *II = static_cast<IdentifierInfo *>(Tokens[I].ptr_data);
if (ObjCPropertyDecl *Property
= dyn_cast_or_null<ObjCPropertyDecl>(getCursorDecl(Cursors[I]))) {
if (Property->getPropertyAttributesAsWritten() != 0 &&
llvm::StringSwitch<bool>(II->getName())
.Case("readonly", true)
.Case("assign", true)
.Case("unsafe_unretained", true)
.Case("readwrite", true)
.Case("retain", true)
.Case("copy", true)
.Case("nonatomic", true)
.Case("atomic", true)
.Case("getter", true)
.Case("setter", true)
.Case("strong", true)
.Case("weak", true)
.Default(false))
Tokens[I].int_data[0] = CXToken_Keyword;
}
continue;
}
if (Cursors[I].kind == CXCursor_ObjCInstanceMethodDecl ||
Cursors[I].kind == CXCursor_ObjCClassMethodDecl) {
IdentifierInfo *II = static_cast<IdentifierInfo *>(Tokens[I].ptr_data);
if (llvm::StringSwitch<bool>(II->getName())
.Case("in", true)
.Case("out", true)
.Case("inout", true)
.Case("oneway", true)
.Case("bycopy", true)
.Case("byref", true)
.Default(false))
Tokens[I].int_data[0] = CXToken_Keyword;
continue;
}
if (Cursors[I].kind == CXCursor_CXXFinalAttr ||
Cursors[I].kind == CXCursor_CXXOverrideAttr) {
Tokens[I].int_data[0] = CXToken_Keyword;
continue;
}
}
}
}
extern "C" {
void clang_annotateTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens,
CXCursor *Cursors) {
if (NumTokens == 0 || !Tokens || !Cursors)
return;
// Any token we don't specifically annotate will have a NULL cursor.
CXCursor C = clang_getNullCursor();
for (unsigned I = 0; I != NumTokens; ++I)
Cursors[I] = C;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU->TUData);
if (!CXXUnit)
return;
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
clang_annotateTokens_Data data = { TU, CXXUnit, Tokens, NumTokens, Cursors };
llvm::CrashRecoveryContext CRC;
if (!RunSafely(CRC, clang_annotateTokensImpl, &data,
GetSafetyThreadStackSize() * 2)) {
fprintf(stderr, "libclang: crash detected while annotating tokens\n");
}
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Operations for querying linkage of a cursor.
//===----------------------------------------------------------------------===//
extern "C" {
CXLinkageKind clang_getCursorLinkage(CXCursor cursor) {
if (!clang_isDeclaration(cursor.kind))
return CXLinkage_Invalid;
Decl *D = cxcursor::getCursorDecl(cursor);
if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
switch (ND->getLinkage()) {
case NoLinkage: return CXLinkage_NoLinkage;
case InternalLinkage: return CXLinkage_Internal;
case UniqueExternalLinkage: return CXLinkage_UniqueExternal;
case ExternalLinkage: return CXLinkage_External;
};
return CXLinkage_Invalid;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Operations for querying language of a cursor.
//===----------------------------------------------------------------------===//
static CXLanguageKind getDeclLanguage(const Decl *D) {
if (!D)
return CXLanguage_C;
switch (D->getKind()) {
default:
break;
case Decl::ImplicitParam:
case Decl::ObjCAtDefsField:
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCCompatibleAlias:
case Decl::ObjCImplementation:
case Decl::ObjCInterface:
case Decl::ObjCIvar:
case Decl::ObjCMethod:
case Decl::ObjCProperty:
case Decl::ObjCPropertyImpl:
case Decl::ObjCProtocol:
return CXLanguage_ObjC;
case Decl::CXXConstructor:
case Decl::CXXConversion:
case Decl::CXXDestructor:
case Decl::CXXMethod:
case Decl::CXXRecord:
case Decl::ClassTemplate:
case Decl::ClassTemplatePartialSpecialization:
case Decl::ClassTemplateSpecialization:
case Decl::Friend:
case Decl::FriendTemplate:
case Decl::FunctionTemplate:
case Decl::LinkageSpec:
case Decl::Namespace:
case Decl::NamespaceAlias:
case Decl::NonTypeTemplateParm:
case Decl::StaticAssert:
case Decl::TemplateTemplateParm:
case Decl::TemplateTypeParm:
case Decl::UnresolvedUsingTypename:
case Decl::UnresolvedUsingValue:
case Decl::Using:
case Decl::UsingDirective:
case Decl::UsingShadow:
return CXLanguage_CPlusPlus;
}
return CXLanguage_C;
}
extern "C" {
enum CXAvailabilityKind clang_getCursorAvailability(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind))
if (Decl *D = cxcursor::getCursorDecl(cursor)) {
if (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isDeleted())
return CXAvailability_Available;
switch (D->getAvailability()) {
case AR_Available:
case AR_NotYetIntroduced:
return CXAvailability_Available;
case AR_Deprecated:
return CXAvailability_Deprecated;
case AR_Unavailable:
return CXAvailability_NotAvailable;
}
}
return CXAvailability_Available;
}
CXLanguageKind clang_getCursorLanguage(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind))
return getDeclLanguage(cxcursor::getCursorDecl(cursor));
return CXLanguage_Invalid;
}
/// \brief If the given cursor is the "templated" declaration
/// descibing a class or function template, return the class or
/// function template.
static Decl *maybeGetTemplateCursor(Decl *D) {
if (!D)
return 0;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (FunctionTemplateDecl *FunTmpl = FD->getDescribedFunctionTemplate())
return FunTmpl;
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
if (ClassTemplateDecl *ClassTmpl = RD->getDescribedClassTemplate())
return ClassTmpl;
return D;
}
CXCursor clang_getCursorSemanticParent(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind)) {
if (Decl *D = getCursorDecl(cursor)) {
DeclContext *DC = D->getDeclContext();
if (!DC)
return clang_getNullCursor();
return MakeCXCursor(maybeGetTemplateCursor(cast<Decl>(DC)),
getCursorTU(cursor));
}
}
if (clang_isStatement(cursor.kind) || clang_isExpression(cursor.kind)) {
if (Decl *D = getCursorDecl(cursor))
return MakeCXCursor(D, getCursorTU(cursor));
}
return clang_getNullCursor();
}
CXCursor clang_getCursorLexicalParent(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind)) {
if (Decl *D = getCursorDecl(cursor)) {
DeclContext *DC = D->getLexicalDeclContext();
if (!DC)
return clang_getNullCursor();
return MakeCXCursor(maybeGetTemplateCursor(cast<Decl>(DC)),
getCursorTU(cursor));
}
}
// FIXME: Note that we can't easily compute the lexical context of a
// statement or expression, so we return nothing.
return clang_getNullCursor();
}
void clang_getOverriddenCursors(CXCursor cursor,
CXCursor **overridden,
unsigned *num_overridden) {
if (overridden)
*overridden = 0;
if (num_overridden)
*num_overridden = 0;
if (!overridden || !num_overridden)
return;
SmallVector<CXCursor, 8> Overridden;
cxcursor::getOverriddenCursors(cursor, Overridden);
// Don't allocate memory if we have no overriden cursors.
if (Overridden.size() == 0)
return;
*num_overridden = Overridden.size();
*overridden = new CXCursor [Overridden.size()];
std::copy(Overridden.begin(), Overridden.end(), *overridden);
}
void clang_disposeOverriddenCursors(CXCursor *overridden) {
delete [] overridden;
}
CXFile clang_getIncludedFile(CXCursor cursor) {
if (cursor.kind != CXCursor_InclusionDirective)
return 0;
InclusionDirective *ID = getCursorInclusionDirective(cursor);
return (void *)ID->getFile();
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// C++ AST instrospection.
//===----------------------------------------------------------------------===//
extern "C" {
unsigned clang_CXXMethod_isStatic(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
CXXMethodDecl *Method = 0;
Decl *D = cxcursor::getCursorDecl(C);
if (FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(D))
Method = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
else
Method = dyn_cast_or_null<CXXMethodDecl>(D);
return (Method && Method->isStatic()) ? 1 : 0;
}
unsigned clang_CXXMethod_isVirtual(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
CXXMethodDecl *Method = 0;
Decl *D = cxcursor::getCursorDecl(C);
if (FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(D))
Method = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
else
Method = dyn_cast_or_null<CXXMethodDecl>(D);
return (Method && Method->isVirtual()) ? 1 : 0;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Attribute introspection.
//===----------------------------------------------------------------------===//
extern "C" {
CXType clang_getIBOutletCollectionType(CXCursor C) {
if (C.kind != CXCursor_IBOutletCollectionAttr)
return cxtype::MakeCXType(QualType(), cxcursor::getCursorTU(C));
IBOutletCollectionAttr *A =
cast<IBOutletCollectionAttr>(cxcursor::getCursorAttr(C));
return cxtype::MakeCXType(A->getInterface(), cxcursor::getCursorTU(C));
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Inspecting memory usage.
//===----------------------------------------------------------------------===//
typedef std::vector<CXTUResourceUsageEntry> MemUsageEntries;
static inline void createCXTUResourceUsageEntry(MemUsageEntries &entries,
enum CXTUResourceUsageKind k,
unsigned long amount) {
CXTUResourceUsageEntry entry = { k, amount };
entries.push_back(entry);
}
extern "C" {
const char *clang_getTUResourceUsageName(CXTUResourceUsageKind kind) {
const char *str = "";
switch (kind) {
case CXTUResourceUsage_AST:
str = "ASTContext: expressions, declarations, and types";
break;
case CXTUResourceUsage_Identifiers:
str = "ASTContext: identifiers";
break;
case CXTUResourceUsage_Selectors:
str = "ASTContext: selectors";
break;
case CXTUResourceUsage_GlobalCompletionResults:
str = "Code completion: cached global results";
break;
case CXTUResourceUsage_SourceManagerContentCache:
str = "SourceManager: content cache allocator";
break;
case CXTUResourceUsage_AST_SideTables:
str = "ASTContext: side tables";
break;
case CXTUResourceUsage_SourceManager_Membuffer_Malloc:
str = "SourceManager: malloc'ed memory buffers";
break;
case CXTUResourceUsage_SourceManager_Membuffer_MMap:
str = "SourceManager: mmap'ed memory buffers";
break;
case CXTUResourceUsage_ExternalASTSource_Membuffer_Malloc:
str = "ExternalASTSource: malloc'ed memory buffers";
break;
case CXTUResourceUsage_ExternalASTSource_Membuffer_MMap:
str = "ExternalASTSource: mmap'ed memory buffers";
break;
case CXTUResourceUsage_Preprocessor:
str = "Preprocessor: malloc'ed memory";
break;
case CXTUResourceUsage_PreprocessingRecord:
str = "Preprocessor: PreprocessingRecord";
break;
case CXTUResourceUsage_SourceManager_DataStructures:
str = "SourceManager: data structures and tables";
break;
case CXTUResourceUsage_Preprocessor_HeaderSearch:
str = "Preprocessor: header search tables";
break;
}
return str;
}
CXTUResourceUsage clang_getCXTUResourceUsage(CXTranslationUnit TU) {
if (!TU) {
CXTUResourceUsage usage = { (void*) 0, 0, 0 };
return usage;
}
ASTUnit *astUnit = static_cast<ASTUnit*>(TU->TUData);
OwningPtr<MemUsageEntries> entries(new MemUsageEntries());
ASTContext &astContext = astUnit->getASTContext();
// How much memory is used by AST nodes and types?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_AST,
(unsigned long) astContext.getASTAllocatedMemory());
// How much memory is used by identifiers?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_Identifiers,
(unsigned long) astContext.Idents.getAllocator().getTotalMemory());
// How much memory is used for selectors?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_Selectors,
(unsigned long) astContext.Selectors.getTotalMemory());
// How much memory is used by ASTContext's side tables?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_AST_SideTables,
(unsigned long) astContext.getSideTableAllocatedMemory());
// How much memory is used for caching global code completion results?
unsigned long completionBytes = 0;
if (GlobalCodeCompletionAllocator *completionAllocator =
astUnit->getCachedCompletionAllocator().getPtr()) {
completionBytes = completionAllocator->getTotalMemory();
}
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_GlobalCompletionResults,
completionBytes);
// How much memory is being used by SourceManager's content cache?
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManagerContentCache,
(unsigned long) astContext.getSourceManager().getContentCacheSize());
// How much memory is being used by the MemoryBuffer's in SourceManager?
const SourceManager::MemoryBufferSizes &srcBufs =
astUnit->getSourceManager().getMemoryBufferSizes();
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManager_Membuffer_Malloc,
(unsigned long) srcBufs.malloc_bytes);
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManager_Membuffer_MMap,
(unsigned long) srcBufs.mmap_bytes);
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManager_DataStructures,
(unsigned long) astContext.getSourceManager()
.getDataStructureSizes());
// How much memory is being used by the ExternalASTSource?
if (ExternalASTSource *esrc = astContext.getExternalSource()) {
const ExternalASTSource::MemoryBufferSizes &sizes =
esrc->getMemoryBufferSizes();
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_ExternalASTSource_Membuffer_Malloc,
(unsigned long) sizes.malloc_bytes);
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_ExternalASTSource_Membuffer_MMap,
(unsigned long) sizes.mmap_bytes);
}
// How much memory is being used by the Preprocessor?
Preprocessor &pp = astUnit->getPreprocessor();
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_Preprocessor,
pp.getTotalMemory());
if (PreprocessingRecord *pRec = pp.getPreprocessingRecord()) {
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_PreprocessingRecord,
pRec->getTotalMemory());
}
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_Preprocessor_HeaderSearch,
pp.getHeaderSearchInfo().getTotalMemory());
CXTUResourceUsage usage = { (void*) entries.get(),
(unsigned) entries->size(),
entries->size() ? &(*entries)[0] : 0 };
entries.take();
return usage;
}
void clang_disposeCXTUResourceUsage(CXTUResourceUsage usage) {
if (usage.data)
delete (MemUsageEntries*) usage.data;
}
} // end extern "C"
void clang::PrintLibclangResourceUsage(CXTranslationUnit TU) {
CXTUResourceUsage Usage = clang_getCXTUResourceUsage(TU);
for (unsigned I = 0; I != Usage.numEntries; ++I)
fprintf(stderr, " %s: %lu\n",
clang_getTUResourceUsageName(Usage.entries[I].kind),
Usage.entries[I].amount);
clang_disposeCXTUResourceUsage(Usage);
}
//===----------------------------------------------------------------------===//
// Misc. utility functions.
//===----------------------------------------------------------------------===//
/// Default to using an 8 MB stack size on "safety" threads.
static unsigned SafetyStackThreadSize = 8 << 20;
namespace clang {
bool RunSafely(llvm::CrashRecoveryContext &CRC,
void (*Fn)(void*), void *UserData,
unsigned Size) {
if (!Size)
Size = GetSafetyThreadStackSize();
if (Size)
return CRC.RunSafelyOnThread(Fn, UserData, Size);
return CRC.RunSafely(Fn, UserData);
}
unsigned GetSafetyThreadStackSize() {
return SafetyStackThreadSize;
}
void SetSafetyThreadStackSize(unsigned Value) {
SafetyStackThreadSize = Value;
}
}
extern "C" {
CXString clang_getClangVersion() {
return createCXString(getClangFullVersion());
}
} // end: extern "C"