blob: a1deb3d256dd485e6c03e6480903843a90e54c5e [file] [log] [blame]
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements extra semantic analysis beyond what is enforced
// by the C type system.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
bool
Sema::CheckFunctionCall(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
FunctionDecl *FDecl,
Expr** Args, unsigned NumArgsInCall) {
// Get the IdentifierInfo* for the called function.
IdentifierInfo *FnInfo = FDecl->getIdentifier();
if (FnInfo->getBuiltinID() ==
Builtin::BI__builtin___CFStringMakeConstantString) {
assert(NumArgsInCall == 1 &&
"Wrong number of arguments to builtin CFStringMakeConstantString");
return CheckBuiltinCFStringArgument(Args[0]);
}
// Search the KnownFunctionIDs for the identifier.
unsigned i = 0, e = id_num_known_functions;
for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
if (i == e) return false;
// Printf checking.
if (i <= id_vprintf) {
// Retrieve the index of the format string parameter and determine
// if the function is passed a va_arg argument.
unsigned format_idx = 0;
bool HasVAListArg = false;
switch (i) {
default: assert(false && "No format string argument index.");
case id_printf: format_idx = 0; break;
case id_fprintf: format_idx = 1; break;
case id_sprintf: format_idx = 1; break;
case id_snprintf: format_idx = 2; break;
case id_asprintf: format_idx = 1; HasVAListArg = true; break;
case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
case id_vfprintf: format_idx = 1; HasVAListArg = true; break;
case id_vsprintf: format_idx = 1; HasVAListArg = true; break;
case id_vprintf: format_idx = 0; HasVAListArg = true; break;
}
CheckPrintfArguments(Fn, LParenLoc, RParenLoc, HasVAListArg,
FDecl, format_idx, Args, NumArgsInCall);
}
return false;
}
/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
/// CFString constructor is correct
bool Sema::CheckBuiltinCFStringArgument(Expr* Arg)
{
while (ParenExpr *PE = dyn_cast<ParenExpr>(Arg))
Arg = PE->getSubExpr();
StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
if (!Literal || Literal->isWide()) {
Diag(Arg->getLocStart(),
diag::err_cfstring_literal_not_string_constant,
Arg->getSourceRange());
return true;
}
const char *Data = Literal->getStrData();
unsigned Length = Literal->getByteLength();
for (unsigned i = 0; i < Length; ++i) {
if (!isascii(Data[i])) {
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
diag::warn_cfstring_literal_contains_non_ascii_character,
Arg->getSourceRange());
break;
}
if (!Data[i]) {
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
diag::warn_cfstring_literal_contains_nul_character,
Arg->getSourceRange());
break;
}
}
return false;
}
/// CheckPrintfArguments - Check calls to printf (and similar functions) for
/// correct use of format strings.
///
/// HasVAListArg - A predicate indicating whether the printf-like
/// function is passed an explicit va_arg argument (e.g., vprintf)
///
/// format_idx - The index into Args for the format string.
///
/// Improper format strings to functions in the printf family can be
/// the source of bizarre bugs and very serious security holes. A
/// good source of information is available in the following paper
/// (which includes additional references):
///
/// FormatGuard: Automatic Protection From printf Format String
/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
///
/// Functionality implemented:
///
/// We can statically check the following properties for string
/// literal format strings for non v.*printf functions (where the
/// arguments are passed directly):
//
/// (1) Are the number of format conversions equal to the number of
/// data arguments?
///
/// (2) Does each format conversion correctly match the type of the
/// corresponding data argument? (TODO)
///
/// Moreover, for all printf functions we can:
///
/// (3) Check for a missing format string (when not caught by type checking).
///
/// (4) Check for no-operation flags; e.g. using "#" with format
/// conversion 'c' (TODO)
///
/// (5) Check the use of '%n', a major source of security holes.
///
/// (6) Check for malformed format conversions that don't specify anything.
///
/// (7) Check for empty format strings. e.g: printf("");
///
/// (8) Check that the format string is a wide literal.
///
/// All of these checks can be done by parsing the format string.
///
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
void
Sema::CheckPrintfArguments(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
bool HasVAListArg, FunctionDecl *FDecl,
unsigned format_idx, Expr** Args,
unsigned NumArgsInCall) {
// CHECK: printf-like function is called with no format string.
if (format_idx >= NumArgsInCall) {
Diag(RParenLoc, diag::warn_printf_missing_format_string,
Fn->getSourceRange());
return;
}
// CHECK: format string is not a string literal.
//
// Dynamically generated format strings are difficult to
// automatically vet at compile time. Requiring that format strings
// are string literals: (1) permits the checking of format strings by
// the compiler and thereby (2) can practically remove the source of
// many format string exploits.
StringLiteral *FExpr = dyn_cast<StringLiteral>(Args[format_idx]);
if (FExpr == NULL) {
Diag(Args[format_idx]->getLocStart(),
diag::warn_printf_not_string_constant, Fn->getSourceRange());
return;
}
// CHECK: is the format string a wide literal?
if (FExpr->isWide()) {
Diag(Args[format_idx]->getLocStart(),
diag::warn_printf_format_string_is_wide_literal,
Fn->getSourceRange());
return;
}
// Str - The format string. NOTE: this is NOT null-terminated!
const char * const Str = FExpr->getStrData();
// CHECK: empty format string?
const unsigned StrLen = FExpr->getByteLength();
if (StrLen == 0) {
Diag(Args[format_idx]->getLocStart(),
diag::warn_printf_empty_format_string, Fn->getSourceRange());
return;
}
// We process the format string using a binary state machine. The
// current state is stored in CurrentState.
enum {
state_OrdChr,
state_Conversion
} CurrentState = state_OrdChr;
// numConversions - The number of conversions seen so far. This is
// incremented as we traverse the format string.
unsigned numConversions = 0;
// numDataArgs - The number of data arguments after the format
// string. This can only be determined for non vprintf-like
// functions. For those functions, this value is 1 (the sole
// va_arg argument).
unsigned numDataArgs = NumArgsInCall-(format_idx+1);
// Inspect the format string.
unsigned StrIdx = 0;
// LastConversionIdx - Index within the format string where we last saw
// a '%' character that starts a new format conversion.
unsigned LastConversionIdx = 0;
for ( ; StrIdx < StrLen ; ++StrIdx ) {
// Is the number of detected conversion conversions greater than
// the number of matching data arguments? If so, stop.
if (!HasVAListArg && numConversions > numDataArgs) break;
// Handle "\0"
if(Str[StrIdx] == '\0' ) {
// The string returned by getStrData() is not null-terminated,
// so the presence of a null character is likely an error.
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),StrIdx+1);
Diag(Loc, diag::warn_printf_format_string_contains_null_char,
Fn->getSourceRange());
return;
}
// Ordinary characters (not processing a format conversion).
if (CurrentState == state_OrdChr) {
if (Str[StrIdx] == '%') {
CurrentState = state_Conversion;
LastConversionIdx = StrIdx;
}
continue;
}
// Seen '%'. Now processing a format conversion.
switch (Str[StrIdx]) {
// Characters which can terminate a format conversion
// (e.g. "%d"). Characters that specify length modifiers or
// other flags are handled by the default case below.
//
// TODO: additional checks will go into the following cases.
case 'i':
case 'd':
case 'o':
case 'u':
case 'x':
case 'X':
case 'D':
case 'O':
case 'U':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
case 'a':
case 'A':
case 'c':
case 'C':
case 'S':
case 's':
case 'P':
++numConversions;
CurrentState = state_OrdChr;
break;
// CHECK: Are we using "%n"? Issue a warning.
case 'n': {
++numConversions;
CurrentState = state_OrdChr;
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx+1);
Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
break;
}
// Handle "%%"
case '%':
// Sanity check: Was the first "%" character the previous one?
// If not, we will assume that we have a malformed format
// conversion, and that the current "%" character is the start
// of a new conversion.
if (StrIdx - LastConversionIdx == 1)
CurrentState = state_OrdChr;
else {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx+1);
Diag(Loc, diag::warn_printf_invalid_conversion,
std::string(Str+LastConversionIdx, Str+StrIdx),
Fn->getSourceRange());
// This conversion is broken. Advance to the next format
// conversion.
LastConversionIdx = StrIdx;
++numConversions;
}
break;
default:
// This case catches all other characters: flags, widths, etc.
// We should eventually process those as well.
break;
}
}
if (CurrentState == state_Conversion) {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx+1);
Diag(Loc, diag::warn_printf_invalid_conversion,
std::string(Str+LastConversionIdx, Str+StrIdx),
Fn->getSourceRange());
return;
}
if (!HasVAListArg) {
// CHECK: Does the number of format conversions exceed the number
// of data arguments?
if (numConversions > numDataArgs) {
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx);
Diag(Loc, diag::warn_printf_insufficient_data_args,
Fn->getSourceRange());
}
// CHECK: Does the number of data arguments exceed the number of
// format conversions in the format string?
else if (numConversions < numDataArgs)
Diag(Args[format_idx+numConversions+1]->getLocStart(),
diag::warn_printf_too_many_data_args, Fn->getSourceRange());
}
}
//===--- CHECK: Return Address of Stack Variable --------------------------===//
static DeclRefExpr* EvalVal(Expr *E);
static DeclRefExpr* EvalAddr(Expr* E);
/// CheckReturnStackAddr - Check if a return statement returns the address
/// of a stack variable.
void
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc) {
// Perform checking for returned stack addresses.
if (lhsType->isPointerType()) {
if (DeclRefExpr *DR = EvalAddr(RetValExp))
Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
DR->getDecl()->getIdentifier()->getName(),
RetValExp->getSourceRange());
}
// Perform checking for stack values returned by reference.
else if (lhsType->isReferenceType()) {
if (DeclRefExpr *DR = EvalVal(RetValExp))
Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
DR->getDecl()->getIdentifier()->getName(),
RetValExp->getSourceRange());
}
}
/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
/// check if the expression in a return statement evaluates to an address
/// to a location on the stack. The recursion is used to traverse the
/// AST of the return expression, with recursion backtracking when we
/// encounter a subexpression that (1) clearly does not lead to the address
/// of a stack variable or (2) is something we cannot determine leads to
/// the address of a stack variable based on such local checking.
///
/// EvalAddr processes expressions that are pointers, and EvalVal handles
/// expressions that are rvalues or variable references.
/// At the base case of the recursion is a check for a DeclRefExpr* in
/// the refers to a stack variable.
///
/// This implementation handles:
///
/// * pointer-to-pointer casts
/// * implicit conversions from array references to pointers
/// * taking the address of fields
/// * arbitrary interplay between "&" and "*" operators
/// * pointer arithmetic from an address of a stack variable
/// * taking the address of an array element where the array is on the stack
static DeclRefExpr* EvalAddr(Expr *E) {
// We should only be called for evaluating pointer expressions.
assert (E->getType()->isPointerType() && "EvalAddr only works on pointers");
// Our "symbolic interpreter" is just a dispatch off the currently
// viewed AST node. We then recursively traverse the AST by calling
// EvalAddr and EvalVal appropriately.
switch (E->getStmtClass()) {
case Stmt::ParenExprClass:
// Ignore parentheses.
return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
case Stmt::UnaryOperatorClass: {
// The only unary operator that make sense to handle here
// is AddrOf. All others don't make sense as pointers.
UnaryOperator *U = cast<UnaryOperator>(E);
if (U->getOpcode() == UnaryOperator::AddrOf)
return EvalVal(U->getSubExpr());
else
return NULL;
}
case Stmt::BinaryOperatorClass: {
// Handle pointer arithmetic. All other binary operators are not valid
// in this context.
BinaryOperator *B = cast<BinaryOperator>(E);
BinaryOperator::Opcode op = B->getOpcode();
if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
return NULL;
Expr *Base = B->getLHS();
// Determine which argument is the real pointer base. It could be
// the RHS argument instead of the LHS.
if (!Base->getType()->isPointerType()) Base = B->getRHS();
assert (Base->getType()->isPointerType());
return EvalAddr(Base);
}
// For conditional operators we need to see if either the LHS or RHS are
// valid DeclRefExpr*s. If one of them is valid, we return it.
case Stmt::ConditionalOperatorClass: {
ConditionalOperator *C = cast<ConditionalOperator>(E);
if (DeclRefExpr* LHS = EvalAddr(C->getLHS()))
return LHS;
else
return EvalAddr(C->getRHS());
}
// For implicit casts, we need to handle conversions from arrays to
// pointer values, and implicit pointer-to-pointer conversions.
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
Expr* SubExpr = IE->getSubExpr();
if (SubExpr->getType()->isPointerType())
return EvalAddr(SubExpr);
else
return EvalVal(SubExpr);
}
// For casts, we handle pointer-to-pointer conversions (which
// is essentially a no-op from our mini-interpreter's standpoint).
// For other casts we abort.
case Stmt::CastExprClass: {
CastExpr *C = cast<CastExpr>(E);
Expr *SubExpr = C->getSubExpr();
if (SubExpr->getType()->isPointerType())
return EvalAddr(SubExpr);
else
return NULL;
}
// C++ casts. For dynamic casts, static casts, and const casts, we
// are always converting from a pointer-to-pointer, so we just blow
// through the cast. In the case the dynamic cast doesn't fail
// (and return NULL), we take the conservative route and report cases
// where we return the address of a stack variable. For Reinterpre
case Stmt::CXXCastExprClass: {
CXXCastExpr *C = cast<CXXCastExpr>(E);
if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
Expr *S = C->getSubExpr();
if (S->getType()->isPointerType())
return EvalAddr(S);
else
return NULL;
}
else
return EvalAddr(C->getSubExpr());
}
// Everything else: we simply don't reason about them.
default:
return NULL;
}
}
/// EvalVal - This function is complements EvalAddr in the mutual recursion.
/// See the comments for EvalAddr for more details.
static DeclRefExpr* EvalVal(Expr *E) {
// We should only be called for evaluating non-pointer expressions.
assert (!E->getType()->isPointerType() && "EvalVal doesn't work on pointers");
// Our "symbolic interpreter" is just a dispatch off the currently
// viewed AST node. We then recursively traverse the AST by calling
// EvalAddr and EvalVal appropriately.
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass: {
// DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
// at code that refers to a variable's name. We check if it has local
// storage within the function, and if so, return the expression.
DeclRefExpr *DR = cast<DeclRefExpr>(E);
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
if(V->hasLocalStorage()) return DR;
return NULL;
}
case Stmt::ParenExprClass:
// Ignore parentheses.
return EvalVal(cast<ParenExpr>(E)->getSubExpr());
case Stmt::UnaryOperatorClass: {
// The only unary operator that make sense to handle here
// is Deref. All others don't resolve to a "name." This includes
// handling all sorts of rvalues passed to a unary operator.
UnaryOperator *U = cast<UnaryOperator>(E);
if (U->getOpcode() == UnaryOperator::Deref)
return EvalAddr(U->getSubExpr());
return NULL;
}
case Stmt::ArraySubscriptExprClass: {
// Array subscripts are potential references to data on the stack. We
// retrieve the DeclRefExpr* for the array variable if it indeed
// has local storage.
return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
}
case Stmt::ConditionalOperatorClass: {
// For conditional operators we need to see if either the LHS or RHS are
// non-NULL DeclRefExpr's. If one is non-NULL, we return it.
ConditionalOperator *C = cast<ConditionalOperator>(E);
if (DeclRefExpr *LHS = EvalVal(C->getLHS()))
return LHS;
else
return EvalVal(C->getRHS());
}
// Accesses to members are potential references to data on the stack.
case Stmt::MemberExprClass: {
MemberExpr *M = cast<MemberExpr>(E);
// Check for indirect access. We only want direct field accesses.
if (!M->isArrow())
return EvalVal(M->getBase());
else
return NULL;
}
// Everything else: we simply don't reason about them.
default:
return NULL;
}
}