| //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes wrap the information about a call or function |
| // definition used to handle ABI compliancy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TargetInfo.h" |
| #include "ABIInfo.h" |
| #include "CodeGenFunction.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "llvm/Type.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| ABIInfo::~ABIInfo() {} |
| |
| void ABIArgInfo::dump() const { |
| llvm::raw_ostream &OS = llvm::errs(); |
| OS << "(ABIArgInfo Kind="; |
| switch (TheKind) { |
| case Direct: |
| OS << "Direct"; |
| break; |
| case Extend: |
| OS << "Extend"; |
| break; |
| case Ignore: |
| OS << "Ignore"; |
| break; |
| case Coerce: |
| OS << "Coerce Type="; |
| getCoerceToType()->print(OS); |
| break; |
| case Indirect: |
| OS << "Indirect Align=" << getIndirectAlign(); |
| break; |
| case Expand: |
| OS << "Expand"; |
| break; |
| } |
| OS << ")\n"; |
| } |
| |
| TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } |
| |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); |
| |
| /// isEmptyField - Return true iff a the field is "empty", that is it |
| /// is an unnamed bit-field or an (array of) empty record(s). |
| static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, |
| bool AllowArrays) { |
| if (FD->isUnnamedBitfield()) |
| return true; |
| |
| QualType FT = FD->getType(); |
| |
| // Constant arrays of empty records count as empty, strip them off. |
| if (AllowArrays) |
| while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) |
| FT = AT->getElementType(); |
| |
| return isEmptyRecord(Context, FT, AllowArrays); |
| } |
| |
| /// isEmptyRecord - Return true iff a structure contains only empty |
| /// fields. Note that a structure with a flexible array member is not |
| /// considered empty. |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return 0; |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) |
| if (!isEmptyField(Context, *i, AllowArrays)) |
| return false; |
| return true; |
| } |
| |
| /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either |
| /// a non-trivial destructor or a non-trivial copy constructor. |
| static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) { |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!RD) |
| return false; |
| |
| return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor(); |
| } |
| |
| /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is |
| /// a record type with either a non-trivial destructor or a non-trivial copy |
| /// constructor. |
| static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) { |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| return hasNonTrivialDestructorOrCopyConstructor(RT); |
| } |
| |
| /// isSingleElementStruct - Determine if a structure is a "single |
| /// element struct", i.e. it has exactly one non-empty field or |
| /// exactly one field which is itself a single element |
| /// struct. Structures with flexible array members are never |
| /// considered single element structs. |
| /// |
| /// \return The field declaration for the single non-empty field, if |
| /// it exists. |
| static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { |
| const RecordType *RT = T->getAsStructureType(); |
| if (!RT) |
| return 0; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return 0; |
| |
| const Type *Found = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // Ignore empty fields. |
| if (isEmptyField(Context, FD, true)) |
| continue; |
| |
| // If we already found an element then this isn't a single-element |
| // struct. |
| if (Found) |
| return 0; |
| |
| // Treat single element arrays as the element. |
| while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { |
| if (AT->getSize().getZExtValue() != 1) |
| break; |
| FT = AT->getElementType(); |
| } |
| |
| if (!CodeGenFunction::hasAggregateLLVMType(FT)) { |
| Found = FT.getTypePtr(); |
| } else { |
| Found = isSingleElementStruct(FT, Context); |
| if (!Found) |
| return 0; |
| } |
| } |
| |
| return Found; |
| } |
| |
| static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { |
| if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() && |
| !Ty->isAnyComplexType() && !Ty->isEnumeralType() && |
| !Ty->isBlockPointerType()) |
| return false; |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| return Size == 32 || Size == 64; |
| } |
| |
| /// canExpandIndirectArgument - Test whether an argument type which is to be |
| /// passed indirectly (on the stack) would have the equivalent layout if it was |
| /// expanded into separate arguments. If so, we prefer to do the latter to avoid |
| /// inhibiting optimizations. |
| /// |
| // FIXME: This predicate is missing many cases, currently it just follows |
| // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We |
| // should probably make this smarter, or better yet make the LLVM backend |
| // capable of handling it. |
| static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { |
| // We can only expand structure types. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| // We can only expand (C) structures. |
| // |
| // FIXME: This needs to be generalized to handle classes as well. |
| const RecordDecl *RD = RT->getDecl(); |
| if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) |
| return false; |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| |
| if (!is32Or64BitBasicType(FD->getType(), Context)) |
| return false; |
| |
| // FIXME: Reject bit-fields wholesale; there are two problems, we don't know |
| // how to expand them yet, and the predicate for telling if a bitfield still |
| // counts as "basic" is more complicated than what we were doing previously. |
| if (FD->isBitField()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) { |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| |
| if (FD->getType()->isVectorType() && |
| Context.getTypeSize(FD->getType()) >= 128) |
| return true; |
| |
| if (const RecordType* RT = FD->getType()->getAs<RecordType>()) |
| if (typeContainsSSEVector(RT->getDecl(), Context)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| namespace { |
| /// DefaultABIInfo - The default implementation for ABI specific |
| /// details. This implementation provides information which results in |
| /// self-consistent and sensible LLVM IR generation, but does not |
| /// conform to any particular ABI. |
| class DefaultABIInfo : public ABIInfo { |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, |
| VMContext); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type, Context, VMContext); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {} |
| }; |
| |
| llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| return 0; |
| } |
| |
| ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| } |
| |
| /// X86_32ABIInfo - The X86-32 ABI information. |
| class X86_32ABIInfo : public ABIInfo { |
| ASTContext &Context; |
| bool IsDarwinVectorABI; |
| bool IsSmallStructInRegABI; |
| |
| static bool isRegisterSize(unsigned Size) { |
| return (Size == 8 || Size == 16 || Size == 32 || Size == 64); |
| } |
| |
| static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); |
| |
| static unsigned getIndirectArgumentAlignment(QualType Ty, |
| ASTContext &Context); |
| |
| public: |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, |
| VMContext); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type, Context, VMContext); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| |
| X86_32ABIInfo(ASTContext &Context, bool d, bool p) |
| : ABIInfo(), Context(Context), IsDarwinVectorABI(d), |
| IsSmallStructInRegABI(p) {} |
| }; |
| |
| class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p) |
| :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {} |
| }; |
| |
| } |
| |
| /// shouldReturnTypeInRegister - Determine if the given type should be |
| /// passed in a register (for the Darwin ABI). |
| bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, |
| ASTContext &Context) { |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // Type must be register sized. |
| if (!isRegisterSize(Size)) |
| return false; |
| |
| if (Ty->isVectorType()) { |
| // 64- and 128- bit vectors inside structures are not returned in |
| // registers. |
| if (Size == 64 || Size == 128) |
| return false; |
| |
| return true; |
| } |
| |
| // If this is a builtin, pointer, enum, or complex type, it is ok. |
| if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() || |
| Ty->isAnyComplexType() || Ty->isEnumeralType() || |
| Ty->isBlockPointerType()) |
| return true; |
| |
| // Arrays are treated like records. |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) |
| return shouldReturnTypeInRegister(AT->getElementType(), Context); |
| |
| // Otherwise, it must be a record type. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) return false; |
| |
| // Structure types are passed in register if all fields would be |
| // passed in a register. |
| for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), |
| e = RT->getDecl()->field_end(); i != e; ++i) { |
| const FieldDecl *FD = *i; |
| |
| // Empty fields are ignored. |
| if (isEmptyField(Context, FD, true)) |
| continue; |
| |
| // Check fields recursively. |
| if (!shouldReturnTypeInRegister(FD->getType(), Context)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (RetTy->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } else if (const VectorType *VT = RetTy->getAs<VectorType>()) { |
| // On Darwin, some vectors are returned in registers. |
| if (IsDarwinVectorABI) { |
| uint64_t Size = Context.getTypeSize(RetTy); |
| |
| // 128-bit vectors are a special case; they are returned in |
| // registers and we need to make sure to pick a type the LLVM |
| // backend will like. |
| if (Size == 128) |
| return ABIArgInfo::getCoerce(llvm::VectorType::get( |
| llvm::Type::getInt64Ty(VMContext), 2)); |
| |
| // Always return in register if it fits in a general purpose |
| // register, or if it is 64 bits and has a single element. |
| if ((Size == 8 || Size == 16 || Size == 32) || |
| (Size == 64 && VT->getNumElements() == 1)) |
| return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size)); |
| |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| if (const RecordType *RT = RetTy->getAsStructureType()) { |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| if (hasNonTrivialDestructorOrCopyConstructor(RT)) |
| return ABIArgInfo::getIndirect(0, /*ByVal=*/false); |
| |
| // Structures with flexible arrays are always indirect. |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| // If specified, structs and unions are always indirect. |
| if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) |
| return ABIArgInfo::getIndirect(0); |
| |
| // Classify "single element" structs as their element type. |
| if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { |
| if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) { |
| if (BT->isIntegerType()) { |
| // We need to use the size of the structure, padding |
| // bit-fields can adjust that to be larger than the single |
| // element type. |
| uint64_t Size = Context.getTypeSize(RetTy); |
| return ABIArgInfo::getCoerce( |
| llvm::IntegerType::get(VMContext, (unsigned) Size)); |
| } else if (BT->getKind() == BuiltinType::Float) { |
| assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && |
| "Unexpect single element structure size!"); |
| return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext)); |
| } else if (BT->getKind() == BuiltinType::Double) { |
| assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && |
| "Unexpect single element structure size!"); |
| return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext)); |
| } |
| } else if (SeltTy->isPointerType()) { |
| // FIXME: It would be really nice if this could come out as the proper |
| // pointer type. |
| const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); |
| return ABIArgInfo::getCoerce(PtrTy); |
| } else if (SeltTy->isVectorType()) { |
| // 64- and 128-bit vectors are never returned in a |
| // register when inside a structure. |
| uint64_t Size = Context.getTypeSize(RetTy); |
| if (Size == 64 || Size == 128) |
| return ABIArgInfo::getIndirect(0); |
| |
| return classifyReturnType(QualType(SeltTy, 0), Context, VMContext); |
| } |
| } |
| |
| // Small structures which are register sized are generally returned |
| // in a register. |
| if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) { |
| uint64_t Size = Context.getTypeSize(RetTy); |
| return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size)); |
| } |
| |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return (RetTy->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| } |
| |
| unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty, |
| ASTContext &Context) { |
| unsigned Align = Context.getTypeAlign(Ty); |
| if (Align < 128) return 0; |
| if (const RecordType* RT = Ty->getAs<RecordType>()) |
| if (typeContainsSSEVector(RT->getDecl(), Context)) |
| return 16; |
| return 0; |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| // FIXME: Set alignment on indirect arguments. |
| if (CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| // Structures with flexible arrays are always indirect. |
| if (const RecordType *RT = Ty->getAsStructureType()) |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, |
| Context)); |
| |
| // Ignore empty structs. |
| if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0) |
| return ABIArgInfo::getIgnore(); |
| |
| // Expand small (<= 128-bit) record types when we know that the stack layout |
| // of those arguments will match the struct. This is important because the |
| // LLVM backend isn't smart enough to remove byval, which inhibits many |
| // optimizations. |
| if (Context.getTypeSize(Ty) <= 4*32 && |
| canExpandIndirectArgument(Ty, Context)) |
| return ABIArgInfo::getExpand(); |
| |
| return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context)); |
| } else { |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| } |
| |
| llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); |
| const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| "ap"); |
| llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| |
| uint64_t Offset = |
| llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| llvm::Value *NextAddr = |
| Builder.CreateGEP(Addr, llvm::ConstantInt::get( |
| llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset), |
| "ap.next"); |
| Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| |
| return AddrTyped; |
| } |
| |
| namespace { |
| /// X86_64ABIInfo - The X86_64 ABI information. |
| class X86_64ABIInfo : public ABIInfo { |
| enum Class { |
| Integer = 0, |
| SSE, |
| SSEUp, |
| X87, |
| X87Up, |
| ComplexX87, |
| NoClass, |
| Memory |
| }; |
| |
| /// merge - Implement the X86_64 ABI merging algorithm. |
| /// |
| /// Merge an accumulating classification \arg Accum with a field |
| /// classification \arg Field. |
| /// |
| /// \param Accum - The accumulating classification. This should |
| /// always be either NoClass or the result of a previous merge |
| /// call. In addition, this should never be Memory (the caller |
| /// should just return Memory for the aggregate). |
| Class merge(Class Accum, Class Field) const; |
| |
| /// classify - Determine the x86_64 register classes in which the |
| /// given type T should be passed. |
| /// |
| /// \param Lo - The classification for the parts of the type |
| /// residing in the low word of the containing object. |
| /// |
| /// \param Hi - The classification for the parts of the type |
| /// residing in the high word of the containing object. |
| /// |
| /// \param OffsetBase - The bit offset of this type in the |
| /// containing object. Some parameters are classified different |
| /// depending on whether they straddle an eightbyte boundary. |
| /// |
| /// If a word is unused its result will be NoClass; if a type should |
| /// be passed in Memory then at least the classification of \arg Lo |
| /// will be Memory. |
| /// |
| /// The \arg Lo class will be NoClass iff the argument is ignored. |
| /// |
| /// If the \arg Lo class is ComplexX87, then the \arg Hi class will |
| /// also be ComplexX87. |
| void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, |
| Class &Lo, Class &Hi) const; |
| |
| /// getCoerceResult - Given a source type \arg Ty and an LLVM type |
| /// to coerce to, chose the best way to pass Ty in the same place |
| /// that \arg CoerceTo would be passed, but while keeping the |
| /// emitted code as simple as possible. |
| /// |
| /// FIXME: Note, this should be cleaned up to just take an enumeration of all |
| /// the ways we might want to pass things, instead of constructing an LLVM |
| /// type. This makes this code more explicit, and it makes it clearer that we |
| /// are also doing this for correctness in the case of passing scalar types. |
| ABIArgInfo getCoerceResult(QualType Ty, |
| const llvm::Type *CoerceTo, |
| ASTContext &Context) const; |
| |
| /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| /// such that the argument will be passed in memory. |
| ABIArgInfo getIndirectResult(QualType Ty, |
| ASTContext &Context) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| ABIArgInfo classifyArgumentType(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext, |
| unsigned &neededInt, |
| unsigned &neededSSE) const; |
| |
| public: |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {} |
| }; |
| |
| } |
| |
| X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, |
| Class Field) const { |
| // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is |
| // classified recursively so that always two fields are |
| // considered. The resulting class is calculated according to |
| // the classes of the fields in the eightbyte: |
| // |
| // (a) If both classes are equal, this is the resulting class. |
| // |
| // (b) If one of the classes is NO_CLASS, the resulting class is |
| // the other class. |
| // |
| // (c) If one of the classes is MEMORY, the result is the MEMORY |
| // class. |
| // |
| // (d) If one of the classes is INTEGER, the result is the |
| // INTEGER. |
| // |
| // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, |
| // MEMORY is used as class. |
| // |
| // (f) Otherwise class SSE is used. |
| |
| // Accum should never be memory (we should have returned) or |
| // ComplexX87 (because this cannot be passed in a structure). |
| assert((Accum != Memory && Accum != ComplexX87) && |
| "Invalid accumulated classification during merge."); |
| if (Accum == Field || Field == NoClass) |
| return Accum; |
| else if (Field == Memory) |
| return Memory; |
| else if (Accum == NoClass) |
| return Field; |
| else if (Accum == Integer || Field == Integer) |
| return Integer; |
| else if (Field == X87 || Field == X87Up || Field == ComplexX87 || |
| Accum == X87 || Accum == X87Up) |
| return Memory; |
| else |
| return SSE; |
| } |
| |
| void X86_64ABIInfo::classify(QualType Ty, |
| ASTContext &Context, |
| uint64_t OffsetBase, |
| Class &Lo, Class &Hi) const { |
| // FIXME: This code can be simplified by introducing a simple value class for |
| // Class pairs with appropriate constructor methods for the various |
| // situations. |
| |
| // FIXME: Some of the split computations are wrong; unaligned vectors |
| // shouldn't be passed in registers for example, so there is no chance they |
| // can straddle an eightbyte. Verify & simplify. |
| |
| Lo = Hi = NoClass; |
| |
| Class &Current = OffsetBase < 64 ? Lo : Hi; |
| Current = Memory; |
| |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
| BuiltinType::Kind k = BT->getKind(); |
| |
| if (k == BuiltinType::Void) { |
| Current = NoClass; |
| } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { |
| Lo = Integer; |
| Hi = Integer; |
| } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { |
| Current = Integer; |
| } else if (k == BuiltinType::Float || k == BuiltinType::Double) { |
| Current = SSE; |
| } else if (k == BuiltinType::LongDouble) { |
| Lo = X87; |
| Hi = X87Up; |
| } |
| // FIXME: _Decimal32 and _Decimal64 are SSE. |
| // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). |
| } else if (const EnumType *ET = Ty->getAs<EnumType>()) { |
| // Classify the underlying integer type. |
| classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); |
| } else if (Ty->hasPointerRepresentation()) { |
| Current = Integer; |
| } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| uint64_t Size = Context.getTypeSize(VT); |
| if (Size == 32) { |
| // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x |
| // float> as integer. |
| Current = Integer; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| uint64_t EB_Real = (OffsetBase) / 64; |
| uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; |
| if (EB_Real != EB_Imag) |
| Hi = Lo; |
| } else if (Size == 64) { |
| // gcc passes <1 x double> in memory. :( |
| if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) |
| return; |
| |
| // gcc passes <1 x long long> as INTEGER. |
| if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) |
| Current = Integer; |
| else |
| Current = SSE; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| if (OffsetBase && OffsetBase != 64) |
| Hi = Lo; |
| } else if (Size == 128) { |
| Lo = SSE; |
| Hi = SSEUp; |
| } |
| } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
| QualType ET = Context.getCanonicalType(CT->getElementType()); |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| if (ET->isIntegralType()) { |
| if (Size <= 64) |
| Current = Integer; |
| else if (Size <= 128) |
| Lo = Hi = Integer; |
| } else if (ET == Context.FloatTy) |
| Current = SSE; |
| else if (ET == Context.DoubleTy) |
| Lo = Hi = SSE; |
| else if (ET == Context.LongDoubleTy) |
| Current = ComplexX87; |
| |
| // If this complex type crosses an eightbyte boundary then it |
| // should be split. |
| uint64_t EB_Real = (OffsetBase) / 64; |
| uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; |
| if (Hi == NoClass && EB_Real != EB_Imag) |
| Hi = Lo; |
| } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
| // Arrays are treated like structures. |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than two eightbytes, ..., it has class MEMORY. |
| if (Size > 128) |
| return; |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| // fields, it has class MEMORY. |
| // |
| // Only need to check alignment of array base. |
| if (OffsetBase % Context.getTypeAlign(AT->getElementType())) |
| return; |
| |
| // Otherwise implement simplified merge. We could be smarter about |
| // this, but it isn't worth it and would be harder to verify. |
| Current = NoClass; |
| uint64_t EltSize = Context.getTypeSize(AT->getElementType()); |
| uint64_t ArraySize = AT->getSize().getZExtValue(); |
| for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { |
| Class FieldLo, FieldHi; |
| classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| // Do post merger cleanup (see below). Only case we worry about is Memory. |
| if (Hi == Memory) |
| Lo = Memory; |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); |
| } else if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than two eightbytes, ..., it has class MEMORY. |
| if (Size > 128) |
| return; |
| |
| // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial |
| // copy constructor or a non-trivial destructor, it is passed by invisible |
| // reference. |
| if (hasNonTrivialDestructorOrCopyConstructor(RT)) |
| return; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| |
| // Assume variable sized types are passed in memory. |
| if (RD->hasFlexibleArrayMember()) |
| return; |
| |
| const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| |
| // Reset Lo class, this will be recomputed. |
| Current = NoClass; |
| |
| // If this is a C++ record, classify the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), |
| e = CXXRD->bases_end(); i != e; ++i) { |
| assert(!i->isVirtual() && !i->getType()->isDependentType() && |
| "Unexpected base class!"); |
| const CXXRecordDecl *Base = |
| cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); |
| |
| // Classify this field. |
| // |
| // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a |
| // single eightbyte, each is classified separately. Each eightbyte gets |
| // initialized to class NO_CLASS. |
| Class FieldLo, FieldHi; |
| uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base); |
| classify(i->getType(), Context, Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| // If this record has no fields but isn't empty, classify as INTEGER. |
| if (RD->field_empty() && Size) |
| Current = Integer; |
| } |
| |
| // Classify the fields one at a time, merging the results. |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| bool BitField = i->isBitField(); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| // fields, it has class MEMORY. |
| // |
| // Note, skip this test for bit-fields, see below. |
| if (!BitField && Offset % Context.getTypeAlign(i->getType())) { |
| Lo = Memory; |
| return; |
| } |
| |
| // Classify this field. |
| // |
| // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate |
| // exceeds a single eightbyte, each is classified |
| // separately. Each eightbyte gets initialized to class |
| // NO_CLASS. |
| Class FieldLo, FieldHi; |
| |
| // Bit-fields require special handling, they do not force the |
| // structure to be passed in memory even if unaligned, and |
| // therefore they can straddle an eightbyte. |
| if (BitField) { |
| // Ignore padding bit-fields. |
| if (i->isUnnamedBitfield()) |
| continue; |
| |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); |
| |
| uint64_t EB_Lo = Offset / 64; |
| uint64_t EB_Hi = (Offset + Size - 1) / 64; |
| FieldLo = FieldHi = NoClass; |
| if (EB_Lo) { |
| assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); |
| FieldLo = NoClass; |
| FieldHi = Integer; |
| } else { |
| FieldLo = Integer; |
| FieldHi = EB_Hi ? Integer : NoClass; |
| } |
| } else |
| classify(i->getType(), Context, Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: |
| // |
| // (a) If one of the classes is MEMORY, the whole argument is |
| // passed in memory. |
| // |
| // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. |
| |
| // The first of these conditions is guaranteed by how we implement |
| // the merge (just bail). |
| // |
| // The second condition occurs in the case of unions; for example |
| // union { _Complex double; unsigned; }. |
| if (Hi == Memory) |
| Lo = Memory; |
| if (Hi == SSEUp && Lo != SSE) |
| Hi = SSE; |
| } |
| } |
| |
| ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, |
| const llvm::Type *CoerceTo, |
| ASTContext &Context) const { |
| if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) { |
| // Integer and pointer types will end up in a general purpose |
| // register. |
| if (Ty->isIntegralType() || Ty->hasPointerRepresentation()) |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) { |
| // FIXME: It would probably be better to make CGFunctionInfo only map using |
| // canonical types than to canonize here. |
| QualType CTy = Context.getCanonicalType(Ty); |
| |
| // Float and double end up in a single SSE reg. |
| if (CTy == Context.FloatTy || CTy == Context.DoubleTy) |
| return ABIArgInfo::getDirect(); |
| |
| } |
| |
| return ABIArgInfo::getCoerce(CoerceTo); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, |
| ASTContext &Context) const { |
| // If this is a scalar LLVM value then assume LLVM will pass it in the right |
| // place naturally. |
| if (!CodeGenFunction::hasAggregateLLVMType(Ty)) |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| |
| bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty); |
| |
| // FIXME: Set alignment correctly. |
| return ABIArgInfo::getIndirect(0, ByVal); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the |
| // classification algorithm. |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(RetTy, Context, 0, Lo, Hi); |
| |
| // Check some invariants. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| const llvm::Type *ResType = 0; |
| switch (Lo) { |
| case NoClass: |
| return ABIArgInfo::getIgnore(); |
| |
| case SSEUp: |
| case X87Up: |
| assert(0 && "Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via |
| // hidden argument. |
| case Memory: |
| return getIndirectResult(RetTy, Context); |
| |
| // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next |
| // available register of the sequence %rax, %rdx is used. |
| case Integer: |
| ResType = llvm::Type::getInt64Ty(VMContext); break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next |
| // available SSE register of the sequence %xmm0, %xmm1 is used. |
| case SSE: |
| ResType = llvm::Type::getDoubleTy(VMContext); break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is |
| // returned on the X87 stack in %st0 as 80-bit x87 number. |
| case X87: |
| ResType = llvm::Type::getX86_FP80Ty(VMContext); break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real |
| // part of the value is returned in %st0 and the imaginary part in |
| // %st1. |
| case ComplexX87: |
| assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); |
| ResType = llvm::StructType::get(VMContext, llvm::Type::getX86_FP80Ty(VMContext), |
| llvm::Type::getX86_FP80Ty(VMContext), |
| NULL); |
| break; |
| } |
| |
| switch (Hi) { |
| // Memory was handled previously and X87 should |
| // never occur as a hi class. |
| case Memory: |
| case X87: |
| assert(0 && "Invalid classification for hi word."); |
| |
| case ComplexX87: // Previously handled. |
| case NoClass: break; |
| |
| case Integer: |
| ResType = llvm::StructType::get(VMContext, ResType, |
| llvm::Type::getInt64Ty(VMContext), NULL); |
| break; |
| case SSE: |
| ResType = llvm::StructType::get(VMContext, ResType, |
| llvm::Type::getDoubleTy(VMContext), NULL); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte |
| // is passed in the upper half of the last used SSE register. |
| // |
| // SSEUP should always be preceeded by SSE, just widen. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification."); |
| ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is |
| // returned together with the previous X87 value in %st0. |
| case X87Up: |
| // If X87Up is preceeded by X87, we don't need to do |
| // anything. However, in some cases with unions it may not be |
| // preceeded by X87. In such situations we follow gcc and pass the |
| // extra bits in an SSE reg. |
| if (Lo != X87) |
| ResType = llvm::StructType::get(VMContext, ResType, |
| llvm::Type::getDoubleTy(VMContext), NULL); |
| break; |
| } |
| |
| return getCoerceResult(RetTy, ResType, Context); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, |
| llvm::LLVMContext &VMContext, |
| unsigned &neededInt, |
| unsigned &neededSSE) const { |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(Ty, Context, 0, Lo, Hi); |
| |
| // Check some invariants. |
| // FIXME: Enforce these by construction. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| neededInt = 0; |
| neededSSE = 0; |
| const llvm::Type *ResType = 0; |
| switch (Lo) { |
| case NoClass: |
| return ABIArgInfo::getIgnore(); |
| |
| // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument |
| // on the stack. |
| case Memory: |
| |
| // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or |
| // COMPLEX_X87, it is passed in memory. |
| case X87: |
| case ComplexX87: |
| return getIndirectResult(Ty, Context); |
| |
| case SSEUp: |
| case X87Up: |
| assert(0 && "Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next |
| // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 |
| // and %r9 is used. |
| case Integer: |
| ++neededInt; |
| ResType = llvm::Type::getInt64Ty(VMContext); |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next |
| // available SSE register is used, the registers are taken in the |
| // order from %xmm0 to %xmm7. |
| case SSE: |
| ++neededSSE; |
| ResType = llvm::Type::getDoubleTy(VMContext); |
| break; |
| } |
| |
| switch (Hi) { |
| // Memory was handled previously, ComplexX87 and X87 should |
| // never occur as hi classes, and X87Up must be preceed by X87, |
| // which is passed in memory. |
| case Memory: |
| case X87: |
| case ComplexX87: |
| assert(0 && "Invalid classification for hi word."); |
| break; |
| |
| case NoClass: break; |
| case Integer: |
| ResType = llvm::StructType::get(VMContext, ResType, |
| llvm::Type::getInt64Ty(VMContext), NULL); |
| ++neededInt; |
| break; |
| |
| // X87Up generally doesn't occur here (long double is passed in |
| // memory), except in situations involving unions. |
| case X87Up: |
| case SSE: |
| ResType = llvm::StructType::get(VMContext, ResType, |
| llvm::Type::getDoubleTy(VMContext), NULL); |
| ++neededSSE; |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the |
| // eightbyte is passed in the upper half of the last used SSE |
| // register. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification."); |
| ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2); |
| break; |
| } |
| |
| return getCoerceResult(Ty, ResType, Context); |
| } |
| |
| void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), |
| Context, VMContext); |
| |
| // Keep track of the number of assigned registers. |
| unsigned freeIntRegs = 6, freeSSERegs = 8; |
| |
| // If the return value is indirect, then the hidden argument is consuming one |
| // integer register. |
| if (FI.getReturnInfo().isIndirect()) |
| --freeIntRegs; |
| |
| // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers |
| // get assigned (in left-to-right order) for passing as follows... |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) { |
| unsigned neededInt, neededSSE; |
| it->info = classifyArgumentType(it->type, Context, VMContext, |
| neededInt, neededSSE); |
| |
| // AMD64-ABI 3.2.3p3: If there are no registers available for any |
| // eightbyte of an argument, the whole argument is passed on the |
| // stack. If registers have already been assigned for some |
| // eightbytes of such an argument, the assignments get reverted. |
| if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { |
| freeIntRegs -= neededInt; |
| freeSSERegs -= neededSSE; |
| } else { |
| it->info = getIndirectResult(it->type, Context); |
| } |
| } |
| } |
| |
| static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, |
| QualType Ty, |
| CodeGenFunction &CGF) { |
| llvm::Value *overflow_arg_area_p = |
| CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); |
| llvm::Value *overflow_arg_area = |
| CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); |
| |
| // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 |
| // byte boundary if alignment needed by type exceeds 8 byte boundary. |
| uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; |
| if (Align > 8) { |
| // Note that we follow the ABI & gcc here, even though the type |
| // could in theory have an alignment greater than 16. This case |
| // shouldn't ever matter in practice. |
| |
| // overflow_arg_area = (overflow_arg_area + 15) & ~15; |
| llvm::Value *Offset = |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15); |
| overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); |
| llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, |
| llvm::Type::getInt64Ty(CGF.getLLVMContext())); |
| llvm::Value *Mask = llvm::ConstantInt::get( |
| llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL); |
| overflow_arg_area = |
| CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), |
| overflow_arg_area->getType(), |
| "overflow_arg_area.align"); |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. |
| const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *Res = |
| CGF.Builder.CreateBitCast(overflow_arg_area, |
| llvm::PointerType::getUnqual(LTy)); |
| |
| // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: |
| // l->overflow_arg_area + sizeof(type). |
| // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to |
| // an 8 byte boundary. |
| |
| uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; |
| llvm::Value *Offset = |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), |
| (SizeInBytes + 7) & ~7); |
| overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, |
| "overflow_arg_area.next"); |
| CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); |
| |
| // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. |
| return Res; |
| } |
| |
| llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| llvm::LLVMContext &VMContext = CGF.getLLVMContext(); |
| const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext); |
| const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext); |
| |
| // Assume that va_list type is correct; should be pointer to LLVM type: |
| // struct { |
| // i32 gp_offset; |
| // i32 fp_offset; |
| // i8* overflow_arg_area; |
| // i8* reg_save_area; |
| // }; |
| unsigned neededInt, neededSSE; |
| ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext, |
| neededInt, neededSSE); |
| |
| // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed |
| // in the registers. If not go to step 7. |
| if (!neededInt && !neededSSE) |
| return EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| |
| // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of |
| // general purpose registers needed to pass type and num_fp to hold |
| // the number of floating point registers needed. |
| |
| // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into |
| // registers. In the case: l->gp_offset > 48 - num_gp * 8 or |
| // l->fp_offset > 304 - num_fp * 16 go to step 7. |
| // |
| // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of |
| // register save space). |
| |
| llvm::Value *InRegs = 0; |
| llvm::Value *gp_offset_p = 0, *gp_offset = 0; |
| llvm::Value *fp_offset_p = 0, *fp_offset = 0; |
| if (neededInt) { |
| gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); |
| gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); |
| InRegs = |
| CGF.Builder.CreateICmpULE(gp_offset, |
| llvm::ConstantInt::get(i32Ty, |
| 48 - neededInt * 8), |
| "fits_in_gp"); |
| } |
| |
| if (neededSSE) { |
| fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); |
| fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); |
| llvm::Value *FitsInFP = |
| CGF.Builder.CreateICmpULE(fp_offset, |
| llvm::ConstantInt::get(i32Ty, |
| 176 - neededSSE * 16), |
| "fits_in_fp"); |
| InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; |
| } |
| |
| llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
| llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
| CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
| |
| // Emit code to load the value if it was passed in registers. |
| |
| CGF.EmitBlock(InRegBlock); |
| |
| // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with |
| // an offset of l->gp_offset and/or l->fp_offset. This may require |
| // copying to a temporary location in case the parameter is passed |
| // in different register classes or requires an alignment greater |
| // than 8 for general purpose registers and 16 for XMM registers. |
| // |
| // FIXME: This really results in shameful code when we end up needing to |
| // collect arguments from different places; often what should result in a |
| // simple assembling of a structure from scattered addresses has many more |
| // loads than necessary. Can we clean this up? |
| const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *RegAddr = |
| CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), |
| "reg_save_area"); |
| if (neededInt && neededSSE) { |
| // FIXME: Cleanup. |
| assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); |
| const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); |
| llvm::Value *Tmp = CGF.CreateTempAlloca(ST); |
| assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); |
| const llvm::Type *TyLo = ST->getElementType(0); |
| const llvm::Type *TyHi = ST->getElementType(1); |
| assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) && |
| "Unexpected ABI info for mixed regs"); |
| const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); |
| const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); |
| llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr; |
| llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr; |
| llvm::Value *V = |
| CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| |
| RegAddr = CGF.Builder.CreateBitCast(Tmp, |
| llvm::PointerType::getUnqual(LTy)); |
| } else if (neededInt) { |
| RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| llvm::PointerType::getUnqual(LTy)); |
| } else { |
| if (neededSSE == 1) { |
| RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| llvm::PointerType::getUnqual(LTy)); |
| } else { |
| assert(neededSSE == 2 && "Invalid number of needed registers!"); |
| // SSE registers are spaced 16 bytes apart in the register save |
| // area, we need to collect the two eightbytes together. |
| llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| llvm::Value *RegAddrHi = |
| CGF.Builder.CreateGEP(RegAddrLo, |
| llvm::ConstantInt::get(i32Ty, 16)); |
| const llvm::Type *DblPtrTy = |
| llvm::PointerType::getUnqual(DoubleTy); |
| const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy, |
| DoubleTy, NULL); |
| llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, |
| DblPtrTy)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, |
| DblPtrTy)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| RegAddr = CGF.Builder.CreateBitCast(Tmp, |
| llvm::PointerType::getUnqual(LTy)); |
| } |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 5. Set: |
| // l->gp_offset = l->gp_offset + num_gp * 8 |
| // l->fp_offset = l->fp_offset + num_fp * 16. |
| if (neededInt) { |
| llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), |
| gp_offset_p); |
| } |
| if (neededSSE) { |
| llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), |
| fp_offset_p); |
| } |
| CGF.EmitBranch(ContBlock); |
| |
| // Emit code to load the value if it was passed in memory. |
| |
| CGF.EmitBlock(InMemBlock); |
| llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| |
| // Return the appropriate result. |
| |
| CGF.EmitBlock(ContBlock); |
| llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), |
| "vaarg.addr"); |
| ResAddr->reserveOperandSpace(2); |
| ResAddr->addIncoming(RegAddr, InRegBlock); |
| ResAddr->addIncoming(MemAddr, InMemBlock); |
| |
| return ResAddr; |
| } |
| |
| // PIC16 ABI Implementation |
| |
| namespace { |
| |
| class PIC16ABIInfo : public ABIInfo { |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, |
| VMContext); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type, Context, VMContext); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class PIC16TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {} |
| }; |
| |
| } |
| |
| ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (RetTy->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } else { |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| |
| ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| return ABIArgInfo::getDirect(); |
| } |
| |
| llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| return 0; |
| } |
| |
| // ARM ABI Implementation |
| |
| namespace { |
| |
| class ARMABIInfo : public ABIInfo { |
| public: |
| enum ABIKind { |
| APCS = 0, |
| AAPCS = 1, |
| AAPCS_VFP |
| }; |
| |
| private: |
| ABIKind Kind; |
| |
| public: |
| ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {} |
| |
| private: |
| ABIKind getABIKind() const { return Kind; } |
| |
| ABIArgInfo classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMCOntext) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class ARMTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K) |
| :TargetCodeGenInfo(new ARMABIInfo(K)) {} |
| }; |
| |
| } |
| |
| void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, |
| VMContext); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) { |
| it->info = classifyArgumentType(it->type, Context, VMContext); |
| } |
| |
| // ARM always overrides the calling convention. |
| switch (getABIKind()) { |
| case APCS: |
| FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS); |
| break; |
| |
| case AAPCS: |
| FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS); |
| break; |
| |
| case AAPCS_VFP: |
| FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP); |
| break; |
| } |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (!CodeGenFunction::hasAggregateLLVMType(Ty)) |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| |
| // Ignore empty records. |
| if (isEmptyRecord(Context, Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // FIXME: This is kind of nasty... but there isn't much choice because the ARM |
| // backend doesn't support byval. |
| // FIXME: This doesn't handle alignment > 64 bits. |
| const llvm::Type* ElemTy; |
| unsigned SizeRegs; |
| if (Context.getTypeAlign(Ty) > 32) { |
| ElemTy = llvm::Type::getInt64Ty(VMContext); |
| SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; |
| } else { |
| ElemTy = llvm::Type::getInt32Ty(VMContext); |
| SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; |
| } |
| std::vector<const llvm::Type*> LLVMFields; |
| LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); |
| const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true); |
| return ABIArgInfo::getCoerce(STy); |
| } |
| |
| static bool isIntegerLikeType(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) { |
| // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure |
| // is called integer-like if its size is less than or equal to one word, and |
| // the offset of each of its addressable sub-fields is zero. |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // Check that the type fits in a word. |
| if (Size > 32) |
| return false; |
| |
| // FIXME: Handle vector types! |
| if (Ty->isVectorType()) |
| return false; |
| |
| // Float types are never treated as "integer like". |
| if (Ty->isRealFloatingType()) |
| return false; |
| |
| // If this is a builtin or pointer type then it is ok. |
| if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) |
| return true; |
| |
| // Complex types "should" be ok by the definition above, but they are not. |
| if (Ty->isAnyComplexType()) |
| return false; |
| |
| // Single element and zero sized arrays should be allowed, by the definition |
| // above, but they are not. |
| |
| // Otherwise, it must be a record type. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) return false; |
| |
| // Ignore records with flexible arrays. |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| |
| // Check that all sub-fields are at offset 0, and are themselves "integer |
| // like". |
| const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| |
| bool HadField = false; |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| const FieldDecl *FD = *i; |
| |
| // Check if this field is at offset 0. |
| uint64_t Offset = Layout.getFieldOffset(idx); |
| if (Offset != 0) { |
| // Allow padding bit-fields, but only if they are all at the end of the |
| // structure (despite the wording above, this matches gcc). |
| if (FD->isBitField() && |
| !FD->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) { |
| for (; i != e; ++i) |
| if (!i->isBitField() || |
| i->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) |
| return false; |
| |
| // All remaining fields are padding, allow this. |
| return true; |
| } |
| |
| return false; |
| } |
| |
| if (!isIntegerLikeType(FD->getType(), Context, VMContext)) |
| return false; |
| |
| // Only allow at most one field in a structure. Again this doesn't match the |
| // wording above, but follows gcc. |
| if (!RD->isUnion()) { |
| if (HadField) |
| return false; |
| |
| HadField = true; |
| } |
| } |
| |
| return true; |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) |
| return (RetTy->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| |
| // Are we following APCS? |
| if (getABIKind() == APCS) { |
| if (isEmptyRecord(Context, RetTy, false)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Integer like structures are returned in r0. |
| if (isIntegerLikeType(RetTy, Context, VMContext)) { |
| // Return in the smallest viable integer type. |
| uint64_t Size = Context.getTypeSize(RetTy); |
| if (Size <= 8) |
| return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext)); |
| if (Size <= 16) |
| return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext)); |
| return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext)); |
| } |
| |
| // Otherwise return in memory. |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| // Otherwise this is an AAPCS variant. |
| |
| if (isEmptyRecord(Context, RetTy, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Aggregates <= 4 bytes are returned in r0; other aggregates |
| // are returned indirectly. |
| uint64_t Size = Context.getTypeSize(RetTy); |
| if (Size <= 32) { |
| // Return in the smallest viable integer type. |
| if (Size <= 8) |
| return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext)); |
| if (Size <= 16) |
| return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext)); |
| return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext)); |
| } |
| |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| // FIXME: Need to handle alignment |
| const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); |
| const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| "ap"); |
| llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| |
| uint64_t Offset = |
| llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| llvm::Value *NextAddr = |
| Builder.CreateGEP(Addr, llvm::ConstantInt::get( |
| llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset), |
| "ap.next"); |
| Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| |
| return AddrTyped; |
| } |
| |
| ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (RetTy->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return (RetTy->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| } |
| |
| // SystemZ ABI Implementation |
| |
| namespace { |
| |
| class SystemZABIInfo : public ABIInfo { |
| bool isPromotableIntegerType(QualType Ty) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), |
| Context, VMContext); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type, Context, VMContext); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {} |
| }; |
| |
| } |
| |
| bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { |
| // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended. |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
| switch (BT->getKind()) { |
| case BuiltinType::Bool: |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return true; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| // FIXME: Implement |
| return 0; |
| } |
| |
| |
| ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (RetTy->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return (isPromotableIntegerType(RetTy) ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| } |
| |
| ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &VMContext) const { |
| if (CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| return ABIArgInfo::getIndirect(0); |
| } else { |
| return (isPromotableIntegerType(Ty) ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| } |
| |
| // MSP430 ABI Implementation |
| |
| namespace { |
| |
| class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {} |
| void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const; |
| }; |
| |
| } |
| |
| void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, |
| llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { |
| // Handle 'interrupt' attribute: |
| llvm::Function *F = cast<llvm::Function>(GV); |
| |
| // Step 1: Set ISR calling convention. |
| F->setCallingConv(llvm::CallingConv::MSP430_INTR); |
| |
| // Step 2: Add attributes goodness. |
| F->addFnAttr(llvm::Attribute::NoInline); |
| |
| // Step 3: Emit ISR vector alias. |
| unsigned Num = attr->getNumber() + 0xffe0; |
| new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, |
| "vector_" + |
| llvm::LowercaseString(llvm::utohexstr(Num)), |
| GV, &M.getModule()); |
| } |
| } |
| } |
| |
| const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const { |
| if (TheTargetCodeGenInfo) |
| return *TheTargetCodeGenInfo; |
| |
| // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't |
| // free it. |
| |
| const llvm::Triple &Triple(getContext().Target.getTriple()); |
| switch (Triple.getArch()) { |
| default: |
| return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo); |
| |
| case llvm::Triple::arm: |
| case llvm::Triple::thumb: |
| // FIXME: We want to know the float calling convention as well. |
| if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0) |
| return *(TheTargetCodeGenInfo = |
| new ARMTargetCodeGenInfo(ARMABIInfo::APCS)); |
| |
| return *(TheTargetCodeGenInfo = |
| new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS)); |
| |
| case llvm::Triple::pic16: |
| return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo()); |
| |
| case llvm::Triple::systemz: |
| return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo()); |
| |
| case llvm::Triple::msp430: |
| return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo()); |
| |
| case llvm::Triple::x86: |
| switch (Triple.getOS()) { |
| case llvm::Triple::Darwin: |
| return *(TheTargetCodeGenInfo = |
| new X86_32TargetCodeGenInfo(Context, true, true)); |
| case llvm::Triple::Cygwin: |
| case llvm::Triple::MinGW32: |
| case llvm::Triple::MinGW64: |
| case llvm::Triple::AuroraUX: |
| case llvm::Triple::DragonFly: |
| case llvm::Triple::FreeBSD: |
| case llvm::Triple::OpenBSD: |
| return *(TheTargetCodeGenInfo = |
| new X86_32TargetCodeGenInfo(Context, false, true)); |
| |
| default: |
| return *(TheTargetCodeGenInfo = |
| new X86_32TargetCodeGenInfo(Context, false, false)); |
| } |
| |
| case llvm::Triple::x86_64: |
| return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo()); |
| } |
| } |