| //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the CFG and CFGBuilder classes for representing and |
| // building Control-Flow Graphs (CFGs) from ASTs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/CFG.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/PrettyPrinter.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/Support/Compiler.h" |
| #include <set> |
| #include <iomanip> |
| #include <algorithm> |
| #include <sstream> |
| #include <iostream> |
| |
| using namespace clang; |
| |
| namespace { |
| |
| // SaveAndRestore - A utility class that uses RIIA to save and restore |
| // the value of a variable. |
| template<typename T> |
| struct VISIBILITY_HIDDEN SaveAndRestore { |
| SaveAndRestore(T& x) : X(x), old_value(x) {} |
| ~SaveAndRestore() { X = old_value; } |
| T get() { return old_value; } |
| |
| T& X; |
| T old_value; |
| }; |
| |
| /// CFGBuilder - This class is implements CFG construction from an AST. |
| /// The builder is stateful: an instance of the builder should be used to only |
| /// construct a single CFG. |
| /// |
| /// Example usage: |
| /// |
| /// CFGBuilder builder; |
| /// CFG* cfg = builder.BuildAST(stmt1); |
| /// |
| /// CFG construction is done via a recursive walk of an AST. |
| /// We actually parse the AST in reverse order so that the successor |
| /// of a basic block is constructed prior to its predecessor. This |
| /// allows us to nicely capture implicit fall-throughs without extra |
| /// basic blocks. |
| /// |
| class VISIBILITY_HIDDEN CFGBuilder : public StmtVisitor<CFGBuilder,CFGBlock*> { |
| CFG* cfg; |
| CFGBlock* Block; |
| CFGBlock* Succ; |
| CFGBlock* ContinueTargetBlock; |
| CFGBlock* BreakTargetBlock; |
| CFGBlock* SwitchTerminatedBlock; |
| CFGBlock* DefaultCaseBlock; |
| |
| // LabelMap records the mapping from Label expressions to their blocks. |
| typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy; |
| LabelMapTy LabelMap; |
| |
| // A list of blocks that end with a "goto" that must be backpatched to |
| // their resolved targets upon completion of CFG construction. |
| typedef std::vector<CFGBlock*> BackpatchBlocksTy; |
| BackpatchBlocksTy BackpatchBlocks; |
| |
| // A list of labels whose address has been taken (for indirect gotos). |
| typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy; |
| LabelSetTy AddressTakenLabels; |
| |
| public: |
| explicit CFGBuilder() : cfg(NULL), Block(NULL), Succ(NULL), |
| ContinueTargetBlock(NULL), BreakTargetBlock(NULL), |
| SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL) { |
| // Create an empty CFG. |
| cfg = new CFG(); |
| } |
| |
| ~CFGBuilder() { delete cfg; } |
| |
| // buildCFG - Used by external clients to construct the CFG. |
| CFG* buildCFG(Stmt* Statement); |
| |
| // Visitors to walk an AST and construct the CFG. Called by |
| // buildCFG. Do not call directly! |
| |
| CFGBlock* VisitStmt(Stmt* Statement); |
| CFGBlock* VisitNullStmt(NullStmt* Statement); |
| CFGBlock* VisitCompoundStmt(CompoundStmt* C); |
| CFGBlock* VisitIfStmt(IfStmt* I); |
| CFGBlock* VisitReturnStmt(ReturnStmt* R); |
| CFGBlock* VisitLabelStmt(LabelStmt* L); |
| CFGBlock* VisitGotoStmt(GotoStmt* G); |
| CFGBlock* VisitForStmt(ForStmt* F); |
| CFGBlock* VisitWhileStmt(WhileStmt* W); |
| CFGBlock* VisitDoStmt(DoStmt* D); |
| CFGBlock* VisitContinueStmt(ContinueStmt* C); |
| CFGBlock* VisitBreakStmt(BreakStmt* B); |
| CFGBlock* VisitSwitchStmt(SwitchStmt* S); |
| CFGBlock* VisitCaseStmt(CaseStmt* S); |
| CFGBlock* VisitDefaultStmt(DefaultStmt* D); |
| CFGBlock* VisitIndirectGotoStmt(IndirectGotoStmt* I); |
| |
| // FIXME: Add support for ObjC-specific control-flow structures. |
| |
| CFGBlock* VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) { |
| badCFG = true; |
| return Block; |
| } |
| |
| CFGBlock* VisitObjCAtTryStmt(ObjCAtTryStmt* S) { |
| badCFG = true; |
| return Block; |
| } |
| |
| private: |
| CFGBlock* createBlock(bool add_successor = true); |
| CFGBlock* addStmt(Stmt* S); |
| CFGBlock* WalkAST(Stmt* S, bool AlwaysAddStmt); |
| CFGBlock* WalkAST_VisitChildren(Stmt* S); |
| CFGBlock* WalkAST_VisitDeclSubExprs(StmtIterator& I); |
| CFGBlock* WalkAST_VisitStmtExpr(StmtExpr* S); |
| void FinishBlock(CFGBlock* B); |
| |
| bool badCFG; |
| }; |
| |
| /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can |
| /// represent an arbitrary statement. Examples include a single expression |
| /// or a function body (compound statement). The ownership of the returned |
| /// CFG is transferred to the caller. If CFG construction fails, this method |
| /// returns NULL. |
| CFG* CFGBuilder::buildCFG(Stmt* Statement) { |
| assert (cfg); |
| if (!Statement) return NULL; |
| |
| badCFG = false; |
| |
| // Create an empty block that will serve as the exit block for the CFG. |
| // Since this is the first block added to the CFG, it will be implicitly |
| // registered as the exit block. |
| Succ = createBlock(); |
| assert (Succ == &cfg->getExit()); |
| Block = NULL; // the EXIT block is empty. Create all other blocks lazily. |
| |
| // Visit the statements and create the CFG. |
| CFGBlock* B = Visit(Statement); |
| if (!B) B = Succ; |
| |
| if (B) { |
| // Finalize the last constructed block. This usually involves |
| // reversing the order of the statements in the block. |
| if (Block) FinishBlock(B); |
| |
| // Backpatch the gotos whose label -> block mappings we didn't know |
| // when we encountered them. |
| for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), |
| E = BackpatchBlocks.end(); I != E; ++I ) { |
| |
| CFGBlock* B = *I; |
| GotoStmt* G = cast<GotoStmt>(B->getTerminator()); |
| LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); |
| |
| // If there is no target for the goto, then we are looking at an |
| // incomplete AST. Handle this by not registering a successor. |
| if (LI == LabelMap.end()) continue; |
| |
| B->addSuccessor(LI->second); |
| } |
| |
| // Add successors to the Indirect Goto Dispatch block (if we have one). |
| if (CFGBlock* B = cfg->getIndirectGotoBlock()) |
| for (LabelSetTy::iterator I = AddressTakenLabels.begin(), |
| E = AddressTakenLabels.end(); I != E; ++I ) { |
| |
| // Lookup the target block. |
| LabelMapTy::iterator LI = LabelMap.find(*I); |
| |
| // If there is no target block that contains label, then we are looking |
| // at an incomplete AST. Handle this by not registering a successor. |
| if (LI == LabelMap.end()) continue; |
| |
| B->addSuccessor(LI->second); |
| } |
| |
| Succ = B; |
| } |
| |
| // Create an empty entry block that has no predecessors. |
| cfg->setEntry(createBlock()); |
| |
| if (badCFG) { |
| delete cfg; |
| cfg = NULL; |
| return NULL; |
| } |
| |
| // NULL out cfg so that repeated calls to the builder will fail and that |
| // the ownership of the constructed CFG is passed to the caller. |
| CFG* t = cfg; |
| cfg = NULL; |
| return t; |
| } |
| |
| /// createBlock - Used to lazily create blocks that are connected |
| /// to the current (global) succcessor. |
| CFGBlock* CFGBuilder::createBlock(bool add_successor) { |
| CFGBlock* B = cfg->createBlock(); |
| if (add_successor && Succ) B->addSuccessor(Succ); |
| return B; |
| } |
| |
| /// FinishBlock - When the last statement has been added to the block, |
| /// we must reverse the statements because they have been inserted |
| /// in reverse order. |
| void CFGBuilder::FinishBlock(CFGBlock* B) { |
| assert (B); |
| B->reverseStmts(); |
| } |
| |
| /// addStmt - Used to add statements/expressions to the current CFGBlock |
| /// "Block". This method calls WalkAST on the passed statement to see if it |
| /// contains any short-circuit expressions. If so, it recursively creates |
| /// the necessary blocks for such expressions. It returns the "topmost" block |
| /// of the created blocks, or the original value of "Block" when this method |
| /// was called if no additional blocks are created. |
| CFGBlock* CFGBuilder::addStmt(Stmt* S) { |
| if (!Block) Block = createBlock(); |
| return WalkAST(S,true); |
| } |
| |
| /// WalkAST - Used by addStmt to walk the subtree of a statement and |
| /// add extra blocks for ternary operators, &&, and ||. We also |
| /// process "," and DeclStmts (which may contain nested control-flow). |
| CFGBlock* CFGBuilder::WalkAST(Stmt* S, bool AlwaysAddStmt = false) { |
| switch (S->getStmtClass()) { |
| case Stmt::ConditionalOperatorClass: { |
| ConditionalOperator* C = cast<ConditionalOperator>(S); |
| |
| // Create the confluence block that will "merge" the results |
| // of the ternary expression. |
| CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock(); |
| ConfluenceBlock->appendStmt(C); |
| FinishBlock(ConfluenceBlock); |
| |
| // Create a block for the LHS expression if there is an LHS expression. |
| // A GCC extension allows LHS to be NULL, causing the condition to |
| // be the value that is returned instead. |
| // e.g: x ?: y is shorthand for: x ? x : y; |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* LHSBlock = NULL; |
| if (C->getLHS()) { |
| LHSBlock = Visit(C->getLHS()); |
| FinishBlock(LHSBlock); |
| Block = NULL; |
| } |
| |
| // Create the block for the RHS expression. |
| Succ = ConfluenceBlock; |
| CFGBlock* RHSBlock = Visit(C->getRHS()); |
| FinishBlock(RHSBlock); |
| |
| // Create the block that will contain the condition. |
| Block = createBlock(false); |
| |
| if (LHSBlock) |
| Block->addSuccessor(LHSBlock); |
| else { |
| // If we have no LHS expression, add the ConfluenceBlock as a direct |
| // successor for the block containing the condition. Moreover, |
| // we need to reverse the order of the predecessors in the |
| // ConfluenceBlock because the RHSBlock will have been added to |
| // the succcessors already, and we want the first predecessor to the |
| // the block containing the expression for the case when the ternary |
| // expression evaluates to true. |
| Block->addSuccessor(ConfluenceBlock); |
| assert (ConfluenceBlock->pred_size() == 2); |
| std::reverse(ConfluenceBlock->pred_begin(), |
| ConfluenceBlock->pred_end()); |
| } |
| |
| Block->addSuccessor(RHSBlock); |
| |
| Block->setTerminator(C); |
| return addStmt(C->getCond()); |
| } |
| |
| case Stmt::ChooseExprClass: { |
| ChooseExpr* C = cast<ChooseExpr>(S); |
| |
| CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock(); |
| ConfluenceBlock->appendStmt(C); |
| FinishBlock(ConfluenceBlock); |
| |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* LHSBlock = Visit(C->getLHS()); |
| FinishBlock(LHSBlock); |
| |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* RHSBlock = Visit(C->getRHS()); |
| FinishBlock(RHSBlock); |
| |
| Block = createBlock(false); |
| Block->addSuccessor(LHSBlock); |
| Block->addSuccessor(RHSBlock); |
| Block->setTerminator(C); |
| return addStmt(C->getCond()); |
| } |
| |
| case Stmt::DeclStmtClass: { |
| ScopedDecl* D = cast<DeclStmt>(S)->getDecl(); |
| Block->appendStmt(S); |
| |
| StmtIterator I(D); |
| return WalkAST_VisitDeclSubExprs(I); |
| } |
| |
| case Stmt::AddrLabelExprClass: { |
| AddrLabelExpr* A = cast<AddrLabelExpr>(S); |
| AddressTakenLabels.insert(A->getLabel()); |
| |
| if (AlwaysAddStmt) Block->appendStmt(S); |
| return Block; |
| } |
| |
| case Stmt::StmtExprClass: |
| return WalkAST_VisitStmtExpr(cast<StmtExpr>(S)); |
| |
| case Stmt::UnaryOperatorClass: { |
| UnaryOperator* U = cast<UnaryOperator>(S); |
| |
| // sizeof(expressions). For such expressions, |
| // the subexpression is not really evaluated, so |
| // we don't care about control-flow within the sizeof. |
| if (U->getOpcode() == UnaryOperator::SizeOf) { |
| Block->appendStmt(S); |
| return Block; |
| } |
| |
| break; |
| } |
| |
| case Stmt::BinaryOperatorClass: { |
| BinaryOperator* B = cast<BinaryOperator>(S); |
| |
| if (B->isLogicalOp()) { // && or || |
| CFGBlock* ConfluenceBlock = (Block) ? Block : createBlock(); |
| ConfluenceBlock->appendStmt(B); |
| FinishBlock(ConfluenceBlock); |
| |
| // create the block evaluating the LHS |
| CFGBlock* LHSBlock = createBlock(false); |
| LHSBlock->setTerminator(B); |
| |
| // create the block evaluating the RHS |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* RHSBlock = Visit(B->getRHS()); |
| |
| // Now link the LHSBlock with RHSBlock. |
| if (B->getOpcode() == BinaryOperator::LOr) { |
| LHSBlock->addSuccessor(ConfluenceBlock); |
| LHSBlock->addSuccessor(RHSBlock); |
| } |
| else { |
| assert (B->getOpcode() == BinaryOperator::LAnd); |
| LHSBlock->addSuccessor(RHSBlock); |
| LHSBlock->addSuccessor(ConfluenceBlock); |
| } |
| |
| // Generate the blocks for evaluating the LHS. |
| Block = LHSBlock; |
| return addStmt(B->getLHS()); |
| } |
| else if (B->getOpcode() == BinaryOperator::Comma) { // , |
| Block->appendStmt(B); |
| addStmt(B->getRHS()); |
| return addStmt(B->getLHS()); |
| } |
| |
| break; |
| } |
| |
| case Stmt::ParenExprClass: |
| return WalkAST(cast<ParenExpr>(S)->getSubExpr(), AlwaysAddStmt); |
| |
| default: |
| break; |
| }; |
| |
| if (AlwaysAddStmt) Block->appendStmt(S); |
| return WalkAST_VisitChildren(S); |
| } |
| |
| /// WalkAST_VisitDeclSubExprs - Utility method to handle Decls contained in |
| /// DeclStmts. Because the initialization code (and sometimes the |
| /// the type declarations) for DeclStmts can contain arbitrary expressions, |
| /// we must linearize declarations to handle arbitrary control-flow induced by |
| /// those expressions. |
| CFGBlock* CFGBuilder::WalkAST_VisitDeclSubExprs(StmtIterator& I) { |
| if (I == StmtIterator()) |
| return Block; |
| |
| Stmt* S = *I; |
| ++I; |
| WalkAST_VisitDeclSubExprs(I); |
| |
| // Optimization: Don't create separate block-level statements for literals. |
| |
| switch (S->getStmtClass()) { |
| case Stmt::IntegerLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::StringLiteralClass: |
| break; |
| |
| // All other cases. |
| |
| default: |
| Block = addStmt(S); |
| } |
| |
| return Block; |
| } |
| |
| /// WalkAST_VisitChildren - Utility method to call WalkAST on the |
| /// children of a Stmt. |
| CFGBlock* CFGBuilder::WalkAST_VisitChildren(Stmt* S) { |
| CFGBlock* B = Block; |
| for (Stmt::child_iterator I = S->child_begin(), E = S->child_end() ; |
| I != E; ++I) |
| if (*I) B = WalkAST(*I); |
| |
| return B; |
| } |
| |
| /// WalkAST_VisitStmtExpr - Utility method to handle (nested) statement |
| /// expressions (a GCC extension). |
| CFGBlock* CFGBuilder::WalkAST_VisitStmtExpr(StmtExpr* S) { |
| Block->appendStmt(S); |
| return VisitCompoundStmt(S->getSubStmt()); |
| } |
| |
| /// VisitStmt - Handle statements with no branching control flow. |
| CFGBlock* CFGBuilder::VisitStmt(Stmt* Statement) { |
| // We cannot assume that we are in the middle of a basic block, since |
| // the CFG might only be constructed for this single statement. If |
| // we have no current basic block, just create one lazily. |
| if (!Block) Block = createBlock(); |
| |
| // Simply add the statement to the current block. We actually |
| // insert statements in reverse order; this order is reversed later |
| // when processing the containing element in the AST. |
| addStmt(Statement); |
| |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitNullStmt(NullStmt* Statement) { |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) { |
| |
| for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend(); |
| I != E; ++I ) { |
| Visit(*I); |
| } |
| |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) { |
| // We may see an if statement in the middle of a basic block, or |
| // it may be the first statement we are processing. In either case, |
| // we create a new basic block. First, we create the blocks for |
| // the then...else statements, and then we create the block containing |
| // the if statement. If we were in the middle of a block, we |
| // stop processing that block and reverse its statements. That block |
| // is then the implicit successor for the "then" and "else" clauses. |
| |
| // The block we were proccessing is now finished. Make it the |
| // successor block. |
| if (Block) { |
| Succ = Block; |
| FinishBlock(Block); |
| } |
| |
| // Process the false branch. NULL out Block so that the recursive |
| // call to Visit will create a new basic block. |
| // Null out Block so that all successor |
| CFGBlock* ElseBlock = Succ; |
| |
| if (Stmt* Else = I->getElse()) { |
| SaveAndRestore<CFGBlock*> sv(Succ); |
| |
| // NULL out Block so that the recursive call to Visit will |
| // create a new basic block. |
| Block = NULL; |
| ElseBlock = Visit(Else); |
| |
| if (!ElseBlock) // Can occur when the Else body has all NullStmts. |
| ElseBlock = sv.get(); |
| else if (Block) |
| FinishBlock(ElseBlock); |
| } |
| |
| // Process the true branch. NULL out Block so that the recursive |
| // call to Visit will create a new basic block. |
| // Null out Block so that all successor |
| CFGBlock* ThenBlock; |
| { |
| Stmt* Then = I->getThen(); |
| assert (Then); |
| SaveAndRestore<CFGBlock*> sv(Succ); |
| Block = NULL; |
| ThenBlock = Visit(Then); |
| |
| if (!ThenBlock) // Can occur when the Then body has all NullStmts. |
| ThenBlock = sv.get(); |
| else if (Block) |
| FinishBlock(ThenBlock); |
| } |
| |
| // Now create a new block containing the if statement. |
| Block = createBlock(false); |
| |
| // Set the terminator of the new block to the If statement. |
| Block->setTerminator(I); |
| |
| // Now add the successors. |
| Block->addSuccessor(ThenBlock); |
| Block->addSuccessor(ElseBlock); |
| |
| // Add the condition as the last statement in the new block. This |
| // may create new blocks as the condition may contain control-flow. Any |
| // newly created blocks will be pointed to be "Block". |
| return addStmt(I->getCond()->IgnoreParens()); |
| } |
| |
| |
| CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) { |
| // If we were in the middle of a block we stop processing that block |
| // and reverse its statements. |
| // |
| // NOTE: If a "return" appears in the middle of a block, this means |
| // that the code afterwards is DEAD (unreachable). We still |
| // keep a basic block for that code; a simple "mark-and-sweep" |
| // from the entry block will be able to report such dead |
| // blocks. |
| if (Block) FinishBlock(Block); |
| |
| // Create the new block. |
| Block = createBlock(false); |
| |
| // The Exit block is the only successor. |
| Block->addSuccessor(&cfg->getExit()); |
| |
| // Add the return statement to the block. This may create new blocks |
| // if R contains control-flow (short-circuit operations). |
| return addStmt(R); |
| } |
| |
| CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) { |
| // Get the block of the labeled statement. Add it to our map. |
| CFGBlock* LabelBlock = Visit(L->getSubStmt()); |
| |
| if (!LabelBlock) // This can happen when the body is empty, i.e. |
| LabelBlock=createBlock(); // scopes that only contains NullStmts. |
| |
| assert (LabelMap.find(L) == LabelMap.end() && "label already in map"); |
| LabelMap[ L ] = LabelBlock; |
| |
| // Labels partition blocks, so this is the end of the basic block |
| // we were processing (L is the block's label). Because this is |
| // label (and we have already processed the substatement) there is no |
| // extra control-flow to worry about. |
| LabelBlock->setLabel(L); |
| FinishBlock(LabelBlock); |
| |
| // We set Block to NULL to allow lazy creation of a new block |
| // (if necessary); |
| Block = NULL; |
| |
| // This block is now the implicit successor of other blocks. |
| Succ = LabelBlock; |
| |
| return LabelBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) { |
| // Goto is a control-flow statement. Thus we stop processing the |
| // current block and create a new one. |
| if (Block) FinishBlock(Block); |
| Block = createBlock(false); |
| Block->setTerminator(G); |
| |
| // If we already know the mapping to the label block add the |
| // successor now. |
| LabelMapTy::iterator I = LabelMap.find(G->getLabel()); |
| |
| if (I == LabelMap.end()) |
| // We will need to backpatch this block later. |
| BackpatchBlocks.push_back(Block); |
| else |
| Block->addSuccessor(I->second); |
| |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) { |
| // "for" is a control-flow statement. Thus we stop processing the |
| // current block. |
| |
| CFGBlock* LoopSuccessor = NULL; |
| |
| if (Block) { |
| FinishBlock(Block); |
| LoopSuccessor = Block; |
| } |
| else LoopSuccessor = Succ; |
| |
| // Because of short-circuit evaluation, the condition of the loop |
| // can span multiple basic blocks. Thus we need the "Entry" and "Exit" |
| // blocks that evaluate the condition. |
| CFGBlock* ExitConditionBlock = createBlock(false); |
| CFGBlock* EntryConditionBlock = ExitConditionBlock; |
| |
| // Set the terminator for the "exit" condition block. |
| ExitConditionBlock->setTerminator(F); |
| |
| // Now add the actual condition to the condition block. Because the |
| // condition itself may contain control-flow, new blocks may be created. |
| if (Stmt* C = F->getCond()) { |
| Block = ExitConditionBlock; |
| EntryConditionBlock = addStmt(C); |
| if (Block) FinishBlock(EntryConditionBlock); |
| } |
| |
| // The condition block is the implicit successor for the loop body as |
| // well as any code above the loop. |
| Succ = EntryConditionBlock; |
| |
| // Now create the loop body. |
| { |
| assert (F->getBody()); |
| |
| // Save the current values for Block, Succ, and continue and break targets |
| SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), |
| save_continue(ContinueTargetBlock), |
| save_break(BreakTargetBlock); |
| |
| // All continues within this loop should go to the condition block |
| ContinueTargetBlock = EntryConditionBlock; |
| |
| // All breaks should go to the code following the loop. |
| BreakTargetBlock = LoopSuccessor; |
| |
| // Create a new block to contain the (bottom) of the loop body. |
| Block = NULL; |
| |
| // If we have increment code, insert it at the end of the body block. |
| if (Stmt* I = F->getInc()) Block = addStmt(I); |
| |
| // Now populate the body block, and in the process create new blocks |
| // as we walk the body of the loop. |
| CFGBlock* BodyBlock = Visit(F->getBody()); |
| |
| if (!BodyBlock) |
| BodyBlock = EntryConditionBlock; // can happen for "for (...;...; ) ;" |
| else if (Block) |
| FinishBlock(BodyBlock); |
| |
| // This new body block is a successor to our "exit" condition block. |
| ExitConditionBlock->addSuccessor(BodyBlock); |
| } |
| |
| // Link up the condition block with the code that follows the loop. |
| // (the false branch). |
| ExitConditionBlock->addSuccessor(LoopSuccessor); |
| |
| // If the loop contains initialization, create a new block for those |
| // statements. This block can also contain statements that precede |
| // the loop. |
| if (Stmt* I = F->getInit()) { |
| Block = createBlock(); |
| return addStmt(I); |
| } |
| else { |
| // There is no loop initialization. We are thus basically a while |
| // loop. NULL out Block to force lazy block construction. |
| Block = NULL; |
| Succ = EntryConditionBlock; |
| return EntryConditionBlock; |
| } |
| } |
| |
| CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) { |
| // "while" is a control-flow statement. Thus we stop processing the |
| // current block. |
| |
| CFGBlock* LoopSuccessor = NULL; |
| |
| if (Block) { |
| FinishBlock(Block); |
| LoopSuccessor = Block; |
| } |
| else LoopSuccessor = Succ; |
| |
| // Because of short-circuit evaluation, the condition of the loop |
| // can span multiple basic blocks. Thus we need the "Entry" and "Exit" |
| // blocks that evaluate the condition. |
| CFGBlock* ExitConditionBlock = createBlock(false); |
| CFGBlock* EntryConditionBlock = ExitConditionBlock; |
| |
| // Set the terminator for the "exit" condition block. |
| ExitConditionBlock->setTerminator(W); |
| |
| // Now add the actual condition to the condition block. Because the |
| // condition itself may contain control-flow, new blocks may be created. |
| // Thus we update "Succ" after adding the condition. |
| if (Stmt* C = W->getCond()) { |
| Block = ExitConditionBlock; |
| EntryConditionBlock = addStmt(C); |
| assert (Block == EntryConditionBlock); |
| if (Block) FinishBlock(EntryConditionBlock); |
| } |
| |
| // The condition block is the implicit successor for the loop body as |
| // well as any code above the loop. |
| Succ = EntryConditionBlock; |
| |
| // Process the loop body. |
| { |
| assert (W->getBody()); |
| |
| // Save the current values for Block, Succ, and continue and break targets |
| SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), |
| save_continue(ContinueTargetBlock), |
| save_break(BreakTargetBlock); |
| |
| // All continues within this loop should go to the condition block |
| ContinueTargetBlock = EntryConditionBlock; |
| |
| // All breaks should go to the code following the loop. |
| BreakTargetBlock = LoopSuccessor; |
| |
| // NULL out Block to force lazy instantiation of blocks for the body. |
| Block = NULL; |
| |
| // Create the body. The returned block is the entry to the loop body. |
| CFGBlock* BodyBlock = Visit(W->getBody()); |
| |
| if (!BodyBlock) |
| BodyBlock = EntryConditionBlock; // can happen for "while(...) ;" |
| else if (Block) |
| FinishBlock(BodyBlock); |
| |
| // Add the loop body entry as a successor to the condition. |
| ExitConditionBlock->addSuccessor(BodyBlock); |
| } |
| |
| // Link up the condition block with the code that follows the loop. |
| // (the false branch). |
| ExitConditionBlock->addSuccessor(LoopSuccessor); |
| |
| // There can be no more statements in the condition block |
| // since we loop back to this block. NULL out Block to force |
| // lazy creation of another block. |
| Block = NULL; |
| |
| // Return the condition block, which is the dominating block for the loop. |
| Succ = EntryConditionBlock; |
| return EntryConditionBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitDoStmt(DoStmt* D) { |
| // "do...while" is a control-flow statement. Thus we stop processing the |
| // current block. |
| |
| CFGBlock* LoopSuccessor = NULL; |
| |
| if (Block) { |
| FinishBlock(Block); |
| LoopSuccessor = Block; |
| } |
| else LoopSuccessor = Succ; |
| |
| // Because of short-circuit evaluation, the condition of the loop |
| // can span multiple basic blocks. Thus we need the "Entry" and "Exit" |
| // blocks that evaluate the condition. |
| CFGBlock* ExitConditionBlock = createBlock(false); |
| CFGBlock* EntryConditionBlock = ExitConditionBlock; |
| |
| // Set the terminator for the "exit" condition block. |
| ExitConditionBlock->setTerminator(D); |
| |
| // Now add the actual condition to the condition block. Because the |
| // condition itself may contain control-flow, new blocks may be created. |
| if (Stmt* C = D->getCond()) { |
| Block = ExitConditionBlock; |
| EntryConditionBlock = addStmt(C); |
| if (Block) FinishBlock(EntryConditionBlock); |
| } |
| |
| // The condition block is the implicit successor for the loop body. |
| Succ = EntryConditionBlock; |
| |
| // Process the loop body. |
| CFGBlock* BodyBlock = NULL; |
| { |
| assert (D->getBody()); |
| |
| // Save the current values for Block, Succ, and continue and break targets |
| SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), |
| save_continue(ContinueTargetBlock), |
| save_break(BreakTargetBlock); |
| |
| // All continues within this loop should go to the condition block |
| ContinueTargetBlock = EntryConditionBlock; |
| |
| // All breaks should go to the code following the loop. |
| BreakTargetBlock = LoopSuccessor; |
| |
| // NULL out Block to force lazy instantiation of blocks for the body. |
| Block = NULL; |
| |
| // Create the body. The returned block is the entry to the loop body. |
| BodyBlock = Visit(D->getBody()); |
| |
| if (!BodyBlock) |
| BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" |
| else if (Block) |
| FinishBlock(BodyBlock); |
| |
| // Add the loop body entry as a successor to the condition. |
| ExitConditionBlock->addSuccessor(BodyBlock); |
| } |
| |
| // Link up the condition block with the code that follows the loop. |
| // (the false branch). |
| ExitConditionBlock->addSuccessor(LoopSuccessor); |
| |
| // There can be no more statements in the body block(s) |
| // since we loop back to the body. NULL out Block to force |
| // lazy creation of another block. |
| Block = NULL; |
| |
| // Return the loop body, which is the dominating block for the loop. |
| Succ = BodyBlock; |
| return BodyBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) { |
| // "continue" is a control-flow statement. Thus we stop processing the |
| // current block. |
| if (Block) FinishBlock(Block); |
| |
| // Now create a new block that ends with the continue statement. |
| Block = createBlock(false); |
| Block->setTerminator(C); |
| |
| // If there is no target for the continue, then we are looking at an |
| // incomplete AST. Handle this by not registering a successor. |
| if (ContinueTargetBlock) Block->addSuccessor(ContinueTargetBlock); |
| |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitBreakStmt(BreakStmt* B) { |
| // "break" is a control-flow statement. Thus we stop processing the |
| // current block. |
| if (Block) FinishBlock(Block); |
| |
| // Now create a new block that ends with the continue statement. |
| Block = createBlock(false); |
| Block->setTerminator(B); |
| |
| // If there is no target for the break, then we are looking at an |
| // incomplete AST. Handle this by not registering a successor. |
| if (BreakTargetBlock) Block->addSuccessor(BreakTargetBlock); |
| |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* S) { |
| // "switch" is a control-flow statement. Thus we stop processing the |
| // current block. |
| CFGBlock* SwitchSuccessor = NULL; |
| |
| if (Block) { |
| FinishBlock(Block); |
| SwitchSuccessor = Block; |
| } |
| else SwitchSuccessor = Succ; |
| |
| // Save the current "switch" context. |
| SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock), |
| save_break(BreakTargetBlock), |
| save_default(DefaultCaseBlock); |
| |
| // Set the "default" case to be the block after the switch statement. |
| // If the switch statement contains a "default:", this value will |
| // be overwritten with the block for that code. |
| DefaultCaseBlock = SwitchSuccessor; |
| |
| // Create a new block that will contain the switch statement. |
| SwitchTerminatedBlock = createBlock(false); |
| |
| // Now process the switch body. The code after the switch is the implicit |
| // successor. |
| Succ = SwitchSuccessor; |
| BreakTargetBlock = SwitchSuccessor; |
| |
| // When visiting the body, the case statements should automatically get |
| // linked up to the switch. We also don't keep a pointer to the body, |
| // since all control-flow from the switch goes to case/default statements. |
| assert (S->getBody() && "switch must contain a non-NULL body"); |
| Block = NULL; |
| CFGBlock *BodyBlock = Visit(S->getBody()); |
| if (Block) FinishBlock(BodyBlock); |
| |
| // If we have no "default:" case, the default transition is to the |
| // code following the switch body. |
| SwitchTerminatedBlock->addSuccessor(DefaultCaseBlock); |
| |
| // Add the terminator and condition in the switch block. |
| SwitchTerminatedBlock->setTerminator(S); |
| assert (S->getCond() && "switch condition must be non-NULL"); |
| Block = SwitchTerminatedBlock; |
| |
| return addStmt(S->getCond()); |
| } |
| |
| CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* S) { |
| // CaseStmts are essentially labels, so they are the |
| // first statement in a block. |
| |
| if (S->getSubStmt()) Visit(S->getSubStmt()); |
| CFGBlock* CaseBlock = Block; |
| if (!CaseBlock) CaseBlock = createBlock(); |
| |
| // Cases statements partition blocks, so this is the top of |
| // the basic block we were processing (the "case XXX:" is the label). |
| CaseBlock->setLabel(S); |
| FinishBlock(CaseBlock); |
| |
| // Add this block to the list of successors for the block with the |
| // switch statement. |
| assert (SwitchTerminatedBlock); |
| SwitchTerminatedBlock->addSuccessor(CaseBlock); |
| |
| // We set Block to NULL to allow lazy creation of a new block (if necessary) |
| Block = NULL; |
| |
| // This block is now the implicit successor of other blocks. |
| Succ = CaseBlock; |
| |
| return CaseBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* S) { |
| if (S->getSubStmt()) Visit(S->getSubStmt()); |
| DefaultCaseBlock = Block; |
| if (!DefaultCaseBlock) DefaultCaseBlock = createBlock(); |
| |
| // Default statements partition blocks, so this is the top of |
| // the basic block we were processing (the "default:" is the label). |
| DefaultCaseBlock->setLabel(S); |
| FinishBlock(DefaultCaseBlock); |
| |
| // Unlike case statements, we don't add the default block to the |
| // successors for the switch statement immediately. This is done |
| // when we finish processing the switch statement. This allows for |
| // the default case (including a fall-through to the code after the |
| // switch statement) to always be the last successor of a switch-terminated |
| // block. |
| |
| // We set Block to NULL to allow lazy creation of a new block (if necessary) |
| Block = NULL; |
| |
| // This block is now the implicit successor of other blocks. |
| Succ = DefaultCaseBlock; |
| |
| return DefaultCaseBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) { |
| // Lazily create the indirect-goto dispatch block if there isn't one |
| // already. |
| CFGBlock* IBlock = cfg->getIndirectGotoBlock(); |
| |
| if (!IBlock) { |
| IBlock = createBlock(false); |
| cfg->setIndirectGotoBlock(IBlock); |
| } |
| |
| // IndirectGoto is a control-flow statement. Thus we stop processing the |
| // current block and create a new one. |
| if (Block) FinishBlock(Block); |
| Block = createBlock(false); |
| Block->setTerminator(I); |
| Block->addSuccessor(IBlock); |
| return addStmt(I->getTarget()); |
| } |
| |
| |
| } // end anonymous namespace |
| |
| /// createBlock - Constructs and adds a new CFGBlock to the CFG. The |
| /// block has no successors or predecessors. If this is the first block |
| /// created in the CFG, it is automatically set to be the Entry and Exit |
| /// of the CFG. |
| CFGBlock* CFG::createBlock() { |
| bool first_block = begin() == end(); |
| |
| // Create the block. |
| Blocks.push_front(CFGBlock(NumBlockIDs++)); |
| |
| // If this is the first block, set it as the Entry and Exit. |
| if (first_block) Entry = Exit = &front(); |
| |
| // Return the block. |
| return &front(); |
| } |
| |
| /// buildCFG - Constructs a CFG from an AST. Ownership of the returned |
| /// CFG is returned to the caller. |
| CFG* CFG::buildCFG(Stmt* Statement) { |
| CFGBuilder Builder; |
| return Builder.buildCFG(Statement); |
| } |
| |
| /// reverseStmts - Reverses the orders of statements within a CFGBlock. |
| void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); } |
| |
| //===----------------------------------------------------------------------===// |
| // CFG: Queries for BlkExprs. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy; |
| } |
| |
| static void FindSubExprAssignments(Stmt* S, llvm::SmallPtrSet<Expr*,50>& Set) { |
| if (!S) |
| return; |
| |
| for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) { |
| if (!*I) continue; |
| |
| if (BinaryOperator* B = dyn_cast<BinaryOperator>(*I)) |
| if (B->isAssignmentOp()) Set.insert(B); |
| |
| FindSubExprAssignments(*I, Set); |
| } |
| } |
| |
| static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) { |
| BlkExprMapTy* M = new BlkExprMapTy(); |
| |
| // Look for assignments that are used as subexpressions. These are the |
| // only assignments that we want to register as a block-level expression. |
| llvm::SmallPtrSet<Expr*,50> SubExprAssignments; |
| |
| for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) |
| for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI) |
| FindSubExprAssignments(*BI, SubExprAssignments); |
| |
| // Iterate over the statements again on identify the Expr* and Stmt* at |
| // the block-level that are block-level expressions. |
| for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) |
| for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI) |
| if (Expr* E = dyn_cast<Expr>(*BI)) { |
| |
| if (BinaryOperator* B = dyn_cast<BinaryOperator>(E)) { |
| // Assignment expressions that are not nested within another |
| // expression are really "statements" whose value is never |
| // used by another expression. |
| if (B->isAssignmentOp() && !SubExprAssignments.count(E)) |
| continue; |
| } |
| else if (const StmtExpr* S = dyn_cast<StmtExpr>(E)) { |
| // Special handling for statement expressions. The last statement |
| // in the statement expression is also a block-level expr. |
| const CompoundStmt* C = S->getSubStmt(); |
| if (!C->body_empty()) { |
| unsigned x = M->size(); |
| (*M)[C->body_back()] = x; |
| } |
| } |
| |
| unsigned x = M->size(); |
| (*M)[E] = x; |
| } |
| |
| return M; |
| } |
| |
| CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) { |
| assert(S != NULL); |
| if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); } |
| |
| BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap); |
| BlkExprMapTy::iterator I = M->find(S); |
| |
| if (I == M->end()) return CFG::BlkExprNumTy(); |
| else return CFG::BlkExprNumTy(I->second); |
| } |
| |
| unsigned CFG::getNumBlkExprs() { |
| if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap)) |
| return M->size(); |
| else { |
| // We assume callers interested in the number of BlkExprs will want |
| // the map constructed if it doesn't already exist. |
| BlkExprMap = (void*) PopulateBlkExprMap(*this); |
| return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size(); |
| } |
| } |
| |
| typedef std::set<std::pair<CFGBlock*,CFGBlock*> > BlkEdgeSetTy; |
| |
| const std::pair<CFGBlock*,CFGBlock*>* |
| CFG::getBlockEdgeImpl(const CFGBlock* B1, const CFGBlock* B2) { |
| |
| BlkEdgeSetTy*& p = reinterpret_cast<BlkEdgeSetTy*&>(BlkEdgeSet); |
| if (!p) p = new BlkEdgeSetTy(); |
| |
| return &*(p->insert(std::make_pair(const_cast<CFGBlock*>(B1), |
| const_cast<CFGBlock*>(B2))).first); |
| } |
| |
| CFG::~CFG() { |
| delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap); |
| delete reinterpret_cast<BlkEdgeSetTy*>(BlkEdgeSet); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CFG pretty printing |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class VISIBILITY_HIDDEN StmtPrinterHelper : public PrinterHelper { |
| |
| typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy; |
| StmtMapTy StmtMap; |
| signed CurrentBlock; |
| unsigned CurrentStmt; |
| |
| public: |
| |
| StmtPrinterHelper(const CFG* cfg) : CurrentBlock(0), CurrentStmt(0) { |
| for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { |
| unsigned j = 1; |
| for (CFGBlock::const_iterator BI = I->begin(), BEnd = I->end() ; |
| BI != BEnd; ++BI, ++j ) |
| StmtMap[*BI] = std::make_pair(I->getBlockID(),j); |
| } |
| } |
| |
| virtual ~StmtPrinterHelper() {} |
| |
| void setBlockID(signed i) { CurrentBlock = i; } |
| void setStmtID(unsigned i) { CurrentStmt = i; } |
| |
| virtual bool handledStmt(Stmt* S, std::ostream& OS) { |
| |
| StmtMapTy::iterator I = StmtMap.find(S); |
| |
| if (I == StmtMap.end()) |
| return false; |
| |
| if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock |
| && I->second.second == CurrentStmt) |
| return false; |
| |
| OS << "[B" << I->second.first << "." << I->second.second << "]"; |
| return true; |
| } |
| }; |
| |
| class VISIBILITY_HIDDEN CFGBlockTerminatorPrint |
| : public StmtVisitor<CFGBlockTerminatorPrint,void> { |
| |
| std::ostream& OS; |
| StmtPrinterHelper* Helper; |
| public: |
| CFGBlockTerminatorPrint(std::ostream& os, StmtPrinterHelper* helper) |
| : OS(os), Helper(helper) {} |
| |
| void VisitIfStmt(IfStmt* I) { |
| OS << "if "; |
| I->getCond()->printPretty(OS,Helper); |
| } |
| |
| // Default case. |
| void VisitStmt(Stmt* S) { S->printPretty(OS); } |
| |
| void VisitForStmt(ForStmt* F) { |
| OS << "for (" ; |
| if (F->getInit()) OS << "..."; |
| OS << "; "; |
| if (Stmt* C = F->getCond()) C->printPretty(OS,Helper); |
| OS << "; "; |
| if (F->getInc()) OS << "..."; |
| OS << ")"; |
| } |
| |
| void VisitWhileStmt(WhileStmt* W) { |
| OS << "while " ; |
| if (Stmt* C = W->getCond()) C->printPretty(OS,Helper); |
| } |
| |
| void VisitDoStmt(DoStmt* D) { |
| OS << "do ... while "; |
| if (Stmt* C = D->getCond()) C->printPretty(OS,Helper); |
| } |
| |
| void VisitSwitchStmt(SwitchStmt* S) { |
| OS << "switch "; |
| S->getCond()->printPretty(OS,Helper); |
| } |
| |
| void VisitConditionalOperator(ConditionalOperator* C) { |
| C->getCond()->printPretty(OS,Helper); |
| OS << " ? ... : ..."; |
| } |
| |
| void VisitChooseExpr(ChooseExpr* C) { |
| OS << "__builtin_choose_expr( "; |
| C->getCond()->printPretty(OS,Helper); |
| OS << " )"; |
| } |
| |
| void VisitIndirectGotoStmt(IndirectGotoStmt* I) { |
| OS << "goto *"; |
| I->getTarget()->printPretty(OS,Helper); |
| } |
| |
| void VisitBinaryOperator(BinaryOperator* B) { |
| if (!B->isLogicalOp()) { |
| VisitExpr(B); |
| return; |
| } |
| |
| B->getLHS()->printPretty(OS,Helper); |
| |
| switch (B->getOpcode()) { |
| case BinaryOperator::LOr: |
| OS << " || ..."; |
| return; |
| case BinaryOperator::LAnd: |
| OS << " && ..."; |
| return; |
| default: |
| assert(false && "Invalid logical operator."); |
| } |
| } |
| |
| void VisitExpr(Expr* E) { |
| E->printPretty(OS,Helper); |
| } |
| }; |
| |
| |
| void print_stmt(std::ostream&OS, StmtPrinterHelper* Helper, Stmt* S) { |
| if (Helper) { |
| // special printing for statement-expressions. |
| if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) { |
| CompoundStmt* Sub = SE->getSubStmt(); |
| |
| if (Sub->child_begin() != Sub->child_end()) { |
| OS << "({ ... ; "; |
| Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS); |
| OS << " })\n"; |
| return; |
| } |
| } |
| |
| // special printing for comma expressions. |
| if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { |
| if (B->getOpcode() == BinaryOperator::Comma) { |
| OS << "... , "; |
| Helper->handledStmt(B->getRHS(),OS); |
| OS << '\n'; |
| return; |
| } |
| } |
| } |
| |
| S->printPretty(OS, Helper); |
| |
| // Expressions need a newline. |
| if (isa<Expr>(S)) OS << '\n'; |
| } |
| |
| void print_block(std::ostream& OS, const CFG* cfg, const CFGBlock& B, |
| StmtPrinterHelper* Helper, bool print_edges) { |
| |
| if (Helper) Helper->setBlockID(B.getBlockID()); |
| |
| // Print the header. |
| OS << "\n [ B" << B.getBlockID(); |
| |
| if (&B == &cfg->getEntry()) |
| OS << " (ENTRY) ]\n"; |
| else if (&B == &cfg->getExit()) |
| OS << " (EXIT) ]\n"; |
| else if (&B == cfg->getIndirectGotoBlock()) |
| OS << " (INDIRECT GOTO DISPATCH) ]\n"; |
| else |
| OS << " ]\n"; |
| |
| // Print the label of this block. |
| if (Stmt* S = const_cast<Stmt*>(B.getLabel())) { |
| |
| if (print_edges) |
| OS << " "; |
| |
| if (LabelStmt* L = dyn_cast<LabelStmt>(S)) |
| OS << L->getName(); |
| else if (CaseStmt* C = dyn_cast<CaseStmt>(S)) { |
| OS << "case "; |
| C->getLHS()->printPretty(OS); |
| if (C->getRHS()) { |
| OS << " ... "; |
| C->getRHS()->printPretty(OS); |
| } |
| } |
| else if (isa<DefaultStmt>(S)) |
| OS << "default"; |
| else |
| assert(false && "Invalid label statement in CFGBlock."); |
| |
| OS << ":\n"; |
| } |
| |
| // Iterate through the statements in the block and print them. |
| unsigned j = 1; |
| |
| for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; |
| I != E ; ++I, ++j ) { |
| |
| // Print the statement # in the basic block and the statement itself. |
| if (print_edges) |
| OS << " "; |
| |
| OS << std::setw(3) << j << ": "; |
| |
| if (Helper) |
| Helper->setStmtID(j); |
| |
| print_stmt(OS,Helper,*I); |
| } |
| |
| // Print the terminator of this block. |
| if (B.getTerminator()) { |
| if (print_edges) |
| OS << " "; |
| |
| OS << " T: "; |
| |
| if (Helper) Helper->setBlockID(-1); |
| |
| CFGBlockTerminatorPrint TPrinter(OS,Helper); |
| TPrinter.Visit(const_cast<Stmt*>(B.getTerminator())); |
| OS << '\n'; |
| } |
| |
| if (print_edges) { |
| // Print the predecessors of this block. |
| OS << " Predecessors (" << B.pred_size() << "):"; |
| unsigned i = 0; |
| |
| for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); |
| I != E; ++I, ++i) { |
| |
| if (i == 8 || (i-8) == 0) |
| OS << "\n "; |
| |
| OS << " B" << (*I)->getBlockID(); |
| } |
| |
| OS << '\n'; |
| |
| // Print the successors of this block. |
| OS << " Successors (" << B.succ_size() << "):"; |
| i = 0; |
| |
| for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); |
| I != E; ++I, ++i) { |
| |
| if (i == 8 || (i-8) % 10 == 0) |
| OS << "\n "; |
| |
| OS << " B" << (*I)->getBlockID(); |
| } |
| |
| OS << '\n'; |
| } |
| } |
| |
| } // end anonymous namespace |
| |
| /// dump - A simple pretty printer of a CFG that outputs to stderr. |
| void CFG::dump() const { print(*llvm::cerr.stream()); } |
| |
| /// print - A simple pretty printer of a CFG that outputs to an ostream. |
| void CFG::print(std::ostream& OS) const { |
| |
| StmtPrinterHelper Helper(this); |
| |
| // Print the entry block. |
| print_block(OS, this, getEntry(), &Helper, true); |
| |
| // Iterate through the CFGBlocks and print them one by one. |
| for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { |
| // Skip the entry block, because we already printed it. |
| if (&(*I) == &getEntry() || &(*I) == &getExit()) |
| continue; |
| |
| print_block(OS, this, *I, &Helper, true); |
| } |
| |
| // Print the exit block. |
| print_block(OS, this, getExit(), &Helper, true); |
| } |
| |
| /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. |
| void CFGBlock::dump(const CFG* cfg) const { print(*llvm::cerr.stream(), cfg); } |
| |
| /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. |
| /// Generally this will only be called from CFG::print. |
| void CFGBlock::print(std::ostream& OS, const CFG* cfg) const { |
| StmtPrinterHelper Helper(cfg); |
| print_block(OS, cfg, *this, &Helper, true); |
| } |
| |
| /// printTerminator - A simple pretty printer of the terminator of a CFGBlock. |
| void CFGBlock::printTerminator(std::ostream& OS) const { |
| CFGBlockTerminatorPrint TPrinter(OS,NULL); |
| TPrinter.Visit(const_cast<Stmt*>(getTerminator())); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // CFG Graphviz Visualization |
| //===----------------------------------------------------------------------===// |
| |
| |
| #ifndef NDEBUG |
| static StmtPrinterHelper* GraphHelper; |
| #endif |
| |
| void CFG::viewCFG() const { |
| #ifndef NDEBUG |
| StmtPrinterHelper H(this); |
| GraphHelper = &H; |
| llvm::ViewGraph(this,"CFG"); |
| GraphHelper = NULL; |
| #else |
| std::cerr << "CFG::viewCFG is only available in debug builds on " |
| << "systems with Graphviz or gv!\n"; |
| #endif |
| } |
| |
| namespace llvm { |
| template<> |
| struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { |
| static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) { |
| |
| #ifndef NDEBUG |
| std::ostringstream Out; |
| print_block(Out,Graph, *Node, GraphHelper, false); |
| std::string OutStr = Out.str(); |
| |
| if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); |
| |
| // Process string output to make it nicer... |
| for (unsigned i = 0; i != OutStr.length(); ++i) |
| if (OutStr[i] == '\n') { // Left justify |
| OutStr[i] = '\\'; |
| OutStr.insert(OutStr.begin()+i+1, 'l'); |
| } |
| |
| return OutStr; |
| #else |
| return ""; |
| #endif |
| } |
| }; |
| } // end namespace llvm |