blob: 8c61b5c7503a9037236c3cfcd70b19acc8f62020 [file] [log] [blame]
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "CXXABI.h"
using namespace clang;
unsigned ASTContext::NumImplicitDefaultConstructors;
unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
unsigned ASTContext::NumImplicitCopyConstructors;
unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
unsigned ASTContext::NumImplicitCopyAssignmentOperators;
unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
unsigned ASTContext::NumImplicitDestructors;
unsigned ASTContext::NumImplicitDestructorsDeclared;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
void
ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
TemplateTemplateParmDecl *Parm) {
ID.AddInteger(Parm->getDepth());
ID.AddInteger(Parm->getPosition());
// FIXME: Parameter pack
TemplateParameterList *Params = Parm->getTemplateParameters();
ID.AddInteger(Params->size());
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
ID.AddInteger(0);
ID.AddBoolean(TTP->isParameterPack());
continue;
}
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
ID.AddInteger(1);
// FIXME: Parameter pack
ID.AddPointer(NTTP->getType().getAsOpaquePtr());
continue;
}
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
ID.AddInteger(2);
Profile(ID, TTP);
}
}
TemplateTemplateParmDecl *
ASTContext::getCanonicalTemplateTemplateParmDecl(
TemplateTemplateParmDecl *TTP) {
// Check if we already have a canonical template template parameter.
llvm::FoldingSetNodeID ID;
CanonicalTemplateTemplateParm::Profile(ID, TTP);
void *InsertPos = 0;
CanonicalTemplateTemplateParm *Canonical
= CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
if (Canonical)
return Canonical->getParam();
// Build a canonical template parameter list.
TemplateParameterList *Params = TTP->getTemplateParameters();
llvm::SmallVector<NamedDecl *, 4> CanonParams;
CanonParams.reserve(Params->size());
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
CanonParams.push_back(
TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(), TTP->getDepth(),
TTP->getIndex(), 0, false,
TTP->isParameterPack()));
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(*P))
CanonParams.push_back(
NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(), NTTP->getDepth(),
NTTP->getPosition(), 0,
getCanonicalType(NTTP->getType()),
0));
else
CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
cast<TemplateTemplateParmDecl>(*P)));
}
TemplateTemplateParmDecl *CanonTTP
= TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(), TTP->getDepth(),
TTP->getPosition(), 0,
TemplateParameterList::Create(*this, SourceLocation(),
SourceLocation(),
CanonParams.data(),
CanonParams.size(),
SourceLocation()));
// Get the new insert position for the node we care about.
Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
assert(Canonical == 0 && "Shouldn't be in the map!");
(void)Canonical;
// Create the canonical template template parameter entry.
Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
return CanonTTP;
}
CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
if (!LangOpts.CPlusPlus) return 0;
switch (T.getCXXABI()) {
case CXXABI_ARM:
return CreateARMCXXABI(*this);
case CXXABI_Itanium:
return CreateItaniumCXXABI(*this);
case CXXABI_Microsoft:
return CreateMicrosoftCXXABI(*this);
}
return 0;
}
ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
const TargetInfo &t,
IdentifierTable &idents, SelectorTable &sels,
Builtin::Context &builtins,
unsigned size_reserve) :
TemplateSpecializationTypes(this_()),
DependentTemplateSpecializationTypes(this_()),
GlobalNestedNameSpecifier(0), IsInt128Installed(false),
CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
NullTypeSourceInfo(QualType()),
SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
Idents(idents), Selectors(sels),
BuiltinInfo(builtins),
DeclarationNames(*this),
ExternalSource(0), PrintingPolicy(LOpts),
LastSDM(0, 0),
UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
ObjCIdRedefinitionType = QualType();
ObjCClassRedefinitionType = QualType();
ObjCSelRedefinitionType = QualType();
if (size_reserve > 0) Types.reserve(size_reserve);
TUDecl = TranslationUnitDecl::Create(*this);
InitBuiltinTypes();
}
ASTContext::~ASTContext() {
// Release the DenseMaps associated with DeclContext objects.
// FIXME: Is this the ideal solution?
ReleaseDeclContextMaps();
// Call all of the deallocation functions.
for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
Deallocations[I].first(Deallocations[I].second);
// Release all of the memory associated with overridden C++ methods.
for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
OM != OMEnd; ++OM)
OM->second.Destroy();
// ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
// because they can contain DenseMaps.
for (llvm::DenseMap<const ObjCContainerDecl*,
const ASTRecordLayout*>::iterator
I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
// Increment in loop to prevent using deallocated memory.
if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
R->Destroy(*this);
for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
// Increment in loop to prevent using deallocated memory.
if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
R->Destroy(*this);
}
for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
AEnd = DeclAttrs.end();
A != AEnd; ++A)
A->second->~AttrVec();
}
void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
Deallocations.push_back(std::make_pair(Callback, Data));
}
void
ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
ExternalSource.reset(Source.take());
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned counts[] = {
#define TYPE(Name, Parent) 0,
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.def"
0 // Extra
};
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
counts[(unsigned)T->getTypeClass()]++;
}
unsigned Idx = 0;
unsigned TotalBytes = 0;
#define TYPE(Name, Parent) \
if (counts[Idx]) \
fprintf(stderr, " %d %s types\n", (int)counts[Idx], #Name); \
TotalBytes += counts[Idx] * sizeof(Name##Type); \
++Idx;
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.def"
fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
// Implicit special member functions.
fprintf(stderr, " %u/%u implicit default constructors created\n",
NumImplicitDefaultConstructorsDeclared,
NumImplicitDefaultConstructors);
fprintf(stderr, " %u/%u implicit copy constructors created\n",
NumImplicitCopyConstructorsDeclared,
NumImplicitCopyConstructors);
fprintf(stderr, " %u/%u implicit copy assignment operators created\n",
NumImplicitCopyAssignmentOperatorsDeclared,
NumImplicitCopyAssignmentOperators);
fprintf(stderr, " %u/%u implicit destructors created\n",
NumImplicitDestructorsDeclared, NumImplicitDestructors);
if (ExternalSource.get()) {
fprintf(stderr, "\n");
ExternalSource->PrintStats();
}
BumpAlloc.PrintStats();
}
void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
R = CanQualType::CreateUnsafe(QualType(Ty, 0));
Types.push_back(Ty);
}
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (LangOpts.CharIsSigned)
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// GNU extension, 128-bit integers.
InitBuiltinType(Int128Ty, BuiltinType::Int128);
InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
if (LangOpts.CPlusPlus) // C++ 3.9.1p5
InitBuiltinType(WCharTy, BuiltinType::WChar);
else // C99
WCharTy = getFromTargetType(Target.getWCharType());
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
InitBuiltinType(Char16Ty, BuiltinType::Char16);
else // C99
Char16Ty = getFromTargetType(Target.getChar16Type());
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
InitBuiltinType(Char32Ty, BuiltinType::Char32);
else // C99
Char32Ty = getFromTargetType(Target.getChar32Type());
// Placeholder type for functions.
InitBuiltinType(OverloadTy, BuiltinType::Overload);
// Placeholder type for type-dependent expressions whose type is
// completely unknown. No code should ever check a type against
// DependentTy and users should never see it; however, it is here to
// help diagnose failures to properly check for type-dependent
// expressions.
InitBuiltinType(DependentTy, BuiltinType::Dependent);
// Placeholder type for C++0x auto declarations whose real type has
// not yet been deduced.
InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
BuiltinVaListType = QualType();
// "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
ObjCIdTypedefType = QualType();
ObjCClassTypedefType = QualType();
ObjCSelTypedefType = QualType();
// Builtin types for 'id', 'Class', and 'SEL'.
InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
ObjCConstantStringType = QualType();
// void * type
VoidPtrTy = getPointerType(VoidTy);
// nullptr type (C++0x 2.14.7)
InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
}
AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
AttrVec *&Result = DeclAttrs[D];
if (!Result) {
void *Mem = Allocate(sizeof(AttrVec));
Result = new (Mem) AttrVec;
}
return *Result;
}
/// \brief Erase the attributes corresponding to the given declaration.
void ASTContext::eraseDeclAttrs(const Decl *D) {
llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
if (Pos != DeclAttrs.end()) {
Pos->second->~AttrVec();
DeclAttrs.erase(Pos);
}
}
MemberSpecializationInfo *
ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
assert(Var->isStaticDataMember() && "Not a static data member");
llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
= InstantiatedFromStaticDataMember.find(Var);
if (Pos == InstantiatedFromStaticDataMember.end())
return 0;
return Pos->second;
}
void
ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
assert(Inst->isStaticDataMember() && "Not a static data member");
assert(Tmpl->isStaticDataMember() && "Not a static data member");
assert(!InstantiatedFromStaticDataMember[Inst] &&
"Already noted what static data member was instantiated from");
InstantiatedFromStaticDataMember[Inst]
= new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
}
NamedDecl *
ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
= InstantiatedFromUsingDecl.find(UUD);
if (Pos == InstantiatedFromUsingDecl.end())
return 0;
return Pos->second;
}
void
ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
assert((isa<UsingDecl>(Pattern) ||
isa<UnresolvedUsingValueDecl>(Pattern) ||
isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
"pattern decl is not a using decl");
assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
InstantiatedFromUsingDecl[Inst] = Pattern;
}
UsingShadowDecl *
ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
= InstantiatedFromUsingShadowDecl.find(Inst);
if (Pos == InstantiatedFromUsingShadowDecl.end())
return 0;
return Pos->second;
}
void
ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
UsingShadowDecl *Pattern) {
assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
InstantiatedFromUsingShadowDecl[Inst] = Pattern;
}
FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
= InstantiatedFromUnnamedFieldDecl.find(Field);
if (Pos == InstantiatedFromUnnamedFieldDecl.end())
return 0;
return Pos->second;
}
void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
FieldDecl *Tmpl) {
assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
"Already noted what unnamed field was instantiated from");
InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
}
ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
= OverriddenMethods.find(Method);
if (Pos == OverriddenMethods.end())
return 0;
return Pos->second.begin();
}
ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
= OverriddenMethods.find(Method);
if (Pos == OverriddenMethods.end())
return 0;
return Pos->second.end();
}
unsigned
ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
= OverriddenMethods.find(Method);
if (Pos == OverriddenMethods.end())
return 0;
return Pos->second.size();
}
void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
const CXXMethodDecl *Overridden) {
OverriddenMethods[Method].push_back(Overridden);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
const BuiltinType *BT = T->getAs<BuiltinType>();
assert(BT && "Not a floating point type!");
switch (BT->getKind()) {
default: assert(0 && "Not a floating point type!");
case BuiltinType::Float: return Target.getFloatFormat();
case BuiltinType::Double: return Target.getDoubleFormat();
case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
}
}
/// getDeclAlign - Return a conservative estimate of the alignment of the
/// specified decl. Note that bitfields do not have a valid alignment, so
/// this method will assert on them.
/// If @p RefAsPointee, references are treated like their underlying type
/// (for alignof), else they're treated like pointers (for CodeGen).
CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
unsigned Align = Target.getCharWidth();
Align = std::max(Align, D->getMaxAlignment());
if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
QualType T = VD->getType();
if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
if (RefAsPointee)
T = RT->getPointeeType();
else
T = getPointerType(RT->getPointeeType());
}
if (!T->isIncompleteType() && !T->isFunctionType()) {
unsigned MinWidth = Target.getLargeArrayMinWidth();
unsigned ArrayAlign = Target.getLargeArrayAlign();
if (isa<VariableArrayType>(T) && MinWidth != 0)
Align = std::max(Align, ArrayAlign);
if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
unsigned Size = getTypeSize(CT);
if (MinWidth != 0 && MinWidth <= Size)
Align = std::max(Align, ArrayAlign);
}
// Incomplete or function types default to 1.
while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
T = cast<ArrayType>(T)->getElementType();
Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
}
if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
// In the case of a field in a packed struct, we want the minimum
// of the alignment of the field and the alignment of the struct.
Align = std::min(Align,
getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
}
}
return CharUnits::fromQuantity(Align / Target.getCharWidth());
}
std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoInChars(const Type *T) {
std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
CharUnits::fromQuantity(Info.second / getCharWidth()));
}
std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoInChars(QualType T) {
return getTypeInfoInChars(T.getTypePtr());
}
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
///
/// FIXME: Pointers into different addr spaces could have different sizes and
/// alignment requirements: getPointerInfo should take an AddrSpace, this
/// should take a QualType, &c.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(const Type *T) {
uint64_t Width=0;
unsigned Align=8;
switch (T->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
assert(false && "Should not see dependent types");
break;
case Type::FunctionNoProto:
case Type::FunctionProto:
// GCC extension: alignof(function) = 32 bits
Width = 0;
Align = 32;
break;
case Type::IncompleteArray:
case Type::VariableArray:
Width = 0;
Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
break;
case Type::ConstantArray: {
const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
Width = EltInfo.first*CAT->getSize().getZExtValue();
Align = EltInfo.second;
break;
}
case Type::ExtVector:
case Type::Vector: {
const VectorType *VT = cast<VectorType>(T);
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
Width = EltInfo.first*VT->getNumElements();
Align = Width;
// If the alignment is not a power of 2, round up to the next power of 2.
// This happens for non-power-of-2 length vectors.
if (Align & (Align-1)) {
Align = llvm::NextPowerOf2(Align);
Width = llvm::RoundUpToAlignment(Width, Align);
}
break;
}
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
// GCC extension: alignof(void) = 8 bits.
Width = 0;
Align = 8;
break;
case BuiltinType::Bool:
Width = Target.getBoolWidth();
Align = Target.getBoolAlign();
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar:
Width = Target.getCharWidth();
Align = Target.getCharAlign();
break;
case BuiltinType::WChar:
Width = Target.getWCharWidth();
Align = Target.getWCharAlign();
break;
case BuiltinType::Char16:
Width = Target.getChar16Width();
Align = Target.getChar16Align();
break;
case BuiltinType::Char32:
Width = Target.getChar32Width();
Align = Target.getChar32Align();
break;
case BuiltinType::UShort:
case BuiltinType::Short:
Width = Target.getShortWidth();
Align = Target.getShortAlign();
break;
case BuiltinType::UInt:
case BuiltinType::Int:
Width = Target.getIntWidth();
Align = Target.getIntAlign();
break;
case BuiltinType::ULong:
case BuiltinType::Long:
Width = Target.getLongWidth();
Align = Target.getLongAlign();
break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
Width = Target.getLongLongWidth();
Align = Target.getLongLongAlign();
break;
case BuiltinType::Int128:
case BuiltinType::UInt128:
Width = 128;
Align = 128; // int128_t is 128-bit aligned on all targets.
break;
case BuiltinType::Float:
Width = Target.getFloatWidth();
Align = Target.getFloatAlign();
break;
case BuiltinType::Double:
Width = Target.getDoubleWidth();
Align = Target.getDoubleAlign();
break;
case BuiltinType::LongDouble:
Width = Target.getLongDoubleWidth();
Align = Target.getLongDoubleAlign();
break;
case BuiltinType::NullPtr:
Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
Align = Target.getPointerAlign(0); // == sizeof(void*)
break;
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
Width = Target.getPointerWidth(0);
Align = Target.getPointerAlign(0);
break;
}
break;
case Type::ObjCObjectPointer:
Width = Target.getPointerWidth(0);
Align = Target.getPointerAlign(0);
break;
case Type::BlockPointer: {
unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::LValueReference:
case Type::RValueReference: {
// alignof and sizeof should never enter this code path here, so we go
// the pointer route.
unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::Pointer: {
unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::MemberPointer: {
const MemberPointerType *MPT = cast<MemberPointerType>(T);
std::pair<uint64_t, unsigned> PtrDiffInfo =
getTypeInfo(getPointerDiffType());
Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
Align = PtrDiffInfo.second;
break;
}
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType());
Width = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::ObjCObject:
return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
case Type::ObjCInterface: {
const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
break;
}
case Type::Record:
case Type::Enum: {
const TagType *TT = cast<TagType>(T);
if (TT->getDecl()->isInvalidDecl()) {
Width = 1;
Align = 1;
break;
}
if (const EnumType *ET = dyn_cast<EnumType>(TT))
return getTypeInfo(ET->getDecl()->getIntegerType());
const RecordType *RT = cast<RecordType>(TT);
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
break;
}
case Type::SubstTemplateTypeParm:
return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
getReplacementType().getTypePtr());
case Type::Typedef: {
const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
std::pair<uint64_t, unsigned> Info
= getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
Align = std::max(Typedef->getMaxAlignment(), Info.second);
Width = Info.first;
break;
}
case Type::TypeOfExpr:
return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
.getTypePtr());
case Type::TypeOf:
return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
case Type::Decltype:
return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
.getTypePtr());
case Type::Elaborated:
return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
case Type::TemplateSpecialization:
assert(getCanonicalType(T) != T &&
"Cannot request the size of a dependent type");
// FIXME: this is likely to be wrong once we support template
// aliases, since a template alias could refer to a typedef that
// has an __aligned__ attribute on it.
return getTypeInfo(getCanonicalType(T));
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Width, Align);
}
/// getTypeSizeInChars - Return the size of the specified type, in characters.
/// This method does not work on incomplete types.
CharUnits ASTContext::getTypeSizeInChars(QualType T) {
return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
}
CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
}
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
/// characters. This method does not work on incomplete types.
CharUnits ASTContext::getTypeAlignInChars(QualType T) {
return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
}
CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
}
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits. This can be different than the ABI
/// alignment in cases where it is beneficial for performance to overalign
/// a data type.
unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
unsigned ABIAlign = getTypeAlign(T);
// Double and long long should be naturally aligned if possible.
if (const ComplexType* CT = T->getAs<ComplexType>())
T = CT->getElementType().getTypePtr();
if (T->isSpecificBuiltinType(BuiltinType::Double) ||
T->isSpecificBuiltinType(BuiltinType::LongLong))
return std::max(ABIAlign, (unsigned)getTypeSize(T));
return ABIAlign;
}
/// ShallowCollectObjCIvars -
/// Collect all ivars, including those synthesized, in the current class.
///
void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
// FIXME. This need be removed but there are two many places which
// assume const-ness of ObjCInterfaceDecl
ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
Iv= Iv->getNextIvar())
Ivars.push_back(Iv);
}
/// DeepCollectObjCIvars -
/// This routine first collects all declared, but not synthesized, ivars in
/// super class and then collects all ivars, including those synthesized for
/// current class. This routine is used for implementation of current class
/// when all ivars, declared and synthesized are known.
///
void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
bool leafClass,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
DeepCollectObjCIvars(SuperClass, false, Ivars);
if (!leafClass) {
for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
E = OI->ivar_end(); I != E; ++I)
Ivars.push_back(*I);
}
else
ShallowCollectObjCIvars(OI, Ivars);
}
/// CollectInheritedProtocols - Collect all protocols in current class and
/// those inherited by it.
void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
PE = OI->protocol_end(); P != PE; ++P) {
ObjCProtocolDecl *Proto = (*P);
Protocols.insert(Proto);
for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
PE = Proto->protocol_end(); P != PE; ++P) {
Protocols.insert(*P);
CollectInheritedProtocols(*P, Protocols);
}
}
// Categories of this Interface.
for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
CollectInheritedProtocols(CDeclChain, Protocols);
if (ObjCInterfaceDecl *SD = OI->getSuperClass())
while (SD) {
CollectInheritedProtocols(SD, Protocols);
SD = SD->getSuperClass();
}
} else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
PE = OC->protocol_end(); P != PE; ++P) {
ObjCProtocolDecl *Proto = (*P);
Protocols.insert(Proto);
for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
PE = Proto->protocol_end(); P != PE; ++P)
CollectInheritedProtocols(*P, Protocols);
}
} else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
PE = OP->protocol_end(); P != PE; ++P) {
ObjCProtocolDecl *Proto = (*P);
Protocols.insert(Proto);
for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
PE = Proto->protocol_end(); P != PE; ++P)
CollectInheritedProtocols(*P, Protocols);
}
}
}
unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
unsigned count = 0;
// Count ivars declared in class extension.
for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
CDecl = CDecl->getNextClassExtension())
count += CDecl->ivar_size();
// Count ivar defined in this class's implementation. This
// includes synthesized ivars.
if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
count += ImplDecl->ivar_size();
return count;
}
/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
I = ObjCImpls.find(D);
if (I != ObjCImpls.end())
return cast<ObjCImplementationDecl>(I->second);
return 0;
}
/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
I = ObjCImpls.find(D);
if (I != ObjCImpls.end())
return cast<ObjCCategoryImplDecl>(I->second);
return 0;
}
/// \brief Set the implementation of ObjCInterfaceDecl.
void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
ObjCImplementationDecl *ImplD) {
assert(IFaceD && ImplD && "Passed null params");
ObjCImpls[IFaceD] = ImplD;
}
/// \brief Set the implementation of ObjCCategoryDecl.
void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
ObjCCategoryImplDecl *ImplD) {
assert(CatD && ImplD && "Passed null params");
ObjCImpls[CatD] = ImplD;
}
/// \brief Allocate an uninitialized TypeSourceInfo.
///
/// The caller should initialize the memory held by TypeSourceInfo using
/// the TypeLoc wrappers.
///
/// \param T the type that will be the basis for type source info. This type
/// should refer to how the declarator was written in source code, not to
/// what type semantic analysis resolved the declarator to.
TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
unsigned DataSize) {
if (!DataSize)
DataSize = TypeLoc::getFullDataSizeForType(T);
else
assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
"incorrect data size provided to CreateTypeSourceInfo!");
TypeSourceInfo *TInfo =
(TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
new (TInfo) TypeSourceInfo(T);
return TInfo;
}
TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
SourceLocation L) {
TypeSourceInfo *DI = CreateTypeSourceInfo(T);
DI->getTypeLoc().initialize(L);
return DI;
}
const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
return getObjCLayout(D, 0);
}
const ASTRecordLayout &
ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
return getObjCLayout(D->getClassInterface(), D);
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
unsigned Fast = Quals.getFastQualifiers();
Quals.removeFastQualifiers();
// Check if we've already instantiated this type.
llvm::FoldingSetNodeID ID;
ExtQuals::Profile(ID, TypeNode, Quals);
void *InsertPos = 0;
if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
assert(EQ->getQualifiers() == Quals);
QualType T = QualType(EQ, Fast);
return T;
}
ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
ExtQualNodes.InsertNode(New, InsertPos);
QualType T = QualType(New, Fast);
return T;
}
QualType ASTContext::getVolatileType(QualType T) {
QualType CanT = getCanonicalType(T);
if (CanT.isVolatileQualified()) return T;
QualifierCollector Quals;
const Type *TypeNode = Quals.strip(T);
Quals.addVolatile();
return getExtQualType(TypeNode, Quals);
}
QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
QualType CanT = getCanonicalType(T);
if (CanT.getAddressSpace() == AddressSpace)
return T;
// If we are composing extended qualifiers together, merge together
// into one ExtQuals node.
QualifierCollector Quals;
const Type *TypeNode = Quals.strip(T);
// If this type already has an address space specified, it cannot get
// another one.
assert(!Quals.hasAddressSpace() &&
"Type cannot be in multiple addr spaces!");
Quals.addAddressSpace(AddressSpace);
return getExtQualType(TypeNode, Quals);
}
QualType ASTContext::getObjCGCQualType(QualType T,
Qualifiers::GC GCAttr) {
QualType CanT = getCanonicalType(T);
if (CanT.getObjCGCAttr() == GCAttr)
return T;
if (T->isPointerType()) {
QualType Pointee = T->getAs<PointerType>()->getPointeeType();
if (Pointee->isAnyPointerType()) {
QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
return getPointerType(ResultType);
}
}
// If we are composing extended qualifiers together, merge together
// into one ExtQuals node.
QualifierCollector Quals;
const Type *TypeNode = Quals.strip(T);
// If this type already has an ObjCGC specified, it cannot get
// another one.
assert(!Quals.hasObjCGCAttr() &&
"Type cannot have multiple ObjCGCs!");
Quals.addObjCGCAttr(GCAttr);
return getExtQualType(TypeNode, Quals);
}
static QualType getExtFunctionType(ASTContext& Context, QualType T,
const FunctionType::ExtInfo &Info) {
QualType ResultType;
if (const PointerType *Pointer = T->getAs<PointerType>()) {
QualType Pointee = Pointer->getPointeeType();
ResultType = getExtFunctionType(Context, Pointee, Info);
if (ResultType == Pointee)
return T;
ResultType = Context.getPointerType(ResultType);
} else if (const BlockPointerType *BlockPointer
= T->getAs<BlockPointerType>()) {
QualType Pointee = BlockPointer->getPointeeType();
ResultType = getExtFunctionType(Context, Pointee, Info);
if (ResultType == Pointee)
return T;
ResultType = Context.getBlockPointerType(ResultType);
} else if (const FunctionType *F = T->getAs<FunctionType>()) {
if (F->getExtInfo() == Info)
return T;
if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
Info);
} else {
const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
ResultType
= Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
FPT->getNumArgs(), FPT->isVariadic(),
FPT->getTypeQuals(),
FPT->hasExceptionSpec(),
FPT->hasAnyExceptionSpec(),
FPT->getNumExceptions(),
FPT->exception_begin(),
Info);
}
} else
return T;
return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
}
QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
FunctionType::ExtInfo Info = getFunctionExtInfo(T);
return getExtFunctionType(*this, T,
Info.withNoReturn(AddNoReturn));
}
QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
FunctionType::ExtInfo Info = getFunctionExtInfo(T);
return getExtFunctionType(*this, T,
Info.withCallingConv(CallConv));
}
QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
FunctionType::ExtInfo Info = getFunctionExtInfo(T);
return getExtFunctionType(*this, T,
Info.withRegParm(RegParm));
}
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getComplexType(getCanonicalType(T));
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getBlockPointerType - Return the uniqued reference to the type for
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) {
assert(T->isFunctionType() && "block of function types only");
// Unique pointers, to guarantee there is only one block of a particular
// structure.
llvm::FoldingSetNodeID ID;
BlockPointerType::Profile(ID, T);
void *InsertPos = 0;
if (BlockPointerType *PT =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the block pointee type isn't canonical, this won't be a canonical
// type either so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getBlockPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
BlockPointerType *NewIP =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
BlockPointerType *New
= new (*this, TypeAlignment) BlockPointerType(T, Canonical);
Types.push_back(New);
BlockPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getLValueReferenceType - Return the uniqued reference to the type for an
/// lvalue reference to the specified type.
QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T, SpelledAsLValue);
void *InsertPos = 0;
if (LValueReferenceType *RT =
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
const ReferenceType *InnerRef = T->getAs<ReferenceType>();
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
// Get the new insert position for the node we care about.
LValueReferenceType *NewIP =
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
LValueReferenceType *New
= new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
SpelledAsLValue);
Types.push_back(New);
LValueReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getRValueReferenceType - Return the uniqued reference to the type for an
/// rvalue reference to the specified type.
QualType ASTContext::getRValueReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T, false);
void *InsertPos = 0;
if (RValueReferenceType *RT =
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
const ReferenceType *InnerRef = T->getAs<ReferenceType>();
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (InnerRef || !T.isCanonical()) {
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
// Get the new insert position for the node we care about.
RValueReferenceType *NewIP =
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
RValueReferenceType *New
= new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
Types.push_back(New);
RValueReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getMemberPointerType - Return the uniqued reference to the type for a
/// member pointer to the specified type, in the specified class.
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
MemberPointerType::Profile(ID, T, Cls);
void *InsertPos = 0;
if (MemberPointerType *PT =
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee or class type isn't canonical, this won't be a canonical
// type either, so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
// Get the new insert position for the node we care about.
MemberPointerType *NewIP =
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
MemberPointerType *New
= new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
Types.push_back(New);
MemberPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
const llvm::APInt &ArySizeIn,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
assert((EltTy->isDependentType() ||
EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
"Constant array of VLAs is illegal!");
// Convert the array size into a canonical width matching the pointer size for
// the target.
llvm::APInt ArySize(ArySizeIn);
ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
llvm::FoldingSetNodeID ID;
ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
void *InsertPos = 0;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!EltTy.isCanonical()) {
Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ConstantArrayType *New = new(*this,TypeAlignment)
ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy,
Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals,
SourceRange Brackets) {
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
QualType CanonType;
if (!EltTy.isCanonical()) {
if (NumElts)
NumElts->Retain();
CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
EltTypeQuals, Brackets);
}
VariableArrayType *New = new(*this, TypeAlignment)
VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
VariableArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type.
QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals,
SourceRange Brackets) {
assert((!NumElts || NumElts->isTypeDependent() ||
NumElts->isValueDependent()) &&
"Size must be type- or value-dependent!");
void *InsertPos = 0;
DependentSizedArrayType *Canon = 0;
llvm::FoldingSetNodeID ID;
if (NumElts) {
// Dependently-sized array types that do not have a specified
// number of elements will have their sizes deduced from an
// initializer.
DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
EltTypeQuals, NumElts);
Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
}
DependentSizedArrayType *New;
if (Canon) {
// We already have a canonical version of this array type; use it as
// the canonical type for a newly-built type.
New = new (*this, TypeAlignment)
DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
NumElts, ASM, EltTypeQuals, Brackets);
} else {
QualType CanonEltTy = getCanonicalType(EltTy);
if (CanonEltTy == EltTy) {
New = new (*this, TypeAlignment)
DependentSizedArrayType(*this, EltTy, QualType(),
NumElts, ASM, EltTypeQuals, Brackets);
if (NumElts) {
DependentSizedArrayType *CanonCheck
= DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CanonCheck && "Dependent-sized canonical array type broken");
(void)CanonCheck;
DependentSizedArrayTypes.InsertNode(New, InsertPos);
}
} else {
QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
ASM, EltTypeQuals,
SourceRange());
New = new (*this, TypeAlignment)
DependentSizedArrayType(*this, EltTy, Canon,
NumElts, ASM, EltTypeQuals, Brackets);
}
}
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
void *InsertPos = 0;
if (IncompleteArrayType *ATP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!EltTy.isCanonical()) {
Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
IncompleteArrayType *NewIP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
IncompleteArrayType *New = new (*this, TypeAlignment)
IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
IncompleteArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
VectorType::AltiVecSpecific AltiVecSpec) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::Vector, AltiVecSpec);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType.isCanonical()) {
Canonical = getVectorType(getCanonicalType(vecType), NumElts,
VectorType::NotAltiVec);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
VectorType *New = new (*this, TypeAlignment)
VectorType(vecType, NumElts, Canonical, AltiVecSpec);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
VectorType::NotAltiVec);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType.isCanonical()) {
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ExtVectorType *New = new (*this, TypeAlignment)
ExtVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
Expr *SizeExpr,
SourceLocation AttrLoc) {
llvm::FoldingSetNodeID ID;
DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
SizeExpr);
void *InsertPos = 0;
DependentSizedExtVectorType *Canon
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
DependentSizedExtVectorType *New;
if (Canon) {
// We already have a canonical version of this array type; use it as
// the canonical type for a newly-built type.
New = new (*this, TypeAlignment)
DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
SizeExpr, AttrLoc);
} else {
QualType CanonVecTy = getCanonicalType(vecType);
if (CanonVecTy == vecType) {
New = new (*this, TypeAlignment)
DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
AttrLoc);
DependentSizedExtVectorType *CanonCheck
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
(void)CanonCheck;
DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
} else {
QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
SourceLocation());
New = new (*this, TypeAlignment)
DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
}
}
Types.push_back(New);
return QualType(New, 0);
}
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
const FunctionType::ExtInfo &Info) {
const CallingConv CallConv = Info.getCC();
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionNoProtoType::Profile(ID, ResultTy, Info);
void *InsertPos = 0;
if (FunctionNoProtoType *FT =
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!ResultTy.isCanonical() ||
getCanonicalCallConv(CallConv) != CallConv) {
Canonical =
getFunctionNoProtoType(getCanonicalType(ResultTy),
Info.withCallingConv(getCanonicalCallConv(CallConv)));
// Get the new insert position for the node we care about.
FunctionNoProtoType *NewIP =
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
FunctionNoProtoType *New = new (*this, TypeAlignment)
FunctionNoProtoType(ResultTy, Canonical, Info);
Types.push_back(New);
FunctionNoProtoTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
unsigned NumArgs, bool isVariadic,
unsigned TypeQuals, bool hasExceptionSpec,
bool hasAnyExceptionSpec, unsigned NumExs,
const QualType *ExArray,
const FunctionType::ExtInfo &Info) {
const CallingConv CallConv= Info.getCC();
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
NumExs, ExArray, Info);
void *InsertPos = 0;
if (FunctionProtoType *FTP =
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FTP, 0);
// Determine whether the type being created is already canonical or not.
bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i].isCanonicalAsParam())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
// The exception spec is not part of the canonical type.
QualType Canonical;
if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
llvm::SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
Canonical = getFunctionType(getCanonicalType(ResultTy),
CanonicalArgs.data(), NumArgs,
isVariadic, TypeQuals, false,
false, 0, 0,
Info.withCallingConv(getCanonicalCallConv(CallConv)));
// Get the new insert position for the node we care about.
FunctionProtoType *NewIP =
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
// FunctionProtoType objects are allocated with extra bytes after them
// for two variable size arrays (for parameter and exception types) at the
// end of them.
FunctionProtoType *FTP =
(FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
NumArgs*sizeof(QualType) +
NumExs*sizeof(QualType), TypeAlignment);
new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
ExArray, NumExs, Canonical, Info);
Types.push_back(FTP);
FunctionProtoTypes.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
#ifndef NDEBUG
static bool NeedsInjectedClassNameType(const RecordDecl *D) {
if (!isa<CXXRecordDecl>(D)) return false;
const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
if (isa<ClassTemplatePartialSpecializationDecl>(RD))
return true;
if (RD->getDescribedClassTemplate() &&
!isa<ClassTemplateSpecializationDecl>(RD))
return true;
return false;
}
#endif
/// getInjectedClassNameType - Return the unique reference to the
/// injected class name type for the specified templated declaration.
QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
QualType TST) {
assert(NeedsInjectedClassNameType(Decl));
if (Decl->TypeForDecl) {
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
} else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
assert(PrevDecl->TypeForDecl && "previous declaration has no type");
Decl->TypeForDecl = PrevDecl->TypeForDecl;
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
} else {
Decl->TypeForDecl =
new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
Types.push_back(Decl->TypeForDecl);
}
return QualType(Decl->TypeForDecl, 0);
}
/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
assert(Decl && "Passed null for Decl param");
assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
return getTypedefType(Typedef);
assert(!isa<TemplateTypeParmDecl>(Decl) &&
"Template type parameter types are always available.");
if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
assert(!Record->getPreviousDeclaration() &&
"struct/union has previous declaration");
assert(!NeedsInjectedClassNameType(Record));
return getRecordType(Record);
} else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
assert(!Enum->getPreviousDeclaration() &&
"enum has previous declaration");
return getEnumType(Enum);
} else if (const UnresolvedUsingTypenameDecl *Using =
dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
} else
llvm_unreachable("TypeDecl without a type?");
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType
ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (Canonical.isNull())
Canonical = getCanonicalType(Decl->getUnderlyingType());
Decl->TypeForDecl = new(*this, TypeAlignment)
TypedefType(Type::Typedef, Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
QualType ASTContext::getRecordType(const RecordDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
if (PrevDecl->TypeForDecl)
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
QualType ASTContext::getEnumType(const EnumDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
if (PrevDecl->TypeForDecl)
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// \brief Retrieve a substitution-result type.
QualType
ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
QualType Replacement) {
assert(Replacement.isCanonical()
&& "replacement types must always be canonical");
llvm::FoldingSetNodeID ID;
SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
void *InsertPos = 0;
SubstTemplateTypeParmType *SubstParm
= SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
if (!SubstParm) {
SubstParm = new (*this, TypeAlignment)
SubstTemplateTypeParmType(Parm, Replacement);
Types.push_back(SubstParm);
SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
}
return QualType(SubstParm, 0);
}
/// \brief Retrieve the template type parameter type for a template
/// parameter or parameter pack with the given depth, index, and (optionally)
/// name.
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
bool ParameterPack,
IdentifierInfo *Name) {
llvm::FoldingSetNodeID ID;
TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
void *InsertPos = 0;
TemplateTypeParmType *TypeParm
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
if (TypeParm)
return QualType(TypeParm, 0);
if (Name) {
QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
TypeParm = new (*this, TypeAlignment)
TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
TemplateTypeParmType *TypeCheck
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!TypeCheck && "Template type parameter canonical type broken");
(void)TypeCheck;
} else
TypeParm = new (*this, TypeAlignment)
TemplateTypeParmType(Depth, Index, ParameterPack);
Types.push_back(TypeParm);
TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
return QualType(TypeParm, 0);
}
TypeSourceInfo *
ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
SourceLocation NameLoc,
const TemplateArgumentListInfo &Args,
QualType CanonType) {
QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
TemplateSpecializationTypeLoc TL
= cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
TL.setTemplateNameLoc(NameLoc);
TL.setLAngleLoc(Args.getLAngleLoc());
TL.setRAngleLoc(Args.getRAngleLoc());
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
TL.setArgLocInfo(i, Args[i].getLocInfo());
return DI;
}
QualType
ASTContext::getTemplateSpecializationType(TemplateName Template,
const TemplateArgumentListInfo &Args,
QualType Canon) {
unsigned NumArgs = Args.size();
llvm::SmallVector<TemplateArgument, 4> ArgVec;
ArgVec.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
ArgVec.push_back(Args[i].getArgument());
return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
Canon);
}
QualType
ASTContext::getTemplateSpecializationType(TemplateName Template,
const TemplateArgument *Args,
unsigned NumArgs,
QualType Canon) {
if (!Canon.isNull())
Canon = getCanonicalType(Canon);
else
Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
// Allocate the (non-canonical) template specialization type, but don't
// try to unique it: these types typically have location information that
// we don't unique and don't want to lose.
void *Mem = Allocate((sizeof(TemplateSpecializationType) +
sizeof(TemplateArgument) * NumArgs),
TypeAlignment);
TemplateSpecializationType *Spec
= new (Mem) TemplateSpecializationType(Template,
Args, NumArgs,
Canon);
Types.push_back(Spec);
return QualType(Spec, 0);
}
QualType
ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
const TemplateArgument *Args,
unsigned NumArgs) {
// Build the canonical template specialization type.
TemplateName CanonTemplate = getCanonicalTemplateName(Template);
llvm::SmallVector<TemplateArgument, 4> CanonArgs;
CanonArgs.reserve(NumArgs);
for (unsigned I = 0; I != NumArgs; ++I)
CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
// Determine whether this canonical template specialization type already
// exists.
llvm::FoldingSetNodeID ID;
TemplateSpecializationType::Profile(ID, CanonTemplate,
CanonArgs.data(), NumArgs, *this);
void *InsertPos = 0;
TemplateSpecializationType *Spec
= TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
if (!Spec) {
// Allocate a new canonical template specialization type.
void *Mem = Allocate((sizeof(TemplateSpecializationType) +
sizeof(TemplateArgument) * NumArgs),
TypeAlignment);
Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
CanonArgs.data(), NumArgs,
QualType());
Types.push_back(Spec);
TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
}
assert(Spec->isDependentType() &&
"Non-dependent template-id type must have a canonical type");
return QualType(Spec, 0);
}
QualType
ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
QualType NamedType) {
llvm::FoldingSetNodeID ID;
ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
void *InsertPos = 0;
ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
QualType Canon = NamedType;
if (!Canon.isCanonical()) {
Canon = getCanonicalType(NamedType);
ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CheckT && "Elaborated canonical type broken");
(void)CheckT;
}
T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
Types.push_back(T);
ElaboratedTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
QualType Canon) {
assert(NNS->isDependent() && "nested-name-specifier must be dependent");
if (Canon.isNull()) {
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
ElaboratedTypeKeyword CanonKeyword = Keyword;
if (Keyword == ETK_None)
CanonKeyword = ETK_Typename;
if (CanonNNS != NNS || CanonKeyword != Keyword)
Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
}
llvm::FoldingSetNodeID ID;
DependentNameType::Profile(ID, Keyword, NNS, Name);
void *InsertPos = 0;
DependentNameType *T
= DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
Types.push_back(T);
DependentNameTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
QualType
ASTContext::getDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
const TemplateArgumentListInfo &Args) {
// TODO: avoid this copy
llvm::SmallVector<TemplateArgument, 16> ArgCopy;
for (unsigned I = 0, E = Args.size(); I != E; ++I)
ArgCopy.push_back(Args[I].getArgument());
return getDependentTemplateSpecializationType(Keyword, NNS, Name,
ArgCopy.size(),
ArgCopy.data());
}
QualType
ASTContext::getDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args) {
assert(NNS->isDependent() && "nested-name-specifier must be dependent");
llvm::FoldingSetNodeID ID;
DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
Name, NumArgs, Args);
void *InsertPos = 0;
DependentTemplateSpecializationType *T
= DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
ElaboratedTypeKeyword CanonKeyword = Keyword;
if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
bool AnyNonCanonArgs = false;
llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
for (unsigned I = 0; I != NumArgs; ++I) {
CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
if (!CanonArgs[I].structurallyEquals(Args[I]))
AnyNonCanonArgs = true;
}
QualType Canon;
if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
Name, NumArgs,
CanonArgs.data());
// Find the insert position again.
DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
}
void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
sizeof(TemplateArgument) * NumArgs),
TypeAlignment);
T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
Name, NumArgs, Args, Canon);
Types.push_back(T);
DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
const ObjCProtocolDecl *RHS) {
return LHS->getDeclName() < RHS->getDeclName();
}
static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) {
if (NumProtocols == 0) return true;
for (unsigned i = 1; i != NumProtocols; ++i)
if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
return false;
return true;
}
static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
unsigned &NumProtocols) {
ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
// Sort protocols, keyed by name.
std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
// Remove duplicates.
ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
NumProtocols = ProtocolsEnd-Protocols;
}
QualType ASTContext::getObjCObjectType(QualType BaseType,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) {
// If the base type is an interface and there aren't any protocols
// to add, then the interface type will do just fine.
if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
return BaseType;
// Look in the folding set for an existing type.
llvm::FoldingSetNodeID ID;
ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// Build the canonical type, which has the canonical base type and
// a sorted-and-uniqued list of protocols.
QualType Canonical;
bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
if (!ProtocolsSorted || !BaseType.isCanonical()) {
if (!ProtocolsSorted) {
llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
Protocols + NumProtocols);
unsigned UniqueCount = NumProtocols;
SortAndUniqueProtocols(&Sorted[0], UniqueCount);
Canonical = getObjCObjectType(getCanonicalType(BaseType),
&Sorted[0], UniqueCount);
} else {
Canonical = getObjCObjectType(getCanonicalType(BaseType),
Protocols, NumProtocols);
}
// Regenerate InsertPos.
ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
}
unsigned Size = sizeof(ObjCObjectTypeImpl);
Size += NumProtocols * sizeof(ObjCProtocolDecl *);
void *Mem = Allocate(Size, TypeAlignment);
ObjCObjectTypeImpl *T =
new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
Types.push_back(T);
ObjCObjectTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
/// the given object type.
QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
llvm::FoldingSetNodeID ID;
ObjCObjectPointerType::Profile(ID, ObjectT);
void *InsertPos = 0;
if (ObjCObjectPointerType *QT =
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// Find the canonical object type.
QualType Canonical;
if (!ObjectT.isCanonical()) {
Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
// Regenerate InsertPos.
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
}
// No match.
void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
ObjCObjectPointerType *QType =
new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
Types.push_back(QType);
ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl. The list of protocols is optional.
QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
if (Decl->TypeForDecl)
return QualType(Decl->TypeForDecl, 0);
// FIXME: redeclarations?
void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
Decl->TypeForDecl = T;
Types.push_back(T);
return QualType(T, 0);
}
/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExprType AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
TypeOfExprType *toe;
if (tofExpr->isTypeDependent()) {
llvm::FoldingSetNodeID ID;
DependentTypeOfExprType::Profile(ID, *this, tofExpr);
void *InsertPos = 0;
DependentTypeOfExprType *Canon
= DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
if (Canon) {
// We already have a "canonical" version of an identical, dependent
// typeof(expr) type. Use that as our canonical type.
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
QualType((TypeOfExprType*)Canon, 0));
}
else {
// Build a new, canonical typeof(expr) type.
Canon
= new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
toe = Canon;
}
} else {
QualType Canonical = getCanonicalType(tofExpr->getType());
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
}
Types.push_back(toe);
return QualType(toe, 0);
}
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
QualType Canonical = getCanonicalType(tofType);
TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
}
/// getDecltypeForExpr - Given an expr, will return the decltype for that
/// expression, according to the rules in C++0x [dcl.type.simple]p4
static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
if (e->isTypeDependent())
return Context.DependentTy;
// If e is an id expression or a class member access, decltype(e) is defined
// as the type of the entity named by e.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
return VD->getType();
}
if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
return FD->getType();
}
// If e is a function call or an invocation of an overloaded operator,
// (parentheses around e are ignored), decltype(e) is defined as the
// return type of that function.
if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
return CE->getCallReturnType();
QualType T = e->getType();
// Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
// defined as T&, otherwise decltype(e) is defined as T.
if (e->isLvalue(Context) == Expr::LV_Valid)
T = Context.getLValueReferenceType(T);
return T;
}
/// getDecltypeType - Unlike many "get<Type>" functions, we don't unique
/// DecltypeType AST's. The only motivation to unique these nodes would be
/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getDecltypeType(Expr *e) {
DecltypeType *dt;
if (e->isTypeDependent()) {
llvm::FoldingSetNodeID ID;
DependentDecltypeType::Profile(ID, *this, e);
void *InsertPos = 0;
DependentDecltypeType *Canon
= DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
if (Canon) {
// We already have a "canonical" version of an equivalent, dependent
// decltype type. Use that as our canonical type.
dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
QualType((DecltypeType*)Canon, 0));
}
else {
// Build a new, canonical typeof(expr) type.
Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
DependentDecltypeTypes.InsertNode(Canon, InsertPos);
dt = Canon;
}
} else {
QualType T = getDecltypeForExpr(e, *this);
dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
}
Types.push_back(dt);
return QualType(dt, 0);
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
assert (Decl);
// FIXME: What is the design on getTagDeclType when it requires casting
// away const? mutable?
return getTypeDeclType(const_cast<TagDecl*>(Decl));
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
CanQualType ASTContext::getSizeType() const {
return getFromTargetType(Target.getSizeType());
}
/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getSignedWCharType() const {
// FIXME: derive from "Target" ?
return WCharTy;
}
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getUnsignedWCharType() const {
// FIXME: derive from "Target" ?
return UnsignedIntTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
return getFromTargetType(Target.getPtrDiffType(0));
}
//===----------------------------------------------------------------------===//
// Type Operators
//===----------------------------------------------------------------------===//
CanQualType ASTContext::getCanonicalParamType(QualType T) {
// Push qualifiers into arrays, and then discard any remaining
// qualifiers.
T = getCanonicalType(T);
const Type *Ty = T.getTypePtr();
QualType Result;
if (isa<ArrayType>(Ty)) {
Result = getArrayDecayedType(QualType(Ty,0));
} else if (isa<FunctionType>(Ty)) {
Result = getPointerType(QualType(Ty, 0));
} else {
Result = QualType(Ty, 0);
}
return CanQualType::CreateUnsafe(Result);
}
/// getCanonicalType - Return the canonical (structural) type corresponding to
/// the specified potentially non-canonical type. The non-canonical version
/// of a type may have many "decorated" versions of types. Decorators can
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
/// to be free of any of these, allowing two canonical types to be compared
/// for exact equality with a simple pointer comparison.
CanQualType ASTContext::getCanonicalType(QualType T) {
QualifierCollector Quals;
const Type *Ptr = Quals.strip(T);
QualType CanType = Ptr->getCanonicalTypeInternal();
// The canonical internal type will be the canonical type *except*
// that we push type qualifiers down through array types.
// If there are no new qualifiers to push down, stop here.
if (!Quals.hasQualifiers())
return CanQualType::CreateUnsafe(CanType);
// If the type qualifiers are on an array type, get the canonical
// type of the array with the qualifiers applied to the element
// type.
ArrayType *AT = dyn_cast<ArrayType>(CanType);
if (!AT)
return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
// Get the canonical version of the element with the extra qualifiers on it.
// This can recursively sink qualifiers through multiple levels of arrays.
QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
NewEltTy = getCanonicalType(NewEltTy);
if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
return CanQualType::CreateUnsafe(
getConstantArrayType(NewEltTy, CAT->getSize(),
CAT->getSizeModifier(),
CAT->getIndexTypeCVRQualifiers()));
if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
return CanQualType::CreateUnsafe(
getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
IAT->getIndexTypeCVRQualifiers()));
if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
return CanQualType::CreateUnsafe(
getDependentSizedArrayType(NewEltTy,
DSAT->getSizeExpr() ?
DSAT->getSizeExpr()->Retain() : 0,
DSAT->getSizeModifier(),
DSAT->getIndexTypeCVRQualifiers(),
DSAT->getBracketsRange())->getCanonicalTypeInternal());
VariableArrayType *VAT = cast<VariableArrayType>(AT);
return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
VAT->getSizeExpr() ?
VAT->getSizeExpr()->Retain() : 0,
VAT->getSizeModifier(),
VAT->getIndexTypeCVRQualifiers(),
VAT->getBracketsRange()));
}
QualType ASTContext::getUnqualifiedArrayType(QualType T,
Qualifiers &Quals) {
Quals = T.getQualifiers();
const ArrayType *AT = getAsArrayType(T);
if (!AT) {
return T.getUnqualifiedType();
}
QualType Elt = AT->getElementType();
QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
if (Elt == UnqualElt)
return T;
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
return getConstantArrayType(UnqualElt, CAT->getSize(),
CAT->getSizeModifier(), 0);
}
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
}
if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
return getVariableArrayType(UnqualElt,
VAT->getSizeExpr() ?
VAT->getSizeExpr()->Retain() : 0,
VAT->getSizeModifier(),
VAT->getIndexTypeCVRQualifiers(),
VAT->getBracketsRange());
}
const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
DSAT->getSizeModifier(), 0,
SourceRange());
}
/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
/// they point to and return true. If T1 and T2 aren't pointer types
/// or pointer-to-member types, or if they are not similar at this
/// level, returns false and leaves T1 and T2 unchanged. Top-level
/// qualifiers on T1 and T2 are ignored. This function will typically
/// be called in a loop that successively "unwraps" pointer and
/// pointer-to-member types to compare them at each level.
bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
const PointerType *T1PtrType = T1->getAs<PointerType>(),
*T2PtrType = T2->getAs<PointerType>();
if (T1PtrType && T2PtrType) {
T1 = T1PtrType->getPointeeType();
T2 = T2PtrType->getPointeeType();
return true;
}
const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
*T2MPType = T2->getAs<MemberPointerType>();
if (T1MPType && T2MPType &&
hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
QualType(T2MPType->getClass(), 0))) {
T1 = T1MPType->getPointeeType();
T2 = T2MPType->getPointeeType();
return true;
}
if (getLangOptions().ObjC1) {
const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
*T2OPType = T2->getAs<ObjCObjectPointerType>();
if (T1OPType && T2OPType) {
T1 = T1OPType->getPointeeType();
T2 = T2OPType->getPointeeType();
return true;
}
}
// FIXME: Block pointers, too?
return false;
}
DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
SourceLocation NameLoc) {
if (TemplateDecl *TD = Name.getAsTemplateDecl())
// DNInfo work in progress: CHECKME: what about DNLoc?
return DeclarationNameInfo(TD->getDeclName(), NameLoc);
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
DeclarationName DName;
if (DTN->isIdentifier()) {
DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
return DeclarationNameInfo(DName, NameLoc);
} else {
DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
// DNInfo work in progress: FIXME: source locations?
DeclarationNameLoc DNLoc;
DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
return DeclarationNameInfo(DName, NameLoc, DNLoc);
}
}
OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
assert(Storage);
// DNInfo work in progress: CHECKME: what about DNLoc?
return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
}
TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(Template))
Template = getCanonicalTemplateTemplateParmDecl(TTP);
// The canonical template name is the canonical template declaration.
return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
}
assert(!Name.getAsOverloadedTemplate());
DependentTemplateName *DTN = Name.getAsDependentTemplateName();
assert(DTN && "Non-dependent template names must refer to template decls.");
return DTN->CanonicalTemplateName;
}
bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
X = getCanonicalTemplateName(X);
Y = getCanonicalTemplateName(Y);
return X.getAsVoidPointer() == Y.getAsVoidPointer();
}
TemplateArgument
ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
return Arg;
case TemplateArgument::Expression:
return Arg;
case TemplateArgument::Declaration:
return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
case TemplateArgument::Template:
return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
case TemplateArgument::Integral:
return TemplateArgument(*Arg.getAsIntegral(),
getCanonicalType(Arg.getIntegralType()));
case TemplateArgument::Type:
return TemplateArgument(getCanonicalType(Arg.getAsType()));
case TemplateArgument::Pack: {
// FIXME: Allocate in ASTContext
TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
unsigned Idx = 0;
for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
AEnd = Arg.pack_end();
A != AEnd; (void)++A, ++Idx)
CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
TemplateArgument Result;
Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
return Result;
}
}
// Silence GCC warning
assert(false && "Unhandled template argument kind");
return TemplateArgument();
}
NestedNameSpecifier *
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
if (!NNS)
return 0;
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
// Canonicalize the prefix but keep the identifier the same.
return NestedNameSpecifier::Create(*this,
getCanonicalNestedNameSpecifier(NNS->getPrefix()),
NNS->getAsIdentifier());
case NestedNameSpecifier::Namespace:
// A namespace is canonical; build a nested-name-specifier with
// this namespace and no prefix.
return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
return NestedNameSpecifier::Create(*this, 0,
NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
T.getTypePtr());
}
case NestedNameSpecifier::Global:
// The global specifier is canonical and unique.
return NNS;
}
// Required to silence a GCC warning
return 0;
}
const ArrayType *ASTContext::getAsArrayType(QualType T) {
// Handle the non-qualified case efficiently.
if (!T.hasLocalQualifiers()) {
// Handle the common positive case fast.
if (const ArrayType *AT = dyn_cast<ArrayType>(T))
return AT;
}
// Handle the common negative case fast.
QualType CType = T->getCanonicalTypeInternal();
if (!isa<ArrayType>(CType))
return 0;
// Apply any qualifiers from the array type to the element type. This
// implements C99 6.7.3p8: "If the specification of an array type includes
// any type qualifiers, the element type is so qualified, not the array type."
// If we get here, we either have type qualifiers on the type, or we have
// sugar such as a typedef in the way. If we have type qualifiers on the type
// we must propagate them down into the element type.
QualifierCollector Qs;
const Type *Ty = Qs.strip(T.getDesugaredType());
// If we have a simple case, just return now.
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
if (ATy == 0 || Qs.empty())
return ATy;
// Otherwise, we have an array and we have qualifiers on it. Push the
// qualifiers into the array element type and return a new array type.
// Get the canonical version of the element with the extra qualifiers on it.
// This can recursively sink qualifiers through multiple levels of arrays.
QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
CAT->getSizeModifier(),
CAT->getIndexTypeCVRQualifiers()));
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
IAT->getSizeModifier(),
IAT->getIndexTypeCVRQualifiers()));
if (const DependentSizedArrayType *DSAT
= dyn_cast<DependentSizedArrayType>(ATy))
return cast<ArrayType>(
getDependentSizedArrayType(NewEltTy,
DSAT->getSizeExpr() ?
DSAT->getSizeExpr()->Retain() : 0,
DSAT->getSizeModifier(),
DSAT->getIndexTypeCVRQualifiers(),
DSAT->getBracketsRange()));
const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
return cast<ArrayType>(getVariableArrayType(NewEltTy,
VAT->getSizeExpr() ?
VAT->getSizeExpr()->Retain() : 0,
VAT->getSizeModifier(),
VAT->getIndexTypeCVRQualifiers(),
VAT->getBracketsRange()));
}
/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer. This operation is non-trivial when
/// handling typedefs etc. The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType ASTContext::getArrayDecayedType(QualType Ty) {
// Get the element type with 'getAsArrayType' so that we don't lose any
// typedefs in the element type of the array. This also handles propagation
// of type qualifiers from the array type into the element type if present
// (C99 6.7.3p8).
const ArrayType *PrettyArrayType = getAsArrayType(Ty);
assert(PrettyArrayType && "Not an array type!");
QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
// int x[restrict 4] -> int *restrict
return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
}
QualType ASTContext::getBaseElementType(QualType QT) {
QualifierCollector Qs;
while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
QT = AT->getElementType();
return Qs.apply(QT);
}
QualType ASTContext::getBaseElementType(const ArrayType *AT) {
QualType ElemTy = AT->getElementType();
if (const ArrayType *AT = getAsArrayType(ElemTy))
return getBaseElementType(AT);
return ElemTy;
}
/// getConstantArrayElementCount - Returns number of constant array elements.
uint64_t
ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
uint64_t ElementCount = 1;
do {
ElementCount *= CA->getSize().getZExtValue();
CA = dyn_cast<ConstantArrayType>(CA->getElementType());
} while (CA);
return ElementCount;
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
if (const ComplexType *CT = T->getAs<ComplexType>())
return getFloatingRank(CT->getElementType());
assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
switch (T->getAs<BuiltinType>()->getKind()) {
default: assert(0 && "getFloatingRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
}
}
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
QualType Domain) const {
FloatingRank EltRank = getFloatingRank(Size);
if (Domain->isComplexType()) {
switch (EltRank) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
assert(Domain->isRealFloatingType() && "Unknown domain!");
switch (EltRank) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
}
}
/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
FloatingRank LHSR = getFloatingRank(LHS);
FloatingRank RHSR = getFloatingRank(RHS);
if (LHSR == RHSR)
return 0;
if (LHSR > RHSR)
return 1;
return -1;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum,
/// or if it is not canonicalized.
unsigned ASTContext::getIntegerRank(Type *T) {
assert(T->isCanonicalUnqualified() && "T should be canonicalized");
if (EnumType* ET = dyn_cast<EnumType>(T))
T = ET->getDecl()->getPromotionType().getTypePtr();
if (T->isSpecificBuiltinType(BuiltinType::WChar))
T = getFromTargetType(Target.getWCharType()).getTypePtr();
if (T->isSpecificBuiltinType(BuiltinType::Char16))
T = getFromTargetType(Target.getChar16Type()).getTypePtr();
if (T->isSpecificBuiltinType(BuiltinType::Char32))
T = getFromTargetType(Target.getChar32Type()).getTypePtr();
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1 + (getIntWidth(BoolTy) << 3);
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2 + (getIntWidth(CharTy) << 3);
case BuiltinType::Short:
case BuiltinType::UShort:
return 3 + (getIntWidth(ShortTy) << 3);
case BuiltinType::Int:
case BuiltinType::UInt:
return 4 + (getIntWidth(IntTy) << 3);
case BuiltinType::Long:
case BuiltinType::ULong:
return 5 + (getIntWidth(LongTy) << 3);
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6 + (getIntWidth(LongLongTy) << 3);
case BuiltinType::Int128:
case BuiltinType::UInt128:
return 7 + (getIntWidth(Int128Ty) << 3);
}
}
/// \brief Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
QualType ASTContext::isPromotableBitField(Expr *E) {
if (E->isTypeDependent() || E->isValueDependent())
return QualType();
FieldDecl *Field = E->getBitField();
if (!Field)
return QualType();
QualType FT = Field->getType();
llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
uint64_t BitWidth = BitWidthAP.getZExtValue();
uint64_t IntSize = getTypeSize(IntTy);
// GCC extension compatibility: if the bit-field size is less than or equal
// to the size of int, it gets promoted no matter what its type is.
// For instance, unsigned long bf : 4 gets promoted to signed int.
if (BitWidth < IntSize)
return IntTy;
if (BitWidth == IntSize)
return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
// Types bigger than int are not subject to promotions, and therefore act
// like the base type.
// FIXME: This doesn't quite match what gcc does, but what gcc does here
// is ridiculous.
return QualType();
}
/// getPromotedIntegerType - Returns the type that Promotable will
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
/// integer type.
QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
assert(!Promotable.isNull());
assert(Promotable->isPromotableIntegerType());
if (const EnumType *ET = Promotable->getAs<EnumType>())
return ET->getDecl()->getPromotionType();
if (Promotable->isSignedIntegerType())
return IntTy;
uint64_t PromotableSize = getTypeSize(Promotable);
uint64_t IntSize = getTypeSize(IntTy);
assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
}
/// getIntegerTypeOrder - Returns the highest ranked integer type:
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
Type *LHSC = getCanonicalType(LHS).getTypePtr();
Type *RHSC = getCanonicalType(RHS).getTypePtr();
if (LHSC == RHSC) return 0;
bool LHSUnsigned = LHSC->isUnsignedIntegerType();
bool RHSUnsigned = RHSC->isUnsignedIntegerType();
unsigned LHSRank = getIntegerRank(LHSC);
unsigned RHSRank = getIntegerRank(RHSC);
if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
if (LHSRank == RHSRank) return 0;
return LHSRank > RHSRank ? 1 : -1;
}
// Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
if (LHSUnsigned) {
// If the unsigned [LHS] type is larger, return it.
if (LHSRank >= RHSRank)
return 1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return -1;
}
// If the unsigned [RHS] type is larger, return it.
if (RHSRank >= LHSRank)
return -1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return 1;
}
static RecordDecl *
CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id) {
if (Ctx.getLangOptions().CPlusPlus)
return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
else
return RecordDecl::Create(Ctx, TK, DC, L, Id);
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() {
if (!CFConstantStringTypeDecl) {
CFConstantStringTypeDecl =
CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
&Idents.get("NSConstantString"));
CFConstantStringTypeDecl->startDefinition();
QualType FieldTypes[4];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.withConst());
// int flags;
FieldTypes[1] = IntTy;
// const char *str;
FieldTypes[2] = getPointerType(CharTy.withConst());
// long length;
FieldTypes[3] = LongTy;
// Create fields
for (unsigned i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
SourceLocation(), 0,
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0,
/*Mutable=*/false);
Field->setAccess(AS_public);
CFConstantStringTypeDecl->addDecl(Field);
}
CFConstantStringTypeDecl->completeDefinition();
}
return getTagDeclType(CFConstantStringTypeDecl);
}
void ASTContext::setCFConstantStringType(QualType T) {
const RecordType *Rec = T->getAs<RecordType>();
assert(Rec && "Invalid CFConstantStringType");
CFConstantStringTypeDecl = Rec->getDecl();
}
// getNSConstantStringType - Return the type used for constant NSStrings.
QualType ASTContext::getNSConstantStringType() {
if (!NSConstantStringTypeDecl) {
NSConstantStringTypeDecl =
CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
&Idents.get("__builtin_NSString"));
NSConstantStringTypeDecl->startDefinition();
QualType FieldTypes[3];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.withConst());
// const char *str;
FieldTypes[1] = getPointerType(CharTy.withConst());
// unsigned int length;
FieldTypes[2] = UnsignedIntTy;
// Create fields
for (unsigned i = 0; i < 3; ++i) {
FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
SourceLocation(), 0,
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0,
/*Mutable=*/false);
Field->setAccess(AS_public);
NSConstantStringTypeDecl->addDecl(Field);
}
NSConstantStringTypeDecl->completeDefinition();
}
return getTagDeclType(NSConstantStringTypeDecl);
}
void ASTContext::setNSConstantStringType(QualType T) {
const RecordType *Rec = T->getAs<RecordType>();
assert(Rec && "Invalid NSConstantStringType");
NSConstantStringTypeDecl = Rec->getDecl();
}
QualType ASTContext::getObjCFastEnumerationStateType() {
if (!ObjCFastEnumerationStateTypeDecl) {
ObjCFastEnumerationStateTypeDecl =
CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
&Idents.get("__objcFastEnumerationState"));
ObjCFastEnumerationStateTypeDecl->startDefinition();
QualType FieldTypes[] = {
UnsignedLongTy,
getPointerType(ObjCIdTypedefType),
getPointerType(UnsignedLongTy),
getConstantArrayType(UnsignedLongTy,
llvm::APInt(32, 5), ArrayType::Normal, 0)
};
for (size_t i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(*this,
ObjCFastEnumerationStateTypeDecl,
SourceLocation(), 0,
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0,
/*Mutable=*/false);
Field->setAccess(AS_public);
ObjCFastEnumerationStateTypeDecl->addDecl(Field);
}
if (getLangOptions().CPlusPlus)
if (CXXRecordDecl *CXXRD =
dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
CXXRD->setEmpty(false);
ObjCFastEnumerationStateTypeDecl->completeDefinition();
}
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
}
QualType ASTContext::getBlockDescriptorType() {
if (BlockDescriptorType)
return getTagDeclType(BlockDescriptorType);
RecordDecl *T;
// FIXME: Needs the FlagAppleBlock bit.
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
&Idents.get("__block_descriptor"));
T->startDefinition();
QualType FieldTypes[] = {
UnsignedLongTy,
UnsignedLongTy,
};
const char *FieldNames[] = {
"reserved",
"Size"
};
for (size_t i = 0; i < 2; ++i) {
FieldDecl *Field = FieldDecl::Create(*this,
T,
SourceLocation(),
&Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0,
/*Mutable=*/false);
Field->setAccess(AS_public);
T->addDecl(Field);
}
T->completeDefinition();
BlockDescriptorType = T;
return getTagDeclType(BlockDescriptorType);
}
void ASTContext::setBlockDescriptorType(QualType T) {
const RecordType *Rec = T->getAs<RecordType>();
assert(Rec && "Invalid BlockDescriptorType");
BlockDescriptorType = Rec->getDecl();
}
QualType ASTContext::getBlockDescriptorExtendedType() {
if (BlockDescriptorExtendedType)
return getTagDeclType(BlockDescriptorExtendedType);
RecordDecl *T;
// FIXME: Needs the FlagAppleBlock bit.
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
&Idents.get("__block_descriptor_withcopydispose"));
T->startDefinition();
QualType FieldTypes[] = {
UnsignedLongTy,
UnsignedLongTy,
getPointerType(VoidPtrTy),
getPointerType(VoidPtrTy)
};
const char *FieldNames[] = {
"reserved",
"Size",
"CopyFuncPtr",
"DestroyFuncPtr"
};
for (size_t i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(*this,
T,
SourceLocation(),
&Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0,
/*Mutable=*/false);
Field->setAccess(AS_public);
T->addDecl(Field);
}
T->completeDefinition();
BlockDescriptorExtendedType = T;
return getTagDeclType(BlockDescriptorExtendedType);
}
void ASTContext::setBlockDescriptorExtendedType(QualType T) {
const RecordType *Rec = T->getAs<RecordType>();
assert(Rec && "Invalid BlockDescriptorType");
BlockDescriptorExtendedType = Rec->getDecl();
}
bool ASTContext::BlockRequiresCopying(QualType Ty) {
if (Ty->isBlockPointerType())
return true;
if (isObjCNSObjectType(Ty))
return true;
if (Ty->isObjCObjectPointerType())
return true;
return false;
}
QualType ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) {
// type = struct __Block_byref_1_X {
// void *__isa;
// struct __Block_byref_1_X *__forwarding;
// unsigned int __flags;
// unsigned int __size;
// void *__copy_helper; // as needed
// void *__destroy_help // as needed
// int X;
// } *
bool HasCopyAndDispose = BlockRequiresCopying(Ty);
// FIXME: Move up
llvm::SmallString<36> Name;
llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
++UniqueBlockByRefTypeID << '_' << DeclName;
RecordDecl *T;
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
&Idents.get(Name.str()));
T->startDefinition();
QualType Int32Ty = IntTy;
assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
QualType FieldTypes[] = {
getPointerType(VoidPtrTy),
getPointerType(getTagDeclType(T)),
Int32Ty,
Int32Ty,
getPointerType(VoidPtrTy),
getPointerType(VoidPtrTy),
Ty
};
llvm::StringRef FieldNames[] = {
"__isa",
"__forwarding",
"__flags",
"__size",
"__copy_helper",
"__destroy_helper",
DeclName,
};
for (size_t i = 0; i < 7; ++i) {
if (!HasCopyAndDispose && i >=4 && i <= 5)
continue;
FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
&Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0, /*Mutable=*/false);
Field->setAccess(AS_public);
T->addDecl(Field);
}
T->completeDefinition();
return getPointerType(getTagDeclType(T));
}
QualType ASTContext::getBlockParmType(
bool BlockHasCopyDispose,
llvm::SmallVectorImpl<const Expr *> &Layout) {
// FIXME: Move up
llvm::SmallString<36> Name;
llvm::raw_svector_ostream(Name) << "__block_literal_"
<< ++UniqueBlockParmTypeID;
RecordDecl *T;
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
&Idents.get(Name.str()));
T->startDefinition();
QualType FieldTypes[] = {
getPointerType(VoidPtrTy),
IntTy,
IntTy,
getPointerType(VoidPtrTy),
(BlockHasCopyDispose ?
getPointerType(getBlockDescriptorExtendedType()) :
getPointerType(getBlockDescriptorType()))
};
const char *FieldNames[] = {
"__isa",
"__flags",
"__reserved",
"__FuncPtr",
"__descriptor"
};
for (size_t i = 0; i < 5; ++i) {
FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
&Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/0,
/*BitWidth=*/0, /*Mutable=*/false);
Field->setAccess(AS_public);
T->addDecl(Field);
}
for (unsigned i = 0; i < Layout.size(); ++i) {
const Expr *E = Layout[i];
QualType FieldType = E->getType();
IdentifierInfo *FieldName = 0;
if (isa<CXXThisExpr>(E)) {
FieldName = &Idents.get("this");
} else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
const ValueDecl *D = BDRE->getDecl();
FieldName = D->getIdentifier();
if (BDRE->isByRef())
FieldType = BuildByRefType(D->getName(), FieldType);
} else {
// Padding.
assert(isa<ConstantArrayType>(FieldType) &&
isa<DeclRefExpr>(E) &&
!cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
"doesn't match characteristics of padding decl");
}
FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
FieldName, FieldType, /*TInfo=*/0,
/*BitWidth=*/0, /*Mutable=*/false);
Field->setAccess(AS_public);
T->addDecl(Field);
}
T->completeDefinition();
return getPointerType(getTagDeclType(T));
}
void ASTContext::setObjCFastEnumerationStateType(QualType T) {
const RecordType *Rec = T->getAs<RecordType>();
assert(Rec && "Invalid ObjCFAstEnumerationStateType");
ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
}
// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
return II->isStr("BOOL");
return false;
}
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
CharUnits sz = getTypeSizeInChars(type);
// Make all integer and enum types at least as large as an int
if (sz.isPositive() && type->isIntegralOrEnumerationType())
sz = std::max(sz, getTypeSizeInChars(IntTy));
// Treat arrays as pointers, since that's how they're passed in.
else if (type->isArrayType())
sz = getTypeSizeInChars(VoidPtrTy);
return sz;
}
static inline
std::string charUnitsToString(const CharUnits &CU) {
return llvm::itostr(CU.getQuantity());
}
/// getObjCEncodingForBlockDecl - Return the encoded type for this block
/// declaration.
void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
std::string& S) {
const BlockDecl *Decl = Expr->getBlockDecl();
QualType BlockTy =
Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
// Encode result type.
getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
SourceLocation Loc;
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
CharUnits ParmOffset = PtrSize;
for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
E = Decl->param_end(); PI != E; ++PI) {
QualType PType = (*PI)->getType();
CharUnits sz = getObjCEncodingTypeSize(PType);
assert (sz.isPositive() && "BlockExpr - Incomplete param type");
ParmOffset += sz;
}
// Size of the argument frame
S += charUnitsToString(ParmOffset);
// Block pointer and offset.
S += "@?0";
ParmOffset = PtrSize;
// Argument types.
ParmOffset = PtrSize;
for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
Decl->param_end(); PI != E; ++PI) {
ParmVarDecl *PVDecl = *PI;
QualType PType = PVDecl->getOriginalType();
if (const ArrayType *AT =
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
// Use array's original type only if it has known number of
// elements.
if (!isa<ConstantArrayType>(AT))
PType = PVDecl->getType();
} else if (PType->isFunctionType())
PType = PVDecl->getType();
getObjCEncodingForType(PType, S);
S += charUnitsToString(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
}
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
std::string& S) {
// FIXME: This is not very efficient.
// Encode type qualifer, 'in', 'inout', etc. for the return type.
getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
// Encode result type.
getObjCEncodingForType(Decl->getResultType(), S);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
SourceLocation Loc;
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
// The first two arguments (self and _cmd) are pointers; account for
// their size.
CharUnits ParmOffset = 2 * PtrSize;
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
E = Decl->sel_param_end(); PI != E; ++PI) {
QualType PType = (*PI)->getType();
CharUnits sz = getObjCEncodingTypeSize(PType);
assert (sz.isPositive() &&
"getObjCEncodingForMethodDecl - Incomplete param type");
ParmOffset += sz;
}
S += charUnitsToString(ParmOffset);
S += "@0:";
S += charUnitsToString(PtrSize);
// Argument types.
ParmOffset = 2 * PtrSize;
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
E = Decl->sel_param_end(); PI != E; ++PI) {
ParmVarDecl *PVDecl = *PI;
QualType PType = PVDecl->getOriginalType();
if (const ArrayType *AT =
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
// Use array's original type only if it has known number of
// elements.
if (!isa<ConstantArrayType>(AT))
PType = PVDecl->getType();
} else if (PType->isFunctionType())
PType = PVDecl->getType();
// Process argument qualifiers for user supplied arguments; such as,
// 'in', 'inout', etc.
getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
getObjCEncodingForType(PType, S);
S += charUnitsToString(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
}
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
/// property declaration. If non-NULL, Container must be either an
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
/// NULL when getting encodings for protocol properties.
/// Property attributes are stored as a comma-delimited C string. The simple
/// attributes readonly and bycopy are encoded as single characters. The
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
/// encoded as single characters, followed by an identifier. Property types
/// are also encoded as a parametrized attribute. The characters used to encode
/// these attributes are defined by the following enumeration:
/// @code
/// enum PropertyAttributes {
/// kPropertyReadOnly = 'R', // property is read-only.
/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
/// kPropertyByref = '&', // property is a reference to the value last assigned
/// kPropertyDynamic = 'D', // property is dynamic
/// kPropertyGetter = 'G', // followed by getter selector name
/// kPropertySetter = 'S', // followed by setter selector name
/// kPropertyInstanceVariable = 'V' // followed by instance variable name
/// kPropertyType = 't' // followed by old-style type encoding.
/// kPropertyWeak = 'W' // 'weak' property
/// kPropertyStrong = 'P' // property GC'able
/// kPropertyNonAtomic = 'N' // property non-atomic
/// };
/// @endcode
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container,
std::string& S) {
// Collect information from the property implementation decl(s).
bool Dynamic = false;
ObjCPropertyImplDecl *SynthesizePID = 0;
// FIXME: Duplicated code due to poor abstraction.
if (Container) {
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(Container)) {
for (ObjCCategoryImplDecl::propimpl_iterator
i = CID->propimpl_begin(), e = CID->propimpl_end();
i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyDecl() == PD) {
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
Dynamic = true;
} else {
SynthesizePID = PID;
}
}
}
} else {
const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
for (ObjCCategoryImplDecl::propimpl_iterator
i = OID->propimpl_begin(), e = OID->propimpl_end();
i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyDecl() == PD) {
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
Dynamic = true;
} else {
SynthesizePID = PID;
}
}
}
}
}
// FIXME: This is not very efficient.
S = "T";
// Encode result type.
// GCC has some special rules regarding encoding of properties which
// closely resembles encoding of ivars.
getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
true /* outermost type */,
true /* encoding for property */);
if (PD->isReadOnly()) {
S += ",R";
} else {
switch (PD->getSetterKind()) {
case ObjCPropertyDecl::Assign: break;
case ObjCPropertyDecl::Copy: S += ",C"; break;
case ObjCPropertyDecl::Retain: S += ",&"; break;
}
}
// It really isn't clear at all what this means, since properties
// are "dynamic by default".
if (Dynamic)
S += ",D";
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
S += ",N";
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
S += ",G";
S += PD->getGetterName().getAsString();
}
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
S += ",S";
S += PD->getSetterName().getAsString();
}
if (SynthesizePID) {
const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
S += ",V";
S += OID->getNameAsString();
}
// FIXME: OBJCGC: weak & strong
}
/// getLegacyIntegralTypeEncoding -
/// Another legacy compatibility encoding: 32-bit longs are encoded as
/// 'l' or 'L' , but not always. For typedefs, we need to use
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
///
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
if (isa<TypedefType>(PointeeTy.getTypePtr())) {
if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
if (BT->getKind() == BuiltinType::ULong &&
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
PointeeTy = UnsignedIntTy;
else
if (BT->getKind() == BuiltinType::Long &&
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
PointeeTy = IntTy;
}
}
}
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
const FieldDecl *Field) {
// We follow the behavior of gcc, expanding structures which are
// directly pointed to, and expanding embedded structures. Note that
// these rules are sufficient to prevent recursive encoding of the
// same type.
getObjCEncodingForTypeImpl(T, S, true, true, Field,
true /* outermost type */);
}
static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
switch (T->getAs<BuiltinType>()->getKind()) {
default: assert(0 && "Unhandled builtin type kind");
case BuiltinType::Void: return 'v';
case BuiltinType::Bool: return 'B';
case BuiltinType::Char_U:
case BuiltinType::UChar: return 'C';
case BuiltinType::UShort: return 'S';
case BuiltinType::UInt: return 'I';
case BuiltinType::ULong:
return
(const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
case BuiltinType::UInt128: return 'T';
case BuiltinType::ULongLong: return 'Q';
case BuiltinType::Char_S:
case BuiltinType::SChar: return 'c';
case BuiltinType::Short: return 's';
case BuiltinType::WChar:
case BuiltinType::Int: return 'i';
case BuiltinType::Long:
return
(const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
case BuiltinType::LongLong: return 'q';
case BuiltinType::Int128: return 't';
case BuiltinType::Float: return 'f';
case BuiltinType::Double: return 'd';
case BuiltinType::LongDouble: return 'd';
}
}
static void EncodeBitField(const ASTContext *Context, std::string& S,
QualType T, const FieldDecl *FD) {
const Expr *E = FD->getBitWidth();
assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
ASTContext *Ctx = const_cast<ASTContext*>(Context);
S += 'b';
// The NeXT runtime encodes bit fields as b followed by the number of bits.
// The GNU runtime requires more information; bitfields are encoded as b,
// then the offset (in bits) of the first element, then the type of the
// bitfield, then the size in bits. For example, in this structure:
//
// struct
// {
// int integer;
// int flags:2;
// };
// On a 32-bit system, the encoding for flags would be b2 for the NeXT
// runtime, but b32i2 for the GNU runtime. The reason for this extra
// information is not especially sensible, but we're stuck with it for
// compatibility with GCC, although providing it breaks anything that
// actually uses runtime introspection and wants to work on both runtimes...
if (!Ctx->getLangOptions().NeXTRuntime) {
const RecordDecl *RD = FD->getParent();
const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
// FIXME: This same linear search is also used in ExprConstant - it might
// be better if the FieldDecl stored its offset. We'd be increasing the
// size of the object slightly, but saving some time every time it is used.
unsigned i = 0;
for (RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
Field != FieldEnd; (void)++Field, ++i) {
if (*Field == FD)
break;
}
S += llvm::utostr(RL.getFieldOffset(i));
S += ObjCEncodingForPrimitiveKind(Context, T);
}
unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
S += llvm::utostr(N);
}
// FIXME: Use SmallString for accumulating string.
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
bool ExpandPointedToStructures,
bool ExpandStructures,
const FieldDecl *FD,
bool OutermostType,
bool EncodingProperty) {
if (T->getAs<BuiltinType>()) {
if (FD && FD->isBitField())
return EncodeBitField(this, S, T, FD);
S += ObjCEncodingForPrimitiveKind(this, T);
return;
}
if (const ComplexType *CT = T->getAs<ComplexType>()) {
S += 'j';
getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
false);
return;
}
// encoding for pointer or r3eference types.
QualType PointeeTy;
if (const PointerType *PT = T->getAs<PointerType>()) {
if (PT->isObjCSelType()) {
S += ':';
return;
}
PointeeTy = PT->getPointeeType();
}
else if (const ReferenceType *RT = T->getAs<ReferenceType>())
PointeeTy = RT->getPointeeType();
if (!PointeeTy.isNull()) {
bool isReadOnly = false;
// For historical/compatibility reasons, the read-only qualifier of the
// pointee gets emitted _before_ the '^'. The read-only qualifier of
// the pointer itself gets ignored, _unless_ we are looking at a typedef!
// Also, do not emit the 'r' for anything but the outermost type!
if (isa<TypedefType>(T.getTypePtr())) {
if (OutermostType && T.isConstQualified()) {
isReadOnly = true;
S += 'r';
}
} else if (OutermostType) {
QualType P = PointeeTy;
while (P->getAs<PointerType>())
P = P->getAs<PointerType>()->getPointeeType();
if (P.isConstQualified()) {
isReadOnly = true;
S += 'r';
}
}
if (isReadOnly) {
// Another legacy compatibility encoding. Some ObjC qualifier and type
// combinations need to be rearranged.
// Rewrite "in const" from "nr" to "rn"
if (llvm::StringRef(S).endswith("nr"))
S.replace(S.end()-2, S.end(), "rn");
}
if (PointeeTy->isCharType()) {
// char pointer types should be encoded as '*' unless it is a
// type that has been typedef'd to 'BOOL'.
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
S += '*';
return;
}
} else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
// GCC binary compat: Need to convert "struct objc_class *" to "#".
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
S += '#';
return;
}
// GCC binary compat: Need to convert "struct objc_object *" to "@".
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
S += '@';
return;
}
// fall through...
}
S += '^';
getLegacyIntegralTypeEncoding(PointeeTy);
getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
NULL);
return;
}
if (const ArrayType *AT =
// Ignore type qualifiers etc.
dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
if (isa<IncompleteArrayType>(AT)) {
// Incomplete arrays are encoded as a pointer to the array element.
S += '^';
getObjCEncodingForTypeImpl(AT->getElementType(), S,
false, ExpandStructures, FD);
} else {
S += '[';
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
S += llvm::utostr(CAT->getSize().getZExtValue());
else {
//Variable length arrays are encoded as a regular array with 0 elements.
assert(isa<VariableArrayType>(AT) && "Unknown array type!");
S += '0';
}
getObjCEncodingForTypeImpl(AT->getElementType(), S,
false, ExpandStructures, FD);
S += ']';
}
return;
}
if (T->getAs<FunctionType>()) {
S += '?';
return;
}
if (const RecordType *RTy = T->getAs<RecordType>()) {
RecordDecl *RDecl = RTy->getDecl();
S += RDecl->isUnion() ? '(' : '{';
// Anonymous structures print as '?'
if (const IdentifierInfo *II = RDecl->getIdentifier()) {
S += II->getName();
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs.getFlatArgumentList(),
TemplateArgs.flat_size(),
(*this).PrintingPolicy);
S += TemplateArgsStr;
}
} else {
S += '?';
}
if (ExpandStructures) {
S += '=';
for (RecordDecl::field_iterator Field = RDecl->field_begin(),
FieldEnd = RDecl->field_end();
Field != FieldEnd; ++Field) {
if (FD) {
S += '"';
S += Field->getNameAsString();
S += '"';
}
// Special case bit-fields.
if (Field->isBitField()) {
getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
(*Field));
} else {
QualType qt = Field->getType();
getLegacyIntegralTypeEncoding(qt);
getObjCEncodingForTypeImpl(qt, S, false, true,
FD);
}
}
}
S += RDecl->isUnion() ? ')' : '}';
return;
}
if (T->isEnumeralType()) {
if (FD && FD->isBitField())
EncodeBitField(this, S, T, FD);
else
S += 'i';
return;
}
if (T->isBlockPointerType()) {
S += "@?"; // Unlike a pointer-to-function, which is "^?".
return;
}
// Ignore protocol qualifiers when mangling at this level.
if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
T = OT->getBaseType();
if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
// @encode(class_name)
ObjCInterfaceDecl *OI = OIT->getDecl();
S += '{';
const IdentifierInfo *II = OI->getIdentifier();
S += II->getName();
S += '=';
llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
DeepCollectObjCIvars(OI, true, Ivars);
for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
if (Field->isBitField())
getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
else
getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
}
S += '}';
return;
}
if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCIdType()) {
S += '@';
return;
}
if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
// FIXME: Consider if we need to output qualifiers for 'Class<p>'.
// Since this is a binary compatibility issue, need to consult with runtime
// folks. Fortunately, this is a *very* obsure construct.
S += '#';
return;
}
if (OPT->isObjCQualifiedIdType()) {
getObjCEncodingForTypeImpl(getObjCIdType(), S,
ExpandPointedToStructures,
ExpandStructures, FD);
if (FD || EncodingProperty) {
// Note that we do extended encoding of protocol qualifer list
// Only when doing ivar or property encoding.
S += '"';
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I) {
S += '<';
S += (*I)->getNameAsString();
S += '>';
}
S += '"';
}
return;
}
QualType PointeeTy = OPT->getPointeeType();
if (!EncodingProperty &&
isa<TypedefType>(PointeeTy.getTypePtr())) {
// Another historical/compatibility reason.
// We encode the underlying type which comes out as
// {...};
S += '^';
getObjCEncodingForTypeImpl(PointeeTy, S,
false, ExpandPointedToStructures,
NULL);
return;
}
S += '@';
if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
S += '"';
S += OPT->getInterfaceDecl()->getIdentifier()->getName();
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I) {
S += '<';
S += (*I)->getNameAsString();
S += '>';
}
S += '"';
}
return;
}
// gcc just blithely ignores member pointers.
// TODO: maybe there should be a mangling for these
if (T->getAs<MemberPointerType>())
return;
assert(0 && "@encode for type not implemented!");
}
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string& S) const {
if (QT & Decl::OBJC_TQ_In)
S += 'n';
if (QT & Decl::OBJC_TQ_Inout)
S += 'N';
if (QT & Decl::OBJC_TQ_Out)
S += 'o';
if (QT & Decl::OBJC_TQ_Bycopy)
S += 'O';
if (QT & Decl::OBJC_TQ_Byref)
S += 'R';
if (QT & Decl::OBJC_TQ_Oneway)
S += 'V';
}
void ASTContext::setBuiltinVaListType(QualType T) {
assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
BuiltinVaListType = T;
}
void ASTContext::setObjCIdType(QualType T) {
ObjCIdTypedefType = T;
}
void ASTContext::setObjCSelType(QualType T) {
ObjCSelTypedefType = T;
}
void ASTContext::setObjCProtoType(QualType QT) {
ObjCProtoType = QT;
}
void ASTContext::setObjCClassType(QualType T) {
ObjCClassTypedefType = T;
}
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
assert(ObjCConstantStringType.isNull() &&
"'NSConstantString' type already set!");
ObjCConstantStringType = getObjCInterfaceType(Decl);
}
/// \brief Retrieve the template name that corresponds to a non-empty
/// lookup.
TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
unsigned size = End - Begin;
assert(size > 1 && "set is not overloaded!");
void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
size * sizeof(FunctionTemplateDecl*));
OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
NamedDecl **Storage = OT->getStorage();
for (UnresolvedSetIterator I = Begin; I != End; ++I) {
NamedDecl *D = *I;
assert(isa<FunctionTemplateDecl>(D) ||
(isa<UsingShadowDecl>(D) &&
isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
*Storage++ = D;
}
return TemplateName(OT);
}
/// \brief Retrieve the template name that represents a qualified
/// template name such as \c std::vector.
TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
bool TemplateKeyword,
TemplateDecl *Template) {
// FIXME: Canonicalization?
llvm::FoldingSetNodeID ID;
QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
void *InsertPos = 0;
QualifiedTemplateName *QTN =
QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (!QTN) {
QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
QualifiedTemplateNames.InsertNode(QTN, InsertPos);
}
return TemplateName(QTN);
}
/// \brief Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template apply.
TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
const IdentifierInfo *Name) {
assert((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent");
llvm::FoldingSetNodeID ID;
DependentTemplateName::Profile(ID, NNS, Name);
void *InsertPos = 0;
DependentTemplateName *QTN =
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (QTN)
return TemplateName(QTN);
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
if (CanonNNS == NNS) {
QTN = new (*this,4) DependentTemplateName(NNS, Name);
} else {
TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
DependentTemplateName *CheckQTN =
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
assert(!CheckQTN && "Dependent type name canonicalization broken");
(void)CheckQTN;
}
DependentTemplateNames.InsertNode(QTN, InsertPos);
return TemplateName(QTN);
}
/// \brief Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template operator+.
TemplateName
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
OverloadedOperatorKind Operator) {
assert((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent");
llvm::FoldingSetNodeID ID;
DependentTemplateName::Profile(ID, NNS, Operator);
void *InsertPos = 0;
DependentTemplateName *QTN
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (QTN)
return TemplateName(QTN);
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
if (CanonNNS == NNS) {
QTN = new (*this,4) DependentTemplateName(NNS, Operator);
} else {
TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
DependentTemplateName *CheckQTN
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
assert(!CheckQTN && "Dependent template name canonicalization broken");
(void)CheckQTN;
}
DependentTemplateNames.InsertNode(QTN, InsertPos);
return TemplateName(QTN);
}
/// getFromTargetType - Given one of the integer types provided by
/// TargetInfo, produce the corresponding type. The unsigned @p Type
/// is actually a value of type @c TargetInfo::IntType.
CanQualType ASTContext::getFromTargetType(unsigned Type) const {
switch (Type) {
case TargetInfo::NoInt: return CanQualType();
case TargetInfo::SignedShort: return ShortTy;
case TargetInfo::UnsignedShort: return UnsignedShortTy;
case TargetInfo::SignedInt: return IntTy;
case TargetInfo::UnsignedInt: return UnsignedIntTy;
case TargetInfo::SignedLong: return LongTy;
case TargetInfo::UnsignedLong: return UnsignedLongTy;
case TargetInfo::SignedLongLong: return LongLongTy;
case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
}
assert(false && "Unhandled TargetInfo::IntType value");
return CanQualType();
}
//===----------------------------------------------------------------------===//
// Type Predicates.
//===----------------------------------------------------------------------===//
/// isObjCNSObjectType - Return true if this is an NSObject object using
/// NSObject attribute on a c-style pointer type.
/// FIXME - Make it work directly on types.
/// FIXME: Move to Type.
///
bool ASTContext::isObjCNSObjectType(QualType Ty) const {
if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
if (TypedefDecl *TD = TDT->getDecl())
if (TD->getAttr<ObjCNSObjectAttr>())
return true;
}
return false;
}
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
/// garbage collection attribute.
///
Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
Qualifiers::GC GCAttrs = Qualifiers::GCNone;
if (getLangOptions().ObjC1 &&
getLangOptions().getGCMode() != LangOptions::NonGC) {
GCAttrs = Ty.getObjCGCAttr();
// Default behavious under objective-c's gc is for objective-c pointers
// (or pointers to them) be treated as though they were declared
// as __strong.
if (GCAttrs == Qualifiers::GCNone) {
if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
GCAttrs = Qualifiers::Strong;
else if (Ty->isPointerType())
return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
}
// Non-pointers have none gc'able attribute regardless of the attribute
// set on them.
else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
return Qualifiers::GCNone;
}
return GCAttrs;
}
//===----------------------------------------------------------------------===//
// Type Compatibility Testing
//===----------------------------------------------------------------------===//
/// areCompatVectorTypes - Return true if the two specified vector types are
/// compatible.
static bool areCompatVectorTypes(const VectorType *LHS,
const VectorType *RHS) {
assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
return LHS->getElementType() == RHS->getElementType() &&
LHS->getNumElements() == RHS->getNumElements();
}
bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
QualType SecondVec) {
assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
if (hasSameUnqualifiedType(FirstVec, SecondVec))
return true;
// AltiVec vectors types are identical to equivalent GCC vector types
const VectorType *First = FirstVec->getAs<VectorType>();
const VectorType *Second = SecondVec->getAs<VectorType>();
if ((((First->getAltiVecSpecific() == VectorType::AltiVec) &&
(Second->getAltiVecSpecific() == VectorType::NotAltiVec)) ||
((First->getAltiVecSpecific() == VectorType::NotAltiVec) &&
(Second->getAltiVecSpecific() == VectorType::AltiVec))) &&
hasSameType(First->getElementType(), Second->getElementType()) &&
(First->getNumElements() == Second->getNumElements()))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
//===----------------------------------------------------------------------===//
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
/// inheritance hierarchy of 'rProto'.
bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto) {
if (lProto == rProto)
return true;
for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
E = rProto->protocol_end(); PI != E; ++PI)
if (ProtocolCompatibleWithProtocol(lProto, *PI))
return true;
return false;
}
/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
/// return true if lhs's protocols conform to rhs's protocol; false
/// otherwise.
bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
return false;
}
/// ObjCQualifiedClassTypesAreCompatible - compare Class<p,...> and
/// Class<p1, ...>.
bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
QualType rhs) {
const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
E = lhsQID->qual_end(); I != E; ++I) {
bool match = false;
ObjCProtocolDecl *lhsProto = *I;
for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
E = rhsOPT->qual_end(); J != E; ++J) {
ObjCProtocolDecl *rhsProto = *J;
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
/// ObjCQualifiedIDType.
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
bool compare) {
// Allow id<P..> and an 'id' or void* type in all cases.
if (lhs->isVoidPointerType() ||
lhs->isObjCIdType() || lhs->isObjCClassType())
return true;
else if (rhs->isVoidPointerType() ||
rhs->isObjCIdType() || rhs->isObjCClassType())
return true;
if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
if (!rhsOPT) return false;
if (rhsOPT->qual_empty()) {
// If the RHS is a unqualified interface pointer "NSString*",
// make sure we check the class hierarchy.
if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
E = lhsQID->qual_end(); I != E; ++I) {
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
if (!rhsID->ClassImplementsProtocol(*I, true))
return false;
}
}
// If there are no qualifiers and no interface, we have an 'id'.
return true;
}
// Both the right and left sides have qualifiers.
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
E = lhsQID->qual_end(); I != E; ++I) {
ObjCProtocolDecl *lhsProto = *I;
bool match = false;
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
E = rhsOPT->qual_end(); J != E; ++J) {
ObjCProtocolDecl *rhsProto = *J;
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
match = true;
break;
}
}
// If the RHS is a qualified interface pointer "NSString<P>*",
// make sure we check the class hierarchy.
if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
E = lhsQID->qual_end(); I != E; ++I) {
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
if (rhsID->ClassImplementsProtocol(*I, true)) {
match = true;
break;
}
}
}
if (!match)
return false;
}
return true;
}
const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
assert(rhsQID && "One of the LHS/RHS should be id<x>");
if (const ObjCObjectPointerType *lhsOPT =
lhs->getAsObjCInterfacePointerType()) {
if (lhsOPT->qual_empty()) {
bool match = false;
if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
E = rhsQID->qual_end(); I != E; ++I) {
// when comparing an id<P> on rhs with a static type on lhs,
// static class must implement all of id's protocols directly or
// indirectly through its super class.
if (lhsID->ClassImplementsProtocol(*I, true)) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
// Both the right and left sides have qualifiers.
for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
E = lhsOPT->qual_end(); I != E; ++I) {
ObjCProtocolDecl *lhsProto = *I;
bool match = false;
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
E = rhsQID->qual_end(); J != E; ++J) {
ObjCProtocolDecl *rhsProto = *J;
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
return false;
}
/// canAssignObjCInterfaces - Return true if the two interface types are
/// compatible for assignment from RHS to LHS. This handles validation of any
/// protocol qualifiers on the LHS or RHS.
///
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT) {
const ObjCObjectType* LHS = LHSOPT->getObjectType();
const ObjCObjectType* RHS = RHSOPT->getObjectType();
// If either type represents the built-in 'id' or 'Class' types, return true.
if (LHS->isObjCUnqualifiedIdOrClass() ||
RHS->isObjCUnqualifiedIdOrClass())
return true;
if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
QualType(RHSOPT,0),
false);
if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
QualType(RHSOPT,0));
// If we have 2 user-defined types, fall into that path.
if (LHS->getInterface() && RHS->getInterface())
return canAssignObjCInterfaces(LHS, RHS);
return false;
}
/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
/// for providing type-safty for objective-c pointers used to pass/return
/// arguments in block literals. When passed as arguments, passing 'A*' where
/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
/// not OK. For the return type, the opposite is not OK.
bool ASTContext::canAssignObjCInterfacesInBlockPointer(
const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT) {
if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
return true;
if (LHSOPT->isObjCBuiltinType()) {
return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
}
if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
QualType(RHSOPT,0),
false);
const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
if (LHS && RHS) { // We have 2 user-defined types.
if (LHS != RHS) {
if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
return false;
if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
return true;
}
else
return true;
}
return false;
}
/// getIntersectionOfProtocols - This routine finds the intersection of set
/// of protocols inherited from two distinct objective-c pointer objects.
/// It is used to build composite qualifier list of the composite type of
/// the conditional expression involving two objective-c pointer objects.
static
void getIntersectionOfProtocols(ASTContext &Context,
const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT,
llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
const ObjCObjectType* LHS = LHSOPT->getObjectType();
const ObjCObjectType* RHS = RHSOPT->getObjectType();
assert(LHS->getInterface() && "LHS must have an interface base");
assert(RHS->getInterface() && "RHS must have an interface base");
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
unsigned LHSNumProtocols = LHS->getNumProtocols();
if (LHSNumProtocols > 0)
InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
else {
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
Context.CollectInheritedProtocols(LHS->getInterface(),
LHSInheritedProtocols);
InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
LHSInheritedProtocols.end());
}
unsigned RHSNumProtocols = RHS->getNumProtocols();
if (RHSNumProtocols > 0) {
ObjCProtocolDecl **RHSProtocols =
const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
for (unsigned i = 0; i < RHSNumProtocols; ++i)
if (InheritedProtocolSet.count(RHSProtocols[i]))
IntersectionOfProtocols.push_back(RHSProtocols[i]);
}
else {
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
Context.CollectInheritedProtocols(RHS->getInterface(),
RHSInheritedProtocols);
for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
RHSInheritedProtocols.begin(),
E = RHSInheritedProtocols.end(); I != E; ++I)
if (InheritedProtocolSet.count((*I)))
IntersectionOfProtocols.push_back((*I));
}
}
/// areCommonBaseCompatible - Returns common base class of the two classes if
/// one found. Note that this is O'2 algorithm. But it will be called as the
/// last type comparison in a ?-exp of ObjC pointer types before a
/// warning is issued. So, its invokation is extremely rare.
QualType ASTContext::areCommonBaseCompatible(
const ObjCObjectPointerType *Lptr,
const ObjCObjectPointerType *Rptr) {
const ObjCObjectType *LHS = Lptr->getObjectType();
const ObjCObjectType *RHS = Rptr->getObjectType();
const ObjCInterfaceDecl* LDecl = LHS->getInterface();
const ObjCInterfaceDecl* RDecl = RHS->getInterface();
if (!LDecl || !RDecl)
return QualType();
while ((LDecl = LDecl->getSuperClass())) {
LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
if (canAssignObjCInterfaces(LHS, RHS)) {
llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
QualType Result = QualType(LHS, 0);
if (!Protocols.empty())
Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
Result = getObjCObjectPointerType(Result);
return Result;
}
}
return QualType();
}
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
const ObjCObjectType *RHS) {
assert(LHS->getInterface() && "LHS is not an interface type");
assert(RHS->getInterface() && "RHS is not an interface type");
// Verify that the base decls are compatible: the RHS must be a subclass of
// the LHS.
if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
return false;
// RHS must have a superset of the protocols in the LHS. If the LHS is not
// protocol qualified at all, then we are good.
if (LHS->getNumProtocols() == 0)
return true;
// Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
// isn't a superset.
if (RHS->getNumProtocols() == 0)
return true; // FIXME: should return false!
for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
LHSPE = LHS->qual_end();
LHSPI != LHSPE; LHSPI++) {
bool RHSImplementsProtocol = false;
// If the RHS doesn't implement the protocol on the left, the types
// are incompatible.
for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
RHSPE = RHS->qual_end();
RHSPI != RHSPE; RHSPI++) {
if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
RHSImplementsProtocol = true;
break;
}
}
// FIXME: For better diagnostics, consider passing back the protocol name.
if (!RHSImplementsProtocol)
return false;
}
// The RHS implements all protocols listed on the LHS.
return true;
}
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
// get the "pointed to" types
const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
if (!LHSOPT || !RHSOPT)
return false;
return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
canAssignObjCInterfaces(RHSOPT, LHSOPT);
}
bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
return canAssignObjCInterfaces(
getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
bool CompareUnqualified) {
if (getLangOptions().CPlusPlus)
return hasSameType(LHS, RHS);
return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
}
bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
return !mergeTypes(LHS, RHS, true).isNull();
}
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
bool OfBlockPointer,
bool Unqualified) {
const FunctionType *lbase = lhs->getAs<FunctionType>();
const FunctionType *rbase = rhs->getAs<FunctionType>();
const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
bool allLTypes = true;
bool allRTypes = true;
// Check return type
QualType retType;
if (OfBlockPointer)
retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
Unqualified);
else
retType = mergeTypes(lbase->getResultType(), rbase->getResultType(),
false, Unqualified);
if (retType.isNull()) return QualType();
if (Unqualified)
retType = retType.getUnqualifiedType();
CanQualType LRetType = getCanonicalType(lbase->getResultType());
CanQualType RRetType = getCanonicalType(rbase->getResultType());
if (Unqualified) {
LRetType = LRetType.getUnqualifiedType();
RRetType = RRetType.getUnqualifiedType();
}
if (getCanonicalType(retType) != LRetType)
allLTypes = false;
if (getCanonicalType(retType) != RRetType)
allRTypes = false;
// FIXME: double check this
// FIXME: should we error if lbase->getRegParmAttr() != 0 &&
// rbase->getRegParmAttr() != 0 &&
// lbase->getRegParmAttr() != rbase->getRegParmAttr()?
FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
lbaseInfo.getRegParm();
bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
if (NoReturn != lbaseInfo.getNoReturn() ||
RegParm != lbaseInfo.getRegParm())
allLTypes = false;
if (NoReturn != rbaseInfo.getNoReturn() ||
RegParm != rbaseInfo.getRegParm())
allRTypes = false;
CallingConv lcc = lbaseInfo.getCC();
CallingConv rcc = rbaseInfo.getCC();
// Compatible functions must have compatible calling conventions
if (!isSameCallConv(lcc, rcc))
return QualType();
if (lproto && rproto) { // two C99 style function prototypes
assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
"C++ shouldn't be here");
unsigned lproto_nargs = lproto->getNumArgs();
unsigned rproto_nargs = rproto->getNumArgs();
// Compatible functions must have the same number of arguments
if (lproto_nargs != rproto_nargs)
return QualType();
// Variadic and non-variadic functions aren't compatible
if (lproto->isVariadic() != rproto->isVariadic())
return QualType();
if (lproto->getTypeQuals() != rproto->getTypeQuals())
return QualType();
// Check argument compatibility
llvm::SmallVector<QualType, 10> types;
for (unsigned i = 0; i < lproto_nargs; i++) {
QualType largtype = lproto->getArgType(i).getUnqualifiedType();
QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer,
Unqualified);
if (argtype.isNull()) return QualType();
if (Unqualified)
argtype = argtype.getUnqualifiedType();
types.push_back(argtype);
if (Unqualified) {
largtype = largtype.getUnqualifiedType();
rargtype = rargtype.getUnqualifiedType();
}
if (getCanonicalType(argtype) != getCanonicalType(largtype))
allLTypes = false;
if (getCanonicalType(argtype) != getCanonicalType(rargtype))
allRTypes = false;
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionType(retType, types.begin(), types.size(),
lproto->isVariadic(), lproto->getTypeQuals(),
false, false, 0, 0,
FunctionType::ExtInfo(NoReturn, RegParm, lcc));
}
if (lproto) allRTypes = false;
if (rproto) allLTypes = false;
const FunctionProtoType *proto = lproto ? lproto : rproto;
if (proto) {
assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
if (proto->isVariadic()) return QualType();
// Check that the types are compatible with the types that
// would result from default argument promotions (C99 6.7.5.3p15).
// The only types actually affected are promotable integer
// types and floats, which would be passed as a different
// type depending on whether the prototype is visible.
unsigned proto_nargs = proto->getNumArgs();
for (unsigned i = 0; i < proto_nargs; ++i) {
QualType argTy = proto->getArgType(i);
// Look at the promotion type of enum types, since that is the type used
// to pass enum values.
if (const EnumType *Enum = argTy->getAs<EnumType>())
argTy = Enum->getDecl()->getPromotionType();
if (argTy->isPromotableIntegerType() ||
getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
return QualType();
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionType(retType, proto->arg_type_begin(),
proto->getNumArgs(), proto->isVariadic(),
proto->getTypeQuals(),
false, false, 0, 0,
FunctionType::ExtInfo(NoReturn, RegParm, lcc));
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
return getFunctionNoProtoType(retType, Info);
}
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
bool OfBlockPointer,
bool Unqualified) {
// C++ [expr]: If an expression initially has the type "reference to T", the
// type is adjusted to "T" prior to any further analysis, the expression
// designates the object or function denoted by the reference, and the
// expression is an lvalue unless the reference is an rvalue reference and
// the expression is a function call (possibly inside parentheses).
assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
if (Unqualified) {
LHS = LHS.getUnqualifiedType();
RHS = RHS.getUnqualifiedType();
}
QualType LHSCan = getCanonicalType(LHS),
RHSCan = getCanonicalType(RHS);
// If two types are identical, they are compatible.
if (LHSCan == RHSCan)
return LHS;
// If the qualifiers are different, the types aren't compatible... mostly.
Qualifiers LQuals = LHSCan.getLocalQualifiers();
Qualifiers RQuals = RHSCan.getLocalQualifiers();
if (LQuals != RQuals) {
// If any of these qualifiers are different, we have a type
// mismatch.
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
LQuals.getAddressSpace() != RQuals.getAddressSpace())
return QualType();
// Exactly one GC qualifier difference is allowed: __strong is
// okay if the other type has no GC qualifier but is an Objective
// C object pointer (i.e. implicitly strong by default). We fix
// this by pretending that the unqualified type was actually
// qualified __strong.
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
return QualType();
if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
}
if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
}
return QualType();
}
// Okay, qualifiers are equal.
Type::TypeClass LHSClass = LHSCan->getTypeClass();
Type::TypeClass RHSClass = RHSCan->getTypeClass();
// We want to consider the two function types to be the same for these
// comparisons, just force one to the other.
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
// Same as above for arrays
if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
LHSClass = Type::ConstantArray;
if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
RHSClass = Type::ConstantArray;
// ObjCInterfaces are just specialized ObjCObjects.
if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
// Canonicalize ExtVector -> Vector.
if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
// If the canonical type classes don't match.
if (LHSClass != RHSClass) {
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
// a signed integer type, or an unsigned integer type.
// Compatibility is based on the underlying type, not the promotion
// type.
if (const EnumType* ETy = LHS->getAs<EnumType>()) {
if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
return RHS;
}
if (const EnumType* ETy = RHS->getAs<EnumType>()) {
if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
return LHS;
}
return QualType();
}
// The canonical type classes match.
switch (LHSClass) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
assert(false && "Non-canonical and dependent types shouldn't get here");
return QualType();
case Type::LValueReference:
case Type::RValueReference:
case Type::MemberPointer:
assert(false && "C++ should never be in mergeTypes");
return QualType();
case Type::ObjCInterface:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::FunctionProto:
case Type::ExtVector:
assert(false && "Types are eliminated above");
return QualType();
case Type::Pointer:
{
// Merge two pointer types, while trying to preserve typedef info
QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
if (Unqualified) {
LHSPointee = LHSPointee.getUnqualifiedType();
RHSPointee = RHSPointee.getUnqualifiedType();
}
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
Unqualified);
if (ResultType.isNull()) return QualType();
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
return RHS;
return getPointerType(ResultType);
}
case Type::BlockPointer:
{
// Merge two block pointer types, while trying to preserve typedef info
QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
if (Unqualified) {
LHSPointee = LHSPointee.getUnqualifiedType();
RHSPointee = RHSPointee.getUnqualifiedType();
}
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
Unqualified);
if (ResultType.isNull()) return QualType();
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
return RHS;
return getBlockPointerType(ResultType);
}
case Type::ConstantArray:
{
const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
return QualType();
QualType LHSElem = getAsArrayType(LHS)->getElementType();
QualType RHSElem = getAsArrayType(RHS)->getElementType();
if (Unqualified) {
LHSElem = LHSElem.getUnqualifiedType();
RHSElem = RHSElem.getUnqualifiedType();
}
QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
if (ResultType.isNull()) return QualType();
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
ArrayType::ArraySizeModifier(), 0);
if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
ArrayType::ArraySizeModifier(), 0);
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of LHS, but the type
// has to be different.
return LHS;
}
if (RVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of RHS, but the type
// has to be different.
return RHS;
}
if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
return getIncompleteArrayType(ResultType,
ArrayType::ArraySizeModifier(), 0);
}
case Type::FunctionNoProto:
return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
case Type::Record:
case Type::Enum:
return QualType();
case Type::Builtin:
// Only exactly equal builtin types are compatible, which is tested above.
return QualType();
case Type::Complex:
// Distinct complex types are incompatible.
return QualType();
case Type::Vector:
// FIXME: The merged type should be an ExtVector!
if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
RHSCan->getAs<VectorType>()))
return LHS;
return QualType();
case Type::ObjCObject: {
// Check if the types are assignment compatible.
// FIXME: This should be type compatibility, e.g. whether
// "LHS x; RHS x;" at global scope is legal.
const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
if (canAssignObjCInterfaces(LHSIface, RHSIface))
return LHS;
return QualType();
}
case Type::ObjCObjectPointer: {
if (OfBlockPointer) {
if (canAssignObjCInterfacesInBlockPointer(
LHS->getAs<ObjCObjectPointerType>(),
RHS->getAs<ObjCObjectPointerType>()))
return LHS;
return QualType();
}
if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
RHS->getAs<ObjCObjectPointerType>()))
return LHS;
return QualType();
}
}
return QualType();
}
/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
/// 'RHS' attributes and returns the merged version; including for function
/// return types.
QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
QualType LHSCan = getCanonicalType(LHS),
RHSCan = getCanonicalType(RHS);
// If two types are identical, they are compatible.
if (LHSCan == RHSCan)
return LHS;
if (RHSCan->isFunctionType()) {
if (!LHSCan->isFunctionType())
return QualType();
QualType OldReturnType =
cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
QualType NewReturnType =
cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
QualType ResReturnType =
mergeObjCGCQualifiers(NewReturnType, OldReturnType);
if (ResReturnType.isNull())
return QualType();
if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
// id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
// In either case, use OldReturnType to build the new function type.
const FunctionType *F = LHS->getAs<FunctionType>();
if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
QualType ResultType
= getFunctionType(OldReturnType, FPT->arg_type_begin(),
FPT->getNumArgs(), FPT->isVariadic(),
FPT->getTypeQuals(),
FPT->hasExceptionSpec(),
FPT->hasAnyExceptionSpec(),
FPT->getNumExceptions(),
FPT->exception_begin(),
Info);
return ResultType;
}
}
return QualType();
}
// If the qualifiers are different, the types can still be merged.
Qualifiers LQuals = LHSCan.getLocalQualifiers();
Qualifiers RQuals = RHSCan.getLocalQualifiers();
if (LQuals != RQuals) {
// If any of these qualifiers are different, we have a type mismatch.
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
LQuals.getAddressSpace() != RQuals.getAddressSpace())
return QualType();
// Exactly one GC qualifier difference is allowed: __strong is
// okay if the other type has no GC qualifier but is an Objective
// C object pointer (i.e. implicitly strong by default). We fix
// this by pretending that the unqualified type was actually
// qualified __strong.
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
return QualType();
if (GC_L == Qualifiers::Strong)
return LHS;
if (GC_R == Qualifiers::Strong)
return RHS;
return QualType();
}
if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
if (ResQT == LHSBaseQT)
return LHS;
if (ResQT == RHSBaseQT)
return RHS;
}
return QualType();
}
//===----------------------------------------------------------------------===//
// Integer Predicates
//===----------------------------------------------------------------------===//
unsigned ASTContext::getIntWidth(QualType T) {
if (T->isBooleanType())
return 1;
if (EnumType *ET = dyn_cast<EnumType>(T))
T = ET->getDecl()->getIntegerType();
// For builtin types, just use the standard type sizing method
return (unsigned)getTypeSize(T);
}
QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
// Turn <4 x signed int> -> <4 x unsigned int>
if (const VectorType *VTy = T->getAs<VectorType>())
return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
VTy->getNumElements(), VTy->getAltiVecSpecific());
// For enums, we return the unsigned version of the base type.
if (const EnumType *ETy = T->getAs<EnumType>())
T = ETy->getDecl()->getIntegerType();
const BuiltinType *BTy = T->getAs<BuiltinType>();
assert(BTy && "Unexpected signed integer type");
switch (BTy->getKind()) {
case BuiltinType::Char_S:
case BuiltinType::SChar:
return UnsignedCharTy;
case BuiltinType::Short:
return UnsignedShortTy;
case BuiltinType::Int:
return UnsignedIntTy;
case BuiltinType::Long:
return UnsignedLongTy;
case BuiltinType::LongLong:
return UnsignedLongLongTy;
case BuiltinType::Int128:
return UnsignedInt128Ty;
default:
assert(0 && "Unexpected signed integer type");
return QualType();
}
}
ExternalASTSource::~ExternalASTSource() { }
void ExternalASTSource::PrintStats() { }
//===----------------------------------------------------------------------===//
// Builtin Type Computation
//===----------------------------------------------------------------------===//
/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
/// pointer over the consumed characters. This returns the resultant type.
static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
ASTContext::GetBuiltinTypeError &Error,
bool AllowTypeModifiers = true) {
// Modifiers.
int HowLong = 0;
bool Signed = false, Unsigned = false;
// Read the modifiers first.
bool Done = false;
while (!Done) {
switch (*Str++) {
default: Done = true; --Str; break;
case 'S':
assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
assert(!Signed && "Can't use 'S' modifier multiple times!");
Signed = true;
break;
case 'U':
assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
assert(!Unsigned && "Can't use 'S' modifier multiple times!");
Unsigned = true;
break;
case 'L':
assert(HowLong <= 2 && "Can't have LLLL modifier");
++HowLong;
break;
}
}
QualType Type;
// Read the base type.
switch (*Str++) {
default: assert(0 && "Unknown builtin type letter!");
case 'v':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'v'!");
Type = Context.VoidTy;
break;
case 'f':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'f'!");
Type = Context.FloatTy;
break;
case 'd':
assert(HowLong < 2 && !Signed && !Unsigned &&
"Bad modifiers used with 'd'!");
if (HowLong)
Type = Context.LongDoubleTy;
else
Type = Context.DoubleTy;
break;
case 's':
assert(HowLong == 0 && "Bad modifiers used with 's'!");
if (Unsigned)
Type = Context.UnsignedShortTy;
else
Type = Context.ShortTy;
break;
case 'i':
if (HowLong == 3)
Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
else if (HowLong == 2)
Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
else if (HowLong == 1)
Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
else
Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
break;
case 'c':
assert(HowLong == 0 && "Bad modifiers used with 'c'!");
if (Signed)
Type = Context.SignedCharTy;
else if (Unsigned)
Type = Context.UnsignedCharTy;
else
Type = Context.CharTy;
break;
case 'b': // boolean
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
Type = Context.BoolTy;
break;
case 'z': // size_t.
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
Type = Context.getSizeType();
break;
case 'F':
Type = Context.getCFConstantStringType();
break;
case 'a':
Type = Context.getBuiltinVaListType();
assert(!Type.isNull() && "builtin va list type not initialized!");
break;
case 'A':
// This is a "reference" to a va_list; however, what exactly
// this means depends on how va_list is defined. There are two
// different kinds of va_list: ones passed by value, and ones
// passed by reference. An example of a by-value va_list is
// x86, where va_list is a char*. An example of by-ref va_list
// is x86-64, where va_list is a __va_list_tag[1]. For x86,
// we want this argument to be a char*&; for x86-64, we want
// it to be a __va_list_tag*.
Type = Context.getBuiltinVaListType();
assert(!Type.isNull() && "builtin va list type not initialized!");
if (Type->isArrayType()) {
Type = Context.getArrayDecayedType(Type);
} else {
Type = Context.getLValueReferenceType(Type);
}
break;
case 'V': {
char *End;
unsigned NumElements = strtoul(Str, &End, 10);
assert(End != Str && "Missing vector size");
Str = End;
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
// FIXME: Don't know what to do about AltiVec.
Type = Context.getVectorType(ElementType, NumElements,
VectorType::NotAltiVec);
break;
}
case 'X': {
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
Type = Context.getComplexType(ElementType);
break;
}
case 'P':
Type = Context.getFILEType();
if (Type.isNull()) {
Error = ASTContext::GE_Missing_stdio;
return QualType();
}
break;
case 'J':
if (Signed)
Type = Context.getsigjmp_bufType();
else
Type = Context.getjmp_bufType();
if (Type.isNull()) {
Error = ASTContext::GE_Missing_setjmp;
return QualType();
}
break;
}
if (!AllowTypeModifiers)
return Type;
Done = false;
while (!Done) {
switch (char c = *Str++) {
default: Done = true; --Str; break;
case '*':
case '&':
{
// Both pointers and references can have their pointee types
// qualified with an address space.
char *End;
unsigned AddrSpace = strtoul(Str, &End, 10);
if (End != Str && AddrSpace != 0) {
Type = Context.getAddrSpaceQualType(Type, AddrSpace);
Str = End;
}
}
if (c == '*')
Type = Context.getPointerType(Type);
else
Type = Context.getLValueReferenceType(Type);
break;
// FIXME: There's no way to have a built-in with an rvalue ref arg.
case 'C':
Type = Type.withConst();
break;
case 'D':
Type = Context.getVolatileType(Type);
break;
}
}
return Type;
}
/// GetBuiltinType - Return the type for the specified builtin.
QualType ASTContext::GetBuiltinType(unsigned id,
GetBuiltinTypeError &Error) {
const char *TypeStr = BuiltinInfo.GetTypeString(id);
llvm::SmallVector<QualType, 8> ArgTypes;
Error = GE_None;
QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
if (Error != GE_None)
return QualType();
while (TypeStr[0] && TypeStr[0] != '.') {
QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
if (Error != GE_None)
return QualType();
// Do array -> pointer decay. The builtin should use the decayed type.
if (Ty->isArrayType())
Ty = getArrayDecayedType(Ty);
ArgTypes.push_back(Ty);
}
assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
"'.' should only occur at end of builtin type list!");
// handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
if (ArgTypes.size() == 0 && TypeStr[0] == '.')
return getFunctionNoProtoType(ResType);
// FIXME: Should we create noreturn types?
return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
TypeStr[0] == '.', 0, false, false, 0, 0,
FunctionType::ExtInfo());
}
QualType
ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
// Perform the usual unary conversions. We do this early so that
// integral promotions to "int" can allow us to exit early, in the
// lhs == rhs check. Also, for conversion purposes, we ignore any
// qualifiers. For example, "const float" and "float" are
// equivalent.
if (lhs->isPromotableIntegerType())
lhs = getPromotedIntegerType(lhs);
else
lhs = lhs.getUnqualifiedType();
if (rhs->isPromotableIntegerType())
rhs = getPromotedIntegerType(rhs);
else
rhs = rhs.getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
if (lhs->isComplexType() || rhs->isComplexType()) {
// if we have an integer operand, the result is the complex type.
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
// convert the rhs to the lhs complex type.
return lhs;
}
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
// convert the lhs to the rhs complex type.
return rhs;
}
// This handles complex/complex, complex/float, or float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
int result = getFloatingTypeOrder(lhs, rhs);
if (result > 0) { // The left side is bigger, convert rhs.
rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
} else if (result < 0) { // The right side is bigger, convert lhs.
lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
}
// At this point, lhs and rhs have the same rank/size. Now, make sure the
// domains match. This is a requirement for our implementation, C99
// does not require this promotion.
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
return rhs;
} else { // handle "_Complex double, double".
return lhs;
}
}
return lhs; // The domain/size match exactly.
}
// Now handle "real" floating types (i.e. float, double, long double).
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
// if we have an integer operand, the result is the real floating type.
if (rhs->isIntegerType()) {
// convert rhs to the lhs floating point type.
return lhs;
}
if (rhs->isComplexIntegerType()) {
// convert rhs to the complex floating point type.
return getComplexType(lhs);
}
if (lhs->isIntegerType()) {
// convert lhs to the rhs floating point type.
return rhs;
}
if (lhs->isComplexIntegerType()) {
// convert lhs to the complex floating point type.
return getComplexType(rhs);
}
// We have two real floating types, float/complex combos were handled above.
// Convert the smaller operand to the bigger result.
int result = getFloatingTypeOrder(lhs, rhs);
if (result > 0) // convert the rhs
return lhs;
assert(result < 0 && "illegal float comparison");
return rhs; // convert the lhs
}
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
// Handle GCC complex int extension.
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
if (lhsComplexInt && rhsComplexInt) {
if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
rhsComplexInt->getElementType()) >= 0)
return lhs; // convert the rhs
return rhs;
} else if (lhsComplexInt && rhs->isIntegerType()) {
// convert the rhs to the lhs complex type.
return lhs;
} else if (rhsComplexInt && lhs->isIntegerType()) {
// convert the lhs to the rhs complex type.
return rhs;
}
}
// Finally, we have two differing integer types.
// The rules for this case are in C99 6.3.1.8
int compare = getIntegerTypeOrder(lhs, rhs);
bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
rhsSigned = rhs->hasSignedIntegerRepresentation();
QualType destType;
if (lhsSigned == rhsSigned) {
// Same signedness; use the higher-ranked type
destType = compare >= 0 ? lhs : rhs;
} else if (compare != (lhsSigned ? 1 : -1)) {
// The unsigned type has greater than or equal rank to the
// signed type, so use the unsigned type
destType = lhsSigned ? rhs : lhs;
} else if (getIntWidth(lhs) != getIntWidth(rhs)) {
// The two types are different widths; if we are here, that
// means the signed type is larger than the unsigned type, so
// use the signed type.
destType = lhsSigned ? lhs : rhs;
} else {
// The signed type is higher-ranked than the unsigned type,
// but isn't actually any bigger (like unsigned int and long
// on most 32-bit systems). Use the unsigned type corresponding
// to the signed type.
destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
}
return destType;
}
GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
GVALinkage External = GVA_StrongExternal;
Linkage L = FD->getLinkage();
if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
FD->getType()->getLinkage() == UniqueExternalLinkage)
L = UniqueExternalLinkage;
switch (L) {
case NoLinkage:
case InternalLinkage:
case UniqueExternalLinkage:
return GVA_Internal;
case ExternalLinkage:
switch (FD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
External = GVA_StrongExternal;
break;
case TSK_ExplicitInstantiationDefinition:
return GVA_ExplicitTemplateInstantiation;
case TSK_ExplicitInstantiationDeclaration:
case TSK_ImplicitInstantiation:
External = GVA_TemplateInstantiation;
break;
}
}
if (!FD->isInlined())
return External;
if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
// GNU or C99 inline semantics. Determine whether this symbol should be
// externally visible.
if (FD->isInlineDefinitionExternallyVisible())
return External;
// C99 inline semantics, where the symbol is not externally visible.
return GVA_C99Inline;
}
// C++0x [temp.explicit]p9:
// [ Note: The intent is that an inline function that is the subject of
// an explicit instantiation declaration will still be implicitly
// instantiated when used so that the body can be considered for
// inlining, but that no out-of-line copy of the inline function would be
// generated in the translation unit. -- end note ]
if (FD->getTemplateSpecializationKind()
== TSK_ExplicitInstantiationDeclaration)
return GVA_C99Inline;
return GVA_CXXInline;
}
GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
// If this is a static data member, compute the kind of template
// specialization. Otherwise, this variable is not part of a
// template.
TemplateSpecializationKind TSK = TSK_Undeclared;
if (VD->isStaticDataMember())
TSK = VD->getTemplateSpecializationKind();
Linkage L = VD->getLinkage();
if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
VD->getType()->getLinkage() == UniqueExternalLinkage)
L = UniqueExternalLinkage;
switch (L) {
case NoLinkage:
case InternalLinkage:
case UniqueExternalLinkage:
return GVA_Internal;
case ExternalLinkage:
switch (TSK) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
return GVA_StrongExternal;
case TSK_ExplicitInstantiationDeclaration:
llvm_unreachable("Variable should not be instantiated");
// Fall through to treat this like any other instantiation.
case TSK_ExplicitInstantiationDefinition:
return GVA_ExplicitTemplateInstantiation;
case TSK_ImplicitInstantiation:
return GVA_TemplateInstantiation;
}
}
return GVA_StrongExternal;
}
bool ASTContext::DeclMustBeEmitted(const Decl *D) {
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!VD->isFileVarDecl())
return false;
} else if (!isa<FunctionDecl>(D))
return false;
// Weak references don't produce any output by themselves.
if (D->hasAttr<WeakRefAttr>())
return false;
// Aliases and used decls are required.
if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
return true;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// Forward declarations aren't required.
if (!FD->isThisDeclarationADefinition())
return false;
// Constructors and destructors are required.
if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
return true;
// The key function for a class is required.
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
const CXXRecordDecl *RD = MD->getParent();
if (MD->isOutOfLine() && RD->isDynamicClass()) {
const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
return true;
}
}
GVALinkage Linkage = GetGVALinkageForFunction(FD);
// static, static inline, always_inline, and extern inline functions can
// always be deferred. Normal inline functions can be deferred in C99/C++.
// Implicit template instantiations can also be deferred in C++.
if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
return false;
return true;
}
const VarDecl *VD = cast<VarDecl>(D);
assert(VD->isFileVarDecl() && "Expected file scoped var");
if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
return false;
// Structs that have non-trivial constructors or destructors are required.
// FIXME: Handle references.
if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
if (RD->hasDefinition() &&
(!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
return true;
}
}
GVALinkage L = GetGVALinkageForVariable(VD);
if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
return false;
}
return true;
}
CXXABI::~CXXABI() {}