| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ASTContext interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "clang/Lex/IdentifierTable.h" |
| using namespace clang; |
| |
| enum FloatingRank { |
| FloatRank, DoubleRank, LongDoubleRank |
| }; |
| |
| ASTContext::~ASTContext() { |
| // Deallocate all the types. |
| while (!Types.empty()) { |
| if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) { |
| // Destroy the object, but don't call delete. These are malloc'd. |
| FT->~FunctionTypeProto(); |
| free(FT); |
| } else { |
| delete Types.back(); |
| } |
| Types.pop_back(); |
| } |
| } |
| |
| void ASTContext::PrintStats() const { |
| fprintf(stderr, "*** AST Context Stats:\n"); |
| fprintf(stderr, " %d types total.\n", (int)Types.size()); |
| unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0; |
| unsigned NumVector = 0, NumComplex = 0; |
| unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0; |
| |
| unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0; |
| unsigned NumObjcInterfaces = 0; |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| Type *T = Types[i]; |
| if (isa<BuiltinType>(T)) |
| ++NumBuiltin; |
| else if (isa<PointerType>(T)) |
| ++NumPointer; |
| else if (isa<ReferenceType>(T)) |
| ++NumReference; |
| else if (isa<ComplexType>(T)) |
| ++NumComplex; |
| else if (isa<ArrayType>(T)) |
| ++NumArray; |
| else if (isa<VectorType>(T)) |
| ++NumVector; |
| else if (isa<FunctionTypeNoProto>(T)) |
| ++NumFunctionNP; |
| else if (isa<FunctionTypeProto>(T)) |
| ++NumFunctionP; |
| else if (isa<TypedefType>(T)) |
| ++NumTypeName; |
| else if (TagType *TT = dyn_cast<TagType>(T)) { |
| ++NumTagged; |
| switch (TT->getDecl()->getKind()) { |
| default: assert(0 && "Unknown tagged type!"); |
| case Decl::Struct: ++NumTagStruct; break; |
| case Decl::Union: ++NumTagUnion; break; |
| case Decl::Class: ++NumTagClass; break; |
| case Decl::Enum: ++NumTagEnum; break; |
| } |
| } else if (isa<ObjcInterfaceType>(T)) |
| ++NumObjcInterfaces; |
| else { |
| assert(0 && "Unknown type!"); |
| } |
| } |
| |
| fprintf(stderr, " %d builtin types\n", NumBuiltin); |
| fprintf(stderr, " %d pointer types\n", NumPointer); |
| fprintf(stderr, " %d reference types\n", NumReference); |
| fprintf(stderr, " %d complex types\n", NumComplex); |
| fprintf(stderr, " %d array types\n", NumArray); |
| fprintf(stderr, " %d vector types\n", NumVector); |
| fprintf(stderr, " %d function types with proto\n", NumFunctionP); |
| fprintf(stderr, " %d function types with no proto\n", NumFunctionNP); |
| fprintf(stderr, " %d typename (typedef) types\n", NumTypeName); |
| fprintf(stderr, " %d tagged types\n", NumTagged); |
| fprintf(stderr, " %d struct types\n", NumTagStruct); |
| fprintf(stderr, " %d union types\n", NumTagUnion); |
| fprintf(stderr, " %d class types\n", NumTagClass); |
| fprintf(stderr, " %d enum types\n", NumTagEnum); |
| fprintf(stderr, " %d interface types\n", NumObjcInterfaces); |
| fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+ |
| NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+ |
| NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+ |
| NumFunctionP*sizeof(FunctionTypeProto)+ |
| NumFunctionNP*sizeof(FunctionTypeNoProto)+ |
| NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType))); |
| } |
| |
| |
| void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { |
| Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr()); |
| } |
| |
| |
| void ASTContext::InitBuiltinTypes() { |
| assert(VoidTy.isNull() && "Context reinitialized?"); |
| |
| // C99 6.2.5p19. |
| InitBuiltinType(VoidTy, BuiltinType::Void); |
| |
| // C99 6.2.5p2. |
| InitBuiltinType(BoolTy, BuiltinType::Bool); |
| // C99 6.2.5p3. |
| if (Target.isCharSigned(SourceLocation())) |
| InitBuiltinType(CharTy, BuiltinType::Char_S); |
| else |
| InitBuiltinType(CharTy, BuiltinType::Char_U); |
| // C99 6.2.5p4. |
| InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| InitBuiltinType(ShortTy, BuiltinType::Short); |
| InitBuiltinType(IntTy, BuiltinType::Int); |
| InitBuiltinType(LongTy, BuiltinType::Long); |
| InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| |
| // C99 6.2.5p6. |
| InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| |
| // C99 6.2.5p10. |
| InitBuiltinType(FloatTy, BuiltinType::Float); |
| InitBuiltinType(DoubleTy, BuiltinType::Double); |
| InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| |
| // C99 6.2.5p11. |
| FloatComplexTy = getComplexType(FloatTy); |
| DoubleComplexTy = getComplexType(DoubleTy); |
| LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Sizing and Analysis |
| //===----------------------------------------------------------------------===// |
| |
| /// getTypeSize - Return the size of the specified type, in bits. This method |
| /// does not work on incomplete types. |
| std::pair<uint64_t, unsigned> |
| ASTContext::getTypeInfo(QualType T, SourceLocation L) { |
| T = T.getCanonicalType(); |
| uint64_t Size; |
| unsigned Align; |
| switch (T->getTypeClass()) { |
| case Type::TypeName: assert(0 && "Not a canonical type!"); |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| default: |
| assert(0 && "Incomplete types have no size!"); |
| case Type::VariableArray: |
| assert(0 && "VLAs not implemented yet!"); |
| case Type::ConstantArray: { |
| ConstantArrayType *CAT = cast<ConstantArrayType>(T); |
| |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(CAT->getElementType(), L); |
| Size = EltInfo.first*CAT->getSize().getZExtValue(); |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::Vector: { |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<VectorType>(T)->getElementType(), L); |
| Size = EltInfo.first*cast<VectorType>(T)->getNumElements(); |
| // FIXME: Vector alignment is not the alignment of its elements. |
| Align = EltInfo.second; |
| break; |
| } |
| |
| case Type::Builtin: { |
| // FIXME: need to use TargetInfo to derive the target specific sizes. This |
| // implementation will suffice for play with vector support. |
| const llvm::fltSemantics *F; |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "Unknown builtin type!"); |
| case BuiltinType::Void: |
| assert(0 && "Incomplete types have no size!"); |
| case BuiltinType::Bool: Target.getBoolInfo(Size, Align, L); break; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: Target.getCharInfo(Size, Align, L); break; |
| case BuiltinType::UShort: |
| case BuiltinType::Short: Target.getShortInfo(Size, Align, L); break; |
| case BuiltinType::UInt: |
| case BuiltinType::Int: Target.getIntInfo(Size, Align, L); break; |
| case BuiltinType::ULong: |
| case BuiltinType::Long: Target.getLongInfo(Size, Align, L); break; |
| case BuiltinType::ULongLong: |
| case BuiltinType::LongLong: Target.getLongLongInfo(Size, Align, L); break; |
| case BuiltinType::Float: Target.getFloatInfo(Size, Align, F, L); break; |
| case BuiltinType::Double: Target.getDoubleInfo(Size, Align, F, L);break; |
| case BuiltinType::LongDouble:Target.getLongDoubleInfo(Size,Align,F,L);break; |
| } |
| break; |
| } |
| case Type::Pointer: Target.getPointerInfo(Size, Align, L); break; |
| case Type::Reference: |
| // "When applied to a reference or a reference type, the result is the size |
| // of the referenced type." C++98 5.3.3p2: expr.sizeof. |
| // FIXME: This is wrong for struct layout! |
| return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L); |
| |
| case Type::Complex: { |
| // Complex types have the same alignment as their elements, but twice the |
| // size. |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<ComplexType>(T)->getElementType(), L); |
| Size = EltInfo.first*2; |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::Tagged: |
| TagType *TT = cast<TagType>(T); |
| if (RecordType *RT = dyn_cast<RecordType>(TT)) { |
| const RecordLayout &Layout = getRecordLayout(RT->getDecl(), L); |
| Size = Layout.getSize(); |
| Align = Layout.getAlignment(); |
| } else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) { |
| return getTypeInfo(ED->getIntegerType(), L); |
| } else { |
| assert(0 && "Unimplemented type sizes!"); |
| } |
| break; |
| } |
| |
| assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2"); |
| return std::make_pair(Size, Align); |
| } |
| |
| /// getRecordLayout - Get or compute information about the layout of the |
| /// specified record (struct/union/class), which indicates its size and field |
| /// position information. |
| const RecordLayout &ASTContext::getRecordLayout(const RecordDecl *D, |
| SourceLocation L) { |
| assert(D->isDefinition() && "Cannot get layout of forward declarations!"); |
| |
| // Look up this layout, if already laid out, return what we have. |
| const RecordLayout *&Entry = RecordLayoutInfo[D]; |
| if (Entry) return *Entry; |
| |
| // Allocate and assign into RecordLayoutInfo here. The "Entry" reference can |
| // be invalidated (dangle) if the RecordLayoutInfo hashtable is inserted into. |
| RecordLayout *NewEntry = new RecordLayout(); |
| Entry = NewEntry; |
| |
| uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()]; |
| uint64_t RecordSize = 0; |
| unsigned RecordAlign = 8; // Default alignment = 1 byte = 8 bits. |
| |
| if (D->getKind() != Decl::Union) { |
| // Layout each field, for now, just sequentially, respecting alignment. In |
| // the future, this will need to be tweakable by targets. |
| for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) { |
| const FieldDecl *FD = D->getMember(i); |
| std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L); |
| uint64_t FieldSize = FieldInfo.first; |
| unsigned FieldAlign = FieldInfo.second; |
| |
| // Round up the current record size to the field's alignment boundary. |
| RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1); |
| |
| // Place this field at the current location. |
| FieldOffsets[i] = RecordSize; |
| |
| // Reserve space for this field. |
| RecordSize += FieldSize; |
| |
| // Remember max struct/class alignment. |
| RecordAlign = std::max(RecordAlign, FieldAlign); |
| } |
| |
| // Finally, round the size of the total struct up to the alignment of the |
| // struct itself. |
| RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1); |
| } else { |
| // Union layout just puts each member at the start of the record. |
| for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) { |
| const FieldDecl *FD = D->getMember(i); |
| std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L); |
| uint64_t FieldSize = FieldInfo.first; |
| unsigned FieldAlign = FieldInfo.second; |
| |
| // Round up the current record size to the field's alignment boundary. |
| RecordSize = std::max(RecordSize, FieldSize); |
| |
| // Place this field at the start of the record. |
| FieldOffsets[i] = 0; |
| |
| // Remember max struct/class alignment. |
| RecordAlign = std::max(RecordAlign, FieldAlign); |
| } |
| } |
| |
| NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets); |
| return *NewEntry; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type creation/memoization methods |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// getComplexType - Return the uniqued reference to the type for a complex |
| /// number with the specified element type. |
| QualType ASTContext::getComplexType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ComplexType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(CT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getComplexType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| ComplexType *New = new ComplexType(T, Canonical); |
| Types.push_back(New); |
| ComplexTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| |
| /// getPointerType - Return the uniqued reference to the type for a pointer to |
| /// the specified type. |
| QualType ASTContext::getPointerType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| PointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getPointerType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| PointerType *New = new PointerType(T, Canonical); |
| Types.push_back(New); |
| PointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getReferenceType - Return the uniqued reference to the type for a reference |
| /// to the specified type. |
| QualType ASTContext::getReferenceType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getReferenceType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ReferenceType *New = new ReferenceType(T, Canonical); |
| Types.push_back(New); |
| ReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getConstantArrayType - Return the unique reference to the type for an |
| /// array of the specified element type. |
| QualType ASTContext::getConstantArrayType(QualType EltTy, |
| const llvm::APInt &ArySize, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| llvm::FoldingSetNodeID ID; |
| ConstantArrayType::Profile(ID, EltTy, ArySize); |
| |
| void *InsertPos = 0; |
| if (ConstantArrayType *ATP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!EltTy->isCanonical()) { |
| Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize, |
| ASM, EltTypeQuals); |
| // Get the new insert position for the node we care about. |
| ConstantArrayType *NewIP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize, |
| ASM, EltTypeQuals); |
| ArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVariableArrayType - Returns a non-unique reference to the type for a |
| /// variable array of the specified element type. |
| QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| // Since we don't unique expressions, it isn't possible to unique VLA's. |
| ArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, |
| ASM, EltTypeQuals); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVectorType - Return the unique reference to a vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr()); |
| assert(baseType != 0 && "getVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::Vector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getVectorType(vecType.getCanonicalType(), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| VectorType *New = new VectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getOCUVectorType - Return the unique reference to an OCU vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr()); |
| assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::OCUVector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'. |
| /// |
| QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeNoProto::Profile(ID, ResultTy); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeNoProto *FT = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FT, 0); |
| |
| QualType Canonical; |
| if (!ResultTy->isCanonical()) { |
| Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeNoProto *NewIP = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical); |
| Types.push_back(New); |
| FunctionTypeProtos.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionType - Return a normal function type with a typed argument |
| /// list. isVariadic indicates whether the argument list includes '...'. |
| QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray, |
| unsigned NumArgs, bool isVariadic) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeProto *FTP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FTP, 0); |
| |
| // Determine whether the type being created is already canonical or not. |
| bool isCanonical = ResultTy->isCanonical(); |
| for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| if (!ArgArray[i]->isCanonical()) |
| isCanonical = false; |
| |
| // If this type isn't canonical, get the canonical version of it. |
| QualType Canonical; |
| if (!isCanonical) { |
| llvm::SmallVector<QualType, 16> CanonicalArgs; |
| CanonicalArgs.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| CanonicalArgs.push_back(ArgArray[i].getCanonicalType()); |
| |
| Canonical = getFunctionType(ResultTy.getCanonicalType(), |
| &CanonicalArgs[0], NumArgs, |
| isVariadic); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeProto *NewIP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| // FunctionTypeProto objects are not allocated with new because they have a |
| // variable size array (for parameter types) at the end of them. |
| FunctionTypeProto *FTP = |
| (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + |
| NumArgs*sizeof(QualType)); |
| new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic, |
| Canonical); |
| Types.push_back(FTP); |
| FunctionTypeProtos.InsertNode(FTP, InsertPos); |
| return QualType(FTP, 0); |
| } |
| |
| /// getTypedefType - Return the unique reference to the type for the |
| /// specified typename decl. |
| QualType ASTContext::getTypedefType(TypedefDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| QualType Canonical = Decl->getUnderlyingType().getCanonicalType(); |
| Decl->TypeForDecl = new TypedefType(Decl, Canonical); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getObjcInterfaceType - Return the unique reference to the type for the |
| /// specified ObjC interface decl. |
| QualType ASTContext::getObjcInterfaceType(ObjcInterfaceDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| Decl->TypeForDecl = new ObjcInterfaceType(Decl); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique |
| /// TypeOfExpr AST's (since expression's are never shared). For example, |
| /// multiple declarations that refer to "typeof(x)" all contain different |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfExpr(Expr *tofExpr) { |
| QualType Canonical = tofExpr->getType().getCanonicalType(); |
| TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical); |
| Types.push_back(toe); |
| return QualType(toe, 0); |
| } |
| |
| /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| /// TypeOfType AST's. The only motivation to unique these nodes would be |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| /// an issue. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfType(QualType tofType) { |
| QualType Canonical = tofType.getCanonicalType(); |
| TypeOfType *tot = new TypeOfType(tofType, Canonical); |
| Types.push_back(tot); |
| return QualType(tot, 0); |
| } |
| |
| /// getTagDeclType - Return the unique reference to the type for the |
| /// specified TagDecl (struct/union/class/enum) decl. |
| QualType ASTContext::getTagDeclType(TagDecl *Decl) { |
| // The decl stores the type cache. |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| Decl->TypeForDecl = new TagType(Decl, QualType()); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| QualType ASTContext::getSizeType() const { |
| // On Darwin, size_t is defined as a "long unsigned int". |
| // FIXME: should derive from "Target". |
| return UnsignedLongTy; |
| } |
| |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| QualType ASTContext::getPointerDiffType() const { |
| // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug... |
| // FIXME: should derive from "Target". |
| return IntTy; |
| } |
| |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| /// routine will assert if passed a built-in type that isn't an integer or enum. |
| static int getIntegerRank(QualType t) { |
| if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) { |
| assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum"); |
| return 4; |
| } |
| |
| const BuiltinType *BT = cast<BuiltinType>(t.getCanonicalType()); |
| switch (BT->getKind()) { |
| default: |
| assert(0 && "getIntegerRank(): not a built-in integer"); |
| case BuiltinType::Bool: |
| return 1; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| return 2; |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| return 3; |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return 4; |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| return 5; |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| return 6; |
| } |
| } |
| |
| /// getFloatingRank - Return a relative rank for floating point types. |
| /// This routine will assert if passed a built-in type that isn't a float. |
| static int getFloatingRank(QualType T) { |
| T = T.getCanonicalType(); |
| if (ComplexType *CT = dyn_cast<ComplexType>(T)) |
| return getFloatingRank(CT->getElementType()); |
| |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "getFloatingPointRank(): not a floating type"); |
| case BuiltinType::Float: return FloatRank; |
| case BuiltinType::Double: return DoubleRank; |
| case BuiltinType::LongDouble: return LongDoubleRank; |
| } |
| } |
| |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating |
| /// point or a complex type (based on typeDomain/typeSize). |
| /// 'typeDomain' is a real floating point or complex type. |
| /// 'typeSize' is a real floating point or complex type. |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain( |
| QualType typeSize, QualType typeDomain) const { |
| if (typeDomain->isComplexType()) { |
| switch (getFloatingRank(typeSize)) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatComplexTy; |
| case DoubleRank: return DoubleComplexTy; |
| case LongDoubleRank: return LongDoubleComplexTy; |
| } |
| } |
| if (typeDomain->isRealFloatingType()) { |
| switch (getFloatingRank(typeSize)) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatTy; |
| case DoubleRank: return DoubleTy; |
| case LongDoubleRank: return LongDoubleTy; |
| } |
| } |
| assert(0 && "getFloatingTypeOfSizeWithinDomain(): illegal domain"); |
| //an invalid return value, but the assert |
| //will ensure that this code is never reached. |
| return VoidTy; |
| } |
| |
| /// compareFloatingType - Handles 3 different combos: |
| /// float/float, float/complex, complex/complex. |
| /// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1. |
| int ASTContext::compareFloatingType(QualType lt, QualType rt) { |
| if (getFloatingRank(lt) == getFloatingRank(rt)) |
| return 0; |
| if (getFloatingRank(lt) > getFloatingRank(rt)) |
| return 1; |
| return -1; |
| } |
| |
| // maxIntegerType - Returns the highest ranked integer type. Handles 3 case: |
| // unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1. |
| QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) { |
| if (lhs == rhs) return lhs; |
| |
| bool t1Unsigned = lhs->isUnsignedIntegerType(); |
| bool t2Unsigned = rhs->isUnsignedIntegerType(); |
| |
| if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned)) |
| return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs; |
| |
| // We have two integer types with differing signs |
| QualType unsignedType = t1Unsigned ? lhs : rhs; |
| QualType signedType = t1Unsigned ? rhs : lhs; |
| |
| if (getIntegerRank(unsignedType) >= getIntegerRank(signedType)) |
| return unsignedType; |
| else { |
| // FIXME: Need to check if the signed type can represent all values of the |
| // unsigned type. If it can, then the result is the signed type. |
| // If it can't, then the result is the unsigned version of the signed type. |
| // Should probably add a helper that returns a signed integer type from |
| // an unsigned (and vice versa). C99 6.3.1.8. |
| return signedType; |
| } |
| } |
| |
| // getCFConstantStringType - Return the type used for constant CFStrings. |
| QualType ASTContext::getCFConstantStringType() { |
| if (!CFConstantStringTypeDecl) { |
| CFConstantStringTypeDecl = new RecordDecl(Decl::Struct, SourceLocation(), |
| &Idents.get("__builtin_CFString"), |
| 0); |
| |
| QualType FieldTypes[4]; |
| |
| // const int *isa; |
| FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const)); |
| // int flags; |
| FieldTypes[1] = IntTy; |
| // const char *str; |
| FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const)); |
| // long length; |
| FieldTypes[3] = LongTy; |
| // Create fields |
| FieldDecl *FieldDecls[4]; |
| |
| for (unsigned i = 0; i < 4; ++i) |
| FieldDecls[i] = new FieldDecl(SourceLocation(), 0, FieldTypes[i]); |
| |
| CFConstantStringTypeDecl->defineBody(FieldDecls, 4); |
| } |
| |
| return getTagDeclType(CFConstantStringTypeDecl); |
| } |