blob: 3d312fa4a8081747c441ea58a6e6d62370bce73d [file] [log] [blame]
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/Serialize.h"
#include "llvm/Bitcode/Deserialize.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
// Destroy the object, but don't call delete. These are malloc'd.
FT->~FunctionTypeProto();
free(FT);
} else {
delete Types.back();
}
Types.pop_back();
}
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumVector = 0, NumComplex = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
unsigned NumObjCQualifiedIds = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<ReferenceType>(T))
++NumReference;
else if (isa<ComplexType>(T))
++NumComplex;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<VectorType>(T))
++NumVector;
else if (isa<FunctionTypeNoProto>(T))
++NumFunctionNP;
else if (isa<FunctionTypeProto>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
else if (TagType *TT = dyn_cast<TagType>(T)) {
++NumTagged;
switch (TT->getDecl()->getKind()) {
default: assert(0 && "Unknown tagged type!");
case Decl::Struct: ++NumTagStruct; break;
case Decl::Union: ++NumTagUnion; break;
case Decl::Class: ++NumTagClass; break;
case Decl::Enum: ++NumTagEnum; break;
}
} else if (isa<ObjCInterfaceType>(T))
++NumObjCInterfaces;
else if (isa<ObjCQualifiedInterfaceType>(T))
++NumObjCQualifiedInterfaces;
else if (isa<ObjCQualifiedIdType>(T))
++NumObjCQualifiedIds;
else {
QualType(T, 0).dump();
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d reference types\n", NumReference);
fprintf(stderr, " %d complex types\n", NumComplex);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d vector types\n", NumVector);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, " %d interface types\n", NumObjCInterfaces);
fprintf(stderr, " %d protocol qualified interface types\n",
NumObjCQualifiedInterfaces);
fprintf(stderr, " %d protocol qualified id types\n",
NumObjCQualifiedIds);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
NumFunctionP*sizeof(FunctionTypeProto)+
NumFunctionNP*sizeof(FunctionTypeNoProto)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
}
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned())
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
BuiltinVaListType = QualType();
ObjCIdType = QualType();
IdStructType = 0;
ObjCClassType = QualType();
ClassStructType = 0;
ObjCConstantStringType = QualType();
// void * type
VoidPtrTy = getPointerType(VoidTy);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(QualType T) {
T = T.getCanonicalType();
uint64_t Width;
unsigned Align;
switch (T->getTypeClass()) {
case Type::TypeName: assert(0 && "Not a canonical type!");
case Type::FunctionNoProto:
case Type::FunctionProto:
default:
assert(0 && "Incomplete types have no size!");
case Type::VariableArray:
assert(0 && "VLAs not implemented yet!");
case Type::ConstantArray: {
ConstantArrayType *CAT = cast<ConstantArrayType>(T);
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
Width = EltInfo.first*CAT->getSize().getZExtValue();
Align = EltInfo.second;
break;
}
case Type::OCUVector:
case Type::Vector: {
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<VectorType>(T)->getElementType());
Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
// FIXME: Vector alignment is not the alignment of its elements.
Align = EltInfo.second;
break;
}
case Type::Builtin:
// FIXME: need to use TargetInfo to derive the target specific sizes. This
// implementation will suffice for play with vector support.
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
case BuiltinType::Bool:
Width = Target.getBoolWidth();
Align = Target.getBoolAlign();
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar:
Width = Target.getCharWidth();
Align = Target.getCharAlign();
break;
case BuiltinType::UShort:
case BuiltinType::Short:
Width = Target.getShortWidth();
Align = Target.getShortAlign();
break;
case BuiltinType::UInt:
case BuiltinType::Int:
Width = Target.getIntWidth();
Align = Target.getIntAlign();
break;
case BuiltinType::ULong:
case BuiltinType::Long:
Width = Target.getLongWidth();
Align = Target.getLongAlign();
break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
Width = Target.getLongLongWidth();
Align = Target.getLongLongAlign();
break;
case BuiltinType::Float:
Width = Target.getFloatWidth();
Align = Target.getFloatAlign();
break;
case BuiltinType::Double:
Width = Target.getDoubleWidth();
Align = Target.getDoubleAlign();
break;
case BuiltinType::LongDouble:
Width = Target.getLongDoubleWidth();
Align = Target.getLongDoubleAlign();
break;
}
break;
case Type::ASQual:
// FIXME: Pointers into different addr spaces could have different sizes and
// alignment requirements: getPointerInfo should take an AddrSpace.
return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
case Type::ObjCQualifiedId:
Width = Target.getPointerWidth(0);
Align = Target.getPointerAlign(0);
break;
case Type::Pointer: {
unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::Reference:
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
// FIXME: This is wrong for struct layout: a reference in a struct has
// pointer size.
return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType());
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType());
Width = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::Tagged:
TagType *TT = cast<TagType>(T);
if (RecordType *RT = dyn_cast<RecordType>(TT)) {
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
} else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) {
return getTypeInfo(ED->getIntegerType());
} else {
assert(0 && "Unimplemented type sizes!");
}
break;
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Width, Align);
}
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
assert(D->isDefinition() && "Cannot get layout of forward declarations!");
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = new ASTRecordLayout();
Entry = NewEntry;
uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
uint64_t RecordSize = 0;
unsigned RecordAlign = 8; // Default alignment = 1 byte = 8 bits.
if (D->getKind() != Decl::Union) {
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
RecordAlign = std::max(RecordAlign, AA->getAlignment());
bool StructIsPacked = D->getAttr<PackedAttr>();
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
uint64_t FieldSize;
unsigned FieldAlign;
if (const Expr *BitWidthExpr = FD->getBitWidth()) {
llvm::APSInt I(32);
bool BitWidthIsICE =
BitWidthExpr->isIntegerConstantExpr(I, *this);
assert (BitWidthIsICE && "Invalid BitField size expression");
FieldSize = I.getZExtValue();
std::pair<uint64_t, unsigned> TypeInfo = getTypeInfo(FD->getType());
uint64_t TypeSize = TypeInfo.first;
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = AA->getAlignment();
else if (FieldIsPacked)
FieldAlign = 8;
else {
// FIXME: This is X86 specific, use 32-bit alignment for long long.
if (FD->getType()->isIntegerType() && TypeInfo.second > 32)
FieldAlign = 32;
else
FieldAlign = TypeInfo.second;
}
// Check if we need to add padding to give the field the correct
// alignment.
if (RecordSize % FieldAlign + FieldSize > TypeSize)
RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
} else {
if (FD->getType()->isIncompleteType()) {
// This must be a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = AA->getAlignment();
else if (FieldIsPacked)
FieldAlign = 8;
else {
const ArrayType* ATy = FD->getType()->getAsArrayType();
FieldAlign = getTypeAlign(ATy->getElementType());
}
FieldSize = 0;
} else {
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
FieldSize = FieldInfo.first;
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = AA->getAlignment();
else if (FieldIsPacked)
FieldAlign = 8;
else
FieldAlign = FieldInfo.second;
}
// Round up the current record size to the field's alignment boundary.
RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
}
// Place this field at the current location.
FieldOffsets[i] = RecordSize;
// Reserve space for this field.
RecordSize += FieldSize;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
} else {
// Union layout just puts each member at the start of the record.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
uint64_t FieldSize = FieldInfo.first;
unsigned FieldAlign = FieldInfo.second;
// FIXME: This is X86 specific, use 32-bit alignment for long long.
if (FD->getType()->isIntegerType() && FieldAlign > 32)
FieldAlign = 32;
// Round up the current record size to the field's alignment boundary.
RecordSize = std::max(RecordSize, FieldSize);
// Place this field at the start of the record.
FieldOffsets[i] = 0;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
}
NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
return *NewEntry;
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
if (T.getCanonicalType().getAddressSpace() == AddressSpace)
return T;
// Type's cannot have multiple ASQuals, therefore we know we only have to deal
// with CVR qualifiers from here on out.
assert(T.getCanonicalType().getAddressSpace() == 0 &&
"Type is already address space qualified");
// Check if we've already instantiated an address space qual'd type of this
// type.
llvm::FoldingSetNodeID ID;
ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
void *InsertPos = 0;
if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ASQy, 0);
// If the base type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getASQualType(T.getCanonicalType(), AddressSpace);
// Get the new insert position for the node we care about.
ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
ASQualTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, T.getCVRQualifiers());
}
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getComplexType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ComplexType *New = new ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getPointerType(T.getCanonicalType());
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
PointerType *New = new PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getReferenceType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ReferenceType *New = new ReferenceType(T, Canonical);
Types.push_back(New);
ReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
ConstantArrayType::Profile(ID, EltTy, ArySize);
void *InsertPos = 0;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
ASM, EltTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
VariableArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
IncompleteArrayType::Profile(ID, EltTy);
void *InsertPos = 0;
if (IncompleteArrayType *ATP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getIncompleteArrayType(EltTy.getCanonicalType(),
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
IncompleteArrayType *NewIP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
ASM, EltTypeQuals);
IncompleteArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::Vector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
VectorType *New = new VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getOCUVectorType - Return the unique reference to an OCU vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeNoProto::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionTypeNoProto *FT =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!ResultTy->isCanonical()) {
Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
// Get the new insert position for the node we care about.
FunctionTypeNoProto *NewIP =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
Types.push_back(New);
FunctionTypeNoProtos.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
unsigned NumArgs, bool isVariadic) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
void *InsertPos = 0;
if (FunctionTypeProto *FTP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FTP, 0);
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
QualType Canonical;
if (!isCanonical) {
llvm::SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
Canonical = getFunctionType(ResultTy.getCanonicalType(),
&CanonicalArgs[0], NumArgs,
isVariadic);
// Get the new insert position for the node we care about.
FunctionTypeProto *NewIP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
// FunctionTypeProto objects are not allocated with new because they have a
// variable size array (for parameter types) at the end of them.
FunctionTypeProto *FTP =
(FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
NumArgs*sizeof(QualType));
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
Canonical);
Types.push_back(FTP);
FunctionTypeProtos.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl.
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjCQualifiedInterfaceType - Return a
/// ObjCQualifiedInterfaceType type for the given interface decl and
/// the conforming protocol list.
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
llvm::FoldingSetNodeID ID;
ObjCQualifiedInterfaceType::Profile(ID, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCQualifiedInterfaceType *QT =
ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
ObjCQualifiedInterfaceType *QType =
new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
Types.push_back(QType);
ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getObjCQualifiedIdType - Return a
/// getObjCQualifiedIdType type for the 'id' decl and
/// the conforming protocol list.
QualType ASTContext::getObjCQualifiedIdType(QualType idType,
ObjCProtocolDecl **Protocols,
unsigned NumProtocols) {
llvm::FoldingSetNodeID ID;
ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCQualifiedIdType *QT =
ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
QualType Canonical;
if (!idType->isCanonical()) {
Canonical = getObjCQualifiedIdType(idType.getCanonicalType(),
Protocols, NumProtocols);
ObjCQualifiedIdType *NewQT =
ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewQT == 0 && "Shouldn't be in the map!");
}
ObjCQualifiedIdType *QType =
new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
Types.push_back(QType);
ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExpr AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
QualType Canonical = tofExpr->getType().getCanonicalType();
TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
Types.push_back(toe);
return QualType(toe, 0);
}
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
QualType Canonical = tofType.getCanonicalType();
TypeOfType *tot = new TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
assert (Decl);
// The decl stores the type cache.
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
TagType* T = new TagType(Decl, QualType());
Types.push_back(T);
Decl->TypeForDecl = T;
return QualType(T, 0);
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getSizeType() const {
// On Darwin, size_t is defined as a "long unsigned int".
// FIXME: should derive from "Target".
return UnsignedLongTy;
}
/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
/// width of characters in wide strings, The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getWcharType() const {
// On Darwin, wchar_t is defined as a "int".
// FIXME: should derive from "Target".
return IntTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
// On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
// FIXME: should derive from "Target".
return IntTy;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum.
static int getIntegerRank(QualType t) {
if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
return 4;
}
const BuiltinType *BT = t.getCanonicalType()->getAsBuiltinType();
switch (BT->getKind()) {
default:
assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2;
case BuiltinType::Short:
case BuiltinType::UShort:
return 3;
case BuiltinType::Int:
case BuiltinType::UInt:
return 4;
case BuiltinType::Long:
case BuiltinType::ULong:
return 5;
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6;
}
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static int getFloatingRank(QualType T) {
T = T.getCanonicalType();
if (const ComplexType *CT = T->getAsComplexType())
return getFloatingRank(CT->getElementType());
switch (T->getAsBuiltinType()->getKind()) {
default: assert(0 && "getFloatingRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
}
}
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(
QualType typeSize, QualType typeDomain) const {
if (typeDomain->isComplexType()) {
switch (getFloatingRank(typeSize)) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
if (typeDomain->isRealFloatingType()) {
switch (getFloatingRank(typeSize)) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
}
}
assert(0 && "getFloatingTypeOfSizeWithinDomain(): illegal domain");
//an invalid return value, but the assert
//will ensure that this code is never reached.
return VoidTy;
}
/// compareFloatingType - Handles 3 different combos:
/// float/float, float/complex, complex/complex.
/// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1.
int ASTContext::compareFloatingType(QualType lt, QualType rt) {
if (getFloatingRank(lt) == getFloatingRank(rt))
return 0;
if (getFloatingRank(lt) > getFloatingRank(rt))
return 1;
return -1;
}
// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
if (lhs == rhs) return lhs;
bool t1Unsigned = lhs->isUnsignedIntegerType();
bool t2Unsigned = rhs->isUnsignedIntegerType();
if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs;
// We have two integer types with differing signs
QualType unsignedType = t1Unsigned ? lhs : rhs;
QualType signedType = t1Unsigned ? rhs : lhs;
if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
return unsignedType;
else {
// FIXME: Need to check if the signed type can represent all values of the
// unsigned type. If it can, then the result is the signed type.
// If it can't, then the result is the unsigned version of the signed type.
// Should probably add a helper that returns a signed integer type from
// an unsigned (and vice versa). C99 6.3.1.8.
return signedType;
}
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() {
if (!CFConstantStringTypeDecl) {
CFConstantStringTypeDecl = new RecordDecl(Decl::Struct, SourceLocation(),
&Idents.get("NSConstantString"),
0);
QualType FieldTypes[4];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
// int flags;
FieldTypes[1] = IntTy;
// const char *str;
FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
// long length;
FieldTypes[3] = LongTy;
// Create fields
FieldDecl *FieldDecls[4];
for (unsigned i = 0; i < 4; ++i)
FieldDecls[i] = new FieldDecl(SourceLocation(), 0, FieldTypes[i]);
CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
}
return getTagDeclType(CFConstantStringTypeDecl);
}
// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
return !strcmp(TT->getDecl()->getName(), "BOOL");
return false;
}
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
int ASTContext::getObjCEncodingTypeSize(QualType type) {
uint64_t sz = getTypeSize(type);
// Make all integer and enum types at least as large as an int
if (sz > 0 && type->isIntegralType())
sz = std::max(sz, getTypeSize(IntTy));
// Treat arrays as pointers, since that's how they're passed in.
else if (type->isArrayType())
sz = getTypeSize(VoidPtrTy);
return sz / getTypeSize(CharTy);
}
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl,
std::string& S)
{
// Encode type qualifer, 'in', 'inout', etc. for the return type.
getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
// Encode result type.
getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
SourceLocation Loc;
int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
// The first two arguments (self and _cmd) are pointers; account for
// their size.
int ParmOffset = 2 * PtrSize;
int NumOfParams = Decl->getNumParams();
for (int i = 0; i < NumOfParams; i++) {
QualType PType = Decl->getParamDecl(i)->getType();
int sz = getObjCEncodingTypeSize (PType);
assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
ParmOffset += sz;
}
S += llvm::utostr(ParmOffset);
S += "@0:";
S += llvm::utostr(PtrSize);
// Argument types.
ParmOffset = 2 * PtrSize;
for (int i = 0; i < NumOfParams; i++) {
QualType PType = Decl->getParamDecl(i)->getType();
// Process argument qualifiers for user supplied arguments; such as,
// 'in', 'inout', etc.
getObjCEncodingForTypeQualifier(
Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
getObjCEncodingForType(PType, S, EncodingRecordTypes);
S += llvm::utostr(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
}
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
llvm::SmallVector<const RecordType *, 8> &ERType) const
{
// FIXME: This currently doesn't encode:
// @ An object (whether statically typed or typed id)
// # A class object (Class)
// : A method selector (SEL)
// {name=type...} A structure
// (name=type...) A union
// bnum A bit field of num bits
if (const BuiltinType *BT = T->getAsBuiltinType()) {
char encoding;
switch (BT->getKind()) {
case BuiltinType::Void:
encoding = 'v';
break;
case BuiltinType::Bool:
encoding = 'B';
break;
case BuiltinType::Char_U:
case BuiltinType::UChar:
encoding = 'C';
break;
case BuiltinType::UShort:
encoding = 'S';
break;
case BuiltinType::UInt:
encoding = 'I';
break;
case BuiltinType::ULong:
encoding = 'L';
break;
case BuiltinType::ULongLong:
encoding = 'Q';
break;
case BuiltinType::Char_S:
case BuiltinType::SChar:
encoding = 'c';
break;
case BuiltinType::Short:
encoding = 's';
break;
case BuiltinType::Int:
encoding = 'i';
break;
case BuiltinType::Long:
encoding = 'l';
break;
case BuiltinType::LongLong:
encoding = 'q';
break;
case BuiltinType::Float:
encoding = 'f';
break;
case BuiltinType::Double:
encoding = 'd';
break;
case BuiltinType::LongDouble:
encoding = 'd';
break;
default:
assert(0 && "Unhandled builtin type kind");
}
S += encoding;
}
else if (T->isObjCQualifiedIdType()) {
// Treat id<P...> same as 'id' for encoding purposes.
return getObjCEncodingForType(getObjCIdType(), S, ERType);
}
else if (const PointerType *PT = T->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
S += '@';
return;
} else if (isObjCClassType(PointeeTy)) {
S += '#';
return;
} else if (isObjCSelType(PointeeTy)) {
S += ':';
return;
}
if (PointeeTy->isCharType()) {
// char pointer types should be encoded as '*' unless it is a
// type that has been typedef'd to 'BOOL'.
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
S += '*';
return;
}
}
S += '^';
getObjCEncodingForType(PT->getPointeeType(), S, ERType);
} else if (const ArrayType *AT = T->getAsArrayType()) {
S += '[';
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
S += llvm::utostr(CAT->getSize().getZExtValue());
else
assert(0 && "Unhandled array type!");
getObjCEncodingForType(AT->getElementType(), S, ERType);
S += ']';
} else if (T->getAsFunctionType()) {
S += '?';
} else if (const RecordType *RTy = T->getAsRecordType()) {
RecordDecl *RDecl= RTy->getDecl();
S += '{';
S += RDecl->getName();
bool found = false;
for (unsigned i = 0, e = ERType.size(); i != e; ++i)
if (ERType[i] == RTy) {
found = true;
break;
}
if (!found) {
ERType.push_back(RTy);
S += '=';
for (int i = 0; i < RDecl->getNumMembers(); i++) {
FieldDecl *field = RDecl->getMember(i);
getObjCEncodingForType(field->getType(), S, ERType);
}
assert(ERType.back() == RTy && "Record Type stack mismatch.");
ERType.pop_back();
}
S += '}';
} else if (T->isEnumeralType()) {
S += 'i';
} else
assert(0 && "@encode for type not implemented!");
}
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string& S) const {
if (QT & Decl::OBJC_TQ_In)
S += 'n';
if (QT & Decl::OBJC_TQ_Inout)
S += 'N';
if (QT & Decl::OBJC_TQ_Out)
S += 'o';
if (QT & Decl::OBJC_TQ_Bycopy)
S += 'O';
if (QT & Decl::OBJC_TQ_Byref)
S += 'R';
if (QT & Decl::OBJC_TQ_Oneway)
S += 'V';
}
void ASTContext::setBuiltinVaListType(QualType T)
{
assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
BuiltinVaListType = T;
}
void ASTContext::setObjCIdType(TypedefDecl *TD)
{
assert(ObjCIdType.isNull() && "'id' type already set!");
ObjCIdType = getTypedefType(TD);
// typedef struct objc_object *id;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'id' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'id' incorrectly typed");
IdStructType = rec;
}
void ASTContext::setObjCSelType(TypedefDecl *TD)
{
assert(ObjCSelType.isNull() && "'SEL' type already set!");
ObjCSelType = getTypedefType(TD);
// typedef struct objc_selector *SEL;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'SEL' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'SEL' incorrectly typed");
SelStructType = rec;
}
void ASTContext::setObjCProtoType(QualType QT)
{
assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
ObjCProtoType = QT;
}
void ASTContext::setObjCClassType(TypedefDecl *TD)
{
assert(ObjCClassType.isNull() && "'Class' type already set!");
ObjCClassType = getTypedefType(TD);
// typedef struct objc_class *Class;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'Class' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'Class' incorrectly typed");
ClassStructType = rec;
}
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
assert(ObjCConstantStringType.isNull() &&
"'NSConstantString' type already set!");
ObjCConstantStringType = getObjCInterfaceType(Decl);
}
bool ASTContext::builtinTypesAreCompatible(QualType lhs, QualType rhs) {
const BuiltinType *lBuiltin = lhs->getAsBuiltinType();
const BuiltinType *rBuiltin = rhs->getAsBuiltinType();
return lBuiltin->getKind() == rBuiltin->getKind();
}
/// objcTypesAreCompatible - This routine is called when two types
/// are of different class; one is interface type or is
/// a qualified interface type and the other type is of a different class.
/// Example, II or II<P>.
bool ASTContext::objcTypesAreCompatible(QualType lhs, QualType rhs) {
if (lhs->isObjCInterfaceType() && isObjCIdType(rhs))
return true;
else if (isObjCIdType(lhs) && rhs->isObjCInterfaceType())
return true;
if (ObjCInterfaceType *lhsIT =
dyn_cast<ObjCInterfaceType>(lhs.getCanonicalType().getTypePtr())) {
ObjCQualifiedInterfaceType *rhsQI =
dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr());
return rhsQI && (lhsIT->getDecl() == rhsQI->getDecl());
}
else if (ObjCInterfaceType *rhsIT =
dyn_cast<ObjCInterfaceType>(rhs.getCanonicalType().getTypePtr())) {
ObjCQualifiedInterfaceType *lhsQI =
dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr());
return lhsQI && (rhsIT->getDecl() == lhsQI->getDecl());
}
return false;
}
/// Check that 'lhs' and 'rhs' are compatible interface types. Both types
/// must be canonical types.
bool ASTContext::interfaceTypesAreCompatible(QualType lhs, QualType rhs) {
assert (lhs->isCanonical() &&
"interfaceTypesAreCompatible strip typedefs of lhs");
assert (rhs->isCanonical() &&
"interfaceTypesAreCompatible strip typedefs of rhs");
if (lhs == rhs)
return true;
ObjCInterfaceType *lhsIT = cast<ObjCInterfaceType>(lhs.getTypePtr());
ObjCInterfaceType *rhsIT = cast<ObjCInterfaceType>(rhs.getTypePtr());
ObjCInterfaceDecl *rhsIDecl = rhsIT->getDecl();
ObjCInterfaceDecl *lhsIDecl = lhsIT->getDecl();
// rhs is derived from lhs it is OK; else it is not OK.
while (rhsIDecl != NULL) {
if (rhsIDecl == lhsIDecl)
return true;
rhsIDecl = rhsIDecl->getSuperClass();
}
return false;
}
bool ASTContext::QualifiedInterfaceTypesAreCompatible(QualType lhs,
QualType rhs) {
ObjCQualifiedInterfaceType *lhsQI =
dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr());
assert(lhsQI && "QualifiedInterfaceTypesAreCompatible - bad lhs type");
ObjCQualifiedInterfaceType *rhsQI =
dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr());
assert(rhsQI && "QualifiedInterfaceTypesAreCompatible - bad rhs type");
if (!interfaceTypesAreCompatible(
getObjCInterfaceType(lhsQI->getDecl()).getCanonicalType(),
getObjCInterfaceType(rhsQI->getDecl()).getCanonicalType()))
return false;
/* All protocols in lhs must have a presense in rhs. */
for (unsigned i =0; i < lhsQI->getNumProtocols(); i++) {
bool match = false;
ObjCProtocolDecl *lhsProto = lhsQI->getProtocols(i);
for (unsigned j = 0; j < rhsQI->getNumProtocols(); j++) {
ObjCProtocolDecl *rhsProto = rhsQI->getProtocols(j);
if (lhsProto == rhsProto) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
/// inheritance hierarchy of 'rProto'.
static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto) {
if (lProto == rProto)
return true;
ObjCProtocolDecl** RefPDecl = rProto->getReferencedProtocols();
for (unsigned i = 0; i < rProto->getNumReferencedProtocols(); i++)
if (ProtocolCompatibleWithProtocol(lProto, RefPDecl[i]))
return true;
return false;
}
/// ClassImplementsProtocol - Checks that 'lProto' protocol
/// has been implemented in IDecl class, its super class or categories (if
/// lookupCategory is true).
static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
ObjCInterfaceDecl *IDecl,
bool lookupCategory) {
// 1st, look up the class.
ObjCProtocolDecl **protoList = IDecl->getReferencedProtocols();
for (unsigned i = 0; i < IDecl->getNumIntfRefProtocols(); i++) {
if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
return true;
}
// 2nd, look up the category.
if (lookupCategory)
for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
CDecl = CDecl->getNextClassCategory()) {
protoList = CDecl->getReferencedProtocols();
for (unsigned i = 0; i < CDecl->getNumReferencedProtocols(); i++) {
if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
return true;
}
}
// 3rd, look up the super class(s)
if (IDecl->getSuperClass())
return
ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory);
return false;
}
/// ObjCQualifiedIdTypesAreCompatible - Compares two types, at least
/// one of which is a protocol qualified 'id' type. When 'compare'
/// is true it is for comparison; when false, for assignment/initialization.
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs,
QualType rhs,
bool compare) {
// match id<P..> with an 'id' type in all cases.
if (const PointerType *PT = lhs->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
return true;
}
else if (const PointerType *PT = rhs->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
return true;
}
ObjCQualifiedInterfaceType *lhsQI = 0;
ObjCQualifiedInterfaceType *rhsQI = 0;
ObjCInterfaceDecl *lhsID = 0;
ObjCInterfaceDecl *rhsID = 0;
ObjCQualifiedIdType *lhsQID = dyn_cast<ObjCQualifiedIdType>(lhs);
ObjCQualifiedIdType *rhsQID = dyn_cast<ObjCQualifiedIdType>(rhs);
if (lhsQID) {
if (!rhsQID && rhs->getTypeClass() == Type::Pointer) {
QualType rtype =
cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
rhsQI =
dyn_cast<ObjCQualifiedInterfaceType>(
rtype.getCanonicalType().getTypePtr());
if (!rhsQI) {
ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
rtype.getCanonicalType().getTypePtr());
if (IT)
rhsID = IT->getDecl();
}
}
if (!rhsQI && !rhsQID && !rhsID)
return false;
unsigned numRhsProtocols = 0;
ObjCProtocolDecl **rhsProtoList = 0;
if (rhsQI) {
numRhsProtocols = rhsQI->getNumProtocols();
rhsProtoList = rhsQI->getReferencedProtocols();
}
else if (rhsQID) {
numRhsProtocols = rhsQID->getNumProtocols();
rhsProtoList = rhsQID->getReferencedProtocols();
}
for (unsigned i =0; i < lhsQID->getNumProtocols(); i++) {
ObjCProtocolDecl *lhsProto = lhsQID->getProtocols(i);
bool match = false;
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
if (rhsID) {
if (ClassImplementsProtocol(lhsProto, rhsID, true))
match = true;
}
else for (unsigned j = 0; j < numRhsProtocols; j++) {
ObjCProtocolDecl *rhsProto = rhsProtoList[j];
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
match = true;
break;
}
}
if (!match)
return false;
}
}
else if (rhsQID) {
if (!lhsQID && lhs->getTypeClass() == Type::Pointer) {
QualType ltype =
cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
lhsQI =
dyn_cast<ObjCQualifiedInterfaceType>(
ltype.getCanonicalType().getTypePtr());
if (!lhsQI) {
ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
ltype.getCanonicalType().getTypePtr());
if (IT)
lhsID = IT->getDecl();
}
}
if (!lhsQI && !lhsQID && !lhsID)
return false;
unsigned numLhsProtocols = 0;
ObjCProtocolDecl **lhsProtoList = 0;
if (lhsQI) {
numLhsProtocols = lhsQI->getNumProtocols();
lhsProtoList = lhsQI->getReferencedProtocols();
}
else if (lhsQID) {
numLhsProtocols = lhsQID->getNumProtocols();
lhsProtoList = lhsQID->getReferencedProtocols();
}
bool match = false;
// for static type vs. qualified 'id' type, check that class implements
// one of 'id's protocols.
if (lhsID) {
for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
if (ClassImplementsProtocol(rhsProto, lhsID, compare)) {
match = true;
break;
}
}
}
else for (unsigned i =0; i < numLhsProtocols; i++) {
match = false;
ObjCProtocolDecl *lhsProto = lhsProtoList[i];
for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
match = true;
break;
}
}
}
if (!match)
return false;
}
return true;
}
bool ASTContext::vectorTypesAreCompatible(QualType lhs, QualType rhs) {
const VectorType *lVector = lhs->getAsVectorType();
const VectorType *rVector = rhs->getAsVectorType();
if ((lVector->getElementType().getCanonicalType() ==
rVector->getElementType().getCanonicalType()) &&
(lVector->getNumElements() == rVector->getNumElements()))
return true;
return false;
}
// C99 6.2.7p1: If both are complete types, then the following additional
// requirements apply...FIXME (handle compatibility across source files).
bool ASTContext::tagTypesAreCompatible(QualType lhs, QualType rhs) {
// "Class" and "id" are compatible built-in structure types.
if (isObjCIdType(lhs) && isObjCClassType(rhs) ||
isObjCClassType(lhs) && isObjCIdType(rhs))
return true;
// Within a translation unit a tag type is
// only compatible with itself.
return lhs.getCanonicalType() == rhs.getCanonicalType();
}
bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
// C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
// identically qualified and both shall be pointers to compatible types.
if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
lhs.getAddressSpace() != rhs.getAddressSpace())
return false;
QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
return typesAreCompatible(ltype, rtype);
}
// C++ 5.17p6: When the left operand of an assignment operator denotes a
// reference to T, the operation assigns to the object of type T denoted by the
// reference.
bool ASTContext::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
QualType ltype = lhs;
if (lhs->isReferenceType())
ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
QualType rtype = rhs;
if (rhs->isReferenceType())
rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
return typesAreCompatible(ltype, rtype);
}
bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
// first check the return types (common between C99 and K&R).
if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
return false;
if (lproto && rproto) { // two C99 style function prototypes
unsigned lproto_nargs = lproto->getNumArgs();
unsigned rproto_nargs = rproto->getNumArgs();
if (lproto_nargs != rproto_nargs)
return false;
// both prototypes have the same number of arguments.
if ((lproto->isVariadic() && !rproto->isVariadic()) ||
(rproto->isVariadic() && !lproto->isVariadic()))
return false;
// The use of ellipsis agree...now check the argument types.
for (unsigned i = 0; i < lproto_nargs; i++)
// C99 6.7.5.3p15: ...and each parameter declared with qualified type
// is taken as having the unqualified version of it's declared type.
if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(),
rproto->getArgType(i).getUnqualifiedType()))
return false;
return true;
}
if (!lproto && !rproto) // two K&R style function decls, nothing to do.
return true;
// we have a mixture of K&R style with C99 prototypes
const FunctionTypeProto *proto = lproto ? lproto : rproto;
if (proto->isVariadic())
return false;
// FIXME: Each parameter type T in the prototype must be compatible with the
// type resulting from applying the usual argument conversions to T.
return true;
}
bool ASTContext::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
// Compatible arrays must have compatible element types
QualType ltype = lhs->getAsArrayType()->getElementType();
QualType rtype = rhs->getAsArrayType()->getElementType();
if (!typesAreCompatible(ltype, rtype))
return false;
// Compatible arrays must be the same size
if (const ConstantArrayType* LCAT = lhs->getAsConstantArrayType())
if (const ConstantArrayType* RCAT = rhs->getAsConstantArrayType())
return RCAT->getSize() == LCAT->getSize();
return true;
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType lhs, QualType rhs) {
if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
lhs.getAddressSpace() != rhs.getAddressSpace())
return false;
QualType lcanon = lhs.getCanonicalType();
QualType rcanon = rhs.getCanonicalType();
// If two types are identical, they are are compatible
if (lcanon == rcanon)
return true;
// C++ [expr]: If an expression initially has the type "reference to T", the
// type is adjusted to "T" prior to any further analysis, the expression
// designates the object or function denoted by the reference, and the
// expression is an lvalue.
if (ReferenceType *RT = dyn_cast<ReferenceType>(lcanon))
lcanon = RT->getReferenceeType();
if (ReferenceType *RT = dyn_cast<ReferenceType>(rcanon))
rcanon = RT->getReferenceeType();
Type::TypeClass LHSClass = lcanon->getTypeClass();
Type::TypeClass RHSClass = rcanon->getTypeClass();
// We want to consider the two function types to be the same for these
// comparisons, just force one to the other.
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
// Same as above for arrays
if (LHSClass == Type::VariableArray) LHSClass = Type::ConstantArray;
if (RHSClass == Type::VariableArray) RHSClass = Type::ConstantArray;
if (LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray;
if (RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray;
// If the canonical type classes don't match...
if (LHSClass != RHSClass) {
// For Objective-C, it is possible for two types to be compatible
// when their classes don't match (when dealing with "id"). If either type
// is an interface, we defer to objcTypesAreCompatible().
if (lcanon->isObjCInterfaceType() || rcanon->isObjCInterfaceType())
return objcTypesAreCompatible(lcanon, rcanon);
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
// a signed integer type, or an unsigned integer type.
if (lcanon->isEnumeralType() && rcanon->isIntegralType()) {
EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(lcanon)->getDecl());
return EDecl->getIntegerType() == rcanon;
}
if (rcanon->isEnumeralType() && lcanon->isIntegralType()) {
EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(rcanon)->getDecl());
return EDecl->getIntegerType() == lcanon;
}
return false;
}
// The canonical type classes match.
switch (LHSClass) {
case Type::FunctionProto: assert(0 && "Canonicalized away above");
case Type::Pointer:
return pointerTypesAreCompatible(lcanon, rcanon);
case Type::ConstantArray:
case Type::VariableArray:
case Type::IncompleteArray:
return arrayTypesAreCompatible(lcanon, rcanon);
case Type::FunctionNoProto:
return functionTypesAreCompatible(lcanon, rcanon);
case Type::Tagged: // handle structures, unions
return tagTypesAreCompatible(lcanon, rcanon);
case Type::Builtin:
return builtinTypesAreCompatible(lcanon, rcanon);
case Type::ObjCInterface:
return interfaceTypesAreCompatible(lcanon, rcanon);
case Type::Vector:
case Type::OCUVector:
return vectorTypesAreCompatible(lcanon, rcanon);
case Type::ObjCQualifiedInterface:
return QualifiedInterfaceTypesAreCompatible(lcanon, rcanon);
default:
assert(0 && "unexpected type");
}
return true; // should never get here...
}
/// Emit - Serialize an ASTContext object to Bitcode.
void ASTContext::Emit(llvm::Serializer& S) const {
S.EmitRef(SourceMgr);
S.EmitRef(Target);
S.EmitRef(Idents);
S.EmitRef(Selectors);
// Emit the size of the type vector so that we can reserve that size
// when we reconstitute the ASTContext object.
S.EmitInt(Types.size());
for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
I!=E;++I)
(*I)->Emit(S);
// FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
}
ASTContext* ASTContext::Create(llvm::Deserializer& D) {
SourceManager &SM = D.ReadRef<SourceManager>();
TargetInfo &t = D.ReadRef<TargetInfo>();
IdentifierTable &idents = D.ReadRef<IdentifierTable>();
SelectorTable &sels = D.ReadRef<SelectorTable>();
unsigned size_reserve = D.ReadInt();
ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
for (unsigned i = 0; i < size_reserve; ++i)
Type::Create(*A,i,D);
// FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
return A;
}