blob: cc006d9dd6c1b8829037e0b085382205d3ccd131 [file] [log] [blame]
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation.
//
//===----------------------------------------------------------------------===//
// We might split this into multiple files if it gets too unwieldy
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/StmtCXX.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace CodeGen;
RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
llvm::Value *Callee,
ReturnValueSlot ReturnValue,
llvm::Value *This,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd) {
assert(MD->isInstance() &&
"Trying to emit a member call expr on a static method!");
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
CallArgList Args;
// Push the this ptr.
Args.push_back(std::make_pair(RValue::get(This),
MD->getThisType(getContext())));
// And the rest of the call args
EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
QualType ResultType = MD->getType()->getAs<FunctionType>()->getResultType();
return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args), Callee,
ReturnValue, Args, MD);
}
/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
/// expr can be devirtualized.
static bool canDevirtualizeMemberFunctionCalls(const Expr *Base) {
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
// This is a record decl. We know the type and can devirtualize it.
return VD->getType()->isRecordType();
}
return false;
}
// We can always devirtualize calls on temporary object expressions.
if (isa<CXXTemporaryObjectExpr>(Base))
return true;
// And calls on bound temporaries.
if (isa<CXXBindTemporaryExpr>(Base))
return true;
// Check if this is a call expr that returns a record type.
if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
return CE->getCallReturnType()->isRecordType();
// We can't devirtualize the call.
return false;
}
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
ReturnValueSlot ReturnValue) {
if (isa<BinaryOperator>(CE->getCallee()->IgnoreParens()))
return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
const MemberExpr *ME = cast<MemberExpr>(CE->getCallee()->IgnoreParens());
const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
if (MD->isStatic()) {
// The method is static, emit it as we would a regular call.
llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
return EmitCall(getContext().getPointerType(MD->getType()), Callee,
ReturnValue, CE->arg_begin(), CE->arg_end());
}
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *Ty =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
FPT->isVariadic());
llvm::Value *This;
if (ME->isArrow())
This = EmitScalarExpr(ME->getBase());
else {
LValue BaseLV = EmitLValue(ME->getBase());
This = BaseLV.getAddress();
}
if (MD->isCopyAssignment() && MD->isTrivial()) {
// We don't like to generate the trivial copy assignment operator when
// it isn't necessary; just produce the proper effect here.
llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
EmitAggregateCopy(This, RHS, CE->getType());
return RValue::get(This);
}
// C++ [class.virtual]p12:
// Explicit qualification with the scope operator (5.1) suppresses the
// virtual call mechanism.
//
// We also don't emit a virtual call if the base expression has a record type
// because then we know what the type is.
llvm::Value *Callee;
if (const CXXDestructorDecl *Destructor
= dyn_cast<CXXDestructorDecl>(MD)) {
if (Destructor->isTrivial())
return RValue::get(0);
if (MD->isVirtual() && !ME->hasQualifier() &&
!canDevirtualizeMemberFunctionCalls(ME->getBase())) {
Callee = BuildVirtualCall(Destructor, Dtor_Complete, This, Ty);
} else {
Callee = CGM.GetAddrOfFunction(GlobalDecl(Destructor, Dtor_Complete), Ty);
}
} else if (MD->isVirtual() && !ME->hasQualifier() &&
!canDevirtualizeMemberFunctionCalls(ME->getBase())) {
Callee = BuildVirtualCall(MD, This, Ty);
} else {
Callee = CGM.GetAddrOfFunction(MD, Ty);
}
return EmitCXXMemberCall(MD, Callee, ReturnValue, This,
CE->arg_begin(), CE->arg_end());
}
RValue
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue) {
const BinaryOperator *BO =
cast<BinaryOperator>(E->getCallee()->IgnoreParens());
const Expr *BaseExpr = BO->getLHS();
const Expr *MemFnExpr = BO->getRHS();
const MemberPointerType *MPT =
MemFnExpr->getType()->getAs<MemberPointerType>();
const FunctionProtoType *FPT =
MPT->getPointeeType()->getAs<FunctionProtoType>();
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
const llvm::FunctionType *FTy =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
FPT->isVariadic());
const llvm::Type *Int8PtrTy =
llvm::Type::getInt8Ty(VMContext)->getPointerTo();
// Get the member function pointer.
llvm::Value *MemFnPtr =
CreateTempAlloca(ConvertType(MemFnExpr->getType()), "mem.fn");
EmitAggExpr(MemFnExpr, MemFnPtr, /*VolatileDest=*/false);
// Emit the 'this' pointer.
llvm::Value *This;
if (BO->getOpcode() == BinaryOperator::PtrMemI)
This = EmitScalarExpr(BaseExpr);
else
This = EmitLValue(BaseExpr).getAddress();
// Adjust it.
llvm::Value *Adj = Builder.CreateStructGEP(MemFnPtr, 1);
Adj = Builder.CreateLoad(Adj, "mem.fn.adj");
llvm::Value *Ptr = Builder.CreateBitCast(This, Int8PtrTy, "ptr");
Ptr = Builder.CreateGEP(Ptr, Adj, "adj");
This = Builder.CreateBitCast(Ptr, This->getType(), "this");
llvm::Value *FnPtr = Builder.CreateStructGEP(MemFnPtr, 0, "mem.fn.ptr");
const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType());
llvm::Value *FnAsInt = Builder.CreateLoad(FnPtr, "fn");
// If the LSB in the function pointer is 1, the function pointer points to
// a virtual function.
llvm::Value *IsVirtual
= Builder.CreateAnd(FnAsInt, llvm::ConstantInt::get(PtrDiffTy, 1),
"and");
IsVirtual = Builder.CreateTrunc(IsVirtual,
llvm::Type::getInt1Ty(VMContext));
llvm::BasicBlock *FnVirtual = createBasicBlock("fn.virtual");
llvm::BasicBlock *FnNonVirtual = createBasicBlock("fn.nonvirtual");
llvm::BasicBlock *FnEnd = createBasicBlock("fn.end");
Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
EmitBlock(FnVirtual);
const llvm::Type *VTableTy =
FTy->getPointerTo()->getPointerTo()->getPointerTo();
llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy);
VTable = Builder.CreateLoad(VTable);
VTable = Builder.CreateGEP(VTable, FnAsInt, "fn");
// Since the function pointer is 1 plus the virtual table offset, we
// subtract 1 by using a GEP.
VTable = Builder.CreateConstGEP1_64(VTable, (uint64_t)-1);
llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "virtualfn");
EmitBranch(FnEnd);
EmitBlock(FnNonVirtual);
// If the function is not virtual, just load the pointer.
llvm::Value *NonVirtualFn = Builder.CreateLoad(FnPtr, "fn");
NonVirtualFn = Builder.CreateIntToPtr(NonVirtualFn, FTy->getPointerTo());
EmitBlock(FnEnd);
llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo());
Callee->reserveOperandSpace(2);
Callee->addIncoming(VirtualFn, FnVirtual);
Callee->addIncoming(NonVirtualFn, FnNonVirtual);
CallArgList Args;
QualType ThisType =
getContext().getPointerType(getContext().getTagDeclType(RD));
// Push the this ptr.
Args.push_back(std::make_pair(RValue::get(This), ThisType));
// And the rest of the call args
EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
QualType ResultType = BO->getType()->getAs<FunctionType>()->getResultType();
return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args), Callee,
ReturnValue, Args);
}
RValue
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
const CXXMethodDecl *MD,
ReturnValueSlot ReturnValue) {
assert(MD->isInstance() &&
"Trying to emit a member call expr on a static method!");
if (MD->isCopyAssignment()) {
const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
if (ClassDecl->hasTrivialCopyAssignment()) {
assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
"EmitCXXOperatorMemberCallExpr - user declared copy assignment");
llvm::Value *This = EmitLValue(E->getArg(0)).getAddress();
llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
QualType Ty = E->getType();
EmitAggregateCopy(This, Src, Ty);
return RValue::get(This);
}
}
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *Ty =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
FPT->isVariadic());
llvm::Value *This = EmitLValue(E->getArg(0)).getAddress();
llvm::Value *Callee;
if (MD->isVirtual() && !canDevirtualizeMemberFunctionCalls(E->getArg(0)))
Callee = BuildVirtualCall(MD, This, Ty);
else
Callee = CGM.GetAddrOfFunction(MD, Ty);
return EmitCXXMemberCall(MD, Callee, ReturnValue, This,
E->arg_begin() + 1, E->arg_end());
}
llvm::Value *CodeGenFunction::LoadCXXThis() {
assert(isa<CXXMethodDecl>(CurFuncDecl) &&
"Must be in a C++ member function decl to load 'this'");
assert(cast<CXXMethodDecl>(CurFuncDecl)->isInstance() &&
"Must be in a C++ member function decl to load 'this'");
// FIXME: What if we're inside a block?
// ans: See how CodeGenFunction::LoadObjCSelf() uses
// CodeGenFunction::BlockForwardSelf() for how to do this.
return Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this");
}
/// EmitCXXAggrConstructorCall - This routine essentially creates a (nested)
/// for-loop to call the default constructor on individual members of the
/// array.
/// 'D' is the default constructor for elements of the array, 'ArrayTy' is the
/// array type and 'ArrayPtr' points to the beginning fo the array.
/// It is assumed that all relevant checks have been made by the caller.
void
CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
const ConstantArrayType *ArrayTy,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd) {
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
llvm::Value * NumElements =
llvm::ConstantInt::get(SizeTy,
getContext().getConstantArrayElementCount(ArrayTy));
EmitCXXAggrConstructorCall(D, NumElements, ArrayPtr, ArgBeg, ArgEnd);
}
void
CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
llvm::Value *NumElements,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd) {
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
// Create a temporary for the loop index and initialize it with 0.
llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
Builder.CreateStore(Zero, IndexPtr);
// Start the loop with a block that tests the condition.
llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
EmitBlock(CondBlock);
llvm::BasicBlock *ForBody = createBasicBlock("for.body");
// Generate: if (loop-index < number-of-elements fall to the loop body,
// otherwise, go to the block after the for-loop.
llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
// If the condition is true, execute the body.
Builder.CreateCondBr(IsLess, ForBody, AfterFor);
EmitBlock(ForBody);
llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
// Inside the loop body, emit the constructor call on the array element.
Counter = Builder.CreateLoad(IndexPtr);
llvm::Value *Address = Builder.CreateInBoundsGEP(ArrayPtr, Counter,
"arrayidx");
// C++ [class.temporary]p4:
// There are two contexts in which temporaries are destroyed at a different
// point than the end of the full-expression. The first context is when a
// default constructor is called to initialize an element of an array.
// If the constructor has one or more default arguments, the destruction of
// every temporary created in a default argument expression is sequenced
// before the construction of the next array element, if any.
// Keep track of the current number of live temporaries.
unsigned OldNumLiveTemporaries = LiveTemporaries.size();
EmitCXXConstructorCall(D, Ctor_Complete, Address, ArgBeg, ArgEnd);
// Pop temporaries.
while (LiveTemporaries.size() > OldNumLiveTemporaries)
PopCXXTemporary();
EmitBlock(ContinueBlock);
// Emit the increment of the loop counter.
llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
Counter = Builder.CreateLoad(IndexPtr);
NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
Builder.CreateStore(NextVal, IndexPtr);
// Finally, branch back up to the condition for the next iteration.
EmitBranch(CondBlock);
// Emit the fall-through block.
EmitBlock(AfterFor, true);
}
/// EmitCXXAggrDestructorCall - calls the default destructor on array
/// elements in reverse order of construction.
void
CodeGenFunction::EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
const ArrayType *Array,
llvm::Value *This) {
const ConstantArrayType *CA = dyn_cast<ConstantArrayType>(Array);
assert(CA && "Do we support VLA for destruction ?");
uint64_t ElementCount = getContext().getConstantArrayElementCount(CA);
const llvm::Type *SizeLTy = ConvertType(getContext().getSizeType());
llvm::Value* ElementCountPtr = llvm::ConstantInt::get(SizeLTy, ElementCount);
EmitCXXAggrDestructorCall(D, ElementCountPtr, This);
}
/// EmitCXXAggrDestructorCall - calls the default destructor on array
/// elements in reverse order of construction.
void
CodeGenFunction::EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
llvm::Value *UpperCount,
llvm::Value *This) {
const llvm::Type *SizeLTy = ConvertType(getContext().getSizeType());
llvm::Value *One = llvm::ConstantInt::get(SizeLTy, 1);
// Create a temporary for the loop index and initialize it with count of
// array elements.
llvm::Value *IndexPtr = CreateTempAlloca(SizeLTy, "loop.index");
// Store the number of elements in the index pointer.
Builder.CreateStore(UpperCount, IndexPtr);
// Start the loop with a block that tests the condition.
llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
EmitBlock(CondBlock);
llvm::BasicBlock *ForBody = createBasicBlock("for.body");
// Generate: if (loop-index != 0 fall to the loop body,
// otherwise, go to the block after the for-loop.
llvm::Value* zeroConstant =
llvm::Constant::getNullValue(SizeLTy);
llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
llvm::Value *IsNE = Builder.CreateICmpNE(Counter, zeroConstant,
"isne");
// If the condition is true, execute the body.
Builder.CreateCondBr(IsNE, ForBody, AfterFor);
EmitBlock(ForBody);
llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
// Inside the loop body, emit the constructor call on the array element.
Counter = Builder.CreateLoad(IndexPtr);
Counter = Builder.CreateSub(Counter, One);
llvm::Value *Address = Builder.CreateInBoundsGEP(This, Counter, "arrayidx");
EmitCXXDestructorCall(D, Dtor_Complete, Address);
EmitBlock(ContinueBlock);
// Emit the decrement of the loop counter.
Counter = Builder.CreateLoad(IndexPtr);
Counter = Builder.CreateSub(Counter, One, "dec");
Builder.CreateStore(Counter, IndexPtr);
// Finally, branch back up to the condition for the next iteration.
EmitBranch(CondBlock);
// Emit the fall-through block.
EmitBlock(AfterFor, true);
}
/// GenerateCXXAggrDestructorHelper - Generates a helper function which when
/// invoked, calls the default destructor on array elements in reverse order of
/// construction.
llvm::Constant *
CodeGenFunction::GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
const ArrayType *Array,
llvm::Value *This) {
FunctionArgList Args;
ImplicitParamDecl *Dst =
ImplicitParamDecl::Create(getContext(), 0,
SourceLocation(), 0,
getContext().getPointerType(getContext().VoidTy));
Args.push_back(std::make_pair(Dst, Dst->getType()));
llvm::SmallString<16> Name;
llvm::raw_svector_ostream(Name) << "__tcf_" << (++UniqueAggrDestructorCount);
QualType R = getContext().VoidTy;
const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(R, Args);
const llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI, false);
llvm::Function *Fn =
llvm::Function::Create(FTy, llvm::GlobalValue::InternalLinkage,
Name.str(),
&CGM.getModule());
IdentifierInfo *II = &CGM.getContext().Idents.get(Name.str());
FunctionDecl *FD = FunctionDecl::Create(getContext(),
getContext().getTranslationUnitDecl(),
SourceLocation(), II, R, 0,
FunctionDecl::Static,
false, true);
StartFunction(FD, R, Fn, Args, SourceLocation());
QualType BaseElementTy = getContext().getBaseElementType(Array);
const llvm::Type *BasePtr = ConvertType(BaseElementTy);
BasePtr = llvm::PointerType::getUnqual(BasePtr);
llvm::Value *BaseAddrPtr = Builder.CreateBitCast(This, BasePtr);
EmitCXXAggrDestructorCall(D, Array, BaseAddrPtr);
FinishFunction();
llvm::Type *Ptr8Ty = llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext),
0);
llvm::Constant *m = llvm::ConstantExpr::getBitCast(Fn, Ptr8Ty);
return m;
}
void
CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
CXXCtorType Type,
llvm::Value *This,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd) {
if (D->isCopyConstructor()) {
const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D->getDeclContext());
if (ClassDecl->hasTrivialCopyConstructor()) {
assert(!ClassDecl->hasUserDeclaredCopyConstructor() &&
"EmitCXXConstructorCall - user declared copy constructor");
const Expr *E = (*ArgBeg);
QualType Ty = E->getType();
llvm::Value *Src = EmitLValue(E).getAddress();
EmitAggregateCopy(This, Src, Ty);
return;
}
} else if (D->isTrivial()) {
// FIXME: Track down why we're trying to generate calls to the trivial
// default constructor!
return;
}
llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
EmitCXXMemberCall(D, Callee, ReturnValueSlot(), This, ArgBeg, ArgEnd);
}
void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
CXXDtorType Type,
llvm::Value *This) {
llvm::Value *Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
CallArgList Args;
// Push the this ptr.
Args.push_back(std::make_pair(RValue::get(This),
DD->getThisType(getContext())));
// Add a VTT parameter if necessary.
// FIXME: This should not be a dummy null parameter!
if (Type == Dtor_Base && DD->getParent()->getNumVBases() != 0) {
QualType T = getContext().getPointerType(getContext().VoidPtrTy);
Args.push_back(std::make_pair(RValue::get(CGM.EmitNullConstant(T)), T));
}
// FIXME: We should try to share this code with EmitCXXMemberCall.
QualType ResultType = DD->getType()->getAs<FunctionType>()->getResultType();
EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args), Callee,
ReturnValueSlot(), Args, DD);
}
void
CodeGenFunction::EmitCXXConstructExpr(llvm::Value *Dest,
const CXXConstructExpr *E) {
assert(Dest && "Must have a destination!");
const CXXConstructorDecl *CD = E->getConstructor();
const ConstantArrayType *Array =
getContext().getAsConstantArrayType(E->getType());
// For a copy constructor, even if it is trivial, must fall thru so
// its argument is code-gen'ed.
if (!CD->isCopyConstructor()) {
QualType InitType = E->getType();
if (Array)
InitType = getContext().getBaseElementType(Array);
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
if (RD->hasTrivialConstructor())
return;
}
// Code gen optimization to eliminate copy constructor and return
// its first argument instead.
if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
const Expr *Arg = E->getArg(0);
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
assert((ICE->getCastKind() == CastExpr::CK_NoOp ||
ICE->getCastKind() == CastExpr::CK_ConstructorConversion ||
ICE->getCastKind() == CastExpr::CK_UserDefinedConversion) &&
"Unknown implicit cast kind in constructor elision");
Arg = ICE->getSubExpr();
}
if (const CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(Arg))
Arg = FCE->getSubExpr();
if (const CXXBindTemporaryExpr *BindExpr =
dyn_cast<CXXBindTemporaryExpr>(Arg))
Arg = BindExpr->getSubExpr();
EmitAggExpr(Arg, Dest, false);
return;
}
if (Array) {
QualType BaseElementTy = getContext().getBaseElementType(Array);
const llvm::Type *BasePtr = ConvertType(BaseElementTy);
BasePtr = llvm::PointerType::getUnqual(BasePtr);
llvm::Value *BaseAddrPtr =
Builder.CreateBitCast(Dest, BasePtr);
EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr,
E->arg_begin(), E->arg_end());
}
else
// Call the constructor.
EmitCXXConstructorCall(CD, Ctor_Complete, Dest,
E->arg_begin(), E->arg_end());
}
void CodeGenModule::EmitCXXConstructors(const CXXConstructorDecl *D) {
EmitGlobal(GlobalDecl(D, Ctor_Complete));
EmitGlobal(GlobalDecl(D, Ctor_Base));
}
void CodeGenModule::EmitCXXConstructor(const CXXConstructorDecl *D,
CXXCtorType Type) {
llvm::Function *Fn = GetAddrOfCXXConstructor(D, Type);
CodeGenFunction(*this).GenerateCode(GlobalDecl(D, Type), Fn);
SetFunctionDefinitionAttributes(D, Fn);
SetLLVMFunctionAttributesForDefinition(D, Fn);
}
llvm::Function *
CodeGenModule::GetAddrOfCXXConstructor(const CXXConstructorDecl *D,
CXXCtorType Type) {
const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
const llvm::FunctionType *FTy =
getTypes().GetFunctionType(getTypes().getFunctionInfo(D, Type),
FPT->isVariadic());
const char *Name = getMangledCXXCtorName(D, Type);
return cast<llvm::Function>(
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(D, Type)));
}
const char *CodeGenModule::getMangledCXXCtorName(const CXXConstructorDecl *D,
CXXCtorType Type) {
llvm::SmallString<256> Name;
getMangleContext().mangleCXXCtor(D, Type, Name);
Name += '\0';
return UniqueMangledName(Name.begin(), Name.end());
}
void CodeGenModule::EmitCXXDestructors(const CXXDestructorDecl *D) {
if (D->isVirtual())
EmitGlobal(GlobalDecl(D, Dtor_Deleting));
EmitGlobal(GlobalDecl(D, Dtor_Complete));
EmitGlobal(GlobalDecl(D, Dtor_Base));
}
void CodeGenModule::EmitCXXDestructor(const CXXDestructorDecl *D,
CXXDtorType Type) {
llvm::Function *Fn = GetAddrOfCXXDestructor(D, Type);
CodeGenFunction(*this).GenerateCode(GlobalDecl(D, Type), Fn);
SetFunctionDefinitionAttributes(D, Fn);
SetLLVMFunctionAttributesForDefinition(D, Fn);
}
llvm::Function *
CodeGenModule::GetAddrOfCXXDestructor(const CXXDestructorDecl *D,
CXXDtorType Type) {
const llvm::FunctionType *FTy =
getTypes().GetFunctionType(getTypes().getFunctionInfo(D, Type), false);
const char *Name = getMangledCXXDtorName(D, Type);
return cast<llvm::Function>(
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(D, Type)));
}
const char *CodeGenModule::getMangledCXXDtorName(const CXXDestructorDecl *D,
CXXDtorType Type) {
llvm::SmallString<256> Name;
getMangleContext().mangleCXXDtor(D, Type, Name);
Name += '\0';
return UniqueMangledName(Name.begin(), Name.end());
}
llvm::Constant *
CodeGenFunction::GenerateThunk(llvm::Function *Fn, GlobalDecl GD,
bool Extern,
const ThunkAdjustment &ThisAdjustment) {
return GenerateCovariantThunk(Fn, GD, Extern,
CovariantThunkAdjustment(ThisAdjustment,
ThunkAdjustment()));
}
llvm::Value *
CodeGenFunction::DynamicTypeAdjust(llvm::Value *V,
const ThunkAdjustment &Adjustment) {
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
const llvm::Type *OrigTy = V->getType();
if (Adjustment.NonVirtual) {
// Do the non-virtual adjustment
V = Builder.CreateBitCast(V, Int8PtrTy);
V = Builder.CreateConstInBoundsGEP1_64(V, Adjustment.NonVirtual);
V = Builder.CreateBitCast(V, OrigTy);
}
if (!Adjustment.Virtual)
return V;
assert(Adjustment.Virtual % (LLVMPointerWidth / 8) == 0 &&
"vtable entry unaligned");
// Do the virtual this adjustment
const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType());
const llvm::Type *PtrDiffPtrTy = PtrDiffTy->getPointerTo();
llvm::Value *ThisVal = Builder.CreateBitCast(V, Int8PtrTy);
V = Builder.CreateBitCast(V, PtrDiffPtrTy->getPointerTo());
V = Builder.CreateLoad(V, "vtable");
llvm::Value *VTablePtr = V;
uint64_t VirtualAdjustment = Adjustment.Virtual / (LLVMPointerWidth / 8);
V = Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
V = Builder.CreateLoad(V);
V = Builder.CreateGEP(ThisVal, V);
return Builder.CreateBitCast(V, OrigTy);
}
llvm::Constant *
CodeGenFunction::GenerateCovariantThunk(llvm::Function *Fn,
GlobalDecl GD, bool Extern,
const CovariantThunkAdjustment &Adjustment) {
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
QualType ResultType = MD->getType()->getAs<FunctionType>()->getResultType();
FunctionArgList Args;
ImplicitParamDecl *ThisDecl =
ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), 0,
MD->getThisType(getContext()));
Args.push_back(std::make_pair(ThisDecl, ThisDecl->getType()));
for (FunctionDecl::param_const_iterator i = MD->param_begin(),
e = MD->param_end();
i != e; ++i) {
ParmVarDecl *D = *i;
Args.push_back(std::make_pair(D, D->getType()));
}
IdentifierInfo *II
= &CGM.getContext().Idents.get("__thunk_named_foo_");
FunctionDecl *FD = FunctionDecl::Create(getContext(),
getContext().getTranslationUnitDecl(),
SourceLocation(), II, ResultType, 0,
Extern
? FunctionDecl::Extern
: FunctionDecl::Static,
false, true);
StartFunction(FD, ResultType, Fn, Args, SourceLocation());
// generate body
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *Ty =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
FPT->isVariadic());
llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty);
CallArgList CallArgs;
bool ShouldAdjustReturnPointer = true;
QualType ArgType = MD->getThisType(getContext());
llvm::Value *Arg = Builder.CreateLoad(LocalDeclMap[ThisDecl], "this");
if (!Adjustment.ThisAdjustment.isEmpty()) {
// Do the this adjustment.
const llvm::Type *OrigTy = Callee->getType();
Arg = DynamicTypeAdjust(Arg, Adjustment.ThisAdjustment);
if (!Adjustment.ReturnAdjustment.isEmpty()) {
const CovariantThunkAdjustment &ReturnAdjustment =
CovariantThunkAdjustment(ThunkAdjustment(),
Adjustment.ReturnAdjustment);
Callee = CGM.BuildCovariantThunk(GD, Extern, ReturnAdjustment);
Callee = Builder.CreateBitCast(Callee, OrigTy);
ShouldAdjustReturnPointer = false;
}
}
CallArgs.push_back(std::make_pair(RValue::get(Arg), ArgType));
for (FunctionDecl::param_const_iterator i = MD->param_begin(),
e = MD->param_end();
i != e; ++i) {
ParmVarDecl *D = *i;
QualType ArgType = D->getType();
// llvm::Value *Arg = CGF.GetAddrOfLocalVar(Dst);
Expr *Arg = new (getContext()) DeclRefExpr(D, ArgType.getNonReferenceType(),
SourceLocation());
CallArgs.push_back(std::make_pair(EmitCallArg(Arg, ArgType), ArgType));
}
RValue RV = EmitCall(CGM.getTypes().getFunctionInfo(ResultType, CallArgs),
Callee, ReturnValueSlot(), CallArgs, MD);
if (ShouldAdjustReturnPointer && !Adjustment.ReturnAdjustment.isEmpty()) {
bool CanBeZero = !(ResultType->isReferenceType()
// FIXME: attr nonnull can't be zero either
/* || ResultType->hasAttr<NonNullAttr>() */ );
// Do the return result adjustment.
if (CanBeZero) {
llvm::BasicBlock *NonZeroBlock = createBasicBlock();
llvm::BasicBlock *ZeroBlock = createBasicBlock();
llvm::BasicBlock *ContBlock = createBasicBlock();
const llvm::Type *Ty = RV.getScalarVal()->getType();
llvm::Value *Zero = llvm::Constant::getNullValue(Ty);
Builder.CreateCondBr(Builder.CreateICmpNE(RV.getScalarVal(), Zero),
NonZeroBlock, ZeroBlock);
EmitBlock(NonZeroBlock);
llvm::Value *NZ =
DynamicTypeAdjust(RV.getScalarVal(), Adjustment.ReturnAdjustment);
EmitBranch(ContBlock);
EmitBlock(ZeroBlock);
llvm::Value *Z = RV.getScalarVal();
EmitBlock(ContBlock);
llvm::PHINode *RVOrZero = Builder.CreatePHI(Ty);
RVOrZero->reserveOperandSpace(2);
RVOrZero->addIncoming(NZ, NonZeroBlock);
RVOrZero->addIncoming(Z, ZeroBlock);
RV = RValue::get(RVOrZero);
} else
RV = RValue::get(DynamicTypeAdjust(RV.getScalarVal(),
Adjustment.ReturnAdjustment));
}
if (!ResultType->isVoidType())
EmitReturnOfRValue(RV, ResultType);
FinishFunction();
return Fn;
}
llvm::Constant *
CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
const ThunkAdjustment &ThisAdjustment) {
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
// Compute mangled name
llvm::SmallString<256> OutName;
if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), ThisAdjustment,
OutName);
else
getMangleContext().mangleThunk(MD, ThisAdjustment, OutName);
OutName += '\0';
const char* Name = UniqueMangledName(OutName.begin(), OutName.end());
// Get function for mangled name
const llvm::Type *Ty = getTypes().GetFunctionTypeForVtable(MD);
return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
}
llvm::Constant *
CodeGenModule::GetAddrOfCovariantThunk(GlobalDecl GD,
const CovariantThunkAdjustment &Adjustment) {
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
// Compute mangled name
llvm::SmallString<256> OutName;
getMangleContext().mangleCovariantThunk(MD, Adjustment, OutName);
OutName += '\0';
const char* Name = UniqueMangledName(OutName.begin(), OutName.end());
// Get function for mangled name
const llvm::Type *Ty = getTypes().GetFunctionTypeForVtable(MD);
return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
}
void CodeGenModule::BuildThunksForVirtual(GlobalDecl GD) {
CGVtableInfo::AdjustmentVectorTy *AdjPtr = getVtableInfo().getAdjustments(GD);
if (!AdjPtr)
return;
CGVtableInfo::AdjustmentVectorTy &Adj = *AdjPtr;
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
for (unsigned i = 0; i < Adj.size(); i++) {
GlobalDecl OGD = Adj[i].first;
const CXXMethodDecl *OMD = cast<CXXMethodDecl>(OGD.getDecl());
QualType nc_oret = OMD->getType()->getAs<FunctionType>()->getResultType();
CanQualType oret = getContext().getCanonicalType(nc_oret);
QualType nc_ret = MD->getType()->getAs<FunctionType>()->getResultType();
CanQualType ret = getContext().getCanonicalType(nc_ret);
ThunkAdjustment ReturnAdjustment;
if (oret != ret) {
QualType qD = nc_ret->getPointeeType();
QualType qB = nc_oret->getPointeeType();
CXXRecordDecl *D = cast<CXXRecordDecl>(qD->getAs<RecordType>()->getDecl());
CXXRecordDecl *B = cast<CXXRecordDecl>(qB->getAs<RecordType>()->getDecl());
ReturnAdjustment = ComputeThunkAdjustment(D, B);
}
ThunkAdjustment ThisAdjustment = Adj[i].second;
bool Extern = !cast<CXXRecordDecl>(OMD->getDeclContext())->isInAnonymousNamespace();
if (!ReturnAdjustment.isEmpty() || !ThisAdjustment.isEmpty()) {
CovariantThunkAdjustment CoAdj(ThisAdjustment, ReturnAdjustment);
llvm::Constant *FnConst;
if (!ReturnAdjustment.isEmpty())
FnConst = GetAddrOfCovariantThunk(GD, CoAdj);
else
FnConst = GetAddrOfThunk(GD, ThisAdjustment);
if (!isa<llvm::Function>(FnConst)) {
llvm::Constant *SubExpr =
cast<llvm::ConstantExpr>(FnConst)->getOperand(0);
llvm::Function *OldFn = cast<llvm::Function>(SubExpr);
std::string Name = OldFn->getNameStr();
GlobalDeclMap.erase(UniqueMangledName(Name.data(),
Name.data() + Name.size() + 1));
llvm::Constant *NewFnConst;
if (!ReturnAdjustment.isEmpty())
NewFnConst = GetAddrOfCovariantThunk(GD, CoAdj);
else
NewFnConst = GetAddrOfThunk(GD, ThisAdjustment);
llvm::Function *NewFn = cast<llvm::Function>(NewFnConst);
NewFn->takeName(OldFn);
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(NewFn, OldFn->getType());
OldFn->replaceAllUsesWith(NewPtrForOldDecl);
OldFn->eraseFromParent();
FnConst = NewFn;
}
llvm::Function *Fn = cast<llvm::Function>(FnConst);
if (Fn->isDeclaration()) {
llvm::GlobalVariable::LinkageTypes linktype;
linktype = llvm::GlobalValue::WeakAnyLinkage;
if (!Extern)
linktype = llvm::GlobalValue::InternalLinkage;
Fn->setLinkage(linktype);
if (!Features.Exceptions && !Features.ObjCNonFragileABI)
Fn->addFnAttr(llvm::Attribute::NoUnwind);
Fn->setAlignment(2);
CodeGenFunction(*this).GenerateCovariantThunk(Fn, GD, Extern, CoAdj);
}
}
}
}
llvm::Constant *
CodeGenModule::BuildThunk(GlobalDecl GD, bool Extern,
const ThunkAdjustment &ThisAdjustment) {
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
llvm::SmallString<256> OutName;
if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(MD)) {
getMangleContext().mangleCXXDtorThunk(D, GD.getDtorType(), ThisAdjustment,
OutName);
} else
getMangleContext().mangleThunk(MD, ThisAdjustment, OutName);
llvm::GlobalVariable::LinkageTypes linktype;
linktype = llvm::GlobalValue::WeakAnyLinkage;
if (!Extern)
linktype = llvm::GlobalValue::InternalLinkage;
llvm::Type *Ptr8Ty=llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext),0);
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::FunctionType *FTy =
getTypes().GetFunctionType(getTypes().getFunctionInfo(MD),
FPT->isVariadic());
llvm::Function *Fn = llvm::Function::Create(FTy, linktype, OutName.str(),
&getModule());
CodeGenFunction(*this).GenerateThunk(Fn, GD, Extern, ThisAdjustment);
llvm::Constant *m = llvm::ConstantExpr::getBitCast(Fn, Ptr8Ty);
return m;
}
llvm::Constant *
CodeGenModule::BuildCovariantThunk(const GlobalDecl &GD, bool Extern,
const CovariantThunkAdjustment &Adjustment) {
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
llvm::SmallString<256> OutName;
getMangleContext().mangleCovariantThunk(MD, Adjustment, OutName);
llvm::GlobalVariable::LinkageTypes linktype;
linktype = llvm::GlobalValue::WeakAnyLinkage;
if (!Extern)
linktype = llvm::GlobalValue::InternalLinkage;
llvm::Type *Ptr8Ty=llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext),0);
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::FunctionType *FTy =
getTypes().GetFunctionType(getTypes().getFunctionInfo(MD),
FPT->isVariadic());
llvm::Function *Fn = llvm::Function::Create(FTy, linktype, OutName.str(),
&getModule());
CodeGenFunction(*this).GenerateCovariantThunk(Fn, MD, Extern, Adjustment);
llvm::Constant *m = llvm::ConstantExpr::getBitCast(Fn, Ptr8Ty);
return m;
}
llvm::Value *
CodeGenFunction::GetVirtualCXXBaseClassOffset(llvm::Value *This,
const CXXRecordDecl *ClassDecl,
const CXXRecordDecl *BaseClassDecl) {
const llvm::Type *Int8PtrTy =
llvm::Type::getInt8Ty(VMContext)->getPointerTo();
llvm::Value *VTablePtr = Builder.CreateBitCast(This,
Int8PtrTy->getPointerTo());
VTablePtr = Builder.CreateLoad(VTablePtr, "vtable");
int64_t VBaseOffsetIndex =
CGM.getVtableInfo().getVirtualBaseOffsetIndex(ClassDecl, BaseClassDecl);
llvm::Value *VBaseOffsetPtr =
Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetIndex, "vbase.offset.ptr");
const llvm::Type *PtrDiffTy =
ConvertType(getContext().getPointerDiffType());
VBaseOffsetPtr = Builder.CreateBitCast(VBaseOffsetPtr,
PtrDiffTy->getPointerTo());
llvm::Value *VBaseOffset = Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
return VBaseOffset;
}
static llvm::Value *BuildVirtualCall(CodeGenFunction &CGF, uint64_t VtableIndex,
llvm::Value *This, const llvm::Type *Ty) {
Ty = Ty->getPointerTo()->getPointerTo()->getPointerTo();
llvm::Value *Vtable = CGF.Builder.CreateBitCast(This, Ty);
Vtable = CGF.Builder.CreateLoad(Vtable);
llvm::Value *VFuncPtr =
CGF.Builder.CreateConstInBoundsGEP1_64(Vtable, VtableIndex, "vfn");
return CGF.Builder.CreateLoad(VFuncPtr);
}
llvm::Value *
CodeGenFunction::BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
const llvm::Type *Ty) {
MD = MD->getCanonicalDecl();
uint64_t VtableIndex = CGM.getVtableInfo().getMethodVtableIndex(MD);
return ::BuildVirtualCall(*this, VtableIndex, This, Ty);
}
llvm::Value *
CodeGenFunction::BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
llvm::Value *&This, const llvm::Type *Ty) {
DD = cast<CXXDestructorDecl>(DD->getCanonicalDecl());
uint64_t VtableIndex =
CGM.getVtableInfo().getMethodVtableIndex(GlobalDecl(DD, Type));
return ::BuildVirtualCall(*this, VtableIndex, This, Ty);
}
void CodeGenFunction::InitializeVtablePtrs(const CXXRecordDecl *ClassDecl) {
if (!ClassDecl->isDynamicClass())
return;
llvm::Constant *Vtable = CGM.getVtableInfo().getVtable(ClassDecl);
CodeGenModule::AddrSubMap_t& AddressPoints =
*(*CGM.AddressPoints[ClassDecl])[ClassDecl];
llvm::Value *ThisPtr = LoadCXXThis();
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassDecl);
// Store address points for virtual bases
for (CXXRecordDecl::base_class_const_iterator I =
ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); I != E; ++I) {
const CXXBaseSpecifier &Base = *I;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
uint64_t Offset = Layout.getVBaseClassOffset(BaseClassDecl);
InitializeVtablePtrsRecursive(BaseClassDecl, Vtable, AddressPoints,
ThisPtr, Offset);
}
// Store address points for non-virtual bases and current class
InitializeVtablePtrsRecursive(ClassDecl, Vtable, AddressPoints, ThisPtr, 0);
}
void CodeGenFunction::InitializeVtablePtrsRecursive(
const CXXRecordDecl *ClassDecl,
llvm::Constant *Vtable,
CodeGenModule::AddrSubMap_t& AddressPoints,
llvm::Value *ThisPtr,
uint64_t Offset) {
if (!ClassDecl->isDynamicClass())
return;
// Store address points for non-virtual bases
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassDecl);
for (CXXRecordDecl::base_class_const_iterator I =
ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
const CXXBaseSpecifier &Base = *I;
if (Base.isVirtual())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
uint64_t NewOffset = Offset + Layout.getBaseClassOffset(BaseClassDecl);
InitializeVtablePtrsRecursive(BaseClassDecl, Vtable, AddressPoints,
ThisPtr, NewOffset);
}
// Compute the address point
assert(AddressPoints.count(std::make_pair(ClassDecl, Offset)) &&
"Missing address point for class");
uint64_t AddressPoint = AddressPoints[std::make_pair(ClassDecl, Offset)];
llvm::Value *VtableAddressPoint =
Builder.CreateConstInBoundsGEP2_64(Vtable, 0, AddressPoint);
// Compute the address to store the address point
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
llvm::Value *VtableField = Builder.CreateBitCast(ThisPtr, Int8PtrTy);
VtableField = Builder.CreateConstInBoundsGEP1_64(VtableField, Offset/8);
const llvm::Type *AddressPointPtrTy =
VtableAddressPoint->getType()->getPointerTo();
VtableField = Builder.CreateBitCast(VtableField, AddressPointPtrTy);
// Store address point
Builder.CreateStore(VtableAddressPoint, VtableField);
}