blob: ce9454d0cc7d2b44ac63709a370ac0851130ed22 [file] [log] [blame]
//==- UninitializedValues.cpp - Find Unintialized Values --------*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Uninitialized Values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/UninitializedValues.h"
#include "clang/Analysis/CFGStmtVisitor.h"
#include "clang/Analysis/LocalCheckers.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/AST/ASTContext.h"
#include "DataflowSolver.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Dataflow initialization logic.
//===----------------------------------------------------------------------===//
namespace {
class RegisterDeclsAndExprs : public CFGStmtVisitor<RegisterDeclsAndExprs> {
UninitializedValues::AnalysisDataTy& AD;
public:
RegisterDeclsAndExprs(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {}
void VisitBlockVarDecl(BlockVarDecl* VD) {
if (AD.VMap.find(VD) == AD.VMap.end())
AD.VMap[VD] = AD.NumDecls++;
}
void VisitDeclChain(ScopedDecl* D) {
for (; D != NULL; D = D->getNextDeclarator())
if (BlockVarDecl* VD = dyn_cast<BlockVarDecl>(D))
VisitBlockVarDecl(VD);
}
void BlockStmt_VisitExpr(Expr* E) {
if (AD.EMap.find(E) == AD.EMap.end())
AD.EMap[E] = AD.NumBlockExprs++;
Visit(E);
}
void VisitDeclRefExpr(DeclRefExpr* DR) {
VisitDeclChain(DR->getDecl());
}
void VisitDeclStmt(DeclStmt* S) {
VisitDeclChain(S->getDecl());
}
void VisitStmt(Stmt* S) {
VisitChildren(S);
}
};
} // end anonymous namespace
void UninitializedValues::InitializeValues(const CFG& cfg) {
RegisterDeclsAndExprs R(this->getAnalysisData());
for (CFG::const_iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I)
for (CFGBlock::const_iterator BI=I->begin(), BE=I->end(); BI!=BE; ++BI)
R.BlockStmt_Visit(*BI);
// Initialize the values of the last block.
UninitializedValues::ValTy& V = getBlockDataMap()[&cfg.getEntry()];
V.resetValues(getAnalysisData());
}
//===----------------------------------------------------------------------===//
// Transfer functions.
//===----------------------------------------------------------------------===//
namespace {
class TransferFuncs : public CFGStmtVisitor<TransferFuncs,bool> {
UninitializedValues::ValTy V;
UninitializedValues::AnalysisDataTy& AD;
public:
TransferFuncs(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {
V.resetValues(AD);
}
UninitializedValues::ValTy& getVal() { return V; }
bool VisitDeclRefExpr(DeclRefExpr* DR);
bool VisitBinaryOperator(BinaryOperator* B);
bool VisitUnaryOperator(UnaryOperator* U);
bool VisitStmt(Stmt* S);
bool VisitCallExpr(CallExpr* C);
bool BlockStmt_VisitExpr(Expr* E);
bool VisitDeclStmt(DeclStmt* D);
static inline bool Initialized() { return true; }
static inline bool Uninitialized() { return false; }
};
bool TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
if (BlockVarDecl* VD = dyn_cast<BlockVarDecl>(DR->getDecl())) {
assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl.");
if (AD.Observer)
AD.Observer->ObserveDeclRefExpr(V,AD,DR,VD);
return V.DeclBV[ AD.VMap[VD] ];
}
else
return Initialized();
}
bool TransferFuncs::VisitBinaryOperator(BinaryOperator* B) {
if (CFG::hasImplicitControlFlow(B)) {
assert ( AD.EMap.find(B) != AD.EMap.end() && "Unknown block-level expr.");
return V.ExprBV[ AD.EMap[B] ];
}
if (B->isAssignmentOp()) {
// Get the Decl for the LHS, if any
for (Stmt* S = B->getLHS() ;; ) {
if (ParenExpr* P = dyn_cast<ParenExpr>(S))
S = P->getSubExpr();
else if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S))
if (BlockVarDecl* VD = dyn_cast<BlockVarDecl>(DR->getDecl())) {
assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl.");
return V.DeclBV[ AD.VMap[VD] ] = Visit(B->getRHS());
}
break;
}
}
return VisitStmt(B);
}
bool TransferFuncs::VisitDeclStmt(DeclStmt* S) {
bool x = Initialized();
for (ScopedDecl* D = S->getDecl(); D != NULL; D = D->getNextDeclarator())
if (BlockVarDecl* VD = dyn_cast<BlockVarDecl>(D))
if (Stmt* I = VD->getInit()) {
assert ( AD.EMap.find(cast<Expr>(I)) !=
AD.EMap.end() && "Unknown Expr.");
assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl.");
x = V.DeclBV[ AD.VMap[VD] ] = V.ExprBV[ AD.EMap[cast<Expr>(I)] ];
}
return x;
}
bool TransferFuncs::VisitCallExpr(CallExpr* C) {
VisitStmt(C);
return Initialized();
}
bool TransferFuncs::VisitUnaryOperator(UnaryOperator* U) {
switch (U->getOpcode()) {
case UnaryOperator::AddrOf: {
// Blast through parentheses and find the decl (if any). Treat it
// as initialized from this point forward.
for (Stmt* S = U->getSubExpr() ;; )
if (ParenExpr* P = dyn_cast<ParenExpr>(S))
S = P->getSubExpr();
else if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S)) {
if (BlockVarDecl* VD = dyn_cast<BlockVarDecl>(DR->getDecl())) {
assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl.");
V.DeclBV[ AD.VMap[VD] ] = Initialized();
}
break;
}
else {
// Evaluate the transfer function for subexpressions, even
// if we cannot reason more deeply about the &-expression.
return Visit(U->getSubExpr());
}
return Initialized();
}
default:
return Visit(U->getSubExpr());
}
}
bool TransferFuncs::VisitStmt(Stmt* S) {
bool x = Initialized();
// We don't stop at the first subexpression that is Uninitialized because
// evaluating some subexpressions may result in propogating "Uninitialized"
// or "Initialized" to variables referenced in the other subexpressions.
for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I)
if (Visit(*I) == Uninitialized())
x = Uninitialized();
return x;
}
bool TransferFuncs::BlockStmt_VisitExpr(Expr* E) {
assert ( AD.EMap.find(E) != AD.EMap.end() );
return V.ExprBV[ AD.EMap[E] ] = Visit(E);
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Merge operator.
//
// In our transfer functions we take the approach that any
// combination of unintialized values, e.g. Unitialized + ___ = Unitialized.
//
// Merges take the opposite approach.
//
// In the merge of dataflow values (for Decls) we prefer unsoundness, and
// prefer false negatives to false positives. At merges, if a value for a
// tracked Decl is EVER initialized in any of the predecessors we treat it as
// initialized at the confluence point.
//
// For tracked CFGBlock-level expressions (such as the result of
// short-circuit), we do the opposite merge: if a value is EVER uninitialized
// in a predecessor we treat it as uninitalized at the confluence point.
// The reason we do this is because dataflow values for tracked Exprs are
// not as control-dependent as dataflow values for tracked Decls.
//===----------------------------------------------------------------------===//
namespace {
struct Merge {
void operator()(UninitializedValues::ValTy& Dst,
UninitializedValues::ValTy& Src) {
assert (Dst.DeclBV.size() == Src.DeclBV.size()
&& "Bitvector sizes do not match.");
Dst.DeclBV |= Src.DeclBV;
assert (Dst.ExprBV.size() == Src.ExprBV.size()
&& "Bitvector sizes do not match.");
Dst.ExprBV |= Src.ExprBV;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Unitialized values checker. Scan an AST and flag variable uses
//===----------------------------------------------------------------------===//
UninitializedValues_ValueTypes::ObserverTy::~ObserverTy() {}
namespace {
class UninitializedValuesChecker : public UninitializedValues::ObserverTy {
ASTContext &Ctx;
Diagnostic &Diags;
llvm::SmallPtrSet<BlockVarDecl*,10> AlreadyWarned;
public:
UninitializedValuesChecker(ASTContext &ctx, Diagnostic &diags)
: Ctx(ctx), Diags(diags) {}
virtual void ObserveDeclRefExpr(UninitializedValues::ValTy& V,
UninitializedValues::AnalysisDataTy& AD,
DeclRefExpr* DR, BlockVarDecl* VD) {
assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl.");
if (V.DeclBV[ AD.VMap[VD] ] == TransferFuncs::Uninitialized())
if (AlreadyWarned.insert(VD))
Diags.Report(DR->getSourceRange().Begin(), diag::warn_uninit_val);
}
};
} // end anonymous namespace
namespace clang {
void CheckUninitializedValues(CFG& cfg, ASTContext &Ctx, Diagnostic &Diags) {
typedef DataflowSolver<UninitializedValues,TransferFuncs,Merge> Solver;
// Compute the unitialized values information.
UninitializedValues U;
Solver S(U);
S.runOnCFG(cfg);
// Scan for DeclRefExprs that use uninitialized values.
UninitializedValuesChecker Observer(Ctx,Diags);
U.getAnalysisData().Observer = &Observer;
for (CFG::iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I)
S.runOnBlock(&*I);
}
}