| //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/CXXFieldCollector.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclVisitor.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <map> |
| #include <set> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // CheckDefaultArgumentVisitor |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses |
| /// the default argument of a parameter to determine whether it |
| /// contains any ill-formed subexpressions. For example, this will |
| /// diagnose the use of local variables or parameters within the |
| /// default argument expression. |
| class CheckDefaultArgumentVisitor |
| : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { |
| Expr *DefaultArg; |
| Sema *S; |
| |
| public: |
| CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) |
| : DefaultArg(defarg), S(s) {} |
| |
| bool VisitExpr(Expr *Node); |
| bool VisitDeclRefExpr(DeclRefExpr *DRE); |
| bool VisitCXXThisExpr(CXXThisExpr *ThisE); |
| }; |
| |
| /// VisitExpr - Visit all of the children of this expression. |
| bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { |
| bool IsInvalid = false; |
| for (Stmt::child_iterator I = Node->child_begin(), |
| E = Node->child_end(); I != E; ++I) |
| IsInvalid |= Visit(*I); |
| return IsInvalid; |
| } |
| |
| /// VisitDeclRefExpr - Visit a reference to a declaration, to |
| /// determine whether this declaration can be used in the default |
| /// argument expression. |
| bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { |
| NamedDecl *Decl = DRE->getDecl(); |
| if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { |
| // C++ [dcl.fct.default]p9 |
| // Default arguments are evaluated each time the function is |
| // called. The order of evaluation of function arguments is |
| // unspecified. Consequently, parameters of a function shall not |
| // be used in default argument expressions, even if they are not |
| // evaluated. Parameters of a function declared before a default |
| // argument expression are in scope and can hide namespace and |
| // class member names. |
| return S->Diag(DRE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_param) |
| << Param->getDeclName() << DefaultArg->getSourceRange(); |
| } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { |
| // C++ [dcl.fct.default]p7 |
| // Local variables shall not be used in default argument |
| // expressions. |
| if (VDecl->isLocalVarDecl()) |
| return S->Diag(DRE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_local) |
| << VDecl->getDeclName() << DefaultArg->getSourceRange(); |
| } |
| |
| return false; |
| } |
| |
| /// VisitCXXThisExpr - Visit a C++ "this" expression. |
| bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { |
| // C++ [dcl.fct.default]p8: |
| // The keyword this shall not be used in a default argument of a |
| // member function. |
| return S->Diag(ThisE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_this) |
| << ThisE->getSourceRange(); |
| } |
| } |
| |
| bool |
| Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, |
| SourceLocation EqualLoc) { |
| if (RequireCompleteType(Param->getLocation(), Param->getType(), |
| diag::err_typecheck_decl_incomplete_type)) { |
| Param->setInvalidDecl(); |
| return true; |
| } |
| |
| // C++ [dcl.fct.default]p5 |
| // A default argument expression is implicitly converted (clause |
| // 4) to the parameter type. The default argument expression has |
| // the same semantic constraints as the initializer expression in |
| // a declaration of a variable of the parameter type, using the |
| // copy-initialization semantics (8.5). |
| InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
| Param); |
| InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), |
| EqualLoc); |
| InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &Arg, 1)); |
| if (Result.isInvalid()) |
| return true; |
| Arg = Result.takeAs<Expr>(); |
| |
| CheckImplicitConversions(Arg, EqualLoc); |
| Arg = MaybeCreateExprWithCleanups(Arg); |
| |
| // Okay: add the default argument to the parameter |
| Param->setDefaultArg(Arg); |
| |
| // We have already instantiated this parameter; provide each of the |
| // instantiations with the uninstantiated default argument. |
| UnparsedDefaultArgInstantiationsMap::iterator InstPos |
| = UnparsedDefaultArgInstantiations.find(Param); |
| if (InstPos != UnparsedDefaultArgInstantiations.end()) { |
| for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) |
| InstPos->second[I]->setUninstantiatedDefaultArg(Arg); |
| |
| // We're done tracking this parameter's instantiations. |
| UnparsedDefaultArgInstantiations.erase(InstPos); |
| } |
| |
| return false; |
| } |
| |
| /// ActOnParamDefaultArgument - Check whether the default argument |
| /// provided for a function parameter is well-formed. If so, attach it |
| /// to the parameter declaration. |
| void |
| Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, |
| Expr *DefaultArg) { |
| if (!param || !DefaultArg) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(param); |
| UnparsedDefaultArgLocs.erase(Param); |
| |
| // Default arguments are only permitted in C++ |
| if (!getLangOptions().CPlusPlus) { |
| Diag(EqualLoc, diag::err_param_default_argument) |
| << DefaultArg->getSourceRange(); |
| Param->setInvalidDecl(); |
| return; |
| } |
| |
| // Check for unexpanded parameter packs. |
| if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { |
| Param->setInvalidDecl(); |
| return; |
| } |
| |
| // Check that the default argument is well-formed |
| CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); |
| if (DefaultArgChecker.Visit(DefaultArg)) { |
| Param->setInvalidDecl(); |
| return; |
| } |
| |
| SetParamDefaultArgument(Param, DefaultArg, EqualLoc); |
| } |
| |
| /// ActOnParamUnparsedDefaultArgument - We've seen a default |
| /// argument for a function parameter, but we can't parse it yet |
| /// because we're inside a class definition. Note that this default |
| /// argument will be parsed later. |
| void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, |
| SourceLocation EqualLoc, |
| SourceLocation ArgLoc) { |
| if (!param) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(param); |
| if (Param) |
| Param->setUnparsedDefaultArg(); |
| |
| UnparsedDefaultArgLocs[Param] = ArgLoc; |
| } |
| |
| /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of |
| /// the default argument for the parameter param failed. |
| void Sema::ActOnParamDefaultArgumentError(Decl *param) { |
| if (!param) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(param); |
| |
| Param->setInvalidDecl(); |
| |
| UnparsedDefaultArgLocs.erase(Param); |
| } |
| |
| /// CheckExtraCXXDefaultArguments - Check for any extra default |
| /// arguments in the declarator, which is not a function declaration |
| /// or definition and therefore is not permitted to have default |
| /// arguments. This routine should be invoked for every declarator |
| /// that is not a function declaration or definition. |
| void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { |
| // C++ [dcl.fct.default]p3 |
| // A default argument expression shall be specified only in the |
| // parameter-declaration-clause of a function declaration or in a |
| // template-parameter (14.1). It shall not be specified for a |
| // parameter pack. If it is specified in a |
| // parameter-declaration-clause, it shall not occur within a |
| // declarator or abstract-declarator of a parameter-declaration. |
| for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| DeclaratorChunk &chunk = D.getTypeObject(i); |
| if (chunk.Kind == DeclaratorChunk::Function) { |
| for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { |
| ParmVarDecl *Param = |
| cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param); |
| if (Param->hasUnparsedDefaultArg()) { |
| CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; |
| Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); |
| delete Toks; |
| chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; |
| } else if (Param->getDefaultArg()) { |
| Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| << Param->getDefaultArg()->getSourceRange(); |
| Param->setDefaultArg(0); |
| } |
| } |
| } |
| } |
| } |
| |
| // MergeCXXFunctionDecl - Merge two declarations of the same C++ |
| // function, once we already know that they have the same |
| // type. Subroutine of MergeFunctionDecl. Returns true if there was an |
| // error, false otherwise. |
| bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { |
| bool Invalid = false; |
| |
| // C++ [dcl.fct.default]p4: |
| // For non-template functions, default arguments can be added in |
| // later declarations of a function in the same |
| // scope. Declarations in different scopes have completely |
| // distinct sets of default arguments. That is, declarations in |
| // inner scopes do not acquire default arguments from |
| // declarations in outer scopes, and vice versa. In a given |
| // function declaration, all parameters subsequent to a |
| // parameter with a default argument shall have default |
| // arguments supplied in this or previous declarations. A |
| // default argument shall not be redefined by a later |
| // declaration (not even to the same value). |
| // |
| // C++ [dcl.fct.default]p6: |
| // Except for member functions of class templates, the default arguments |
| // in a member function definition that appears outside of the class |
| // definition are added to the set of default arguments provided by the |
| // member function declaration in the class definition. |
| for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *OldParam = Old->getParamDecl(p); |
| ParmVarDecl *NewParam = New->getParamDecl(p); |
| |
| if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { |
| // FIXME: If we knew where the '=' was, we could easily provide a fix-it |
| // hint here. Alternatively, we could walk the type-source information |
| // for NewParam to find the last source location in the type... but it |
| // isn't worth the effort right now. This is the kind of test case that |
| // is hard to get right: |
| |
| // int f(int); |
| // void g(int (*fp)(int) = f); |
| // void g(int (*fp)(int) = &f); |
| Diag(NewParam->getLocation(), |
| diag::err_param_default_argument_redefinition) |
| << NewParam->getDefaultArgRange(); |
| |
| // Look for the function declaration where the default argument was |
| // actually written, which may be a declaration prior to Old. |
| for (FunctionDecl *Older = Old->getPreviousDeclaration(); |
| Older; Older = Older->getPreviousDeclaration()) { |
| if (!Older->getParamDecl(p)->hasDefaultArg()) |
| break; |
| |
| OldParam = Older->getParamDecl(p); |
| } |
| |
| Diag(OldParam->getLocation(), diag::note_previous_definition) |
| << OldParam->getDefaultArgRange(); |
| Invalid = true; |
| } else if (OldParam->hasDefaultArg()) { |
| // Merge the old default argument into the new parameter. |
| // It's important to use getInit() here; getDefaultArg() |
| // strips off any top-level ExprWithCleanups. |
| NewParam->setHasInheritedDefaultArg(); |
| if (OldParam->hasUninstantiatedDefaultArg()) |
| NewParam->setUninstantiatedDefaultArg( |
| OldParam->getUninstantiatedDefaultArg()); |
| else |
| NewParam->setDefaultArg(OldParam->getInit()); |
| } else if (NewParam->hasDefaultArg()) { |
| if (New->getDescribedFunctionTemplate()) { |
| // Paragraph 4, quoted above, only applies to non-template functions. |
| Diag(NewParam->getLocation(), |
| diag::err_param_default_argument_template_redecl) |
| << NewParam->getDefaultArgRange(); |
| Diag(Old->getLocation(), diag::note_template_prev_declaration) |
| << false; |
| } else if (New->getTemplateSpecializationKind() |
| != TSK_ImplicitInstantiation && |
| New->getTemplateSpecializationKind() != TSK_Undeclared) { |
| // C++ [temp.expr.spec]p21: |
| // Default function arguments shall not be specified in a declaration |
| // or a definition for one of the following explicit specializations: |
| // - the explicit specialization of a function template; |
| // - the explicit specialization of a member function template; |
| // - the explicit specialization of a member function of a class |
| // template where the class template specialization to which the |
| // member function specialization belongs is implicitly |
| // instantiated. |
| Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) |
| << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) |
| << New->getDeclName() |
| << NewParam->getDefaultArgRange(); |
| } else if (New->getDeclContext()->isDependentContext()) { |
| // C++ [dcl.fct.default]p6 (DR217): |
| // Default arguments for a member function of a class template shall |
| // be specified on the initial declaration of the member function |
| // within the class template. |
| // |
| // Reading the tea leaves a bit in DR217 and its reference to DR205 |
| // leads me to the conclusion that one cannot add default function |
| // arguments for an out-of-line definition of a member function of a |
| // dependent type. |
| int WhichKind = 2; |
| if (CXXRecordDecl *Record |
| = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { |
| if (Record->getDescribedClassTemplate()) |
| WhichKind = 0; |
| else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) |
| WhichKind = 1; |
| else |
| WhichKind = 2; |
| } |
| |
| Diag(NewParam->getLocation(), |
| diag::err_param_default_argument_member_template_redecl) |
| << WhichKind |
| << NewParam->getDefaultArgRange(); |
| } |
| } |
| } |
| |
| if (CheckEquivalentExceptionSpec(Old, New)) |
| Invalid = true; |
| |
| return Invalid; |
| } |
| |
| /// CheckCXXDefaultArguments - Verify that the default arguments for a |
| /// function declaration are well-formed according to C++ |
| /// [dcl.fct.default]. |
| void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { |
| unsigned NumParams = FD->getNumParams(); |
| unsigned p; |
| |
| // Find first parameter with a default argument |
| for (p = 0; p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (Param->hasDefaultArg()) |
| break; |
| } |
| |
| // C++ [dcl.fct.default]p4: |
| // In a given function declaration, all parameters |
| // subsequent to a parameter with a default argument shall |
| // have default arguments supplied in this or previous |
| // declarations. A default argument shall not be redefined |
| // by a later declaration (not even to the same value). |
| unsigned LastMissingDefaultArg = 0; |
| for (; p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (!Param->hasDefaultArg()) { |
| if (Param->isInvalidDecl()) |
| /* We already complained about this parameter. */; |
| else if (Param->getIdentifier()) |
| Diag(Param->getLocation(), |
| diag::err_param_default_argument_missing_name) |
| << Param->getIdentifier(); |
| else |
| Diag(Param->getLocation(), |
| diag::err_param_default_argument_missing); |
| |
| LastMissingDefaultArg = p; |
| } |
| } |
| |
| if (LastMissingDefaultArg > 0) { |
| // Some default arguments were missing. Clear out all of the |
| // default arguments up to (and including) the last missing |
| // default argument, so that we leave the function parameters |
| // in a semantically valid state. |
| for (p = 0; p <= LastMissingDefaultArg; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (Param->hasDefaultArg()) { |
| Param->setDefaultArg(0); |
| } |
| } |
| } |
| } |
| |
| /// isCurrentClassName - Determine whether the identifier II is the |
| /// name of the class type currently being defined. In the case of |
| /// nested classes, this will only return true if II is the name of |
| /// the innermost class. |
| bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, |
| const CXXScopeSpec *SS) { |
| assert(getLangOptions().CPlusPlus && "No class names in C!"); |
| |
| CXXRecordDecl *CurDecl; |
| if (SS && SS->isSet() && !SS->isInvalid()) { |
| DeclContext *DC = computeDeclContext(*SS, true); |
| CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); |
| } else |
| CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); |
| |
| if (CurDecl && CurDecl->getIdentifier()) |
| return &II == CurDecl->getIdentifier(); |
| else |
| return false; |
| } |
| |
| /// \brief Check the validity of a C++ base class specifier. |
| /// |
| /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics |
| /// and returns NULL otherwise. |
| CXXBaseSpecifier * |
| Sema::CheckBaseSpecifier(CXXRecordDecl *Class, |
| SourceRange SpecifierRange, |
| bool Virtual, AccessSpecifier Access, |
| TypeSourceInfo *TInfo, |
| SourceLocation EllipsisLoc) { |
| QualType BaseType = TInfo->getType(); |
| |
| // C++ [class.union]p1: |
| // A union shall not have base classes. |
| if (Class->isUnion()) { |
| Diag(Class->getLocation(), diag::err_base_clause_on_union) |
| << SpecifierRange; |
| return 0; |
| } |
| |
| if (EllipsisLoc.isValid() && |
| !TInfo->getType()->containsUnexpandedParameterPack()) { |
| Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
| << TInfo->getTypeLoc().getSourceRange(); |
| EllipsisLoc = SourceLocation(); |
| } |
| |
| if (BaseType->isDependentType()) |
| return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, |
| Class->getTagKind() == TTK_Class, |
| Access, TInfo, EllipsisLoc); |
| |
| SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); |
| |
| // Base specifiers must be record types. |
| if (!BaseType->isRecordType()) { |
| Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; |
| return 0; |
| } |
| |
| // C++ [class.union]p1: |
| // A union shall not be used as a base class. |
| if (BaseType->isUnionType()) { |
| Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; |
| return 0; |
| } |
| |
| // C++ [class.derived]p2: |
| // The class-name in a base-specifier shall not be an incompletely |
| // defined class. |
| if (RequireCompleteType(BaseLoc, BaseType, |
| PDiag(diag::err_incomplete_base_class) |
| << SpecifierRange)) { |
| Class->setInvalidDecl(); |
| return 0; |
| } |
| |
| // If the base class is polymorphic or isn't empty, the new one is/isn't, too. |
| RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); |
| assert(BaseDecl && "Record type has no declaration"); |
| BaseDecl = BaseDecl->getDefinition(); |
| assert(BaseDecl && "Base type is not incomplete, but has no definition"); |
| CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); |
| assert(CXXBaseDecl && "Base type is not a C++ type"); |
| |
| // C++ [class.derived]p2: |
| // If a class is marked with the class-virt-specifier final and it appears |
| // as a base-type-specifier in a base-clause (10 class.derived), the program |
| // is ill-formed. |
| if (CXXBaseDecl->hasAttr<FinalAttr>()) { |
| Diag(BaseLoc, diag::err_class_marked_final_used_as_base) |
| << CXXBaseDecl->getDeclName(); |
| Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) |
| << CXXBaseDecl->getDeclName(); |
| return 0; |
| } |
| |
| if (BaseDecl->isInvalidDecl()) |
| Class->setInvalidDecl(); |
| |
| // Create the base specifier. |
| return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, |
| Class->getTagKind() == TTK_Class, |
| Access, TInfo, EllipsisLoc); |
| } |
| |
| /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is |
| /// one entry in the base class list of a class specifier, for |
| /// example: |
| /// class foo : public bar, virtual private baz { |
| /// 'public bar' and 'virtual private baz' are each base-specifiers. |
| BaseResult |
| Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, |
| bool Virtual, AccessSpecifier Access, |
| ParsedType basetype, SourceLocation BaseLoc, |
| SourceLocation EllipsisLoc) { |
| if (!classdecl) |
| return true; |
| |
| AdjustDeclIfTemplate(classdecl); |
| CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); |
| if (!Class) |
| return true; |
| |
| TypeSourceInfo *TInfo = 0; |
| GetTypeFromParser(basetype, &TInfo); |
| |
| if (EllipsisLoc.isInvalid() && |
| DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, |
| UPPC_BaseType)) |
| return true; |
| |
| if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, |
| Virtual, Access, TInfo, |
| EllipsisLoc)) |
| return BaseSpec; |
| |
| return true; |
| } |
| |
| /// \brief Performs the actual work of attaching the given base class |
| /// specifiers to a C++ class. |
| bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, |
| unsigned NumBases) { |
| if (NumBases == 0) |
| return false; |
| |
| // Used to keep track of which base types we have already seen, so |
| // that we can properly diagnose redundant direct base types. Note |
| // that the key is always the unqualified canonical type of the base |
| // class. |
| std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; |
| |
| // Copy non-redundant base specifiers into permanent storage. |
| unsigned NumGoodBases = 0; |
| bool Invalid = false; |
| for (unsigned idx = 0; idx < NumBases; ++idx) { |
| QualType NewBaseType |
| = Context.getCanonicalType(Bases[idx]->getType()); |
| NewBaseType = NewBaseType.getLocalUnqualifiedType(); |
| if (!Class->hasObjectMember()) { |
| if (const RecordType *FDTTy = |
| NewBaseType.getTypePtr()->getAs<RecordType>()) |
| if (FDTTy->getDecl()->hasObjectMember()) |
| Class->setHasObjectMember(true); |
| } |
| |
| if (KnownBaseTypes[NewBaseType]) { |
| // C++ [class.mi]p3: |
| // A class shall not be specified as a direct base class of a |
| // derived class more than once. |
| Diag(Bases[idx]->getSourceRange().getBegin(), |
| diag::err_duplicate_base_class) |
| << KnownBaseTypes[NewBaseType]->getType() |
| << Bases[idx]->getSourceRange(); |
| |
| // Delete the duplicate base class specifier; we're going to |
| // overwrite its pointer later. |
| Context.Deallocate(Bases[idx]); |
| |
| Invalid = true; |
| } else { |
| // Okay, add this new base class. |
| KnownBaseTypes[NewBaseType] = Bases[idx]; |
| Bases[NumGoodBases++] = Bases[idx]; |
| } |
| } |
| |
| // Attach the remaining base class specifiers to the derived class. |
| Class->setBases(Bases, NumGoodBases); |
| |
| // Delete the remaining (good) base class specifiers, since their |
| // data has been copied into the CXXRecordDecl. |
| for (unsigned idx = 0; idx < NumGoodBases; ++idx) |
| Context.Deallocate(Bases[idx]); |
| |
| return Invalid; |
| } |
| |
| /// ActOnBaseSpecifiers - Attach the given base specifiers to the |
| /// class, after checking whether there are any duplicate base |
| /// classes. |
| void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases, |
| unsigned NumBases) { |
| if (!ClassDecl || !Bases || !NumBases) |
| return; |
| |
| AdjustDeclIfTemplate(ClassDecl); |
| AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), |
| (CXXBaseSpecifier**)(Bases), NumBases); |
| } |
| |
| static CXXRecordDecl *GetClassForType(QualType T) { |
| if (const RecordType *RT = T->getAs<RecordType>()) |
| return cast<CXXRecordDecl>(RT->getDecl()); |
| else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>()) |
| return ICT->getDecl(); |
| else |
| return 0; |
| } |
| |
| /// \brief Determine whether the type \p Derived is a C++ class that is |
| /// derived from the type \p Base. |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| CXXRecordDecl *DerivedRD = GetClassForType(Derived); |
| if (!DerivedRD) |
| return false; |
| |
| CXXRecordDecl *BaseRD = GetClassForType(Base); |
| if (!BaseRD) |
| return false; |
| |
| // FIXME: instantiate DerivedRD if necessary. We need a PoI for this. |
| return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD); |
| } |
| |
| /// \brief Determine whether the type \p Derived is a C++ class that is |
| /// derived from the type \p Base. |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| CXXRecordDecl *DerivedRD = GetClassForType(Derived); |
| if (!DerivedRD) |
| return false; |
| |
| CXXRecordDecl *BaseRD = GetClassForType(Base); |
| if (!BaseRD) |
| return false; |
| |
| return DerivedRD->isDerivedFrom(BaseRD, Paths); |
| } |
| |
| void Sema::BuildBasePathArray(const CXXBasePaths &Paths, |
| CXXCastPath &BasePathArray) { |
| assert(BasePathArray.empty() && "Base path array must be empty!"); |
| assert(Paths.isRecordingPaths() && "Must record paths!"); |
| |
| const CXXBasePath &Path = Paths.front(); |
| |
| // We first go backward and check if we have a virtual base. |
| // FIXME: It would be better if CXXBasePath had the base specifier for |
| // the nearest virtual base. |
| unsigned Start = 0; |
| for (unsigned I = Path.size(); I != 0; --I) { |
| if (Path[I - 1].Base->isVirtual()) { |
| Start = I - 1; |
| break; |
| } |
| } |
| |
| // Now add all bases. |
| for (unsigned I = Start, E = Path.size(); I != E; ++I) |
| BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); |
| } |
| |
| /// \brief Determine whether the given base path includes a virtual |
| /// base class. |
| bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) { |
| for (CXXCastPath::const_iterator B = BasePath.begin(), |
| BEnd = BasePath.end(); |
| B != BEnd; ++B) |
| if ((*B)->isVirtual()) |
| return true; |
| |
| return false; |
| } |
| |
| /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base |
| /// conversion (where Derived and Base are class types) is |
| /// well-formed, meaning that the conversion is unambiguous (and |
| /// that all of the base classes are accessible). Returns true |
| /// and emits a diagnostic if the code is ill-formed, returns false |
| /// otherwise. Loc is the location where this routine should point to |
| /// if there is an error, and Range is the source range to highlight |
| /// if there is an error. |
| bool |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
| unsigned InaccessibleBaseID, |
| unsigned AmbigiousBaseConvID, |
| SourceLocation Loc, SourceRange Range, |
| DeclarationName Name, |
| CXXCastPath *BasePath) { |
| // First, determine whether the path from Derived to Base is |
| // ambiguous. This is slightly more expensive than checking whether |
| // the Derived to Base conversion exists, because here we need to |
| // explore multiple paths to determine if there is an ambiguity. |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); |
| assert(DerivationOkay && |
| "Can only be used with a derived-to-base conversion"); |
| (void)DerivationOkay; |
| |
| if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { |
| if (InaccessibleBaseID) { |
| // Check that the base class can be accessed. |
| switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(), |
| InaccessibleBaseID)) { |
| case AR_inaccessible: |
| return true; |
| case AR_accessible: |
| case AR_dependent: |
| case AR_delayed: |
| break; |
| } |
| } |
| |
| // Build a base path if necessary. |
| if (BasePath) |
| BuildBasePathArray(Paths, *BasePath); |
| return false; |
| } |
| |
| // We know that the derived-to-base conversion is ambiguous, and |
| // we're going to produce a diagnostic. Perform the derived-to-base |
| // search just one more time to compute all of the possible paths so |
| // that we can print them out. This is more expensive than any of |
| // the previous derived-to-base checks we've done, but at this point |
| // performance isn't as much of an issue. |
| Paths.clear(); |
| Paths.setRecordingPaths(true); |
| bool StillOkay = IsDerivedFrom(Derived, Base, Paths); |
| assert(StillOkay && "Can only be used with a derived-to-base conversion"); |
| (void)StillOkay; |
| |
| // Build up a textual representation of the ambiguous paths, e.g., |
| // D -> B -> A, that will be used to illustrate the ambiguous |
| // conversions in the diagnostic. We only print one of the paths |
| // to each base class subobject. |
| std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
| |
| Diag(Loc, AmbigiousBaseConvID) |
| << Derived << Base << PathDisplayStr << Range << Name; |
| return true; |
| } |
| |
| bool |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
| SourceLocation Loc, SourceRange Range, |
| CXXCastPath *BasePath, |
| bool IgnoreAccess) { |
| return CheckDerivedToBaseConversion(Derived, Base, |
| IgnoreAccess ? 0 |
| : diag::err_upcast_to_inaccessible_base, |
| diag::err_ambiguous_derived_to_base_conv, |
| Loc, Range, DeclarationName(), |
| BasePath); |
| } |
| |
| |
| /// @brief Builds a string representing ambiguous paths from a |
| /// specific derived class to different subobjects of the same base |
| /// class. |
| /// |
| /// This function builds a string that can be used in error messages |
| /// to show the different paths that one can take through the |
| /// inheritance hierarchy to go from the derived class to different |
| /// subobjects of a base class. The result looks something like this: |
| /// @code |
| /// struct D -> struct B -> struct A |
| /// struct D -> struct C -> struct A |
| /// @endcode |
| std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { |
| std::string PathDisplayStr; |
| std::set<unsigned> DisplayedPaths; |
| for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
| Path != Paths.end(); ++Path) { |
| if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { |
| // We haven't displayed a path to this particular base |
| // class subobject yet. |
| PathDisplayStr += "\n "; |
| PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); |
| for (CXXBasePath::const_iterator Element = Path->begin(); |
| Element != Path->end(); ++Element) |
| PathDisplayStr += " -> " + Element->Base->getType().getAsString(); |
| } |
| } |
| |
| return PathDisplayStr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C++ class member Handling |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. |
| Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access, |
| SourceLocation ASLoc, |
| SourceLocation ColonLoc) { |
| assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); |
| AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, |
| ASLoc, ColonLoc); |
| CurContext->addHiddenDecl(ASDecl); |
| return ASDecl; |
| } |
| |
| /// CheckOverrideControl - Check C++0x override control semantics. |
| void Sema::CheckOverrideControl(const Decl *D) { |
| const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D); |
| if (!MD || !MD->isVirtual()) |
| return; |
| |
| if (MD->isDependentContext()) |
| return; |
| |
| // C++0x [class.virtual]p3: |
| // If a virtual function is marked with the virt-specifier override and does |
| // not override a member function of a base class, |
| // the program is ill-formed. |
| bool HasOverriddenMethods = |
| MD->begin_overridden_methods() != MD->end_overridden_methods(); |
| if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) { |
| Diag(MD->getLocation(), |
| diag::err_function_marked_override_not_overriding) |
| << MD->getDeclName(); |
| return; |
| } |
| |
| // C++0x [class.derived]p8: |
| // In a class definition marked with the class-virt-specifier explicit, |
| // if a virtual member function that is neither implicitly-declared nor a |
| // destructor overrides a member function of a base class and it is not |
| // marked with the virt-specifier override, the program is ill-formed. |
| if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) && |
| HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) { |
| llvm::SmallVector<const CXXMethodDecl*, 4> |
| OverriddenMethods(MD->begin_overridden_methods(), |
| MD->end_overridden_methods()); |
| |
| Diag(MD->getLocation(), diag::err_function_overriding_without_override) |
| << MD->getDeclName() |
| << (unsigned)OverriddenMethods.size(); |
| |
| for (unsigned I = 0; I != OverriddenMethods.size(); ++I) |
| Diag(OverriddenMethods[I]->getLocation(), |
| diag::note_overridden_virtual_function); |
| } |
| } |
| |
| /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member |
| /// function overrides a virtual member function marked 'final', according to |
| /// C++0x [class.virtual]p3. |
| bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, |
| const CXXMethodDecl *Old) { |
| if (!Old->hasAttr<FinalAttr>()) |
| return false; |
| |
| Diag(New->getLocation(), diag::err_final_function_overridden) |
| << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| } |
| |
| /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member |
| /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the |
| /// bitfield width if there is one and 'InitExpr' specifies the initializer if |
| /// any. |
| Decl * |
| Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, |
| MultiTemplateParamsArg TemplateParameterLists, |
| ExprTy *BW, const VirtSpecifiers &VS, |
| ExprTy *InitExpr, bool IsDefinition, |
| bool Deleted) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| SourceLocation Loc = NameInfo.getLoc(); |
| |
| // For anonymous bitfields, the location should point to the type. |
| if (Loc.isInvalid()) |
| Loc = D.getSourceRange().getBegin(); |
| |
| Expr *BitWidth = static_cast<Expr*>(BW); |
| Expr *Init = static_cast<Expr*>(InitExpr); |
| |
| assert(isa<CXXRecordDecl>(CurContext)); |
| assert(!DS.isFriendSpecified()); |
| |
| bool isFunc = false; |
| if (D.isFunctionDeclarator()) |
| isFunc = true; |
| else if (D.getNumTypeObjects() == 0 && |
| D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) { |
| QualType TDType = GetTypeFromParser(DS.getRepAsType()); |
| isFunc = TDType->isFunctionType(); |
| } |
| |
| // C++ 9.2p6: A member shall not be declared to have automatic storage |
| // duration (auto, register) or with the extern storage-class-specifier. |
| // C++ 7.1.1p8: The mutable specifier can be applied only to names of class |
| // data members and cannot be applied to names declared const or static, |
| // and cannot be applied to reference members. |
| switch (DS.getStorageClassSpec()) { |
| case DeclSpec::SCS_unspecified: |
| case DeclSpec::SCS_typedef: |
| case DeclSpec::SCS_static: |
| // FALL THROUGH. |
| break; |
| case DeclSpec::SCS_mutable: |
| if (isFunc) { |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); |
| else |
| Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); |
| |
| // FIXME: It would be nicer if the keyword was ignored only for this |
| // declarator. Otherwise we could get follow-up errors. |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| break; |
| default: |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_storageclass_invalid_for_member); |
| else |
| Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || |
| DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && |
| !isFunc); |
| |
| Decl *Member; |
| if (isInstField) { |
| CXXScopeSpec &SS = D.getCXXScopeSpec(); |
| |
| |
| if (SS.isSet() && !SS.isInvalid()) { |
| // The user provided a superfluous scope specifier inside a class |
| // definition: |
| // |
| // class X { |
| // int X::member; |
| // }; |
| DeclContext *DC = 0; |
| if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext)) |
| Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification) |
| << Name << FixItHint::CreateRemoval(SS.getRange()); |
| else |
| Diag(D.getIdentifierLoc(), diag::err_member_qualification) |
| << Name << SS.getRange(); |
| |
| SS.clear(); |
| } |
| |
| // FIXME: Check for template parameters! |
| // FIXME: Check that the name is an identifier! |
| Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, |
| AS); |
| assert(Member && "HandleField never returns null"); |
| } else { |
| Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition); |
| if (!Member) { |
| return 0; |
| } |
| |
| // Non-instance-fields can't have a bitfield. |
| if (BitWidth) { |
| if (Member->isInvalidDecl()) { |
| // don't emit another diagnostic. |
| } else if (isa<VarDecl>(Member)) { |
| // C++ 9.6p3: A bit-field shall not be a static member. |
| // "static member 'A' cannot be a bit-field" |
| Diag(Loc, diag::err_static_not_bitfield) |
| << Name << BitWidth->getSourceRange(); |
| } else if (isa<TypedefDecl>(Member)) { |
| // "typedef member 'x' cannot be a bit-field" |
| Diag(Loc, diag::err_typedef_not_bitfield) |
| << Name << BitWidth->getSourceRange(); |
| } else { |
| // A function typedef ("typedef int f(); f a;"). |
| // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
| Diag(Loc, diag::err_not_integral_type_bitfield) |
| << Name << cast<ValueDecl>(Member)->getType() |
| << BitWidth->getSourceRange(); |
| } |
| |
| BitWidth = 0; |
| Member->setInvalidDecl(); |
| } |
| |
| Member->setAccess(AS); |
| |
| // If we have declared a member function template, set the access of the |
| // templated declaration as well. |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) |
| FunTmpl->getTemplatedDecl()->setAccess(AS); |
| } |
| |
| if (VS.isOverrideSpecified()) { |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); |
| if (!MD || !MD->isVirtual()) { |
| Diag(Member->getLocStart(), |
| diag::override_keyword_only_allowed_on_virtual_member_functions) |
| << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc()); |
| } else |
| MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context)); |
| } |
| if (VS.isFinalSpecified()) { |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); |
| if (!MD || !MD->isVirtual()) { |
| Diag(Member->getLocStart(), |
| diag::override_keyword_only_allowed_on_virtual_member_functions) |
| << "final" << FixItHint::CreateRemoval(VS.getFinalLoc()); |
| } else |
| MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context)); |
| } |
| |
| CheckOverrideControl(Member); |
| |
| assert((Name || isInstField) && "No identifier for non-field ?"); |
| |
| if (Init) |
| AddInitializerToDecl(Member, Init, false); |
| if (Deleted) // FIXME: Source location is not very good. |
| SetDeclDeleted(Member, D.getSourceRange().getBegin()); |
| |
| if (isInstField) { |
| FieldCollector->Add(cast<FieldDecl>(Member)); |
| return 0; |
| } |
| return Member; |
| } |
| |
| /// \brief Find the direct and/or virtual base specifiers that |
| /// correspond to the given base type, for use in base initialization |
| /// within a constructor. |
| static bool FindBaseInitializer(Sema &SemaRef, |
| CXXRecordDecl *ClassDecl, |
| QualType BaseType, |
| const CXXBaseSpecifier *&DirectBaseSpec, |
| const CXXBaseSpecifier *&VirtualBaseSpec) { |
| // First, check for a direct base class. |
| DirectBaseSpec = 0; |
| for (CXXRecordDecl::base_class_const_iterator Base |
| = ClassDecl->bases_begin(); |
| Base != ClassDecl->bases_end(); ++Base) { |
| if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { |
| // We found a direct base of this type. That's what we're |
| // initializing. |
| DirectBaseSpec = &*Base; |
| break; |
| } |
| } |
| |
| // Check for a virtual base class. |
| // FIXME: We might be able to short-circuit this if we know in advance that |
| // there are no virtual bases. |
| VirtualBaseSpec = 0; |
| if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { |
| // We haven't found a base yet; search the class hierarchy for a |
| // virtual base class. |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), |
| BaseType, Paths)) { |
| for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
| Path != Paths.end(); ++Path) { |
| if (Path->back().Base->isVirtual()) { |
| VirtualBaseSpec = Path->back().Base; |
| break; |
| } |
| } |
| } |
| } |
| |
| return DirectBaseSpec || VirtualBaseSpec; |
| } |
| |
| /// ActOnMemInitializer - Handle a C++ member initializer. |
| MemInitResult |
| Sema::ActOnMemInitializer(Decl *ConstructorD, |
| Scope *S, |
| CXXScopeSpec &SS, |
| IdentifierInfo *MemberOrBase, |
| ParsedType TemplateTypeTy, |
| SourceLocation IdLoc, |
| SourceLocation LParenLoc, |
| ExprTy **Args, unsigned NumArgs, |
| SourceLocation RParenLoc, |
| SourceLocation EllipsisLoc) { |
| if (!ConstructorD) |
| return true; |
| |
| AdjustDeclIfTemplate(ConstructorD); |
| |
| CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(ConstructorD); |
| if (!Constructor) { |
| // The user wrote a constructor initializer on a function that is |
| // not a C++ constructor. Ignore the error for now, because we may |
| // have more member initializers coming; we'll diagnose it just |
| // once in ActOnMemInitializers. |
| return true; |
| } |
| |
| CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| |
| // C++ [class.base.init]p2: |
| // Names in a mem-initializer-id are looked up in the scope of the |
| // constructor's class and, if not found in that scope, are looked |
| // up in the scope containing the constructor's definition. |
| // [Note: if the constructor's class contains a member with the |
| // same name as a direct or virtual base class of the class, a |
| // mem-initializer-id naming the member or base class and composed |
| // of a single identifier refers to the class member. A |
| // mem-initializer-id for the hidden base class may be specified |
| // using a qualified name. ] |
| if (!SS.getScopeRep() && !TemplateTypeTy) { |
| // Look for a member, first. |
| FieldDecl *Member = 0; |
| DeclContext::lookup_result Result |
| = ClassDecl->lookup(MemberOrBase); |
| if (Result.first != Result.second) { |
| Member = dyn_cast<FieldDecl>(*Result.first); |
| |
| if (Member) { |
| if (EllipsisLoc.isValid()) |
| Diag(EllipsisLoc, diag::err_pack_expansion_member_init) |
| << MemberOrBase << SourceRange(IdLoc, RParenLoc); |
| |
| return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, |
| LParenLoc, RParenLoc); |
| } |
| |
| // Handle anonymous union case. |
| if (IndirectFieldDecl* IndirectField |
| = dyn_cast<IndirectFieldDecl>(*Result.first)) { |
| if (EllipsisLoc.isValid()) |
| Diag(EllipsisLoc, diag::err_pack_expansion_member_init) |
| << MemberOrBase << SourceRange(IdLoc, RParenLoc); |
| |
| return BuildMemberInitializer(IndirectField, (Expr**)Args, |
| NumArgs, IdLoc, |
| LParenLoc, RParenLoc); |
| } |
| } |
| } |
| // It didn't name a member, so see if it names a class. |
| QualType BaseType; |
| TypeSourceInfo *TInfo = 0; |
| |
| if (TemplateTypeTy) { |
| BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); |
| } else { |
| LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); |
| LookupParsedName(R, S, &SS); |
| |
| TypeDecl *TyD = R.getAsSingle<TypeDecl>(); |
| if (!TyD) { |
| if (R.isAmbiguous()) return true; |
| |
| // We don't want access-control diagnostics here. |
| R.suppressDiagnostics(); |
| |
| if (SS.isSet() && isDependentScopeSpecifier(SS)) { |
| bool NotUnknownSpecialization = false; |
| DeclContext *DC = computeDeclContext(SS, false); |
| if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) |
| NotUnknownSpecialization = !Record->hasAnyDependentBases(); |
| |
| if (!NotUnknownSpecialization) { |
| // When the scope specifier can refer to a member of an unknown |
| // specialization, we take it as a type name. |
| BaseType = CheckTypenameType(ETK_None, |
| (NestedNameSpecifier *)SS.getScopeRep(), |
| *MemberOrBase, SourceLocation(), |
| SS.getRange(), IdLoc); |
| if (BaseType.isNull()) |
| return true; |
| |
| R.clear(); |
| R.setLookupName(MemberOrBase); |
| } |
| } |
| |
| // If no results were found, try to correct typos. |
| if (R.empty() && BaseType.isNull() && |
| CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) && |
| R.isSingleResult()) { |
| if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) { |
| if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) { |
| // We have found a non-static data member with a similar |
| // name to what was typed; complain and initialize that |
| // member. |
| Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) |
| << MemberOrBase << true << R.getLookupName() |
| << FixItHint::CreateReplacement(R.getNameLoc(), |
| R.getLookupName().getAsString()); |
| Diag(Member->getLocation(), diag::note_previous_decl) |
| << Member->getDeclName(); |
| |
| return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, |
| LParenLoc, RParenLoc); |
| } |
| } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) { |
| const CXXBaseSpecifier *DirectBaseSpec; |
| const CXXBaseSpecifier *VirtualBaseSpec; |
| if (FindBaseInitializer(*this, ClassDecl, |
| Context.getTypeDeclType(Type), |
| DirectBaseSpec, VirtualBaseSpec)) { |
| // We have found a direct or virtual base class with a |
| // similar name to what was typed; complain and initialize |
| // that base class. |
| Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) |
| << MemberOrBase << false << R.getLookupName() |
| << FixItHint::CreateReplacement(R.getNameLoc(), |
| R.getLookupName().getAsString()); |
| |
| const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec |
| : VirtualBaseSpec; |
| Diag(BaseSpec->getSourceRange().getBegin(), |
| diag::note_base_class_specified_here) |
| << BaseSpec->getType() |
| << BaseSpec->getSourceRange(); |
| |
| TyD = Type; |
| } |
| } |
| } |
| |
| if (!TyD && BaseType.isNull()) { |
| Diag(IdLoc, diag::err_mem_init_not_member_or_class) |
| << MemberOrBase << SourceRange(IdLoc, RParenLoc); |
| return true; |
| } |
| } |
| |
| if (BaseType.isNull()) { |
| BaseType = Context.getTypeDeclType(TyD); |
| if (SS.isSet()) { |
| NestedNameSpecifier *Qualifier = |
| static_cast<NestedNameSpecifier*>(SS.getScopeRep()); |
| |
| // FIXME: preserve source range information |
| BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType); |
| } |
| } |
| } |
| |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); |
| |
| return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, |
| LParenLoc, RParenLoc, ClassDecl, EllipsisLoc); |
| } |
| |
| /// Checks an initializer expression for use of uninitialized fields, such as |
| /// containing the field that is being initialized. Returns true if there is an |
| /// uninitialized field was used an updates the SourceLocation parameter; false |
| /// otherwise. |
| static bool InitExprContainsUninitializedFields(const Stmt *S, |
| const ValueDecl *LhsField, |
| SourceLocation *L) { |
| assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField)); |
| |
| if (isa<CallExpr>(S)) { |
| // Do not descend into function calls or constructors, as the use |
| // of an uninitialized field may be valid. One would have to inspect |
| // the contents of the function/ctor to determine if it is safe or not. |
| // i.e. Pass-by-value is never safe, but pass-by-reference and pointers |
| // may be safe, depending on what the function/ctor does. |
| return false; |
| } |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) { |
| const NamedDecl *RhsField = ME->getMemberDecl(); |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) { |
| // The member expression points to a static data member. |
| assert(VD->isStaticDataMember() && |
| "Member points to non-static data member!"); |
| (void)VD; |
| return false; |
| } |
| |
| if (isa<EnumConstantDecl>(RhsField)) { |
| // The member expression points to an enum. |
| return false; |
| } |
| |
| if (RhsField == LhsField) { |
| // Initializing a field with itself. Throw a warning. |
| // But wait; there are exceptions! |
| // Exception #1: The field may not belong to this record. |
| // e.g. Foo(const Foo& rhs) : A(rhs.A) {} |
| const Expr *base = ME->getBase(); |
| if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) { |
| // Even though the field matches, it does not belong to this record. |
| return false; |
| } |
| // None of the exceptions triggered; return true to indicate an |
| // uninitialized field was used. |
| *L = ME->getMemberLoc(); |
| return true; |
| } |
| } else if (isa<SizeOfAlignOfExpr>(S)) { |
| // sizeof/alignof doesn't reference contents, do not warn. |
| return false; |
| } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) { |
| // address-of doesn't reference contents (the pointer may be dereferenced |
| // in the same expression but it would be rare; and weird). |
| if (UOE->getOpcode() == UO_AddrOf) |
| return false; |
| } |
| for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end(); |
| it != e; ++it) { |
| if (!*it) { |
| // An expression such as 'member(arg ?: "")' may trigger this. |
| continue; |
| } |
| if (InitExprContainsUninitializedFields(*it, LhsField, L)) |
| return true; |
| } |
| return false; |
| } |
| |
| MemInitResult |
| Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args, |
| unsigned NumArgs, SourceLocation IdLoc, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc) { |
| FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); |
| IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); |
| assert((DirectMember || IndirectMember) && |
| "Member must be a FieldDecl or IndirectFieldDecl"); |
| |
| if (Member->isInvalidDecl()) |
| return true; |
| |
| // Diagnose value-uses of fields to initialize themselves, e.g. |
| // foo(foo) |
| // where foo is not also a parameter to the constructor. |
| // TODO: implement -Wuninitialized and fold this into that framework. |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| SourceLocation L; |
| if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { |
| // FIXME: Return true in the case when other fields are used before being |
| // uninitialized. For example, let this field be the i'th field. When |
| // initializing the i'th field, throw a warning if any of the >= i'th |
| // fields are used, as they are not yet initialized. |
| // Right now we are only handling the case where the i'th field uses |
| // itself in its initializer. |
| Diag(L, diag::warn_field_is_uninit); |
| } |
| } |
| |
| bool HasDependentArg = false; |
| for (unsigned i = 0; i < NumArgs; i++) |
| HasDependentArg |= Args[i]->isTypeDependent(); |
| |
| Expr *Init; |
| if (Member->getType()->isDependentType() || HasDependentArg) { |
| // Can't check initialization for a member of dependent type or when |
| // any of the arguments are type-dependent expressions. |
| Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, |
| RParenLoc); |
| |
| // Erase any temporaries within this evaluation context; we're not |
| // going to track them in the AST, since we'll be rebuilding the |
| // ASTs during template instantiation. |
| ExprTemporaries.erase( |
| ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, |
| ExprTemporaries.end()); |
| } else { |
| // Initialize the member. |
| InitializedEntity MemberEntity = |
| DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0) |
| : InitializedEntity::InitializeMember(IndirectMember, 0); |
| InitializationKind Kind = |
| InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc); |
| |
| InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs); |
| |
| ExprResult MemberInit = |
| InitSeq.Perform(*this, MemberEntity, Kind, |
| MultiExprArg(*this, Args, NumArgs), 0); |
| if (MemberInit.isInvalid()) |
| return true; |
| |
| CheckImplicitConversions(MemberInit.get(), LParenLoc); |
| |
| // C++0x [class.base.init]p7: |
| // The initialization of each base and member constitutes a |
| // full-expression. |
| MemberInit = MaybeCreateExprWithCleanups(MemberInit); |
| if (MemberInit.isInvalid()) |
| return true; |
| |
| // If we are in a dependent context, template instantiation will |
| // perform this type-checking again. Just save the arguments that we |
| // received in a ParenListExpr. |
| // FIXME: This isn't quite ideal, since our ASTs don't capture all |
| // of the information that we have about the member |
| // initializer. However, deconstructing the ASTs is a dicey process, |
| // and this approach is far more likely to get the corner cases right. |
| if (CurContext->isDependentContext()) |
| Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, |
| RParenLoc); |
| else |
| Init = MemberInit.get(); |
| } |
| |
| if (DirectMember) { |
| return new (Context) CXXCtorInitializer(Context, DirectMember, |
| IdLoc, LParenLoc, Init, |
| RParenLoc); |
| } else { |
| return new (Context) CXXCtorInitializer(Context, IndirectMember, |
| IdLoc, LParenLoc, Init, |
| RParenLoc); |
| } |
| } |
| |
| MemInitResult |
| Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc, |
| CXXRecordDecl *ClassDecl, |
| SourceLocation EllipsisLoc) { |
| SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); |
| if (!LangOpts.CPlusPlus0x) |
| return Diag(Loc, diag::err_delegation_0x_only) |
| << TInfo->getTypeLoc().getLocalSourceRange(); |
| |
| return Diag(Loc, diag::err_delegation_unimplemented) |
| << TInfo->getTypeLoc().getLocalSourceRange(); |
| } |
| |
| MemInitResult |
| Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation LParenLoc, SourceLocation RParenLoc, |
| CXXRecordDecl *ClassDecl, |
| SourceLocation EllipsisLoc) { |
| bool HasDependentArg = false; |
| for (unsigned i = 0; i < NumArgs; i++) |
| HasDependentArg |= Args[i]->isTypeDependent(); |
| |
| SourceLocation BaseLoc |
| = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); |
| |
| if (!BaseType->isDependentType() && !BaseType->isRecordType()) |
| return Diag(BaseLoc, diag::err_base_init_does_not_name_class) |
| << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
| |
| // C++ [class.base.init]p2: |
| // [...] Unless the mem-initializer-id names a nonstatic data |
| // member of the constructor's class or a direct or virtual base |
| // of that class, the mem-initializer is ill-formed. A |
| // mem-initializer-list can initialize a base class using any |
| // name that denotes that base class type. |
| bool Dependent = BaseType->isDependentType() || HasDependentArg; |
| |
| if (EllipsisLoc.isValid()) { |
| // This is a pack expansion. |
| if (!BaseType->containsUnexpandedParameterPack()) { |
| Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
| << SourceRange(BaseLoc, RParenLoc); |
| |
| EllipsisLoc = SourceLocation(); |
| } |
| } else { |
| // Check for any unexpanded parameter packs. |
| if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) |
| return true; |
| |
| for (unsigned I = 0; I != NumArgs; ++I) |
| if (DiagnoseUnexpandedParameterPack(Args[I])) |
| return true; |
| } |
| |
| // Check for direct and virtual base classes. |
| const CXXBaseSpecifier *DirectBaseSpec = 0; |
| const CXXBaseSpecifier *VirtualBaseSpec = 0; |
| if (!Dependent) { |
| if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), |
| BaseType)) |
| return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, |
| LParenLoc, RParenLoc, ClassDecl, |
| EllipsisLoc); |
| |
| FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, |
| VirtualBaseSpec); |
| |
| // C++ [base.class.init]p2: |
| // Unless the mem-initializer-id names a nonstatic data member of the |
| // constructor's class or a direct or virtual base of that class, the |
| // mem-initializer is ill-formed. |
| if (!DirectBaseSpec && !VirtualBaseSpec) { |
| // If the class has any dependent bases, then it's possible that |
| // one of those types will resolve to the same type as |
| // BaseType. Therefore, just treat this as a dependent base |
| // class initialization. FIXME: Should we try to check the |
| // initialization anyway? It seems odd. |
| if (ClassDecl->hasAnyDependentBases()) |
| Dependent = true; |
| else |
| return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) |
| << BaseType << Context.getTypeDeclType(ClassDecl) |
| << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
| } |
| } |
| |
| if (Dependent) { |
| // Can't check initialization for a base of dependent type or when |
| // any of the arguments are type-dependent expressions. |
| ExprResult BaseInit |
| = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, |
| RParenLoc)); |
| |
| // Erase any temporaries within this evaluation context; we're not |
| // going to track them in the AST, since we'll be rebuilding the |
| // ASTs during template instantiation. |
| ExprTemporaries.erase( |
| ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, |
| ExprTemporaries.end()); |
| |
| return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
| /*IsVirtual=*/false, |
| LParenLoc, |
| BaseInit.takeAs<Expr>(), |
| RParenLoc, |
| EllipsisLoc); |
| } |
| |
| // C++ [base.class.init]p2: |
| // If a mem-initializer-id is ambiguous because it designates both |
| // a direct non-virtual base class and an inherited virtual base |
| // class, the mem-initializer is ill-formed. |
| if (DirectBaseSpec && VirtualBaseSpec) |
| return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) |
| << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
| |
| CXXBaseSpecifier *BaseSpec |
| = const_cast<CXXBaseSpecifier *>(DirectBaseSpec); |
| if (!BaseSpec) |
| BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec); |
| |
| // Initialize the base. |
| InitializedEntity BaseEntity = |
| InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); |
| InitializationKind Kind = |
| InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc); |
| |
| InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs); |
| |
| ExprResult BaseInit = |
| InitSeq.Perform(*this, BaseEntity, Kind, |
| MultiExprArg(*this, Args, NumArgs), 0); |
| if (BaseInit.isInvalid()) |
| return true; |
| |
| CheckImplicitConversions(BaseInit.get(), LParenLoc); |
| |
| // C++0x [class.base.init]p7: |
| // The initialization of each base and member constitutes a |
| // full-expression. |
| BaseInit = MaybeCreateExprWithCleanups(BaseInit); |
| if (BaseInit.isInvalid()) |
| return true; |
| |
| // If we are in a dependent context, template instantiation will |
| // perform this type-checking again. Just save the arguments that we |
| // received in a ParenListExpr. |
| // FIXME: This isn't quite ideal, since our ASTs don't capture all |
| // of the information that we have about the base |
| // initializer. However, deconstructing the ASTs is a dicey process, |
| // and this approach is far more likely to get the corner cases right. |
| if (CurContext->isDependentContext()) { |
| ExprResult Init |
| = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, |
| RParenLoc)); |
| return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
| BaseSpec->isVirtual(), |
| LParenLoc, |
| Init.takeAs<Expr>(), |
| RParenLoc, |
| EllipsisLoc); |
| } |
| |
| return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
| BaseSpec->isVirtual(), |
| LParenLoc, |
| BaseInit.takeAs<Expr>(), |
| RParenLoc, |
| EllipsisLoc); |
| } |
| |
| /// ImplicitInitializerKind - How an implicit base or member initializer should |
| /// initialize its base or member. |
| enum ImplicitInitializerKind { |
| IIK_Default, |
| IIK_Copy, |
| IIK_Move |
| }; |
| |
| static bool |
| BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
| ImplicitInitializerKind ImplicitInitKind, |
| CXXBaseSpecifier *BaseSpec, |
| bool IsInheritedVirtualBase, |
| CXXCtorInitializer *&CXXBaseInit) { |
| InitializedEntity InitEntity |
| = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, |
| IsInheritedVirtualBase); |
| |
| ExprResult BaseInit; |
| |
| switch (ImplicitInitKind) { |
| case IIK_Default: { |
| InitializationKind InitKind |
| = InitializationKind::CreateDefault(Constructor->getLocation()); |
| InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); |
| BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, |
| MultiExprArg(SemaRef, 0, 0)); |
| break; |
| } |
| |
| case IIK_Copy: { |
| ParmVarDecl *Param = Constructor->getParamDecl(0); |
| QualType ParamType = Param->getType().getNonReferenceType(); |
| |
| Expr *CopyCtorArg = |
| DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, |
| Constructor->getLocation(), ParamType, |
| VK_LValue, 0); |
| |
| // Cast to the base class to avoid ambiguities. |
| QualType ArgTy = |
| SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), |
| ParamType.getQualifiers()); |
| |
| CXXCastPath BasePath; |
| BasePath.push_back(BaseSpec); |
| SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, |
| CK_UncheckedDerivedToBase, |
| VK_LValue, &BasePath); |
| |
| InitializationKind InitKind |
| = InitializationKind::CreateDirect(Constructor->getLocation(), |
| SourceLocation(), SourceLocation()); |
| InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, |
| &CopyCtorArg, 1); |
| BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, |
| MultiExprArg(&CopyCtorArg, 1)); |
| break; |
| } |
| |
| case IIK_Move: |
| assert(false && "Unhandled initializer kind!"); |
| } |
| |
| BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); |
| if (BaseInit.isInvalid()) |
| return true; |
| |
| CXXBaseInit = |
| new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
| SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), |
| SourceLocation()), |
| BaseSpec->isVirtual(), |
| SourceLocation(), |
| BaseInit.takeAs<Expr>(), |
| SourceLocation(), |
| SourceLocation()); |
| |
| return false; |
| } |
| |
| static bool |
| BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
| ImplicitInitializerKind ImplicitInitKind, |
| FieldDecl *Field, |
| CXXCtorInitializer *&CXXMemberInit) { |
| if (Field->isInvalidDecl()) |
| return true; |
| |
| SourceLocation Loc = Constructor->getLocation(); |
| |
| if (ImplicitInitKind == IIK_Copy) { |
| ParmVarDecl *Param = Constructor->getParamDecl(0); |
| QualType ParamType = Param->getType().getNonReferenceType(); |
| |
| Expr *MemberExprBase = |
| DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, |
| Loc, ParamType, VK_LValue, 0); |
| |
| // Build a reference to this field within the parameter. |
| CXXScopeSpec SS; |
| LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, |
| Sema::LookupMemberName); |
| MemberLookup.addDecl(Field, AS_public); |
| MemberLookup.resolveKind(); |
| ExprResult CopyCtorArg |
| = SemaRef.BuildMemberReferenceExpr(MemberExprBase, |
| ParamType, Loc, |
| /*IsArrow=*/false, |
| SS, |
| /*FirstQualifierInScope=*/0, |
| MemberLookup, |
| /*TemplateArgs=*/0); |
| if (CopyCtorArg.isInvalid()) |
| return true; |
| |
| // When the field we are copying is an array, create index variables for |
| // each dimension of the array. We use these index variables to subscript |
| // the source array, and other clients (e.g., CodeGen) will perform the |
| // necessary iteration with these index variables. |
| llvm::SmallVector<VarDecl *, 4> IndexVariables; |
| QualType BaseType = Field->getType(); |
| QualType SizeType = SemaRef.Context.getSizeType(); |
| while (const ConstantArrayType *Array |
| = SemaRef.Context.getAsConstantArrayType(BaseType)) { |
| // Create the iteration variable for this array index. |
| IdentifierInfo *IterationVarName = 0; |
| { |
| llvm::SmallString<8> Str; |
| llvm::raw_svector_ostream OS(Str); |
| OS << "__i" << IndexVariables.size(); |
| IterationVarName = &SemaRef.Context.Idents.get(OS.str()); |
| } |
| VarDecl *IterationVar |
| = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, |
| IterationVarName, SizeType, |
| SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc), |
| SC_None, SC_None); |
| IndexVariables.push_back(IterationVar); |
| |
| // Create a reference to the iteration variable. |
| ExprResult IterationVarRef |
| = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc); |
| assert(!IterationVarRef.isInvalid() && |
| "Reference to invented variable cannot fail!"); |
| |
| // Subscript the array with this iteration variable. |
| CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(), |
| Loc, |
| IterationVarRef.take(), |
| Loc); |
| if (CopyCtorArg.isInvalid()) |
| return true; |
| |
| BaseType = Array->getElementType(); |
| } |
| |
| // Construct the entity that we will be initializing. For an array, this |
| // will be first element in the array, which may require several levels |
| // of array-subscript entities. |
| llvm::SmallVector<InitializedEntity, 4> Entities; |
| Entities.reserve(1 + IndexVariables.size()); |
| Entities.push_back(InitializedEntity::InitializeMember(Field)); |
| for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) |
| Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context, |
| 0, |
| Entities.back())); |
| |
| // Direct-initialize to use the copy constructor. |
| InitializationKind InitKind = |
| InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); |
| |
| Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>(); |
| InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, |
| &CopyCtorArgE, 1); |
| |
| ExprResult MemberInit |
| = InitSeq.Perform(SemaRef, Entities.back(), InitKind, |
| MultiExprArg(&CopyCtorArgE, 1)); |
| MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); |
| if (MemberInit.isInvalid()) |
| return true; |
| |
| CXXMemberInit |
| = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc, |
| MemberInit.takeAs<Expr>(), Loc, |
| IndexVariables.data(), |
| IndexVariables.size()); |
| return false; |
| } |
| |
| assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!"); |
| |
| QualType FieldBaseElementType = |
| SemaRef.Context.getBaseElementType(Field->getType()); |
| |
| if (FieldBaseElementType->isRecordType()) { |
| InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); |
| InitializationKind InitKind = |
| InitializationKind::CreateDefault(Loc); |
| |
| InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); |
| ExprResult MemberInit = |
| InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg()); |
| |
| MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); |
| if (MemberInit.isInvalid()) |
| return true; |
| |
| CXXMemberInit = |
| new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
| Field, Loc, Loc, |
| MemberInit.get(), |
| Loc); |
| return false; |
| } |
| |
| if (FieldBaseElementType->isReferenceType()) { |
| SemaRef.Diag(Constructor->getLocation(), |
| diag::err_uninitialized_member_in_ctor) |
| << (int)Constructor->isImplicit() |
| << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
| << 0 << Field->getDeclName(); |
| SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
| return true; |
| } |
| |
| if (FieldBaseElementType.isConstQualified()) { |
| SemaRef.Diag(Constructor->getLocation(), |
| diag::err_uninitialized_member_in_ctor) |
| << (int)Constructor->isImplicit() |
| << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
| << 1 << Field->getDeclName(); |
| SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
| return true; |
| } |
| |
| // Nothing to initialize. |
| CXXMemberInit = 0; |
| return false; |
| } |
| |
| namespace { |
| struct BaseAndFieldInfo { |
| Sema &S; |
| CXXConstructorDecl *Ctor; |
| bool AnyErrorsInInits; |
| ImplicitInitializerKind IIK; |
| llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; |
| llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit; |
| |
| BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) |
| : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { |
| // FIXME: Handle implicit move constructors. |
| if (Ctor->isImplicit() && Ctor->isCopyConstructor()) |
| IIK = IIK_Copy; |
| else |
| IIK = IIK_Default; |
| } |
| }; |
| } |
| |
| static bool CollectFieldInitializer(BaseAndFieldInfo &Info, |
| FieldDecl *Top, FieldDecl *Field) { |
| |
| // Overwhelmingly common case: we have a direct initializer for this field. |
| if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) { |
| Info.AllToInit.push_back(Init); |
| return false; |
| } |
| |
| if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) { |
| const RecordType *FieldClassType = Field->getType()->getAs<RecordType>(); |
| assert(FieldClassType && "anonymous struct/union without record type"); |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| |
| // Even though union members never have non-trivial default |
| // constructions in C++03, we still build member initializers for aggregate |
| // record types which can be union members, and C++0x allows non-trivial |
| // default constructors for union members, so we ensure that only one |
| // member is initialized for these. |
| if (FieldClassDecl->isUnion()) { |
| // First check for an explicit initializer for one field. |
| for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), |
| EA = FieldClassDecl->field_end(); FA != EA; FA++) { |
| if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) { |
| Info.AllToInit.push_back(Init); |
| |
| // Once we've initialized a field of an anonymous union, the union |
| // field in the class is also initialized, so exit immediately. |
| return false; |
| } else if ((*FA)->isAnonymousStructOrUnion()) { |
| if (CollectFieldInitializer(Info, Top, *FA)) |
| return true; |
| } |
| } |
| |
| // Fallthrough and construct a default initializer for the union as |
| // a whole, which can call its default constructor if such a thing exists |
| // (C++0x perhaps). FIXME: It's not clear that this is the correct |
| // behavior going forward with C++0x, when anonymous unions there are |
| // finalized, we should revisit this. |
| } else { |
| // For structs, we simply descend through to initialize all members where |
| // necessary. |
| for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), |
| EA = FieldClassDecl->field_end(); FA != EA; FA++) { |
| if (CollectFieldInitializer(Info, Top, *FA)) |
| return true; |
| } |
| } |
| } |
| |
| // Don't try to build an implicit initializer if there were semantic |
| // errors in any of the initializers (and therefore we might be |
| // missing some that the user actually wrote). |
| if (Info.AnyErrorsInInits) |
| return false; |
| |
| CXXCtorInitializer *Init = 0; |
| if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init)) |
| return true; |
| |
| if (Init) |
| Info.AllToInit.push_back(Init); |
| |
| return false; |
| } |
| |
| bool |
| Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, |
| CXXCtorInitializer **Initializers, |
| unsigned NumInitializers, |
| bool AnyErrors) { |
| if (Constructor->getDeclContext()->isDependentContext()) { |
| // Just store the initializers as written, they will be checked during |
| // instantiation. |
| if (NumInitializers > 0) { |
| Constructor->setNumCtorInitializers(NumInitializers); |
| CXXCtorInitializer **baseOrMemberInitializers = |
| new (Context) CXXCtorInitializer*[NumInitializers]; |
| memcpy(baseOrMemberInitializers, Initializers, |
| NumInitializers * sizeof(CXXCtorInitializer*)); |
| Constructor->setCtorInitializers(baseOrMemberInitializers); |
| } |
| |
| return false; |
| } |
| |
| BaseAndFieldInfo Info(*this, Constructor, AnyErrors); |
| |
| // We need to build the initializer AST according to order of construction |
| // and not what user specified in the Initializers list. |
| CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); |
| if (!ClassDecl) |
| return true; |
| |
| bool HadError = false; |
| |
| for (unsigned i = 0; i < NumInitializers; i++) { |
| CXXCtorInitializer *Member = Initializers[i]; |
| |
| if (Member->isBaseInitializer()) |
| Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; |
| else |
| Info.AllBaseFields[Member->getAnyMember()] = Member; |
| } |
| |
| // Keep track of the direct virtual bases. |
| llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; |
| for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); I != E; ++I) { |
| if (I->isVirtual()) |
| DirectVBases.insert(I); |
| } |
| |
| // Push virtual bases before others. |
| for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), |
| E = ClassDecl->vbases_end(); VBase != E; ++VBase) { |
| |
| if (CXXCtorInitializer *Value |
| = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) { |
| Info.AllToInit.push_back(Value); |
| } else if (!AnyErrors) { |
| bool IsInheritedVirtualBase = !DirectVBases.count(VBase); |
| CXXCtorInitializer *CXXBaseInit; |
| if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
| VBase, IsInheritedVirtualBase, |
| CXXBaseInit)) { |
| HadError = true; |
| continue; |
| } |
| |
| Info.AllToInit.push_back(CXXBaseInit); |
| } |
| } |
| |
| // Non-virtual bases. |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| // Virtuals are in the virtual base list and already constructed. |
| if (Base->isVirtual()) |
| continue; |
| |
| if (CXXCtorInitializer *Value |
| = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) { |
| Info.AllToInit.push_back(Value); |
| } else if (!AnyErrors) { |
| CXXCtorInitializer *CXXBaseInit; |
| if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
| Base, /*IsInheritedVirtualBase=*/false, |
| CXXBaseInit)) { |
| HadError = true; |
| continue; |
| } |
| |
| Info.AllToInit.push_back(CXXBaseInit); |
| } |
| } |
| |
| // Fields. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); Field != E; ++Field) { |
| if ((*Field)->getType()->isIncompleteArrayType()) { |
| assert(ClassDecl->hasFlexibleArrayMember() && |
| "Incomplete array type is not valid"); |
| continue; |
| } |
| if (CollectFieldInitializer(Info, *Field, *Field)) |
| HadError = true; |
| } |
| |
| NumInitializers = Info.AllToInit.size(); |
| if (NumInitializers > 0) { |
| Constructor->setNumCtorInitializers(NumInitializers); |
| CXXCtorInitializer **baseOrMemberInitializers = |
| new (Context) CXXCtorInitializer*[NumInitializers]; |
| memcpy(baseOrMemberInitializers, Info.AllToInit.data(), |
| NumInitializers * sizeof(CXXCtorInitializer*)); |
| Constructor->setCtorInitializers(baseOrMemberInitializers); |
| |
| // Constructors implicitly reference the base and member |
| // destructors. |
| MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), |
| Constructor->getParent()); |
| } |
| |
| return HadError; |
| } |
| |
| static void *GetKeyForTopLevelField(FieldDecl *Field) { |
| // For anonymous unions, use the class declaration as the key. |
| if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { |
| if (RT->getDecl()->isAnonymousStructOrUnion()) |
| return static_cast<void *>(RT->getDecl()); |
| } |
| return static_cast<void *>(Field); |
| } |
| |
| static void *GetKeyForBase(ASTContext &Context, QualType BaseType) { |
| return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr()); |
| } |
| |
| static void *GetKeyForMember(ASTContext &Context, |
| CXXCtorInitializer *Member) { |
| if (!Member->isAnyMemberInitializer()) |
| return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); |
| |
| // For fields injected into the class via declaration of an anonymous union, |
| // use its anonymous union class declaration as the unique key. |
| FieldDecl *Field = Member->getAnyMember(); |
| |
| // If the field is a member of an anonymous struct or union, our key |
| // is the anonymous record decl that's a direct child of the class. |
| RecordDecl *RD = Field->getParent(); |
| if (RD->isAnonymousStructOrUnion()) { |
| while (true) { |
| RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext()); |
| if (Parent->isAnonymousStructOrUnion()) |
| RD = Parent; |
| else |
| break; |
| } |
| |
| return static_cast<void *>(RD); |
| } |
| |
| return static_cast<void *>(Field); |
| } |
| |
| static void |
| DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef, |
| const CXXConstructorDecl *Constructor, |
| CXXCtorInitializer **Inits, |
| unsigned NumInits) { |
| if (Constructor->getDeclContext()->isDependentContext()) |
| return; |
| |
| // Don't check initializers order unless the warning is enabled at the |
| // location of at least one initializer. |
| bool ShouldCheckOrder = false; |
| for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { |
| CXXCtorInitializer *Init = Inits[InitIndex]; |
| if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order, |
| Init->getSourceLocation()) |
| != Diagnostic::Ignored) { |
| ShouldCheckOrder = true; |
| break; |
| } |
| } |
| if (!ShouldCheckOrder) |
| return; |
| |
| // Build the list of bases and members in the order that they'll |
| // actually be initialized. The explicit initializers should be in |
| // this same order but may be missing things. |
| llvm::SmallVector<const void*, 32> IdealInitKeys; |
| |
| const CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| |
| // 1. Virtual bases. |
| for (CXXRecordDecl::base_class_const_iterator VBase = |
| ClassDecl->vbases_begin(), |
| E = ClassDecl->vbases_end(); VBase != E; ++VBase) |
| IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType())); |
| |
| // 2. Non-virtual bases. |
| for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| if (Base->isVirtual()) |
| continue; |
| IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType())); |
| } |
| |
| // 3. Direct fields. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); Field != E; ++Field) |
| IdealInitKeys.push_back(GetKeyForTopLevelField(*Field)); |
| |
| unsigned NumIdealInits = IdealInitKeys.size(); |
| unsigned IdealIndex = 0; |
| |
| CXXCtorInitializer *PrevInit = 0; |
| for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { |
| CXXCtorInitializer *Init = Inits[InitIndex]; |
| void *InitKey = GetKeyForMember(SemaRef.Context, Init); |
| |
| // Scan forward to try to find this initializer in the idealized |
| // initializers list. |
| for (; IdealIndex != NumIdealInits; ++IdealIndex) |
| if (InitKey == IdealInitKeys[IdealIndex]) |
| break; |
| |
| // If we didn't find this initializer, it must be because we |
| // scanned past it on a previous iteration. That can only |
| // happen if we're out of order; emit a warning. |
| if (IdealIndex == NumIdealInits && PrevInit) { |
| Sema::SemaDiagnosticBuilder D = |
| SemaRef.Diag(PrevInit->getSourceLocation(), |
| diag::warn_initializer_out_of_order); |
| |
| if (PrevInit->isAnyMemberInitializer()) |
| D << 0 << PrevInit->getAnyMember()->getDeclName(); |
| else |
| D << 1 << PrevInit->getBaseClassInfo()->getType(); |
| |
| if (Init->isAnyMemberInitializer()) |
| D << 0 << Init->getAnyMember()->getDeclName(); |
| else |
| D << 1 << Init->getBaseClassInfo()->getType(); |
| |
| // Move back to the initializer's location in the ideal list. |
| for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) |
| if (InitKey == IdealInitKeys[IdealIndex]) |
| break; |
| |
| assert(IdealIndex != NumIdealInits && |
| "initializer not found in initializer list"); |
| } |
| |
| PrevInit = Init; |
| } |
| } |
| |
| namespace { |
| bool CheckRedundantInit(Sema &S, |
| CXXCtorInitializer *Init, |
| CXXCtorInitializer *&PrevInit) { |
| if (!PrevInit) { |
| PrevInit = Init; |
| return false; |
| } |
| |
| if (FieldDecl *Field = Init->getMember()) |
| S.Diag(Init->getSourceLocation(), |
| diag::err_multiple_mem_initialization) |
| << Field->getDeclName() |
| << Init->getSourceRange(); |
| else { |
| const Type *BaseClass = Init->getBaseClass(); |
| assert(BaseClass && "neither field nor base"); |
| S.Diag(Init->getSourceLocation(), |
| diag::err_multiple_base_initialization) |
| << QualType(BaseClass, 0) |
| << Init->getSourceRange(); |
| } |
| S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) |
| << 0 << PrevInit->getSourceRange(); |
| |
| return true; |
| } |
| |
| typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; |
| typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; |
| |
| bool CheckRedundantUnionInit(Sema &S, |
| CXXCtorInitializer *Init, |
| RedundantUnionMap &Unions) { |
| FieldDecl *Field = Init->getAnyMember(); |
| RecordDecl *Parent = Field->getParent(); |
| if (!Parent->isAnonymousStructOrUnion()) |
| return false; |
| |
| NamedDecl *Child = Field; |
| do { |
| if (Parent->isUnion()) { |
| UnionEntry &En = Unions[Parent]; |
| if (En.first && En.first != Child) { |
| S.Diag(Init->getSourceLocation(), |
| diag::err_multiple_mem_union_initialization) |
| << Field->getDeclName() |
| << Init->getSourceRange(); |
| S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) |
| << 0 << En.second->getSourceRange(); |
| return true; |
| } else if (!En.first) { |
| En.first = Child; |
| En.second = Init; |
| } |
| } |
| |
| Child = Parent; |
| Parent = cast<RecordDecl>(Parent->getDeclContext()); |
| } while (Parent->isAnonymousStructOrUnion()); |
| |
| return false; |
| } |
| } |
| |
| /// ActOnMemInitializers - Handle the member initializers for a constructor. |
| void Sema::ActOnMemInitializers(Decl *ConstructorDecl, |
| SourceLocation ColonLoc, |
| MemInitTy **meminits, unsigned NumMemInits, |
| bool AnyErrors) { |
| if (!ConstructorDecl) |
| return; |
| |
| AdjustDeclIfTemplate(ConstructorDecl); |
| |
| CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(ConstructorDecl); |
| |
| if (!Constructor) { |
| Diag(ColonLoc, diag::err_only_constructors_take_base_inits); |
| return; |
| } |
| |
| CXXCtorInitializer **MemInits = |
| reinterpret_cast<CXXCtorInitializer **>(meminits); |
| |
| // Mapping for the duplicate initializers check. |
| // For member initializers, this is keyed with a FieldDecl*. |
| // For base initializers, this is keyed with a Type*. |
| llvm::DenseMap<void*, CXXCtorInitializer *> Members; |
| |
| // Mapping for the inconsistent anonymous-union initializers check. |
| RedundantUnionMap MemberUnions; |
| |
| bool HadError = false; |
| for (unsigned i = 0; i < NumMemInits; i++) { |
| CXXCtorInitializer *Init = MemInits[i]; |
| |
| // Set the source order index. |
| Init->setSourceOrder(i); |
| |
| if (Init->isAnyMemberInitializer()) { |
| FieldDecl *Field = Init->getAnyMember(); |
| if (CheckRedundantInit(*this, Init, Members[Field]) || |
| CheckRedundantUnionInit(*this, Init, MemberUnions)) |
| HadError = true; |
| } else { |
| void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0)); |
| if (CheckRedundantInit(*this, Init, Members[Key])) |
| HadError = true; |
| } |
| } |
| |
| if (HadError) |
| return; |
| |
| DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits); |
| |
| SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors); |
| } |
| |
| void |
| Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, |
| CXXRecordDecl *ClassDecl) { |
| // Ignore dependent contexts. |
| if (ClassDecl->isDependentContext()) |
| return; |
| |
| // FIXME: all the access-control diagnostics are positioned on the |
| // field/base declaration. That's probably good; that said, the |
| // user might reasonably want to know why the destructor is being |
| // emitted, and we currently don't say. |
| |
| // Non-static data members. |
| for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); I != E; ++I) { |
| FieldDecl *Field = *I; |
| if (Field->isInvalidDecl()) |
| continue; |
| QualType FieldType = Context.getBaseElementType(Field->getType()); |
| |
| const RecordType* RT = FieldType->getAs<RecordType>(); |
| if (!RT) |
| continue; |
| |
| CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (FieldClassDecl->hasTrivialDestructor()) |
| continue; |
| |
| CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); |
| CheckDestructorAccess(Field->getLocation(), Dtor, |
| PDiag(diag::err_access_dtor_field) |
| << Field->getDeclName() |
| << FieldType); |
| |
| MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| |
| llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; |
| |
| // Bases. |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| // Bases are always records in a well-formed non-dependent class. |
| const RecordType *RT = Base->getType()->getAs<RecordType>(); |
| |
| // Remember direct virtual bases. |
| if (Base->isVirtual()) |
| DirectVirtualBases.insert(RT); |
| |
| // Ignore trivial destructors. |
| CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (BaseClassDecl->hasTrivialDestructor()) |
| continue; |
| |
| CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); |
| |
| // FIXME: caret should be on the start of the class name |
| CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor, |
| PDiag(diag::err_access_dtor_base) |
| << Base->getType() |
| << Base->getSourceRange()); |
| |
| MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| |
| // Virtual bases. |
| for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), |
| E = ClassDecl->vbases_end(); VBase != E; ++VBase) { |
| |
| // Bases are always records in a well-formed non-dependent class. |
| const RecordType *RT = VBase->getType()->getAs<RecordType>(); |
| |
| // Ignore direct virtual bases. |
| if (DirectVirtualBases.count(RT)) |
| continue; |
| |
| // Ignore trivial destructors. |
| CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (BaseClassDecl->hasTrivialDestructor()) |
| continue; |
| |
| CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); |
| CheckDestructorAccess(ClassDecl->getLocation(), Dtor, |
| PDiag(diag::err_access_dtor_vbase) |
| << VBase->getType()); |
| |
| MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| } |
| |
| void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { |
| if (!CDtorDecl) |
| return; |
| |
| if (CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(CDtorDecl)) |
| SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false); |
| } |
| |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
| unsigned DiagID, AbstractDiagSelID SelID) { |
| if (SelID == -1) |
| return RequireNonAbstractType(Loc, T, PDiag(DiagID)); |
| else |
| return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID); |
| } |
| |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
| const PartialDiagnostic &PD) { |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| if (const ArrayType *AT = Context.getAsArrayType(T)) |
| return RequireNonAbstractType(Loc, AT->getElementType(), PD); |
| |
| if (const PointerType *PT = T->getAs<PointerType>()) { |
| // Find the innermost pointer type. |
| while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) |
| PT = T; |
| |
| if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) |
| return RequireNonAbstractType(Loc, AT->getElementType(), PD); |
| } |
| |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| // We can't answer whether something is abstract until it has a |
| // definition. If it's currently being defined, we'll walk back |
| // over all the declarations when we have a full definition. |
| const CXXRecordDecl *Def = RD->getDefinition(); |
| if (!Def || Def->isBeingDefined()) |
| return false; |
| |
| if (!RD->isAbstract()) |
| return false; |
| |
| Diag(Loc, PD) << RD->getDeclName(); |
| DiagnoseAbstractType(RD); |
| |
| return true; |
| } |
| |
| void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { |
| // Check if we've already emitted the list of pure virtual functions |
| // for this class. |
| if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) |
| return; |
| |
| CXXFinalOverriderMap FinalOverriders; |
| RD->getFinalOverriders(FinalOverriders); |
| |
| // Keep a set of seen pure methods so we won't diagnose the same method |
| // more than once. |
| llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; |
| |
| for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
| MEnd = FinalOverriders.end(); |
| M != MEnd; |
| ++M) { |
| for (OverridingMethods::iterator SO = M->second.begin(), |
| SOEnd = M->second.end(); |
| SO != SOEnd; ++SO) { |
| // C++ [class.abstract]p4: |
| // A class is abstract if it contains or inherits at least one |
| // pure virtual function for which the final overrider is pure |
| // virtual. |
| |
| // |
| if (SO->second.size() != 1) |
| continue; |
| |
| if (!SO->second.front().Method->isPure()) |
| continue; |
| |
| if (!SeenPureMethods.insert(SO->second.front().Method)) |
| continue; |
| |
| Diag(SO->second.front().Method->getLocation(), |
| diag::note_pure_virtual_function) |
| << SO->second.front().Method->getDeclName(); |
| } |
| } |
| |
| if (!PureVirtualClassDiagSet) |
| PureVirtualClassDiagSet.reset(new RecordDeclSetTy); |
| PureVirtualClassDiagSet->insert(RD); |
| } |
| |
| namespace { |
| struct AbstractUsageInfo { |
| Sema &S; |
| CXXRecordDecl *Record; |
| CanQualType AbstractType; |
| bool Invalid; |
| |
| AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) |
| : S(S), Record(Record), |
| AbstractType(S.Context.getCanonicalType( |
| S.Context.getTypeDeclType(Record))), |
| Invalid(false) {} |
| |
| void DiagnoseAbstractType() { |
| if (Invalid) return; |
| S.DiagnoseAbstractType(Record); |
| Invalid = true; |
| } |
| |
| void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); |
| }; |
| |
| struct CheckAbstractUsage { |
| AbstractUsageInfo &Info; |
| const NamedDecl *Ctx; |
| |
| CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) |
| : Info(Info), Ctx(Ctx) {} |
| |
| void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| switch (TL.getTypeLocClass()) { |
| #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| #define TYPELOC(CLASS, PARENT) \ |
| case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break; |
| #include "clang/AST/TypeLocNodes.def" |
| } |
| } |
| |
| void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| Visit(TL.getResultLoc(), Sema::AbstractReturnType); |
| for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
| TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo(); |
| if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); |
| } |
| } |
| |
| void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| Visit(TL.getElementLoc(), Sema::AbstractArrayType); |
| } |
| |
| void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| // Visit the type parameters from a permissive context. |
| for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
| TemplateArgumentLoc TAL = TL.getArgLoc(I); |
| if (TAL.getArgument().getKind() == TemplateArgument::Type) |
| if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) |
| Visit(TSI->getTypeLoc(), Sema::AbstractNone); |
| // TODO: other template argument types? |
| } |
| } |
| |
| // Visit pointee types from a permissive context. |
| #define CheckPolymorphic(Type) \ |
| void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ |
| Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ |
| } |
| CheckPolymorphic(PointerTypeLoc) |
| CheckPolymorphic(ReferenceTypeLoc) |
| CheckPolymorphic(MemberPointerTypeLoc) |
| CheckPolymorphic(BlockPointerTypeLoc) |
| |
| /// Handle all the types we haven't given a more specific |
| /// implementation for above. |
| void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| // Every other kind of type that we haven't called out already |
| // that has an inner type is either (1) sugar or (2) contains that |
| // inner type in some way as a subobject. |
| if (TypeLoc Next = TL.getNextTypeLoc()) |
| return Visit(Next, Sel); |
| |
| // If there's no inner type and we're in a permissive context, |
| // don't diagnose. |
| if (Sel == Sema::AbstractNone) return; |
| |
| // Check whether the type matches the abstract type. |
| QualType T = TL.getType(); |
| if (T->isArrayType()) { |
| Sel = Sema::AbstractArrayType; |
| T = Info.S.Context.getBaseElementType(T); |
| } |
| CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); |
| if (CT != Info.AbstractType) return; |
| |
| // It matched; do some magic. |
| if (Sel == Sema::AbstractArrayType) { |
| Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) |
| << T << TL.getSourceRange(); |
| } else { |
| Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) |
| << Sel << T << TL.getSourceRange(); |
| } |
| Info.DiagnoseAbstractType(); |
| } |
| }; |
| |
| void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, |
| Sema::AbstractDiagSelID Sel) { |
| CheckAbstractUsage(*this, D).Visit(TL, Sel); |
| } |
| |
| } |
| |
| /// Check for invalid uses of an abstract type in a method declaration. |
| static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
| CXXMethodDecl *MD) { |
| // No need to do the check on definitions, which require that |
| // the return/param types be complete. |
| if (MD->isThisDeclarationADefinition()) |
| return; |
| |
| // For safety's sake, just ignore it if we don't have type source |
| // information. This should never happen for non-implicit methods, |
| // but... |
| if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) |
| Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); |
| } |
| |
| /// Check for invalid uses of an abstract type within a class definition. |
| static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
| CXXRecordDecl *RD) { |
| for (CXXRecordDecl::decl_iterator |
| I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) { |
| Decl *D = *I; |
| if (D->isImplicit()) continue; |
| |
| // Methods and method templates. |
| if (isa<CXXMethodDecl>(D)) { |
| CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); |
| } else if (isa<FunctionTemplateDecl>(D)) { |
| FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); |
| CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); |
| |
| // Fields and static variables. |
| } else if (isa<FieldDecl>(D)) { |
| FieldDecl *FD = cast<FieldDecl>(D); |
| if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) |
| Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); |
| } else if (isa<VarDecl>(D)) { |
| VarDecl *VD = cast<VarDecl>(D); |
| if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) |
| Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); |
| |
| // Nested classes and class templates. |
| } else if (isa<CXXRecordDecl>(D)) { |
| CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); |
| } else if (isa<ClassTemplateDecl>(D)) { |
| CheckAbstractClassUsage(Info, |
| cast<ClassTemplateDecl>(D)->getTemplatedDecl()); |
| } |
| } |
| } |
| |
| /// \brief Perform semantic checks on a class definition that has been |
| /// completing, introducing implicitly-declared members, checking for |
| /// abstract types, etc. |
| void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { |
| if (!Record) |
| return; |
| |
| if (Record->isAbstract() && !Record->isInvalidDecl()) { |
| AbstractUsageInfo Info(*this, Record); |
| CheckAbstractClassUsage(Info, Record); |
| } |
| |
| // If this is not an aggregate type and has no user-declared constructor, |
| // complain about any non-static data members of reference or const scalar |
| // type, since they will never get initializers. |
| if (!Record->isInvalidDecl() && !Record->isDependentType() && |
| !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) { |
| bool Complained = false; |
| for (RecordDecl::field_iterator F = Record->field_begin(), |
| FEnd = Record->field_end(); |
| F != FEnd; ++F) { |
| if (F->getType()->isReferenceType() || |
| (F->getType().isConstQualified() && F->getType()->isScalarType())) { |
| if (!Complained) { |
| Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) |
| << Record->getTagKind() << Record; |
| Complained = true; |
| } |
| |
| Diag(F->getLocation(), diag::note_refconst_member_not_initialized) |
| << F->getType()->isReferenceType() |
| << F->getDeclName(); |
| } |
| } |
| } |
| |
| if (Record->isDynamicClass() && !Record->isDependentType()) |
| DynamicClasses.push_back(Record); |
| |
| if (Record->getIdentifier()) { |
| // C++ [class.mem]p13: |
| // If T is the name of a class, then each of the following shall have a |
| // name different from T: |
| // - every member of every anonymous union that is a member of class T. |
| // |
| // C++ [class.mem]p14: |
| // In addition, if class T has a user-declared constructor (12.1), every |
| // non-static data member of class T shall have a name different from T. |
| for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); |
| R.first != R.second; ++R.first) { |
| NamedDecl *D = *R.first; |
| if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) || |
| isa<IndirectFieldDecl>(D)) { |
| Diag(D->getLocation(), diag::err_member_name_of_class) |
| << D->getDeclName(); |
| break; |
| } |
| } |
| } |
| |
| // Warn if the class has virtual methods but non-virtual public destructor. |
| if (Record->isDynamicClass() && !Record->isDependentType()) { |
| CXXDestructorDecl *dtor = Record->getDestructor(); |
| if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) |
| Diag(dtor ? dtor->getLocation() : Record->getLocation(), |
| diag::warn_non_virtual_dtor) << Context.getRecordType(Record); |
| } |
| |
| // See if a method overloads virtual methods in a base |
| /// class without overriding any. |
| if (!Record->isDependentType()) { |
| for (CXXRecordDecl::method_iterator M = Record->method_begin(), |
| MEnd = Record->method_end(); |
| M != MEnd; ++M) { |
| DiagnoseHiddenVirtualMethods(Record, *M); |
| } |
| } |
| |
| // Declare inherited constructors. We do this eagerly here because: |
| // - The standard requires an eager diagnostic for conflicting inherited |
| // constructors from different classes. |
| // - The lazy declaration of the other implicit constructors is so as to not |
| // waste space and performance on classes that are not meant to be |
| // instantiated (e.g. meta-functions). This doesn't apply to classes that |
| // have inherited constructors. |
| DeclareInheritedConstructors(Record); |
| } |
| |
| /// \brief Data used with FindHiddenVirtualMethod |
| struct FindHiddenVirtualMethodData { |
| Sema *S; |
| CXXMethodDecl *Method; |
| llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; |
| llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
| }; |
| |
| /// \brief Member lookup function that determines whether a given C++ |
| /// method overloads virtual methods in a base class without overriding any, |
| /// to be used with CXXRecordDecl::lookupInBases(). |
| static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path, |
| void *UserData) { |
| RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); |
| |
| FindHiddenVirtualMethodData &Data |
| = *static_cast<FindHiddenVirtualMethodData*>(UserData); |
| |
| DeclarationName Name = Data.Method->getDeclName(); |
| assert(Name.getNameKind() == DeclarationName::Identifier); |
| |
| bool foundSameNameMethod = false; |
| llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods; |
| for (Path.Decls = BaseRecord->lookup(Name); |
| Path.Decls.first != Path.Decls.second; |
| ++Path.Decls.first) { |
| NamedDecl *D = *Path.Decls.first; |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { |
| MD = MD->getCanonicalDecl(); |
| foundSameNameMethod = true; |
| // Interested only in hidden virtual methods. |
| if (!MD->isVirtual()) |
| continue; |
| // If the method we are checking overrides a method from its base |
| // don't warn about the other overloaded methods. |
| if (!Data.S->IsOverload(Data.Method, MD, false)) |
| return true; |
| // Collect the overload only if its hidden. |
| if (!Data.OverridenAndUsingBaseMethods.count(MD)) |
| overloadedMethods.push_back(MD); |
| } |
| } |
| |
| if (foundSameNameMethod) |
| Data.OverloadedMethods.append(overloadedMethods.begin(), |
| overloadedMethods.end()); |
| return foundSameNameMethod; |
| } |
| |
| /// \brief See if a method overloads virtual methods in a base class without |
| /// overriding any. |
| void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { |
| if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual, |
| MD->getLocation()) == Diagnostic::Ignored) |
| return; |
| if (MD->getDeclName().getNameKind() != DeclarationName::Identifier) |
| return; |
| |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. |
| /*bool RecordPaths=*/false, |
| /*bool DetectVirtual=*/false); |
| FindHiddenVirtualMethodData Data; |
| Data.Method = MD; |
| Data.S = this; |
| |
| // Keep the base methods that were overriden or introduced in the subclass |
| // by 'using' in a set. A base method not in this set is hidden. |
| for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName()); |
| res.first != res.second; ++res.first) { |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first)) |
| for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), |
| E = MD->end_overridden_methods(); |
| I != E; ++I) |
| Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl()); |
| if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first)) |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl())) |
| Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl()); |
| } |
| |
| if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) && |
| !Data.OverloadedMethods.empty()) { |
| Diag(MD->getLocation(), diag::warn_overloaded_virtual) |
| << MD << (Data.OverloadedMethods.size() > 1); |
| |
| for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) { |
| CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i]; |
| Diag(overloadedMD->getLocation(), |
| diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; |
| } |
| } |
| } |
| |
| void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, |
| Decl *TagDecl, |
| SourceLocation LBrac, |
| SourceLocation RBrac, |
| AttributeList *AttrList) { |
| if (!TagDecl) |
| return; |
| |
| AdjustDeclIfTemplate(TagDecl); |
| |
| ActOnFields(S, RLoc, TagDecl, |
| // strict aliasing violation! |
| reinterpret_cast<Decl**>(FieldCollector->getCurFields()), |
| FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList); |
| |
| CheckCompletedCXXClass( |
| dyn_cast_or_null<CXXRecordDecl>(TagDecl)); |
| } |
| |
| namespace { |
| /// \brief Helper class that collects exception specifications for |
| /// implicitly-declared special member functions. |
| class ImplicitExceptionSpecification { |
| ASTContext &Context; |
| bool AllowsAllExceptions; |
| llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen; |
| llvm::SmallVector<QualType, 4> Exceptions; |
| |
| public: |
| explicit ImplicitExceptionSpecification(ASTContext &Context) |
| : Context(Context), AllowsAllExceptions(false) { } |
| |
| /// \brief Whether the special member function should have any |
| /// exception specification at all. |
| bool hasExceptionSpecification() const { |
| return !AllowsAllExceptions; |
| } |
| |
| /// \brief Whether the special member function should have a |
| /// throw(...) exception specification (a Microsoft extension). |
| bool hasAnyExceptionSpecification() const { |
| return false; |
| } |
| |
| /// \brief The number of exceptions in the exception specification. |
| unsigned size() const { return Exceptions.size(); } |
| |
| /// \brief The set of exceptions in the exception specification. |
| const QualType *data() const { return Exceptions.data(); } |
| |
| /// \brief Note that |
| void CalledDecl(CXXMethodDecl *Method) { |
| // If we already know that we allow all exceptions, do nothing. |
| if (AllowsAllExceptions || !Method) |
| return; |
| |
| const FunctionProtoType *Proto |
| = Method->getType()->getAs<FunctionProtoType>(); |
| |
| // If this function can throw any exceptions, make a note of that. |
| if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) { |
| AllowsAllExceptions = true; |
| ExceptionsSeen.clear(); |
| Exceptions.clear(); |
| return; |
| } |
| |
| // Record the exceptions in this function's exception specification. |
| for (FunctionProtoType::exception_iterator E = Proto->exception_begin(), |
| EEnd = Proto->exception_end(); |
| E != EEnd; ++E) |
| if (ExceptionsSeen.insert(Context.getCanonicalType(*E))) |
| Exceptions.push_back(*E); |
| } |
| }; |
| } |
| |
| |
| /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared |
| /// special functions, such as the default constructor, copy |
| /// constructor, or destructor, to the given C++ class (C++ |
| /// [special]p1). This routine can only be executed just before the |
| /// definition of the class is complete. |
| void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { |
| if (!ClassDecl->hasUserDeclaredConstructor()) |
| ++ASTContext::NumImplicitDefaultConstructors; |
| |
| if (!ClassDecl->hasUserDeclaredCopyConstructor()) |
| ++ASTContext::NumImplicitCopyConstructors; |
| |
| if (!ClassDecl->hasUserDeclaredCopyAssignment()) { |
| ++ASTContext::NumImplicitCopyAssignmentOperators; |
| |
| // If we have a dynamic class, then the copy assignment operator may be |
| // virtual, so we have to declare it immediately. This ensures that, e.g., |
| // it shows up in the right place in the vtable and that we diagnose |
| // problems with the implicit exception specification. |
| if (ClassDecl->isDynamicClass()) |
| DeclareImplicitCopyAssignment(ClassDecl); |
| } |
| |
| if (!ClassDecl->hasUserDeclaredDestructor()) { |
| ++ASTContext::NumImplicitDestructors; |
| |
| // If we have a dynamic class, then the destructor may be virtual, so we |
| // have to declare the destructor immediately. This ensures that, e.g., it |
| // shows up in the right place in the vtable and that we diagnose problems |
| // with the implicit exception specification. |
| if (ClassDecl->isDynamicClass()) |
| DeclareImplicitDestructor(ClassDecl); |
| } |
| } |
| |
| void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { |
| if (!D) |
| return; |
| |
| TemplateParameterList *Params = 0; |
| if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) |
| Params = Template->getTemplateParameters(); |
| else if (ClassTemplatePartialSpecializationDecl *PartialSpec |
| = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) |
| Params = PartialSpec->getTemplateParameters(); |
| else |
| return; |
| |
| for (TemplateParameterList::iterator Param = Params->begin(), |
| ParamEnd = Params->end(); |
| Param != ParamEnd; ++Param) { |
| NamedDecl *Named = cast<NamedDecl>(*Param); |
| if (Named->getDeclName()) { |
| S->AddDecl(Named); |
| IdResolver.AddDecl(Named); |
| } |
| } |
| } |
| |
| void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { |
| if (!RecordD) return; |
| AdjustDeclIfTemplate(RecordD); |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); |
| PushDeclContext(S, Record); |
| } |
| |
| void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { |
| if (!RecordD) return; |
| PopDeclContext(); |
| } |
| |
| /// ActOnStartDelayedCXXMethodDeclaration - We have completed |
| /// parsing a top-level (non-nested) C++ class, and we are now |
| /// parsing those parts of the given Method declaration that could |
| /// not be parsed earlier (C++ [class.mem]p2), such as default |
| /// arguments. This action should enter the scope of the given |
| /// Method declaration as if we had just parsed the qualified method |
| /// name. However, it should not bring the parameters into scope; |
| /// that will be performed by ActOnDelayedCXXMethodParameter. |
| void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { |
| } |
| |
| /// ActOnDelayedCXXMethodParameter - We've already started a delayed |
| /// C++ method declaration. We're (re-)introducing the given |
| /// function parameter into scope for use in parsing later parts of |
| /// the method declaration. For example, we could see an |
| /// ActOnParamDefaultArgument event for this parameter. |
| void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { |
| if (!ParamD) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); |
| |
| // If this parameter has an unparsed default argument, clear it out |
| // to make way for the parsed default argument. |
| if (Param->hasUnparsedDefaultArg()) |
| Param->setDefaultArg(0); |
| |
| S->AddDecl(Param); |
| if (Param->getDeclName()) |
| IdResolver.AddDecl(Param); |
| } |
| |
| /// ActOnFinishDelayedCXXMethodDeclaration - We have finished |
| /// processing the delayed method declaration for Method. The method |
| /// declaration is now considered finished. There may be a separate |
| /// ActOnStartOfFunctionDef action later (not necessarily |
| /// immediately!) for this method, if it was also defined inside the |
| /// class body. |
| void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { |
| if (!MethodD) |
| return; |
| |
| AdjustDeclIfTemplate(MethodD); |
| |
| FunctionDecl *Method = cast<FunctionDecl>(MethodD); |
| |
| // Now that we have our default arguments, check the constructor |
| // again. It could produce additional diagnostics or affect whether |
| // the class has implicitly-declared destructors, among other |
| // things. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) |
| CheckConstructor(Constructor); |
| |
| // Check the default arguments, which we may have added. |
| if (!Method->isInvalidDecl()) |
| CheckCXXDefaultArguments(Method); |
| } |
| |
| /// CheckConstructorDeclarator - Called by ActOnDeclarator to check |
| /// the well-formedness of the constructor declarator @p D with type @p |
| /// R. If there are any errors in the declarator, this routine will |
| /// emit diagnostics and set the invalid bit to true. In any case, the type |
| /// will be updated to reflect a well-formed type for the constructor and |
| /// returned. |
| QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, |
| StorageClass &SC) { |
| bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| |
| // C++ [class.ctor]p3: |
| // A constructor shall not be virtual (10.3) or static (9.4). A |
| // constructor can be invoked for a const, volatile or const |
| // volatile object. A constructor shall not be declared const, |
| // volatile, or const volatile (9.3.2). |
| if (isVirtual) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| if (SC == SC_Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| SC = SC_None; |
| } |
| |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| if (FTI.TypeQuals != 0) { |
| if (FTI.TypeQuals & Qualifiers::Const) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "const" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Volatile) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "volatile" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Restrict) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "restrict" << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| |
| // C++0x [class.ctor]p4: |
| // A constructor shall not be declared with a ref-qualifier. |
| if (FTI.hasRefQualifier()) { |
| Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) |
| << FTI.RefQualifierIsLValueRef |
| << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); |
| D.setInvalidType(); |
| } |
| |
| // Rebuild the function type "R" without any type qualifiers (in |
| // case any of the errors above fired) and with "void" as the |
| // return type, since constructors don't have return types. |
| const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); |
| if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType()) |
| return R; |
| |
| FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| EPI.TypeQuals = 0; |
| EPI.RefQualifier = RQ_None; |
| |
| return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), |
| Proto->getNumArgs(), EPI); |
| } |
| |
| /// CheckConstructor - Checks a fully-formed constructor for |
| /// well-formedness, issuing any diagnostics required. Returns true if |
| /// the constructor declarator is invalid. |
| void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { |
| CXXRecordDecl *ClassDecl |
| = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); |
| if (!ClassDecl) |
| return Constructor->setInvalidDecl(); |
| |
| // C++ [class.copy]p3: |
| // A declaration of a constructor for a class X is ill-formed if |
| // its first parameter is of type (optionally cv-qualified) X and |
| // either there are no other parameters or else all other |
| // parameters have default arguments. |
| if (!Constructor->isInvalidDecl() && |
| ((Constructor->getNumParams() == 1) || |
| (Constructor->getNumParams() > 1 && |
| Constructor->getParamDecl(1)->hasDefaultArg())) && |
| Constructor->getTemplateSpecializationKind() |
| != TSK_ImplicitInstantiation) { |
| QualType ParamType = Constructor->getParamDecl(0)->getType(); |
| QualType ClassTy = Context.getTagDeclType(ClassDecl); |
| if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { |
| SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); |
| const char *ConstRef |
| = Constructor->getParamDecl(0)->getIdentifier() ? "const &" |
| : " const &"; |
| Diag(ParamLoc, diag::err_constructor_byvalue_arg) |
| << FixItHint::CreateInsertion(ParamLoc, ConstRef); |
| |
| // FIXME: Rather that making the constructor invalid, we should endeavor |
| // to fix the type. |
| Constructor->setInvalidDecl(); |
| } |
| } |
| } |
| |
| /// CheckDestructor - Checks a fully-formed destructor definition for |
| /// well-formedness, issuing any diagnostics required. Returns true |
| /// on error. |
| bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { |
| CXXRecordDecl *RD = Destructor->getParent(); |
| |
| if (Destructor->isVirtual()) { |
| SourceLocation Loc; |
| |
| if (!Destructor->isImplicit()) |
| Loc = Destructor->getLocation(); |
| else |
| Loc = RD->getLocation(); |
| |
| // If we have a virtual destructor, look up the deallocation function |
| FunctionDecl *OperatorDelete = 0; |
| DeclarationName Name = |
| Context.DeclarationNames.getCXXOperatorName(OO_Delete); |
| if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) |
| return true; |
| |
| MarkDeclarationReferenced(Loc, OperatorDelete); |
| |
| Destructor->setOperatorDelete(OperatorDelete); |
| } |
| |
| return false; |
| } |
| |
| static inline bool |
| FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { |
| return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].Param && |
| cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()); |
| } |
| |
| /// CheckDestructorDeclarator - Called by ActOnDeclarator to check |
| /// the well-formednes of the destructor declarator @p D with type @p |
| /// R. If there are any errors in the declarator, this routine will |
| /// emit diagnostics and set the declarator to invalid. Even if this happens, |
| /// will be updated to reflect a well-formed type for the destructor and |
| /// returned. |
| QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, |
| StorageClass& SC) { |
| // C++ [class.dtor]p1: |
| // [...] A typedef-name that names a class is a class-name |
| // (7.1.3); however, a typedef-name that names a class shall not |
| // be used as the identifier in the declarator for a destructor |
| // declaration. |
| QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); |
| if (isa<TypedefType>(DeclaratorType)) |
| Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) |
| << DeclaratorType; |
| |
| // C++ [class.dtor]p2: |
| // A destructor is used to destroy objects of its class type. A |
| // destructor takes no parameters, and no return type can be |
| // specified for it (not even void). The address of a destructor |
| // shall not be taken. A destructor shall not be static. A |
| // destructor can be invoked for a const, volatile or const |
| // volatile object. A destructor shall not be declared const, |
| // volatile or const volatile (9.3.2). |
| if (SC == SC_Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| |
| SC = SC_None; |
| } |
| if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { |
| // Destructors don't have return types, but the parser will |
| // happily parse something like: |
| // |
| // class X { |
| // float ~X(); |
| // }; |
| // |
| // The return type will be eliminated later. |
| Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| } |
| |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| if (FTI.TypeQuals != 0 && !D.isInvalidType()) { |
| if (FTI.TypeQuals & Qualifiers::Const) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "const" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Volatile) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "volatile" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Restrict) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "restrict" << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| |
| // C++0x [class.dtor]p2: |
| // A destructor shall not be declared with a ref-qualifier. |
| if (FTI.hasRefQualifier()) { |
| Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) |
| << FTI.RefQualifierIsLValueRef |
| << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); |
| D.setInvalidType(); |
| } |
| |
| // Make sure we don't have any parameters. |
| if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); |
| |
| // Delete the parameters. |
| FTI.freeArgs(); |
| D.setInvalidType(); |
| } |
| |
| // Make sure the destructor isn't variadic. |
| if (FTI.isVariadic) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); |
| D.setInvalidType(); |
| } |
| |
| // Rebuild the function type "R" without any type qualifiers or |
| // parameters (in case any of the errors above fired) and with |
| // "void" as the return type, since destructors don't have return |
| // types. |
| if (!D.isInvalidType()) |
| return R; |
| |
| const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); |
| FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| EPI.Variadic = false; |
| EPI.TypeQuals = 0; |
| EPI.RefQualifier = RQ_None; |
| return Context.getFunctionType(Context.VoidTy, 0, 0, EPI); |
| } |
| |
| /// CheckConversionDeclarator - Called by ActOnDeclarator to check the |
| /// well-formednes of the conversion function declarator @p D with |
| /// type @p R. If there are any errors in the declarator, this routine |
| /// will emit diagnostics and return true. Otherwise, it will return |
| /// false. Either way, the type @p R will be updated to reflect a |
| /// well-formed type for the conversion operator. |
| void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, |
| StorageClass& SC) { |
| // C++ [class.conv.fct]p1: |
| // Neither parameter types nor return type can be specified. The |
| // type of a conversion function (8.3.5) is "function taking no |
| // parameter returning conversion-type-id." |
| if (SC == SC_Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| SC = SC_None; |
| } |
| |
| QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); |
| |
| if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { |
| // Conversion functions don't have return types, but the parser will |
| // happily parse something like: |
| // |
| // class X { |
| // float operator bool(); |
| // }; |
| // |
| // The return type will be changed later anyway. |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| |
| const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); |
| |
| // Make sure we don't have any parameters. |
| if (Proto->getNumArgs() > 0) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); |
| |
| // Delete the parameters. |
| D.getFunctionTypeInfo().freeArgs(); |
| D.setInvalidType(); |
| } else if (Proto->isVariadic()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); |
| D.setInvalidType(); |
| } |
| |
| // Diagnose "&operator bool()" and other such nonsense. This |
| // is actually a gcc extension which we don't support. |
| if (Proto->getResultType() != ConvType) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) |
| << Proto->getResultType(); |
| D.setInvalidType(); |
| ConvType = Proto->getResultType(); |
| } |
| |
| // C++ [class.conv.fct]p4: |
| // The conversion-type-id shall not represent a function type nor |
| // an array type. |
| if (ConvType->isArrayType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); |
| ConvType = Context.getPointerType(ConvType); |
| D.setInvalidType(); |
| } else if (ConvType->isFunctionType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); |
| ConvType = Context.getPointerType(ConvType); |
| D.setInvalidType(); |
| } |
| |
| // Rebuild the function type "R" without any parameters (in case any |
| // of the errors above fired) and with the conversion type as the |
| // return type. |
| if (D.isInvalidType()) |
| R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo()); |
| |
| // C++0x explicit conversion operators. |
| if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::warn_explicit_conversion_functions) |
| << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); |
| } |
| |
| /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete |
| /// the declaration of the given C++ conversion function. This routine |
| /// is responsible for recording the conversion function in the C++ |
| /// class, if possible. |
| Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { |
| assert(Conversion && "Expected to receive a conversion function declaration"); |
| |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); |
| |
| // Make sure we aren't redeclaring the conversion function. |
| QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); |
| |
| // C++ [class.conv.fct]p1: |
| // [...] A conversion function is never used to convert a |
| // (possibly cv-qualified) object to the (possibly cv-qualified) |
| // same object type (or a reference to it), to a (possibly |
| // cv-qualified) base class of that type (or a reference to it), |
| // or to (possibly cv-qualified) void. |
| // FIXME: Suppress this warning if the conversion function ends up being a |
| // virtual function that overrides a virtual function in a base class. |
| QualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); |
| if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) |
| ConvType = ConvTypeRef->getPointeeType(); |
| if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && |
| Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) |
| /* Suppress diagnostics for instantiations. */; |
| else if (ConvType->isRecordType()) { |
| ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); |
| if (ConvType == ClassType) |
| Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) |
| << ClassType; |
| else if (IsDerivedFrom(ClassType, ConvType)) |
| Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) |
| << ClassType << ConvType; |
| } else if (ConvType->isVoidType()) { |
| Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) |
| << ClassType << ConvType; |
| } |
| |
| if (FunctionTemplateDecl *ConversionTemplate |
| = Conversion->getDescribedFunctionTemplate()) |
| return ConversionTemplate; |
| |
| return Conversion; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Namespace Handling |
| //===----------------------------------------------------------------------===// |
| |
| |
| |
| /// ActOnStartNamespaceDef - This is called at the start of a namespace |
| /// definition. |
| Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, |
| SourceLocation InlineLoc, |
| SourceLocation IdentLoc, |
| IdentifierInfo *II, |
| SourceLocation LBrace, |
| AttributeList *AttrList) { |
| // anonymous namespace starts at its left brace |
| NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, |
| (II ? IdentLoc : LBrace) , II); |
| Namespc->setLBracLoc(LBrace); |
| Namespc->setInline(InlineLoc.isValid()); |
| |
| Scope *DeclRegionScope = NamespcScope->getParent(); |
| |
| ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); |
| |
| if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) |
| PushNamespaceVisibilityAttr(Attr); |
| |
| if (II) { |
| // C++ [namespace.def]p2: |
| // The identifier in an original-namespace-definition shall not |
| // have been previously defined in the declarative region in |
| // which the original-namespace-definition appears. The |
| // identifier in an original-namespace-definition is the name of |
| // the namespace. Subsequently in that declarative region, it is |
| // treated as an original-namespace-name. |
| // |
| // Since namespace names are unique in their scope, and we don't |
| // look through using directives, just |
| DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II); |
| NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first; |
| |
| if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { |
| // This is an extended namespace definition. |
| if (Namespc->isInline() != OrigNS->isInline()) { |
| // inline-ness must match |
| Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) |
| << Namespc->isInline(); |
| Diag(OrigNS->getLocation(), diag::note_previous_definition); |
| Namespc->setInvalidDecl(); |
| // Recover by ignoring the new namespace's inline status. |
| Namespc->setInline(OrigNS->isInline()); |
| } |
| |
| // Attach this namespace decl to the chain of extended namespace |
| // definitions. |
| OrigNS->setNextNamespace(Namespc); |
| Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); |
| |
| // Remove the previous declaration from the scope. |
| if (DeclRegionScope->isDeclScope(OrigNS)) { |
| IdResolver.RemoveDecl(OrigNS); |
| DeclRegionScope->RemoveDecl(OrigNS); |
| } |
| } else if (PrevDecl) { |
| // This is an invalid name redefinition. |
| Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) |
| << Namespc->getDeclName(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| Namespc->setInvalidDecl(); |
| // Continue on to push Namespc as current DeclContext and return it. |
| } else if (II->isStr("std") && |
| CurContext->getRedeclContext()->isTranslationUnit()) { |
| // This is the first "real" definition of the namespace "std", so update |
| // our cache of the "std" namespace to point at this definition. |
| if (NamespaceDecl *StdNS = getStdNamespace()) { |
| // We had already defined a dummy namespace "std". Link this new |
| // namespace definition to the dummy namespace "std". |
| StdNS->setNextNamespace(Namespc); |
| StdNS->setLocation(IdentLoc); |
| Namespc->setOriginalNamespace(StdNS->getOriginalNamespace()); |
| } |
| |
| // Make our StdNamespace cache point at the first real definition of the |
| // "std" namespace. |
| StdNamespace = Namespc; |
| } |
| |
| PushOnScopeChains(Namespc, DeclRegionScope); |
| } else { |
| // Anonymous namespaces. |
| assert(Namespc->isAnonymousNamespace()); |
| |
| // Link the anonymous namespace into its parent. |
| NamespaceDecl *PrevDecl; |
| DeclContext *Parent = CurContext->getRedeclContext(); |
| if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { |
| PrevDecl = TU->getAnonymousNamespace(); |
| TU->setAnonymousNamespace(Namespc); |
| } else { |
| NamespaceDecl *ND = cast<NamespaceDecl>(Parent); |
| PrevDecl = ND->getAnonymousNamespace(); |
| ND->setAnonymousNamespace(Namespc); |
| } |
| |
| // Link the anonymous namespace with its previous declaration. |
| if (PrevDecl) { |
| assert(PrevDecl->isAnonymousNamespace()); |
| assert(!PrevDecl->getNextNamespace()); |
| Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); |
| PrevDecl->setNextNamespace(Namespc); |
| |
| if (Namespc->isInline() != PrevDecl->isInline()) { |
| // inline-ness must match |
| Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) |
| << Namespc->isInline(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| Namespc->setInvalidDecl(); |
| // Recover by ignoring the new namespace's inline status. |
| Namespc->setInline(PrevDecl->isInline()); |
| } |
| } |
| |
| CurContext->addDecl(Namespc); |
| |
| // C++ [namespace.unnamed]p1. An unnamed-namespace-definition |
| // behaves as if it were replaced by |
| // namespace unique { /* empty body */ } |
| // using namespace unique; |
| // namespace unique { namespace-body } |
| // where all occurrences of 'unique' in a translation unit are |
| // replaced by the same identifier and this identifier differs |
| // from all other identifiers in the entire program. |
| |
| // We just create the namespace with an empty name and then add an |
| // implicit using declaration, just like the standard suggests. |
| // |
| // CodeGen enforces the "universally unique" aspect by giving all |
| // declarations semantically contained within an anonymous |
| // namespace internal linkage. |
| |
| if (!PrevDecl) { |
| UsingDirectiveDecl* UD |
| = UsingDirectiveDecl::Create(Context, CurContext, |
| /* 'using' */ LBrace, |
| /* 'namespace' */ SourceLocation(), |
| /* qualifier */ SourceRange(), |
| /* NNS */ NULL, |
| /* identifier */ SourceLocation(), |
| Namespc, |
| /* Ancestor */ CurContext); |
| UD->setImplicit(); |
| CurContext->addDecl(UD); |
| } |
| } |
| |
| // Although we could have an invalid decl (i.e. the namespace name is a |
| // redefinition), push it as current DeclContext and try to continue parsing. |
| // FIXME: We should be able to push Namespc here, so that the each DeclContext |
| // for the namespace has the declarations that showed up in that particular |
| // namespace definition. |
| PushDeclContext(NamespcScope, Namespc); |
| return Namespc; |
| } |
| |
| /// getNamespaceDecl - Returns the namespace a decl represents. If the decl |
| /// is a namespace alias, returns the namespace it points to. |
| static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { |
| if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) |
| return AD->getNamespace(); |
| return dyn_cast_or_null<NamespaceDecl>(D); |
| } |
| |
| /// ActOnFinishNamespaceDef - This callback is called after a namespace is |
| /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. |
| void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { |
| NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); |
| assert(Namespc && "Invalid parameter, expected NamespaceDecl"); |
| Namespc->setRBracLoc(RBrace); |
| PopDeclContext(); |
| if (Namespc->hasAttr<VisibilityAttr>()) |
| PopPragmaVisibility(); |
| } |
| |
| CXXRecordDecl *Sema::getStdBadAlloc() const { |
| return cast_or_null<CXXRecordDecl>( |
| StdBadAlloc.get(Context.getExternalSource())); |
| } |
| |
| NamespaceDecl *Sema::getStdNamespace() const { |
| return cast_or_null<NamespaceDecl>( |
| StdNamespace.get(Context.getExternalSource())); |
| } |
| |
| /// \brief Retrieve the special "std" namespace, which may require us to |
| /// implicitly define the namespace. |
| NamespaceDecl *Sema::getOrCreateStdNamespace() { |
| if (!StdNamespace) { |
| // The "std" namespace has not yet been defined, so build one implicitly. |
| StdNamespace = NamespaceDecl::Create(Context, |
| Context.getTranslationUnitDecl(), |
| SourceLocation(), |
| &PP.getIdentifierTable().get("std")); |
| getStdNamespace()->setImplicit(true); |
| } |
| |
| return getStdNamespace(); |
| } |
| |
| Decl *Sema::ActOnUsingDirective(Scope *S, |
| SourceLocation UsingLoc, |
| SourceLocation NamespcLoc, |
| CXXScopeSpec &SS, |
| SourceLocation IdentLoc, |
| IdentifierInfo *NamespcName, |
| AttributeList *AttrList) { |
| assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); |
| assert(NamespcName && "Invalid NamespcName."); |
| assert(IdentLoc.isValid() && "Invalid NamespceName location."); |
| |
| // This can only happen along a recovery path. |
| while (S->getFlags() & Scope::TemplateParamScope) |
| S = S->getParent(); |
| assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); |
| |
| UsingDirectiveDecl *UDir = 0; |
| NestedNameSpecifier *Qualifier = 0; |
| if (SS.isSet()) |
| Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); |
| |
| // Lookup namespace name. |
| LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); |
| LookupParsedName(R, S, &SS); |
| if (R.isAmbiguous()) |
| return 0; |
| |
| if (R.empty()) { |
| // Allow "using namespace std;" or "using namespace ::std;" even if |
| // "std" hasn't been defined yet, for GCC compatibility. |
| if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && |
| NamespcName->isStr("std")) { |
| Diag(IdentLoc, diag::ext_using_undefined_std); |
| R.addDecl(getOrCreateStdNamespace()); |
| R.resolveKind(); |
| } |
| // Otherwise, attempt typo correction. |
| else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, |
| CTC_NoKeywords, 0)) { |
| if (R.getAsSingle<NamespaceDecl>() || |
| R.getAsSingle<NamespaceAliasDecl>()) { |
| if (DeclContext *DC = computeDeclContext(SS, false)) |
| Diag(IdentLoc, diag::err_using_directive_member_suggest) |
| << NamespcName << DC << Corrected << SS.getRange() |
| << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); |
| else |
| Diag(IdentLoc, diag::err_using_directive_suggest) |
| << NamespcName << Corrected |
| << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); |
| Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here) |
| << Corrected; |
| |
| NamespcName = Corrected.getAsIdentifierInfo(); |
| } else { |
| R.clear(); |
| R.setLookupName(NamespcName); |
| } |
| } |
| } |
| |
| if (!R.empty()) { |
| NamedDecl *Named = R.getFoundDecl(); |
| assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) |
| && "expected namespace decl"); |
| // C++ [namespace.udir]p1: |
| // A using-directive specifies that the names in the nominated |
| // namespace can be used in the scope in which the |
| // using-directive appears after the using-directive. During |
| // unqualified name lookup (3.4.1), the names appear as if they |
| // were declared in the nearest enclosing namespace which |
| // contains both the using-directive and the nominated |
| // namespace. [Note: in this context, "contains" means "contains |
| // directly or indirectly". ] |
| |
| // Find enclosing context containing both using-directive and |
| // nominated namespace. |
| NamespaceDecl *NS = getNamespaceDecl(Named); |
| DeclContext *CommonAncestor = cast<DeclContext>(NS); |
| while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) |
| CommonAncestor = CommonAncestor->getParent(); |
| |
| UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, |
| SS.getRange(), |
| (NestedNameSpecifier *)SS.getScopeRep(), |
| IdentLoc, Named, CommonAncestor); |
| PushUsingDirective(S, UDir); |
| } else { |
| Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| } |
| |
| // FIXME: We ignore attributes for now. |
| return UDir; |
| } |
| |
| void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { |
| // If scope has associated entity, then using directive is at namespace |
| // or translation unit scope. We add UsingDirectiveDecls, into |
| // it's lookup structure. |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) |
| Ctx->addDecl(UDir); |
| else |
| // Otherwise it is block-sope. using-directives will affect lookup |
| // only to the end of scope. |
| S->PushUsingDirective(UDir); |
| } |
| |
| |
| Decl *Sema::ActOnUsingDeclaration(Scope *S, |
| AccessSpecifier AS, |
| bool HasUsingKeyword, |
| SourceLocation UsingLoc, |
| CXXScopeSpec &SS, |
| UnqualifiedId &Name, |
| AttributeList *AttrList, |
| bool IsTypeName, |
| SourceLocation TypenameLoc) { |
| assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); |
| |
| switch (Name.getKind()) { |
| case UnqualifiedId::IK_Identifier: |
| case UnqualifiedId::IK_OperatorFunctionId: |
| case UnqualifiedId::IK_LiteralOperatorId: |
| case UnqualifiedId::IK_ConversionFunctionId: |
| break; |
| |
| case UnqualifiedId::IK_ConstructorName: |
| case UnqualifiedId::IK_ConstructorTemplateId: |
| // C++0x inherited constructors. |
| if (getLangOptions().CPlusPlus0x) break; |
| |
| Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) |
| << SS.getRange(); |
| return 0; |
| |
| case UnqualifiedId::IK_DestructorName: |
| Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) |
| << SS.getRange(); |
| return 0; |
| |
| case UnqualifiedId::IK_TemplateId: |
| Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) |
| << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); |
| return 0; |
| } |
| |
| DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); |
| DeclarationName TargetName = TargetNameInfo.getName(); |
| if (!TargetName) |
| return 0; |
| |
| // Warn about using declarations. |
| // TODO: store that the declaration was written without 'using' and |
| // talk about access decls instead of using decls in the |
| // diagnostics. |
| if (!HasUsingKeyword) { |
| UsingLoc = Name.getSourceRange().getBegin(); |
| |
| Diag(UsingLoc, diag::warn_access_decl_deprecated) |
| << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); |
| } |
| |
| if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || |
| DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) |
| return 0; |
| |
| NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, |
| TargetNameInfo, AttrList, |
| /* IsInstantiation */ false, |
| IsTypeName, TypenameLoc); |
| if (UD) |
| PushOnScopeChains(UD, S, /*AddToContext*/ false); |
| |
| return UD; |
| } |
| |
| /// \brief Determine whether a using declaration considers the given |
| /// declarations as "equivalent", e.g., if they are redeclarations of |
| /// the same entity or are both typedefs of the same type. |
| static bool |
| IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2, |
| bool &SuppressRedeclaration) { |
| if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) { |
| SuppressRedeclaration = false; |
| return true; |
| } |
| |
| if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1)) |
| if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) { |
| SuppressRedeclaration = true; |
| return Context.hasSameType(TD1->getUnderlyingType(), |
| TD2->getUnderlyingType()); |
| } |
| |
| return false; |
| } |
| |
| |
| /// Determines whether to create a using shadow decl for a particular |
| /// decl, given the set of decls existing prior to this using lookup. |
| bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, |
| const LookupResult &Previous) { |
| // Diagnose finding a decl which is not from a base class of the |
| // current class. We do this now because there are cases where this |
| // function will silently decide not to build a shadow decl, which |
| // will pre-empt further diagnostics. |
| // |
| // We don't need to do this in C++0x because we do the check once on |
| // the qualifier. |
| // |
| // FIXME: diagnose the following if we care enough: |
| // struct A { int foo; }; |
| // struct B : A { using A::foo; }; |
| // template <class T> struct C : A {}; |
| // template <class T> struct D : C<T> { using B::foo; } // <--- |
| // This is invalid (during instantiation) in C++03 because B::foo |
| // resolves to the using decl in B, which is not a base class of D<T>. |
| // We can't diagnose it immediately because C<T> is an unknown |
| // specialization. The UsingShadowDecl in D<T> then points directly |
| // to A::foo, which will look well-formed when we instantiate. |
| // The right solution is to not collapse the shadow-decl chain. |
| if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { |
| DeclContext *OrigDC = Orig->getDeclContext(); |
| |
| // Handle enums and anonymous structs. |
| if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); |
| CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); |
| while (OrigRec->isAnonymousStructOrUnion()) |
| OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); |
| |
| if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { |
| if (OrigDC == CurContext) { |
| Diag(Using->getLocation(), |
| diag::err_using_decl_nested_name_specifier_is_current_class) |
| << Using->getNestedNameRange(); |
| Diag(Orig->getLocation(), diag::note_using_decl_target); |
| return true; |
| } |
| |
| Diag(Using->getNestedNameRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| << Using->getTargetNestedNameDecl() |
| << cast<CXXRecordDecl>(CurContext) |
| << Using->getNestedNameRange(); |
| Diag(Orig->getLocation(), diag::note_using_decl_target); |
| return true; |
| } |
| } |
| |
| if (Previous.empty()) return false; |
| |
| NamedDecl *Target = Orig; |
| if (isa<UsingShadowDecl>(Target)) |
| Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); |
| |
| // If the target happens to be one of the previous declarations, we |
| // don't have a conflict. |
| // |
| // FIXME: but we might be increasing its access, in which case we |
| // should redeclare it. |
| NamedDecl *NonTag = 0, *Tag = 0; |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| bool Result; |
| if (IsEquivalentForUsingDecl(Context, D, Target, Result)) |
| return Result; |
| |
| (isa<TagDecl>(D) ? Tag : NonTag) = D; |
| } |
| |
| if (Target->isFunctionOrFunctionTemplate()) { |
| FunctionDecl *FD; |
| if (isa<FunctionTemplateDecl>(Target)) |
| FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl(); |
| else |
| FD = cast<FunctionDecl>(Target); |
| |
| NamedDecl *OldDecl = 0; |
| switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) { |
| case Ovl_Overload: |
| return false; |
| |
| case Ovl_NonFunction: |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| break; |
| |
| // We found a decl with the exact signature. |
| case Ovl_Match: |
| // If we're in a record, we want to hide the target, so we |
| // return true (without a diagnostic) to tell the caller not to |
| // build a shadow decl. |
| if (CurContext->isRecord()) |
| return true; |
| |
| // If we're not in a record, this is an error. |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| break; |
| } |
| |
| Diag(Target->getLocation(), diag::note_using_decl_target); |
| Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); |
| return true; |
| } |
| |
| // Target is not a function. |
| |
| if (isa<TagDecl>(Target)) { |
| // No conflict between a tag and a non-tag. |
| if (!Tag) return false; |
| |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| Diag(Target->getLocation(), diag::note_using_decl_target); |
| Diag(Tag->getLocation(), diag::note_using_decl_conflict); |
| return true; |
| } |
| |
| // No conflict between a tag and a non-tag. |
| if (!NonTag) return false; |
| |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| Diag(Target->getLocation(), diag::note_using_decl_target); |
| Diag(NonTag->getLocation(), diag::note_using_decl_conflict); |
| return true; |
| } |
| |
| /// Builds a shadow declaration corresponding to a 'using' declaration. |
| UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, |
| UsingDecl *UD, |
| NamedDecl *Orig) { |
| |
| // If we resolved to another shadow declaration, just coalesce them. |
| NamedDecl *Target = Orig; |
| if (isa<UsingShadowDecl>(Target)) { |
| Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); |
| assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); |
| } |
| |
| UsingShadowDecl *Shadow |
| = UsingShadowDecl::Create(Context, CurContext, |
| UD->getLocation(), UD, Target); |
| UD->addShadowDecl(Shadow); |
| |
| Shadow->setAccess(UD->getAccess()); |
| if (Orig->isInvalidDecl() || UD->isInvalidDecl()) |
| Shadow->setInvalidDecl(); |
| |
| if (S) |
| PushOnScopeChains(Shadow, S); |
| else |
| CurContext->addDecl(Shadow); |
| |
| |
| return Shadow; |
| } |
| |
| /// Hides a using shadow declaration. This is required by the current |
| /// using-decl implementation when a resolvable using declaration in a |
| /// class is followed by a declaration which would hide or override |
| /// one or more of the using decl's targets; for example: |
| /// |
| /// struct Base { void foo(int); }; |
| /// struct Derived : Base { |
| /// using Base::foo; |
| /// void foo(int); |
| /// }; |
| /// |
| /// The governing language is C++03 [namespace.udecl]p12: |
| /// |
| /// When a using-declaration brings names from a base class into a |
| /// derived class scope, member functions in the derived class |
| /// override and/or hide member functions with the same name and |
| /// parameter types in a base class (rather than conflicting). |
| /// |
| /// There are two ways to implement this: |
| /// (1) optimistically create shadow decls when they're not hidden |
| /// by existing declarations, or |
| /// (2) don't create any shadow decls (or at least don't make them |
| /// visible) until we've fully parsed/instantiated the class. |
| /// The problem with (1) is that we might have to retroactively remove |
| /// a shadow decl, which requires several O(n) operations because the |
| /// decl structures are (very reasonably) not designed for removal. |
| /// (2) avoids this but is very fiddly and phase-dependent. |
| void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { |
| if (Shadow->getDeclName().getNameKind() == |
| DeclarationName::CXXConversionFunctionName) |
| cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); |
| |
| // Remove it from the DeclContext... |
| Shadow->getDeclContext()->removeDecl(Shadow); |
| |
| // ...and the scope, if applicable... |
| if (S) { |
| S->RemoveDecl(Shadow); |
| IdResolver.RemoveDecl(Shadow); |
| } |
| |
| // ...and the using decl. |
| Shadow->getUsingDecl()->removeShadowDecl(Shadow); |
| |
| // TODO: complain somehow if Shadow was used. It shouldn't |
| // be possible for this to happen, because...? |
| } |
| |
| /// Builds a using declaration. |
| /// |
| /// \param IsInstantiation - Whether this call arises from an |
| /// instantiation of an unresolved using declaration. We treat |
| /// the lookup differently for these declarations. |
| NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, |
| SourceLocation UsingLoc, |
| CXXScopeSpec &SS, |
| const DeclarationNameInfo &NameInfo, |
| AttributeList *AttrList, |
| bool IsInstantiation, |
| bool IsTypeName, |
| SourceLocation TypenameLoc) { |
| assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); |
| SourceLocation IdentLoc = NameInfo.getLoc(); |
| assert(IdentLoc.isValid() && "Invalid TargetName location."); |
| |
| // FIXME: We ignore attributes for now. |
| |
| if (SS.isEmpty()) { |
| Diag(IdentLoc, diag::err_using_requires_qualname); |
| return 0; |
| } |
| |
| // Do the redeclaration lookup in the current scope. |
| LookupResult Previous(*this, NameInfo, LookupUsingDeclName, |
| ForRedeclaration); |
| Previous.setHideTags(false); |
| if (S) { |
| LookupName(Previous, S); |
| |
| // It is really dumb that we have to do this. |
| LookupResult::Filter F = Previous.makeFilter(); |
| while (F.hasNext()) { |
| NamedDecl *D = F.next(); |
| if (!isDeclInScope(D, CurContext, S)) |
| F.erase(); |
| } |
| F.done(); |
| } else { |
| assert(IsInstantiation && "no scope in non-instantiation"); |
| assert(CurContext->isRecord() && "scope not record in instantiation"); |
| LookupQualifiedName(Previous, CurContext); |
| } |
| |
| NestedNameSpecifier *NNS = SS.getScopeRep(); |
| |
| // Check for invalid redeclarations. |
| if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) |
| return 0; |
| |
| // Check for bad qualifiers. |
| if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) |
| return 0; |
| |
| DeclContext *LookupContext = computeDeclContext(SS); |
| NamedDecl *D; |
| if (!LookupContext) { |
| if (IsTypeName) { |
| // FIXME: not all declaration name kinds are legal here |
| D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, |
| UsingLoc, TypenameLoc, |
| SS.getRange(), NNS, |
| IdentLoc, NameInfo.getName()); |
| } else { |
| D = UnresolvedUsingValueDecl::Create(Context, CurContext, |
| UsingLoc, SS.getRange(), |
| NNS, NameInfo); |
| } |
| } else { |
| D = UsingDecl::Create(Context, CurContext, |
| SS.getRange(), UsingLoc, NNS, NameInfo, |
| IsTypeName); |
| } |
| D->setAccess(AS); |
| CurContext->addDecl(D); |
| |
| if (!LookupContext) return D; |
| UsingDecl *UD = cast<UsingDecl>(D); |
| |
| if (RequireCompleteDeclContext(SS, LookupContext)) { |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| // Constructor inheriting using decls get special treatment. |
| if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) { |
| if (CheckInheritedConstructorUsingDecl(UD)) |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| // Otherwise, look up the target name. |
| |
| LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| |
| // Unlike most lookups, we don't always want to hide tag |
| // declarations: tag names are visible through the using declaration |
| // even if hidden by ordinary names, *except* in a dependent context |
| // where it's important for the sanity of two-phase lookup. |
| if (!IsInstantiation) |
| R.setHideTags(false); |
| |
| LookupQualifiedName(R, LookupContext); |
| |
| if (R.empty()) { |
| Diag(IdentLoc, diag::err_no_member) |
| << NameInfo.getName() << LookupContext << SS.getRange(); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| if (R.isAmbiguous()) { |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| if (IsTypeName) { |
| // If we asked for a typename and got a non-type decl, error out. |
| if (!R.getAsSingle<TypeDecl>()) { |
| Diag(IdentLoc, diag::err_using_typename_non_type); |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| Diag((*I)->getUnderlyingDecl()->getLocation(), |
| diag::note_using_decl_target); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| } else { |
| // If we asked for a non-typename and we got a type, error out, |
| // but only if this is an instantiation of an unresolved using |
| // decl. Otherwise just silently find the type name. |
| if (IsInstantiation && R.getAsSingle<TypeDecl>()) { |
| Diag(IdentLoc, diag::err_using_dependent_value_is_type); |
| Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| } |
| |
| // C++0x N2914 [namespace.udecl]p6: |
| // A using-declaration shall not name a namespace. |
| if (R.getAsSingle<NamespaceDecl>()) { |
| Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) |
| << SS.getRange(); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| if (!CheckUsingShadowDecl(UD, *I, Previous)) |
| BuildUsingShadowDecl(S, UD, *I); |
| } |
| |
| return UD; |
| } |
| |
| /// Additional checks for a using declaration referring to a constructor name. |
| bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) { |
| if (UD->isTypeName()) { |
| // FIXME: Cannot specify typename when specifying constructor |
| return true; |
| } |
| |
| const Type *SourceType = UD->getTargetNestedNameDecl()->getAsType(); |
| assert(SourceType && |
| "Using decl naming constructor doesn't have type in scope spec."); |
| CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); |
| |
| // Check whether the named type is a direct base class. |
| CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified(); |
| CXXRecordDecl::base_class_iterator BaseIt, BaseE; |
| for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end(); |
| BaseIt != BaseE; ++BaseIt) { |
| CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified(); |
| if (CanonicalSourceType == BaseType) |
| break; |
| } |
| |
| if (BaseIt == BaseE) { |
| // Did not find SourceType in the bases. |
| Diag(UD->getUsingLocation(), |
| diag::err_using_decl_constructor_not_in_direct_base) |
| << UD->getNameInfo().getSourceRange() |
| << QualType(SourceType, 0) << TargetClass; |
| return true; |
| } |
| |
| BaseIt->setInheritConstructors(); |
| |
| return false; |
| } |
| |
| /// Checks that the given using declaration is not an invalid |
| /// redeclaration. Note that this is checking only for the using decl |
| /// itself, not for any ill-formedness among the UsingShadowDecls. |
| bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, |
| bool isTypeName, |
| const CXXScopeSpec &SS, |
| SourceLocation NameLoc, |
| const LookupResult &Prev) { |
| // C++03 [namespace.udecl]p8: |
| // C++0x [namespace.udecl]p10: |
| // A using-declaration is a declaration and can therefore be used |
| // repeatedly where (and only where) multiple declarations are |
| // allowed. |
| // |
| // That's in non-member contexts. |
| if (!CurContext->getRedeclContext()->isRecord()) |
| return false; |
| |
| NestedNameSpecifier *Qual |
| = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); |
| |
| for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| |
| bool DTypename; |
| NestedNameSpecifier *DQual; |
| if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { |
| DTypename = UD->isTypeName(); |
| DQual = UD->getTargetNestedNameDecl(); |
| } else if (UnresolvedUsingValueDecl *UD |
| = dyn_cast<UnresolvedUsingValueDecl>(D)) { |
| DTypename = false; |
| DQual = UD->getTargetNestedNameSpecifier(); |
| } else if (UnresolvedUsingTypenameDecl *UD |
| = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { |
| DTypename = true; |
| DQual = UD->getTargetNestedNameSpecifier(); |
| } else continue; |
| |
| // using decls differ if one says 'typename' and the other doesn't. |
| // FIXME: non-dependent using decls? |
| if (isTypeName != DTypename) continue; |
| |
| // using decls differ if they name different scopes (but note that |
| // template instantiation can cause this check to trigger when it |
| // didn't before instantiation). |
| if (Context.getCanonicalNestedNameSpecifier(Qual) != |
| Context.getCanonicalNestedNameSpecifier(DQual)) |
| continue; |
| |
| Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); |
| Diag(D->getLocation(), diag::note_using_decl) << 1; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| /// Checks that the given nested-name qualifier used in a using decl |
| /// in the current context is appropriately related to the current |
| /// scope. If an error is found, diagnoses it and returns true. |
| bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, |
| const CXXScopeSpec &SS, |
| SourceLocation NameLoc) { |
| DeclContext *NamedContext = computeDeclContext(SS); |
| |
| if (!CurContext->isRecord()) { |
| // C++03 [namespace.udecl]p3: |
| // C++0x [namespace.udecl]p8: |
| // A using-declaration for a class member shall be a member-declaration. |
| |
| // If we weren't able to compute a valid scope, it must be a |
| // dependent class scope. |
| if (!NamedContext || NamedContext->isRecord()) { |
| Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) |
| << SS.getRange(); |
| return true; |
| } |
| |
| // Otherwise, everything is known to be fine. |
| return false; |
| } |
| |
| // The current scope is a record. |
| |
| // If the named context is dependent, we can't decide much. |
| if (!NamedContext) { |
| // FIXME: in C++0x, we can diagnose if we can prove that the |
| // nested-name-specifier does not refer to a base class, which is |
| // still possible in some cases. |
| |
| // Otherwise we have to conservatively report that things might be |
| // okay. |
| return false; |
| } |
| |
| if (!NamedContext->isRecord()) { |
| // Ideally this would point at the last name in the specifier, |
| // but we don't have that level of source info. |
| Diag(SS.getRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_class) |
| << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); |
| return true; |
| } |
| |
| if (!NamedContext->isDependentContext() && |
| RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) |
| return true; |
| |
| if (getLangOptions().CPlusPlus0x) { |
| // C++0x [namespace.udecl]p3: |
| // In a using-declaration used as a member-declaration, the |
| // nested-name-specifier shall name a base class of the class |
| // being defined. |
| |
| if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( |
| cast<CXXRecordDecl>(NamedContext))) { |
| if (CurContext == NamedContext) { |
| Diag(NameLoc, |
| diag::err_using_decl_nested_name_specifier_is_current_class) |
| << SS.getRange(); |
| return true; |
| } |
| |
| Diag(SS.getRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| << (NestedNameSpecifier*) SS.getScopeRep() |
| << cast<CXXRecordDecl>(CurContext) |
| << SS.getRange(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // C++03 [namespace.udecl]p4: |
| // A using-declaration used as a member-declaration shall refer |
| // to a member of a base class of the class being defined [etc.]. |
| |
| // Salient point: SS doesn't have to name a base class as long as |
| // lookup only finds members from base classes. Therefore we can |
| // diagnose here only if we can prove that that can't happen, |
| // i.e. if the class hierarchies provably don't intersect. |
| |
| // TODO: it would be nice if "definitely valid" results were cached |
| // in the UsingDecl and UsingShadowDecl so that these checks didn't |
| // need to be repeated. |
| |
| struct UserData { |
| llvm::DenseSet<const CXXRecordDecl*> Bases; |
| |
| static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { |
| UserData *Data = reinterpret_cast<UserData*>(OpaqueData); |
| Data->Bases.insert(Base); |
| return true; |
| } |
| |
| bool hasDependentBases(const CXXRecordDecl *Class) { |
| return !Class->forallBases(collect, this); |
| } |
| |
| /// Returns true if the base is dependent or is one of the |
| /// accumulated base classes. |
| static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { |
| UserData *Data = reinterpret_cast<UserData*>(OpaqueData); |
| return !Data->Bases.count(Base); |
| } |
| |
| bool mightShareBases(const CXXRecordDecl *Class) { |
| return Bases.count(Class) || !Class->forallBases(doesNotContain, this); |
| } |
| }; |
| |
| UserData Data; |
| |
| // Returns false if we find a dependent base. |
| if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) |
| return false; |
| |
| // Returns false if the class has a dependent base or if it or one |
| // of its bases is present in the base set of the current context. |
| if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) |
| return false; |
| |
| Diag(SS.getRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| << (NestedNameSpecifier*) SS.getScopeRep() |
| << cast<CXXRecordDecl>(CurContext) |
| << SS.getRange(); |
| |
| return true; |
| } |
| |
| Decl *Sema::ActOnNamespaceAliasDef(Scope *S, |
| SourceLocation NamespaceLoc, |
| SourceLocation AliasLoc, |
| IdentifierInfo *Alias, |
| CXXScopeSpec &SS, |
| SourceLocation IdentLoc, |
| IdentifierInfo *Ident) { |
| |
| // Lookup the namespace name. |
| LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); |
| LookupParsedName(R, S, &SS); |
| |
| // Check if we have a previous declaration with the same name. |
| NamedDecl *PrevDecl |
| = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, |
| ForRedeclaration); |
| if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) |
| PrevDecl = 0; |
| |
| if (PrevDecl) { |
| if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { |
| // We already have an alias with the same name that points to the same |
| // namespace, so don't create a new one. |
| // FIXME: At some point, we'll want to create the (redundant) |
| // declaration to maintain better source information. |
| if (!R.isAmbiguous() && !R.empty() && |
| AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl()))) |
| return 0; |
| } |
| |
| unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : |
| diag::err_redefinition_different_kind; |
| Diag(AliasLoc, DiagID) << Alias; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| return 0; |
| } |
| |
| if (R.isAmbiguous()) |
| return 0; |
| |
| if (R.empty()) { |
| if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, |
| CTC_NoKeywords, 0)) { |
| if (R.getAsSingle<NamespaceDecl>() || |
| R.getAsSingle<NamespaceAliasDecl>()) { |
| if (DeclContext *DC = computeDeclContext(SS, false)) |
| Diag(IdentLoc, diag::err_using_directive_member_suggest) |
| << Ident << DC << Corrected << SS.getRange() |
| << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); |
| else |
| Diag(IdentLoc, diag::err_using_directive_suggest) |
| << Ident << Corrected |
| << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); |
| |
| Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here) |
| << Corrected; |
| |
| Ident = Corrected.getAsIdentifierInfo(); |
| } else { |
| R.clear(); |
| R.setLookupName(Ident); |
| } |
| } |
| |
| if (R.empty()) { |
| Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| return 0; |
| } |
| } |
| |
| NamespaceAliasDecl *AliasDecl = |
| NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, |
| Alias, SS.getRange(), |
| (NestedNameSpecifier *)SS.getScopeRep(), |
| IdentLoc, R.getFoundDecl()); |
| |
| PushOnScopeChains(AliasDecl, S); |
| return AliasDecl; |
| } |
| |
| namespace { |
| /// \brief Scoped object used to handle the state changes required in Sema |
| /// to implicitly define the body of a C++ member function; |
| class ImplicitlyDefinedFunctionScope { |
| Sema &S; |
| DeclContext *PreviousContext; |
| |
| public: |
| ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method) |
| : S(S), PreviousContext(S.CurContext) |
| { |
| S.CurContext = Method; |
| S.PushFunctionScope(); |
| S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); |
| } |
| |
| ~ImplicitlyDefinedFunctionScope() { |
| S.PopExpressionEvaluationContext(); |
| S.PopFunctionOrBlockScope(); |
| S.CurContext = PreviousContext; |
| } |
| }; |
| } |
| |
| static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self, |
| CXXRecordDecl *D) { |
| ASTContext &Context = Self.Context; |
| QualType ClassType = Context.getTypeDeclType(D); |
| DeclarationName ConstructorName |
| = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(ClassType.getUnqualifiedType())); |
| |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName); |
| Con != ConEnd; ++Con) { |
| // FIXME: In C++0x, a constructor template can be a default constructor. |
| if (isa<FunctionTemplateDecl>(*Con)) |
| continue; |
| |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); |
| if (Constructor->isDefaultConstructor()) |
| return Constructor; |
| } |
| return 0; |
| } |
| |
| CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( |
| CXXRecordDecl *ClassDecl) { |
| // C++ [class.ctor]p5: |
| // A default constructor for a class X is a constructor of class X |
| // that can be called without an argument. If there is no |
| // user-declared constructor for class X, a default constructor is |
| // implicitly declared. An implicitly-declared default constructor |
| // is an inline public member of its class. |
| assert(!ClassDecl->hasUserDeclaredConstructor() && |
| "Should not build implicit default constructor!"); |
| |
| // C++ [except.spec]p14: |
| // An implicitly declared special member function (Clause 12) shall have an |
| // exception-specification. [...] |
| ImplicitExceptionSpecification ExceptSpec(Context); |
| |
| // Direct base-class destructors. |
| for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), |
| BEnd = ClassDecl->bases_end(); |
| B != BEnd; ++B) { |
| if (B->isVirtual()) // Handled below. |
| continue; |
| |
| if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { |
| CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| if (!BaseClassDecl->hasDeclaredDefaultConstructor()) |
| ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl)); |
| else if (CXXConstructorDecl *Constructor |
| = getDefaultConstructorUnsafe(*this, BaseClassDecl)) |
| ExceptSpec.CalledDecl(Constructor); |
| } |
| } |
| |
| // Virtual base-class destructors. |
| for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), |
| BEnd = ClassDecl->vbases_end(); |
| B != BEnd; ++B) { |
| if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { |
| CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| if (!BaseClassDecl->hasDeclaredDefaultConstructor()) |
| ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl)); |
| else if (CXXConstructorDecl *Constructor |
| = getDefaultConstructorUnsafe(*this, BaseClassDecl)) |
| ExceptSpec.CalledDecl(Constructor); |
| } |
| } |
| |
| // Field destructors. |
| for (RecordDecl::field_iterator F = ClassDecl->field_begin(), |
| FEnd = ClassDecl->field_end(); |
| F != FEnd; ++F) { |
| if (const RecordType *RecordTy |
| = Context.getBaseElementType(F->getType())->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| if (!FieldClassDecl->hasDeclaredDefaultConstructor()) |
| ExceptSpec.CalledDecl( |
| DeclareImplicitDefaultConstructor(FieldClassDecl)); |
| else if (CXXConstructorDecl *Constructor |
| = getDefaultConstructorUnsafe(*this, FieldClassDecl)) |
| ExceptSpec.CalledDecl(Constructor); |
| } |
| } |
| |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification(); |
| EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification(); |
| EPI.NumExceptions = ExceptSpec.size(); |
| EPI.Exceptions = ExceptSpec.data(); |
| |
| // Create the actual constructor declaration. |
| CanQualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXConstructorName(ClassType); |
| DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); |
| CXXConstructorDecl *DefaultCon |
| = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo, |
| Context.getFunctionType(Context.VoidTy, |
| 0, 0, EPI), |
| /*TInfo=*/0, |
| /*isExplicit=*/false, |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| DefaultCon->setAccess(AS_public); |
| DefaultCon->setImplicit(); |
| DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor()); |
| |
| // Note that we have declared this constructor. |
| ++ASTContext::NumImplicitDefaultConstructorsDeclared; |
| |
| if (Scope *S = getScopeForContext(ClassDecl)) |
| PushOnScopeChains(DefaultCon, S, false); |
| ClassDecl->addDecl(DefaultCon); |
| |
| return DefaultCon; |
| } |
| |
| void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, |
| CXXConstructorDecl *Constructor) { |
| assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && |
| !Constructor->isUsed(false)) && |
| "DefineImplicitDefaultConstructor - call it for implicit default ctor"); |
| |
| CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); |
| |
| ImplicitlyDefinedFunctionScope Scope(*this, Constructor); |
| DiagnosticErrorTrap Trap(Diags); |
| if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) || |
| Trap.hasErrorOccurred()) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXConstructor << Context.getTagDeclType(ClassDecl); |
| Constructor->setInvalidDecl(); |
| return; |
| } |
| |
| SourceLocation Loc = Constructor->getLocation(); |
| Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); |
| |
| Constructor->setUsed(); |
| MarkVTableUsed(CurrentLocation, ClassDecl); |
| } |
| |
| void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) { |
| // We start with an initial pass over the base classes to collect those that |
| // inherit constructors from. If there are none, we can forgo all further |
| // processing. |
| typedef llvm::SmallVector<const RecordType *, 4> BasesVector; |
| BasesVector BasesToInheritFrom; |
| for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(), |
| BaseE = ClassDecl->bases_end(); |
| BaseIt != BaseE; ++BaseIt) { |
| if (BaseIt->getInheritConstructors()) { |
| QualType Base = BaseIt->getType(); |
| if (Base->isDependentType()) { |
| // If we inherit constructors from anything that is dependent, just |
| // abort processing altogether. We'll get another chance for the |
| // instantiations. |
| return; |
| } |
| BasesToInheritFrom.push_back(Base->castAs<RecordType>()); |
| } |
| } |
| if (BasesToInheritFrom.empty()) |
| return; |
| |
| // Now collect the constructors that we already have in the current class. |
| // Those take precedence over inherited constructors. |
| // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...] |
| // unless there is a user-declared constructor with the same signature in |
| // the class where the using-declaration appears. |
| llvm::SmallSet<const Type *, 8> ExistingConstructors; |
| for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(), |
| CtorE = ClassDecl->ctor_end(); |
| CtorIt != CtorE; ++CtorIt) { |
| ExistingConstructors.insert( |
| Context.getCanonicalType(CtorIt->getType()).getTypePtr()); |
| } |
| |
| Scope *S = getScopeForContext(ClassDecl); |
| DeclarationName CreatedCtorName = |
| Context.DeclarationNames.getCXXConstructorName( |
| ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified()); |
| |
| // Now comes the true work. |
| // First, we keep a map from constructor types to the base that introduced |
| // them. Needed for finding conflicting constructors. We also keep the |
| // actually inserted declarations in there, for pretty diagnostics. |
| typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo; |
| typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap; |
| ConstructorToSourceMap InheritedConstructors; |
| for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(), |
| BaseE = BasesToInheritFrom.end(); |
| BaseIt != BaseE; ++BaseIt) { |
| const RecordType *Base = *BaseIt; |
| CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified(); |
| CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl()); |
| for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(), |
| CtorE = BaseDecl->ctor_end(); |
| CtorIt != CtorE; ++CtorIt) { |
| // Find the using declaration for inheriting this base's constructors. |
| DeclarationName Name = |
| Context.DeclarationNames.getCXXConstructorName(CanonicalBase); |
| UsingDecl *UD = dyn_cast_or_null<UsingDecl>( |
| LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName)); |
| SourceLocation UsingLoc = UD ? UD->getLocation() : |
| ClassDecl->getLocation(); |
| |
| // C++0x [class.inhctor]p1: The candidate set of inherited constructors |
| // from the class X named in the using-declaration consists of actual |
| // constructors and notional constructors that result from the |
| // transformation of defaulted parameters as follows: |
| // - all non-template default constructors of X, and |
| // - for each non-template constructor of X that has at least one |
| // parameter with a default argument, the set of constructors that |
| // results from omitting any ellipsis parameter specification and |
| // successively omitting parameters with a default argument from the |
| // end of the parameter-type-list. |
| CXXConstructorDecl *BaseCtor = *CtorIt; |
| bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor(); |
| const FunctionProtoType *BaseCtorType = |
| BaseCtor->getType()->getAs<FunctionProtoType>(); |
| |
| for (unsigned params = BaseCtor->getMinRequiredArguments(), |
| maxParams = BaseCtor->getNumParams(); |
| params <= maxParams; ++params) { |
| // Skip default constructors. They're never inherited. |
| if (params == 0) |
| continue; |
| // Skip copy and move constructors for the same reason. |
| if (CanBeCopyOrMove && params == 1) |
| continue; |
| |
| // Build up a function type for this particular constructor. |
| // FIXME: The working paper does not consider that the exception spec |
| // for the inheriting constructor might be larger than that of the |
| // source. This code doesn't yet, either. |
| const Type *NewCtorType; |
| if (params == maxParams) |
| NewCtorType = BaseCtorType; |
| else { |
| llvm::SmallVector<QualType, 16> Args; |
| for (unsigned i = 0; i < params; ++i) { |
| Args.push_back(BaseCtorType->getArgType(i)); |
| } |
| FunctionProtoType::ExtProtoInfo ExtInfo = |
| BaseCtorType->getExtProtoInfo(); |
| ExtInfo.Variadic = false; |
| NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(), |
| Args.data(), params, ExtInfo) |
| .getTypePtr(); |
| } |
| const Type *CanonicalNewCtorType = |
| Context.getCanonicalType(NewCtorType); |
| |
| // Now that we have the type, first check if the class already has a |
| // constructor with this signature. |
| if (ExistingConstructors.count(CanonicalNewCtorType)) |
| continue; |
| |
| // Then we check if we have already declared an inherited constructor |
| // with this signature. |
| std::pair<ConstructorToSourceMap::iterator, bool> result = |
| InheritedConstructors.insert(std::make_pair( |
| CanonicalNewCtorType, |
| std::make_pair(CanonicalBase, (CXXConstructorDecl*)0))); |
| if (!result.second) { |
| // Already in the map. If it came from a different class, that's an |
| // error. Not if it's from the same. |
| CanQualType PreviousBase = result.first->second.first; |
| if (CanonicalBase != PreviousBase) { |
| const CXXConstructorDecl *PrevCtor = result.first->second.second; |
| const CXXConstructorDecl *PrevBaseCtor = |
| PrevCtor->getInheritedConstructor(); |
| assert(PrevBaseCtor && "Conflicting constructor was not inherited"); |
| |
| Diag(UsingLoc, diag::err_using_decl_constructor_conflict); |
| Diag(BaseCtor->getLocation(), |
| diag::note_using_decl_constructor_conflict_current_ctor); |
| Diag(PrevBaseCtor->getLocation(), |
| diag::note_using_decl_constructor_conflict_previous_ctor); |
| Diag(PrevCtor->getLocation(), |
| diag::note_using_decl_constructor_conflict_previous_using); |
| } |
| continue; |
| } |
| |
| // OK, we're there, now add the constructor. |
| // C++0x [class.inhctor]p8: [...] that would be performed by a |
| // user-writtern inline constructor [...] |
| DeclarationNameInfo DNI(CreatedCtorName, UsingLoc); |
| CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create( |
| Context, ClassDecl, DNI, QualType(NewCtorType, 0), /*TInfo=*/0, |
| BaseCtor->isExplicit(), /*Inline=*/true, |
| /*ImplicitlyDeclared=*/true); |
| NewCtor->setAccess(BaseCtor->getAccess()); |
| |
| // Build up the parameter decls and add them. |
| llvm::SmallVector<ParmVarDecl *, 16> ParamDecls; |
| for (unsigned i = 0; i < params; ++i) { |
| ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, UsingLoc, |
| /*IdentifierInfo=*/0, |
| BaseCtorType->getArgType(i), |
| /*TInfo=*/0, SC_None, |
| SC_None, /*DefaultArg=*/0)); |
| } |
| NewCtor->setParams(ParamDecls.data(), ParamDecls.size()); |
| NewCtor->setInheritedConstructor(BaseCtor); |
| |
| PushOnScopeChains(NewCtor, S, false); |
| ClassDecl->addDecl(NewCtor); |
| result.first->second.second = NewCtor; |
| } |
| } |
| } |
| } |
| |
| CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { |
| // C++ [class.dtor]p2: |
| // If a class has no user-declared destructor, a destructor is |
| // declared implicitly. An implicitly-declared destructor is an |
| // inline public member of its class. |
| |
| // C++ [except.spec]p14: |
| // An implicitly declared special member function (Clause 12) shall have |
| // an exception-specification. |
| ImplicitExceptionSpecification ExceptSpec(Context); |
| |
| // Direct base-class destructors. |
| for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), |
| BEnd = ClassDecl->bases_end(); |
| B != BEnd; ++B) { |
| if (B->isVirtual()) // Handled below. |
| continue; |
| |
| if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) |
| ExceptSpec.CalledDecl( |
| LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); |
| } |
| |
| // Virtual base-class destructors. |
| for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), |
| BEnd = ClassDecl->vbases_end(); |
| B != BEnd; ++B) { |
| if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) |
| ExceptSpec.CalledDecl( |
| LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); |
| } |
| |
| // Field destructors. |
| for (RecordDecl::field_iterator F = ClassDecl->field_begin(), |
| FEnd = ClassDecl->field_end(); |
| F != FEnd; ++F) { |
| if (const RecordType *RecordTy |
| = Context.getBaseElementType(F->getType())->getAs<RecordType>()) |
| ExceptSpec.CalledDecl( |
| LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl()))); |
| } |
| |
| // Create the actual destructor declaration. |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification(); |
| EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification(); |
| EPI.NumExceptions = ExceptSpec.size(); |
| EPI.Exceptions = ExceptSpec.data(); |
| QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI); |
| |
| CanQualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXDestructorName(ClassType); |
| DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); |
| CXXDestructorDecl *Destructor |
| = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0, |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| Destructor->setAccess(AS_public); |
| Destructor->setImplicit(); |
| Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); |
| |
| // Note that we have declared this destructor. |
| ++ASTContext::NumImplicitDestructorsDeclared; |
| |
| // Introduce this destructor into its scope. |
| if (Scope *S = getScopeForContext(ClassDecl)) |
| PushOnScopeChains(Destructor, S, false); |
| ClassDecl->addDecl(Destructor); |
| |
| // This could be uniqued if it ever proves significant. |
| Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty)); |
| |
| AddOverriddenMethods(ClassDecl, Destructor); |
| |
| return Destructor; |
| } |
| |
| void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, |
| CXXDestructorDecl *Destructor) { |
| assert((Destructor->isImplicit() && !Destructor->isUsed(false)) && |
| "DefineImplicitDestructor - call it for implicit default dtor"); |
| CXXRecordDecl *ClassDecl = Destructor->getParent(); |
| assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); |
| |
| if (Destructor->isInvalidDecl()) |
| return; |
| |
| ImplicitlyDefinedFunctionScope Scope(*this, Destructor); |
| |
| DiagnosticErrorTrap Trap(Diags); |
| MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), |
| Destructor->getParent()); |
| |
| if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXDestructor << Context.getTagDeclType(ClassDecl); |
| |
| Destructor->setInvalidDecl(); |
| return; |
| } |
| |
| SourceLocation Loc = Destructor->getLocation(); |
| Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); |
| |
| Destructor->setUsed(); |
| MarkVTableUsed(CurrentLocation, ClassDecl); |
| } |
| |
| /// \brief Builds a statement that copies the given entity from \p From to |
| /// \c To. |
| /// |
| /// This routine is used to copy the members of a class with an |
| /// implicitly-declared copy assignment operator. When the entities being |
| /// copied are arrays, this routine builds for loops to copy them. |
| /// |
| /// \param S The Sema object used for type-checking. |
| /// |
| /// \param Loc The location where the implicit copy is being generated. |
| /// |
| /// \param T The type of the expressions being copied. Both expressions must |
| /// have this type. |
| /// |
| /// \param To The expression we are copying to. |
| /// |
| /// \param From The expression we are copying from. |
| /// |
| /// \param CopyingBaseSubobject Whether we're copying a base subobject. |
| /// Otherwise, it's a non-static member subobject. |
| /// |
| /// \param Depth Internal parameter recording the depth of the recursion. |
| /// |
| /// \returns A statement or a loop that copies the expressions. |
| static StmtResult |
| BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, |
| Expr *To, Expr *From, |
| bool CopyingBaseSubobject, unsigned Depth = 0) { |
| // C++0x [class.copy]p30: |
| // Each subobject is assigned in the manner appropriate to its type: |
| // |
| // - if the subobject is of class type, the copy assignment operator |
| // for the class is used (as if by explicit qualification; that is, |
| // ignoring any possible virtual overriding functions in more derived |
| // classes); |
| if (const RecordType *RecordTy = T->getAs<RecordType>()) { |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| |
| // Look for operator=. |
| DeclarationName Name |
| = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); |
| S.LookupQualifiedName(OpLookup, ClassDecl, false); |
| |
| // Filter out any result that isn't a copy-assignment operator. |
| LookupResult::Filter F = OpLookup.makeFilter(); |
| while (F.hasNext()) { |
| NamedDecl *D = F.next(); |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) |
| if (Method->isCopyAssignmentOperator()) |
| continue; |
| |
| F.erase(); |
| } |
| F.done(); |
| |
| // Suppress the protected check (C++ [class.protected]) for each of the |
| // assignment operators we found. This strange dance is required when |
| // we're assigning via a base classes's copy-assignment operator. To |
| // ensure that we're getting the right base class subobject (without |
| // ambiguities), we need to cast "this" to that subobject type; to |
| // ensure that we don't go through the virtual call mechanism, we need |
| // to qualify the operator= name with the base class (see below). However, |
| // this means that if the base class has a protected copy assignment |
| // operator, the protected member access check will fail. So, we |
| // rewrite "protected" access to "public" access in this case, since we |
| // know by construction that we're calling from a derived class. |
| if (CopyingBaseSubobject) { |
| for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); |
| L != LEnd; ++L) { |
| if (L.getAccess() == AS_protected) |
| L.setAccess(AS_public); |
| } |
| } |
| |
| // Create the nested-name-specifier that will be used to qualify the |
| // reference to operator=; this is required to suppress the virtual |
| // call mechanism. |
| CXXScopeSpec SS; |
| SS.setRange(Loc); |
| SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false, |
| T.getTypePtr())); |
| |
| // Create the reference to operator=. |
| ExprResult OpEqualRef |
| = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS, |
| /*FirstQualifierInScope=*/0, OpLookup, |
| /*TemplateArgs=*/0, |
| /*SuppressQualifierCheck=*/true); |
| if (OpEqualRef.isInvalid()) |
| return StmtError(); |
| |
| // Build the call to the assignment operator. |
| |
| ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0, |
| OpEqualRef.takeAs<Expr>(), |
| Loc, &From, 1, Loc); |
| if (Call.isInvalid()) |
| return StmtError(); |
| |
| return S.Owned(Call.takeAs<Stmt>()); |
| } |
| |
| // - if the subobject is of scalar type, the built-in assignment |
| // operator is used. |
| const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); |
| if (!ArrayTy) { |
| ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From); |
| if (Assignment.isInvalid()) |
| return StmtError(); |
| |
| return S.Owned(Assignment.takeAs<Stmt>()); |
| } |
| |
| // - if the subobject is an array, each element is assigned, in the |
| // manner appropriate to the element type; |
| |
| // Construct a loop over the array bounds, e.g., |
| // |
| // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) |
| // |
| // that will copy each of the array elements. |
| QualType SizeType = S.Context.getSizeType(); |
| |
| // Create the iteration variable. |
| IdentifierInfo *IterationVarName = 0; |
| { |
| llvm::SmallString<8> Str; |
| llvm::raw_svector_ostream OS(Str); |
| OS << "__i" << Depth; |
| IterationVarName = &S.Context.Idents.get(OS.str()); |
| } |
| VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, |
| IterationVarName, SizeType, |
| S.Context.getTrivialTypeSourceInfo(SizeType, Loc), |
| SC_None, SC_None); |
| |
| // Initialize the iteration variable to zero. |
| llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); |
| IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); |
| |
| // Create a reference to the iteration variable; we'll use this several |
| // times throughout. |
| Expr *IterationVarRef |
| = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take(); |
| assert(IterationVarRef && "Reference to invented variable cannot fail!"); |
| |
| // Create the DeclStmt that holds the iteration variable. |
| Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); |
| |
| // Create the comparison against the array bound. |
| llvm::APInt Upper |
| = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); |
| Expr *Comparison |
| = new (S.Context) BinaryOperator(IterationVarRef, |
| IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), |
| BO_NE, S.Context.BoolTy, |
| VK_RValue, OK_Ordinary, Loc); |
| |
| // Create the pre-increment of the iteration variable. |
| Expr *Increment |
| = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType, |
| VK_LValue, OK_Ordinary, Loc); |
| |
| // Subscript the "from" and "to" expressions with the iteration variable. |
| From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc, |
| IterationVarRef, Loc)); |
| To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc, |
| IterationVarRef, Loc)); |
| |
| // Build the copy for an individual element of the array. |
| StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(), |
| To, From, CopyingBaseSubobject, |
| Depth + 1); |
| if (Copy.isInvalid()) |
| return StmtError(); |
| |
| // Construct the loop that copies all elements of this array. |
| return S.ActOnForStmt(Loc, Loc, InitStmt, |
| S.MakeFullExpr(Comparison), |
| 0, S.MakeFullExpr(Increment), |
| Loc, Copy.take()); |
| } |
| |
| /// \brief Determine whether the given class has a copy assignment operator |
| /// that accepts a const-qualified argument. |
| static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) { |
| CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass); |
| |
| if (!Class->hasDeclaredCopyAssignment()) |
| S.DeclareImplicitCopyAssignment(Class); |
| |
| QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)); |
| DeclarationName OpName |
| = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| |
| DeclContext::lookup_const_iterator Op, OpEnd; |
| for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) { |
| // C++ [class.copy]p9: |
| // A user-declared copy assignment operator is a non-static non-template |
| // member function of class X with exactly one parameter of type X, X&, |
| // const X&, volatile X& or const volatile X&. |
| const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); |
| if (!Method) |
| continue; |
| |
| if (Method->isStatic()) |
| continue; |
| if (Method->getPrimaryTemplate()) |
| continue; |
| const FunctionProtoType *FnType = |
| Method->getType()->getAs<FunctionProtoType>(); |
| assert(FnType && "Overloaded operator has no prototype."); |
| // Don't assert on this; an invalid decl might have been left in the AST. |
| if (FnType->getNumArgs() != 1 || FnType->isVariadic()) |
| continue; |
| bool AcceptsConst = true; |
| QualType ArgType = FnType->getArgType(0); |
| if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){ |
| ArgType = Ref->getPointeeType(); |
| // Is it a non-const lvalue reference? |
| if (!ArgType.isConstQualified()) |
| AcceptsConst = false; |
| } |
| if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType)) |
| continue; |
| |
| // We have a single argument of type cv X or cv X&, i.e. we've found the |
| // copy assignment operator. Return whether it accepts const arguments. |
| return AcceptsConst; |
| } |
| assert(Class->isInvalidDecl() && |
| "No copy assignment operator declared in valid code."); |
| return false; |
| } |
| |
| CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { |
| // Note: The following rules are largely analoguous to the copy |
| // constructor rules. Note that virtual bases are not taken into account |
| // for determining the argument type of the operator. Note also that |
| // operators taking an object instead of a reference are allowed. |
| |
| |
| // C++ [class.copy]p10: |
| // If the class definition does not explicitly declare a copy |
| // assignment operator, one is declared implicitly. |
| // The implicitly-defined copy assignment operator for a class X |
| // will have the form |
| // |
| // X& X::operator=(const X&) |
| // |
| // if |
| bool HasConstCopyAssignment = true; |
| |
| // -- each direct base class B of X has a copy assignment operator |
| // whose parameter is of type const B&, const volatile B& or B, |
| // and |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| BaseEnd = ClassDecl->bases_end(); |
| HasConstCopyAssignment && Base != BaseEnd; ++Base) { |
| assert(!Base->getType()->isDependentType() && |
| "Cannot generate implicit members for class with dependent bases."); |
| const CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl); |
| } |
| |
| // -- for all the nonstatic data members of X that are of a class |
| // type M (or array thereof), each such class type has a copy |
| // assignment operator whose parameter is of type const M&, |
| // const volatile M& or M. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| FieldEnd = ClassDecl->field_end(); |
| HasConstCopyAssignment && Field != FieldEnd; |
| ++Field) { |
| QualType FieldType = Context.getBaseElementType((*Field)->getType()); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| const CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl); |
| } |
| } |
| |
| // Otherwise, the implicitly declared copy assignment operator will |
| // have the form |
| // |
| // X& X::operator=(X&) |
| QualType ArgType = Context.getTypeDeclType(ClassDecl); |
| QualType RetType = Context.getLValueReferenceType(ArgType); |
| if (HasConstCopyAssignment) |
| ArgType = ArgType.withConst(); |
| ArgType = Context.getLValueReferenceType(ArgType); |
| |
| // C++ [except.spec]p14: |
| // An implicitly declared special member function (Clause 12) shall have an |
| // exception-specification. [...] |
| ImplicitExceptionSpecification ExceptSpec(Context); |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| BaseEnd = ClassDecl->bases_end(); |
| Base != BaseEnd; ++Base) { |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| |
| if (!BaseClassDecl->hasDeclaredCopyAssignment()) |
| DeclareImplicitCopyAssignment(BaseClassDecl); |
| |
| if (CXXMethodDecl *CopyAssign |
| = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment)) |
| ExceptSpec.CalledDecl(CopyAssign); |
| } |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| FieldEnd = ClassDecl->field_end(); |
| Field != FieldEnd; |
| ++Field) { |
| QualType FieldType = Context.getBaseElementType((*Field)->getType()); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| |
| if (!FieldClassDecl->hasDeclaredCopyAssignment()) |
| DeclareImplicitCopyAssignment(FieldClassDecl); |
| |
| if (CXXMethodDecl *CopyAssign |
| = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment)) |
| ExceptSpec.CalledDecl(CopyAssign); |
| } |
| } |
| |
| // An implicitly-declared copy assignment operator is an inline public |
| // member of its class. |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification(); |
| EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification(); |
| EPI.NumExceptions = ExceptSpec.size(); |
| EPI.Exceptions = ExceptSpec.data(); |
| DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); |
| CXXMethodDecl *CopyAssignment |
| = CXXMethodDecl::Create(Context, ClassDecl, NameInfo, |
| Context.getFunctionType(RetType, &ArgType, 1, EPI), |
| /*TInfo=*/0, /*isStatic=*/false, |
| /*StorageClassAsWritten=*/SC_None, |
| /*isInline=*/true); |
| CopyAssignment->setAccess(AS_public); |
| CopyAssignment->setImplicit(); |
| CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); |
| |
| // Add the parameter to the operator. |
| ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, |
| ClassDecl->getLocation(), |
| /*Id=*/0, |
| ArgType, /*TInfo=*/0, |
| SC_None, |
| SC_None, 0); |
| CopyAssignment->setParams(&FromParam, 1); |
| |
| // Note that we have added this copy-assignment operator. |
| ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; |
| |
| if (Scope *S = getScopeForContext(ClassDecl)) |
| PushOnScopeChains(CopyAssignment, S, false); |
| ClassDecl->addDecl(CopyAssignment); |
| |
| AddOverriddenMethods(ClassDecl, CopyAssignment); |
| return CopyAssignment; |
| } |
| |
| void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, |
| CXXMethodDecl *CopyAssignOperator) { |
| assert((CopyAssignOperator->isImplicit() && |
| CopyAssignOperator->isOverloadedOperator() && |
| CopyAssignOperator->getOverloadedOperator() == OO_Equal && |
| !CopyAssignOperator->isUsed(false)) && |
| "DefineImplicitCopyAssignment called for wrong function"); |
| |
| CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); |
| |
| if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) { |
| CopyAssignOperator->setInvalidDecl(); |
| return; |
| } |
| |
| CopyAssignOperator->setUsed(); |
| |
| ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator); |
| DiagnosticErrorTrap Trap(Diags); |
| |
| // C++0x [class.copy]p30: |
| // The implicitly-defined or explicitly-defaulted copy assignment operator |
| // for a non-union class X performs memberwise copy assignment of its |
| // subobjects. The direct base classes of X are assigned first, in the |
| // order of their declaration in the base-specifier-list, and then the |
| // immediate non-static data members of X are assigned, in the order in |
| // which they were declared in the class definition. |
| |
| // The statements that form the synthesized function body. |
| ASTOwningVector<Stmt*> Statements(*this); |
| |
| // The parameter for the "other" object, which we are copying from. |
| ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); |
| Qualifiers OtherQuals = Other->getType().getQualifiers(); |
| QualType OtherRefType = Other->getType(); |
| if (const LValueReferenceType *OtherRef |
| = OtherRefType->getAs<LValueReferenceType>()) { |
| OtherRefType = OtherRef->getPointeeType(); |
| OtherQuals = OtherRefType.getQualifiers(); |
| } |
| |
| // Our location for everything implicitly-generated. |
| SourceLocation Loc = CopyAssignOperator->getLocation(); |
| |
| // Construct a reference to the "other" object. We'll be using this |
| // throughout the generated ASTs. |
| Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take(); |
| assert(OtherRef && "Reference to parameter cannot fail!"); |
| |
| // Construct the "this" pointer. We'll be using this throughout the generated |
| // ASTs. |
| Expr *This = ActOnCXXThis(Loc).takeAs<Expr>(); |
| assert(This && "Reference to this cannot fail!"); |
| |
| // Assign base classes. |
| bool Invalid = false; |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| // Form the assignment: |
| // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); |
| QualType BaseType = Base->getType().getUnqualifiedType(); |
| if (!BaseType->isRecordType()) { |
| Invalid = true; |
| continue; |
| } |
| |
| CXXCastPath BasePath; |
| BasePath.push_back(Base); |
| |
| // Construct the "from" expression, which is an implicit cast to the |
| // appropriately-qualified base type. |
| Expr *From = OtherRef; |
| ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals), |
| CK_UncheckedDerivedToBase, |
| VK_LValue, &BasePath); |
| |
| // Dereference "this". |
| ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This); |
| |
| // Implicitly cast "this" to the appropriately-qualified base type. |
| Expr *ToE = To.takeAs<Expr>(); |
| ImpCastExprToType(ToE, |
| Context.getCVRQualifiedType(BaseType, |
| CopyAssignOperator->getTypeQualifiers()), |
| CK_UncheckedDerivedToBase, |
| VK_LValue, &BasePath); |
| To = Owned(ToE); |
| |
| // Build the copy. |
| StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType, |
| To.get(), From, |
| /*CopyingBaseSubobject=*/true); |
| if (Copy.isInvalid()) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); |
| CopyAssignOperator->setInvalidDecl(); |
| return; |
| } |
| |
| // Success! Record the copy. |
| Statements.push_back(Copy.takeAs<Expr>()); |
| } |
| |
| // \brief Reference to the __builtin_memcpy function. |
| Expr *BuiltinMemCpyRef = 0; |
| // \brief Reference to the __builtin_objc_memmove_collectable function. |
| Expr *CollectableMemCpyRef = 0; |
| |
| // Assign non-static members. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| FieldEnd = ClassDecl->field_end(); |
| Field != FieldEnd; ++Field) { |
| // Check for members of reference type; we can't copy those. |
| if (Field->getType()->isReferenceType()) { |
| Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); |
| Diag(Field->getLocation(), diag::note_declared_at); |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); |
| Invalid = true; |
| continue; |
| } |
| |
| // Check for members of const-qualified, non-class type. |
| QualType BaseType = Context.getBaseElementType(Field->getType()); |
| if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { |
| Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); |
| Diag(Field->getLocation(), diag::note_declared_at); |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); |
| Invalid = true; |
| continue; |
| } |
| |
| QualType FieldType = Field->getType().getNonReferenceType(); |
| if (FieldType->isIncompleteArrayType()) { |
| assert(ClassDecl->hasFlexibleArrayMember() && |
| "Incomplete array type is not valid"); |
| continue; |
| } |
| |
| // Build references to the field in the object we're copying from and to. |
| CXXScopeSpec SS; // Intentionally empty |
| LookupResult MemberLookup(*this, Field->getDeclName(), Loc, |
| LookupMemberName); |
| MemberLookup.addDecl(*Field); |
| MemberLookup.resolveKind(); |
| ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType, |
| Loc, /*IsArrow=*/false, |
| SS, 0, MemberLookup, 0); |
| ExprResult To = BuildMemberReferenceExpr(This, This->getType(), |
| Loc, /*IsArrow=*/true, |
| SS, 0, MemberLookup, 0); |
| assert(!From.isInvalid() && "Implicit field reference cannot fail"); |
| assert(!To.isInvalid() && "Implicit field reference cannot fail"); |
| |
| // If the field should be copied with __builtin_memcpy rather than via |
| // explicit assignments, do so. This optimization only applies for arrays |
| // of scalars and arrays of class type with trivial copy-assignment |
| // operators. |
| if (FieldType->isArrayType() && |
| (!BaseType->isRecordType() || |
| cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()) |
| ->hasTrivialCopyAssignment())) { |
| // Compute the size of the memory buffer to be copied. |
| QualType SizeType = Context.getSizeType(); |
| llvm::APInt Size(Context.getTypeSize(SizeType), |
| Context.getTypeSizeInChars(BaseType).getQuantity()); |
| for (const ConstantArrayType *Array |
| = Context.getAsConstantArrayType(FieldType); |
| Array; |
| Array = Context.getAsConstantArrayType(Array->getElementType())) { |
| llvm::APInt ArraySize |
| = Array->getSize().zextOrTrunc(Size.getBitWidth()); |
| Size *= ArraySize; |
| } |
| |
| // Take the address of the field references for "from" and "to". |
| From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get()); |
| To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get()); |
| |
| bool NeedsCollectableMemCpy = |
| (BaseType->isRecordType() && |
| BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()); |
| |
| if (NeedsCollectableMemCpy) { |
| if (!CollectableMemCpyRef) { |
| // Create a reference to the __builtin_objc_memmove_collectable function. |
| LookupResult R(*this, |
| &Context.Idents.get("__builtin_objc_memmove_collectable"), |
| Loc, LookupOrdinaryName); |
| LookupName(R, TUScope, true); |
| |
| FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>(); |
| if (!CollectableMemCpy) { |
| // Something went horribly wrong earlier, and we will have |
| // complained about it. |
| Invalid = true; |
| continue; |
| } |
| |
| CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy, |
| CollectableMemCpy->getType(), |
| VK_LValue, Loc, 0).take(); |
| assert(CollectableMemCpyRef && "Builtin reference cannot fail"); |
| } |
| } |
| // Create a reference to the __builtin_memcpy builtin function. |
| else if (!BuiltinMemCpyRef) { |
| LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc, |
| LookupOrdinaryName); |
| LookupName(R, TUScope, true); |
| |
| FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>(); |
| if (!BuiltinMemCpy) { |
| // Something went horribly wrong earlier, and we will have complained |
| // about it. |
| Invalid = true; |
| continue; |
| } |
| |
| BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy, |
| BuiltinMemCpy->getType(), |
| VK_LValue, Loc, 0).take(); |
| assert(BuiltinMemCpyRef && "Builtin reference cannot fail"); |
| } |
| |
| ASTOwningVector<Expr*> CallArgs(*this); |
| CallArgs.push_back(To.takeAs<Expr>()); |
| CallArgs.push_back(From.takeAs<Expr>()); |
| CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc)); |
| ExprResult Call = ExprError(); |
| if (NeedsCollectableMemCpy) |
| Call = ActOnCallExpr(/*Scope=*/0, |
| CollectableMemCpyRef, |
| Loc, move_arg(CallArgs), |
| Loc); |
| else |
| Call = ActOnCallExpr(/*Scope=*/0, |
| BuiltinMemCpyRef, |
| Loc, move_arg(CallArgs), |
| Loc); |
| |
| assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); |
| Statements.push_back(Call.takeAs<Expr>()); |
| continue; |
| } |
| |
| // Build the copy of this field. |
| StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType, |
| To.get(), From.get(), |
| /*CopyingBaseSubobject=*/false); |
| if (Copy.isInvalid()) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); |
| CopyAssignOperator->setInvalidDecl(); |
| return; |
| } |
| |
| // Success! Record the copy. |
| Statements.push_back(Copy.takeAs<Stmt>()); |
| } |
| |
| if (!Invalid) { |
| // Add a "return *this;" |
| ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This); |
| |
| StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get()); |
| if (Return.isInvalid()) |
| Invalid = true; |
| else { |
| Statements.push_back(Return.takeAs<Stmt>()); |
| |
| if (Trap.hasErrorOccurred()) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); |
| Invalid = true; |
| } |
| } |
| } |
| |
| if (Invalid) { |
| CopyAssignOperator->setInvalidDecl(); |
| return; |
| } |
| |
| StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements), |
| /*isStmtExpr=*/false); |
| assert(!Body.isInvalid() && "Compound statement creation cannot fail"); |
| CopyAssignOperator->setBody(Body.takeAs<Stmt>()); |
| } |
| |
| CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( |
| CXXRecordDecl *ClassDecl) { |
| // C++ [class.copy]p4: |
| // If the class definition does not explicitly declare a copy |
| // constructor, one is declared implicitly. |
| |
| // C++ [class.copy]p5: |
| // The implicitly-declared copy constructor for a class X will |
| // have the form |
| // |
| // X::X(const X&) |
| // |
| // if |
| bool HasConstCopyConstructor = true; |
| |
| // -- each direct or virtual base class B of X has a copy |
| // constructor whose first parameter is of type const B& or |
| // const volatile B&, and |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| BaseEnd = ClassDecl->bases_end(); |
| HasConstCopyConstructor && Base != BaseEnd; |
| ++Base) { |
| // Virtual bases are handled below. |
| if (Base->isVirtual()) |
| continue; |
| |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (!BaseClassDecl->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(BaseClassDecl); |
| |
| HasConstCopyConstructor |
| = BaseClassDecl->hasConstCopyConstructor(Context); |
| } |
| |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), |
| BaseEnd = ClassDecl->vbases_end(); |
| HasConstCopyConstructor && Base != BaseEnd; |
| ++Base) { |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (!BaseClassDecl->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(BaseClassDecl); |
| |
| HasConstCopyConstructor |
| = BaseClassDecl->hasConstCopyConstructor(Context); |
| } |
| |
| // -- for all the nonstatic data members of X that are of a |
| // class type M (or array thereof), each such class type |
| // has a copy constructor whose first parameter is of type |
| // const M& or const volatile M&. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| FieldEnd = ClassDecl->field_end(); |
| HasConstCopyConstructor && Field != FieldEnd; |
| ++Field) { |
| QualType FieldType = Context.getBaseElementType((*Field)->getType()); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| if (!FieldClassDecl->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(FieldClassDecl); |
| |
| HasConstCopyConstructor |
| = FieldClassDecl->hasConstCopyConstructor(Context); |
| } |
| } |
| |
| // Otherwise, the implicitly declared copy constructor will have |
| // the form |
| // |
| // X::X(X&) |
| QualType ClassType = Context.getTypeDeclType(ClassDecl); |
| QualType ArgType = ClassType; |
| if (HasConstCopyConstructor) |
| ArgType = ArgType.withConst(); |
| ArgType = Context.getLValueReferenceType(ArgType); |
| |
| // C++ [except.spec]p14: |
| // An implicitly declared special member function (Clause 12) shall have an |
| // exception-specification. [...] |
| ImplicitExceptionSpecification ExceptSpec(Context); |
| unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0; |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| BaseEnd = ClassDecl->bases_end(); |
| Base != BaseEnd; |
| ++Base) { |
| // Virtual bases are handled below. |
| if (Base->isVirtual()) |
| continue; |
| |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (!BaseClassDecl->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(BaseClassDecl); |
| |
| if (CXXConstructorDecl *CopyConstructor |
| = BaseClassDecl->getCopyConstructor(Context, Quals)) |
| ExceptSpec.CalledDecl(CopyConstructor); |
| } |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), |
| BaseEnd = ClassDecl->vbases_end(); |
| Base != BaseEnd; |
| ++Base) { |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (!BaseClassDecl->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(BaseClassDecl); |
| |
| if (CXXConstructorDecl *CopyConstructor |
| = BaseClassDecl->getCopyConstructor(Context, Quals)) |
| ExceptSpec.CalledDecl(CopyConstructor); |
| } |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| FieldEnd = ClassDecl->field_end(); |
| Field != FieldEnd; |
| ++Field) { |
| QualType FieldType = Context.getBaseElementType((*Field)->getType()); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| if (!FieldClassDecl->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(FieldClassDecl); |
| |
| if (CXXConstructorDecl *CopyConstructor |
| = FieldClassDecl->getCopyConstructor(Context, Quals)) |
| ExceptSpec.CalledDecl(CopyConstructor); |
| } |
| } |
| |
| // An implicitly-declared copy constructor is an inline public |
| // member of its class. |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification(); |
| EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification(); |
| EPI.NumExceptions = ExceptSpec.size(); |
| EPI.Exceptions = ExceptSpec.data(); |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(ClassType)); |
| DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); |
| CXXConstructorDecl *CopyConstructor |
| = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo, |
| Context.getFunctionType(Context.VoidTy, |
| &ArgType, 1, EPI), |
| /*TInfo=*/0, |
| /*isExplicit=*/false, |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| CopyConstructor->setAccess(AS_public); |
| CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); |
| |
| // Note that we have declared this constructor. |
| ++ASTContext::NumImplicitCopyConstructorsDeclared; |
| |
| // Add the parameter to the constructor. |
| ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, |
| ClassDecl->getLocation(), |
| /*IdentifierInfo=*/0, |
| ArgType, /*TInfo=*/0, |
| SC_None, |
| SC_None, 0); |
| CopyConstructor->setParams(&FromParam, 1); |
| if (Scope *S = getScopeForContext(ClassDecl)) |
| PushOnScopeChains(CopyConstructor, S, false); |
| ClassDecl->addDecl(CopyConstructor); |
| |
| return CopyConstructor; |
| } |
| |
| void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, |
| CXXConstructorDecl *CopyConstructor, |
| unsigned TypeQuals) { |
| assert((CopyConstructor->isImplicit() && |
| CopyConstructor->isCopyConstructor(TypeQuals) && |
| !CopyConstructor->isUsed(false)) && |
| "DefineImplicitCopyConstructor - call it for implicit copy ctor"); |
| |
| CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); |
| assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); |
| |
| ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor); |
| DiagnosticErrorTrap Trap(Diags); |
| |
| if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) || |
| Trap.hasErrorOccurred()) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXCopyConstructor << Context.getTagDeclType(ClassDecl); |
| CopyConstructor->setInvalidDecl(); |
| } else { |
| CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(), |
| CopyConstructor->getLocation(), |
| MultiStmtArg(*this, 0, 0), |
| /*isStmtExpr=*/false) |
| .takeAs<Stmt>()); |
| } |
| |
| CopyConstructor->setUsed(); |
| } |
| |
| ExprResult |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, |
| CXXConstructorDecl *Constructor, |
| MultiExprArg ExprArgs, |
| bool RequiresZeroInit, |
| unsigned ConstructKind, |
| SourceRange ParenRange) { |
| bool Elidable = false; |
| |
| // C++0x [class.copy]p34: |
| // When certain criteria are met, an implementation is allowed to |
| // omit the copy/move construction of a class object, even if the |
| // copy/move constructor and/or destructor for the object have |
| // side effects. [...] |
| // - when a temporary class object that has not been bound to a |
| // reference (12.2) would be copied/moved to a class object |
| // with the same cv-unqualified type, the copy/move operation |
| // can be omitted by constructing the temporary object |
| // directly into the target of the omitted copy/move |
| if (ConstructKind == CXXConstructExpr::CK_Complete && |
| Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) { |
| Expr *SubExpr = ((Expr **)ExprArgs.get())[0]; |
| Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent()); |
| } |
| |
| return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, |
| Elidable, move(ExprArgs), RequiresZeroInit, |
| ConstructKind, ParenRange); |
| } |
| |
| /// BuildCXXConstructExpr - Creates a complete call to a constructor, |
| /// including handling of its default argument expressions. |
| ExprResult |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, |
| CXXConstructorDecl *Constructor, bool Elidable, |
| MultiExprArg ExprArgs, |
| bool RequiresZeroInit, |
| unsigned ConstructKind, |
| SourceRange ParenRange) { |
| unsigned NumExprs = ExprArgs.size(); |
| Expr **Exprs = (Expr **)ExprArgs.release(); |
| |
| MarkDeclarationReferenced(ConstructLoc, Constructor); |
| return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, |
| Constructor, Elidable, Exprs, NumExprs, |
| RequiresZeroInit, |
| static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), |
| ParenRange)); |
| } |
| |
| bool Sema::InitializeVarWithConstructor(VarDecl *VD, |
| CXXConstructorDecl *Constructor, |
| MultiExprArg Exprs) { |
| // FIXME: Provide the correct paren SourceRange when available. |
| ExprResult TempResult = |
| BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, |
| move(Exprs), false, CXXConstructExpr::CK_Complete, |
| SourceRange()); |
| if (TempResult.isInvalid()) |
| return true; |
| |
| Expr *Temp = TempResult.takeAs<Expr>(); |
| CheckImplicitConversions(Temp, VD->getLocation()); |
| MarkDeclarationReferenced(VD->getLocation(), Constructor); |
| Temp = MaybeCreateExprWithCleanups(Temp); |
| VD->setInit(Temp); |
| |
| return false; |
| } |
| |
| void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); |
| if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() && |
| !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) { |
| CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); |
| MarkDeclarationReferenced(VD->getLocation(), Destructor); |
| CheckDestructorAccess(VD->getLocation(), Destructor, |
| PDiag(diag::err_access_dtor_var) |
| << VD->getDeclName() |
| << VD->getType()); |
| |
| // TODO: this should be re-enabled for static locals by !CXAAtExit |
| if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal()) |
| Diag(VD->getLocation(), diag::warn_global_destructor); |
| } |
| } |
| |
| /// AddCXXDirectInitializerToDecl - This action is called immediately after |
| /// ActOnDeclarator, when a C++ direct initializer is present. |
| /// e.g: "int x(1);" |
| void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl, |
| SourceLocation LParenLoc, |
| MultiExprArg Exprs, |
| SourceLocation RParenLoc) { |
| assert(Exprs.size() != 0 && Exprs.get() && "missing expressions"); |
| |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (RealDecl == 0) |
| return; |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // We will represent direct-initialization similarly to copy-initialization: |
| // int x(1); -as-> int x = 1; |
| // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); |
| // |
| // Clients that want to distinguish between the two forms, can check for |
| // direct initializer using VarDecl::hasCXXDirectInitializer(). |
| // A major benefit is that clients that don't particularly care about which |
| // exactly form was it (like the CodeGen) can handle both cases without |
| // special case code. |
| |
| // C++ 8.5p11: |
| // The form of initialization (using parentheses or '=') is generally |
| // insignificant, but does matter when the entity being initialized has a |
| // class type. |
| |
| if (!VDecl->getType()->isDependentType() && |
| RequireCompleteType(VDecl->getLocation(), VDecl->getType(), |
| diag::err_typecheck_decl_incomplete_type)) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // The variable can not have an abstract class type. |
| if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| VDecl->setInvalidDecl(); |
| |
| const VarDecl *Def; |
| if ((Def = VDecl->getDefinition()) && Def != VDecl) { |
| Diag(VDecl->getLocation(), diag::err_redefinition) |
| << VDecl->getDeclName(); |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // C++ [class.static.data]p4 |
| // If a static data member is of const integral or const |
| // enumeration type, its declaration in the class definition can |
| // specify a constant-initializer which shall be an integral |
| // constant expression (5.19). In that case, the member can appear |
| // in integral constant expressions. The member shall still be |
| // defined in a namespace scope if it is used in the program and the |
| // namespace scope definition shall not contain an initializer. |
| // |
| // We already performed a redefinition check above, but for static |
| // data members we also need to check whether there was an in-class |
| // declaration with an initializer. |
| const VarDecl* PrevInit = 0; |
| if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { |
| Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); |
| Diag(PrevInit->getLocation(), diag::note_previous_definition); |
| return; |
| } |
| |
| bool IsDependent = false; |
| for (unsigned I = 0, N = Exprs.size(); I != N; ++I) { |
| if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| if (Exprs.get()[I]->isTypeDependent()) |
| IsDependent = true; |
| } |
| |
| // If either the declaration has a dependent type or if any of the |
| // expressions is type-dependent, we represent the initialization |
| // via a ParenListExpr for later use during template instantiation. |
| if (VDecl->getType()->isDependentType() || IsDependent) { |
| // Let clients know that initialization was done with a direct initializer. |
| VDecl->setCXXDirectInitializer(true); |
| |
| // Store the initialization expressions as a ParenListExpr. |
| unsigned NumExprs = Exprs.size(); |
| VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc, |
| (Expr **)Exprs.release(), |
| NumExprs, RParenLoc)); |
| return; |
| } |
| |
| // Capture the variable that is being initialized and the style of |
| // initialization. |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); |
| |
| // FIXME: Poor source location information. |
| InitializationKind Kind |
| = InitializationKind::CreateDirect(VDecl->getLocation(), |
| LParenLoc, RParenLoc); |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, |
| Exprs.get(), Exprs.size()); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| CheckImplicitConversions(Result.get(), LParenLoc); |
| |
| Result = MaybeCreateExprWithCleanups(Result); |
| VDecl->setInit(Result.takeAs<Expr>()); |
| VDecl->setCXXDirectInitializer(true); |
| |
| CheckCompleteVariableDeclaration(VDecl); |
| } |
| |
| /// \brief Given a constructor and the set of arguments provided for the |
| /// constructor, convert the arguments and add any required default arguments |
| /// to form a proper call to this constructor. |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool |
| Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, |
| MultiExprArg ArgsPtr, |
| SourceLocation Loc, |
| ASTOwningVector<Expr*> &ConvertedArgs) { |
| // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. |
| unsigned NumArgs = ArgsPtr.size(); |
| Expr **Args = (Expr **)ArgsPtr.get(); |
| |
| const FunctionProtoType *Proto |
| = Constructor->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Constructor without a prototype?"); |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // If too few arguments are available, we'll fill in the rest with defaults. |
| if (NumArgs < NumArgsInProto) |
| ConvertedArgs.reserve(NumArgsInProto); |
| else |
| ConvertedArgs.reserve(NumArgs); |
| |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; |
| llvm::SmallVector<Expr *, 8> AllArgs; |
| bool Invalid = GatherArgumentsForCall(Loc, Constructor, |
| Proto, 0, Args, NumArgs, AllArgs, |
| CallType); |
| for (unsigned i =0, size = AllArgs.size(); i < size; i++) |
| ConvertedArgs.push_back(AllArgs[i]); |
| return Invalid; |
| } |
| |
| static inline bool |
| CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, |
| const FunctionDecl *FnDecl) { |
| const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); |
| if (isa<NamespaceDecl>(DC)) { |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_declared_in_namespace) |
| << FnDecl->getDeclName(); |
| } |
| |
| if (isa<TranslationUnitDecl>(DC) && |
| FnDecl->getStorageClass() == SC_Static) { |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_declared_static) |
| << FnDecl->getDeclName(); |
| } |
| |
| return false; |
| } |
| |
| static inline bool |
| CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, |
| CanQualType ExpectedResultType, |
| CanQualType ExpectedFirstParamType, |
| unsigned DependentParamTypeDiag, |
| unsigned InvalidParamTypeDiag) { |
| QualType ResultType = |
| FnDecl->getType()->getAs<FunctionType>()->getResultType(); |
| |
| // Check that the result type is not dependent. |
| if (ResultType->isDependentType()) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_dependent_result_type) |
| << FnDecl->getDeclName() << ExpectedResultType; |
| |
| // Check that the result type is what we expect. |
| if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_invalid_result_type) |
| << FnDecl->getDeclName() << ExpectedResultType; |
| |
| // A function template must have at least 2 parameters. |
| if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_template_too_few_parameters) |
| << FnDecl->getDeclName(); |
| |
| // The function decl must have at least 1 parameter. |
| if (FnDecl->getNumParams() == 0) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_too_few_parameters) |
| << FnDecl->getDeclName(); |
| |
| // Check the the first parameter type is not dependent. |
| QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); |
| if (FirstParamType->isDependentType()) |
| return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) |
| << FnDecl->getDeclName() << ExpectedFirstParamType; |
| |
| // Check that the first parameter type is what we expect. |
| if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != |
| ExpectedFirstParamType) |
| return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) |
| << FnDecl->getDeclName() << ExpectedFirstParamType; |
| |
| return false; |
| } |
| |
| static bool |
| CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { |
| // C++ [basic.stc.dynamic.allocation]p1: |
| // A program is ill-formed if an allocation function is declared in a |
| // namespace scope other than global scope or declared static in global |
| // scope. |
| if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
| return true; |
| |
| CanQualType SizeTy = |
| SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); |
| |
| // C++ [basic.stc.dynamic.allocation]p1: |
| // The return type shall be void*. The first parameter shall have type |
| // std::size_t. |
| if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, |
| SizeTy, |
| diag::err_operator_new_dependent_param_type, |
| diag::err_operator_new_param_type)) |
| return true; |
| |
| // C++ [basic.stc.dynamic.allocation]p1: |
| // The first parameter shall not have an associated default argument. |
| if (FnDecl->getParamDecl(0)->hasDefaultArg()) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_default_arg) |
| << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); |
| |
| return false; |
| } |
| |
| static bool |
| CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { |
| // C++ [basic.stc.dynamic.deallocation]p1: |
| // A program is ill-formed if deallocation functions are declared in a |
| // namespace scope other than global scope or declared static in global |
| // scope. |
| if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
| return true; |
| |
| // C++ [basic.stc.dynamic.deallocation]p2: |
| // Each deallocation function shall return void and its first parameter |
| // shall be void*. |
| if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, |
| SemaRef.Context.VoidPtrTy, |
| diag::err_operator_delete_dependent_param_type, |
| diag::err_operator_delete_param_type)) |
| return true; |
| |
| return false; |
| } |
| |
| /// CheckOverloadedOperatorDeclaration - Check whether the declaration |
| /// of this overloaded operator is well-formed. If so, returns false; |
| /// otherwise, emits appropriate diagnostics and returns true. |
| bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { |
| assert(FnDecl && FnDecl->isOverloadedOperator() && |
| "Expected an overloaded operator declaration"); |
| |
| OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); |
| |
| // C++ [over.oper]p5: |
| // The allocation and deallocation functions, operator new, |
| // operator new[], operator delete and operator delete[], are |
| // described completely in 3.7.3. The attributes and restrictions |
| // found in the rest of this subclause do not apply to them unless |
| // explicitly stated in 3.7.3. |
| if (Op == OO_Delete || Op == OO_Array_Delete) |
| return CheckOperatorDeleteDeclaration(*this, FnDecl); |
| |
| if (Op == OO_New || Op == OO_Array_New) |
| return CheckOperatorNewDeclaration(*this, FnDecl); |
| |
| // C++ [over.oper]p6: |
| // An operator function shall either be a non-static member |
| // function or be a non-member function and have at least one |
| // parameter whose type is a class, a reference to a class, an |
| // enumeration, or a reference to an enumeration. |
| if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| if (MethodDecl->isStatic()) |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_static) << FnDecl->getDeclName(); |
| } else { |
| bool ClassOrEnumParam = false; |
| for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), |
| ParamEnd = FnDecl->param_end(); |
| Param != ParamEnd; ++Param) { |
| QualType ParamType = (*Param)->getType().getNonReferenceType(); |
| if (ParamType->isDependentType() || ParamType->isRecordType() || |
| ParamType->isEnumeralType()) { |
| ClassOrEnumParam = true; |
| break; |
| } |
| } |
| |
| if (!ClassOrEnumParam) |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_needs_class_or_enum) |
| << FnDecl->getDeclName(); |
| } |
| |
| // C++ [over.oper]p8: |
| // An operator function cannot have default arguments (8.3.6), |
| // except where explicitly stated below. |
| // |
| // Only the function-call operator allows default arguments |
| // (C++ [over.call]p1). |
| if (Op != OO_Call) { |
| for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); |
| Param != FnDecl->param_end(); ++Param) { |
| if ((*Param)->hasDefaultArg()) |
| return Diag((*Param)->getLocation(), |
| diag::err_operator_overload_default_arg) |
| << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); |
| } |
| } |
| |
| static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { |
| { false, false, false } |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| , { Unary, Binary, MemberOnly } |
| #include "clang/Basic/OperatorKinds.def" |
| }; |
| |
| bool CanBeUnaryOperator = OperatorUses[Op][0]; |
| bool CanBeBinaryOperator = OperatorUses[Op][1]; |
| bool MustBeMemberOperator = OperatorUses[Op][2]; |
| |
| // C++ [over.oper]p8: |
| // [...] Operator functions cannot have more or fewer parameters |
| // than the number required for the corresponding operator, as |
| // described in the rest of this subclause. |
| unsigned NumParams = FnDecl->getNumParams() |
| + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); |
| if (Op != OO_Call && |
| ((NumParams == 1 && !CanBeUnaryOperator) || |
| (NumParams == 2 && !CanBeBinaryOperator) || |
| (NumParams < 1) || (NumParams > 2))) { |
| // We have the wrong number of parameters. |
| unsigned ErrorKind; |
| if (CanBeUnaryOperator && CanBeBinaryOperator) { |
| ErrorKind = 2; // 2 -> unary or binary. |
| } else if (CanBeUnaryOperator) { |
| ErrorKind = 0; // 0 -> unary |
| } else { |
| assert(CanBeBinaryOperator && |
| "All non-call overloaded operators are unary or binary!"); |
| ErrorKind = 1; // 1 -> binary |
| } |
| |
| return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) |
| << FnDecl->getDeclName() << NumParams << ErrorKind; |
| } |
| |
| // Overloaded operators other than operator() cannot be variadic. |
| if (Op != OO_Call && |
| FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { |
| return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) |
| << FnDecl->getDeclName(); |
| } |
| |
| // Some operators must be non-static member functions. |
| if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_must_be_member) |
| << FnDecl->getDeclName(); |
| } |
| |
| // C++ [over.inc]p1: |
| // The user-defined function called operator++ implements the |
| // prefix and postfix ++ operator. If this function is a member |
| // function with no parameters, or a non-member function with one |
| // parameter of class or enumeration type, it defines the prefix |
| // increment operator ++ for objects of that type. If the function |
| // is a member function with one parameter (which shall be of type |
| // int) or a non-member function with two parameters (the second |
| // of which shall be of type int), it defines the postfix |
| // increment operator ++ for objects of that type. |
| if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { |
| ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); |
| bool ParamIsInt = false; |
| if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>()) |
| ParamIsInt = BT->getKind() == BuiltinType::Int; |
| |
| if (!ParamIsInt) |
| return Diag(LastParam->getLocation(), |
| diag::err_operator_overload_post_incdec_must_be_int) |
| << LastParam->getType() << (Op == OO_MinusMinus); |
| } |
| |
| return false; |
| } |
| |
| /// CheckLiteralOperatorDeclaration - Check whether the declaration |
| /// of this literal operator function is well-formed. If so, returns |
| /// false; otherwise, emits appropriate diagnostics and returns true. |
| bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { |
| DeclContext *DC = FnDecl->getDeclContext(); |
| Decl::Kind Kind = DC->getDeclKind(); |
| if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace && |
| Kind != Decl::LinkageSpec) { |
| Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) |
| << FnDecl->getDeclName(); |
| return true; |
| } |
| |
| bool Valid = false; |
| |
| // template <char...> type operator "" name() is the only valid template |
| // signature, and the only valid signature with no parameters. |
| if (FnDecl->param_size() == 0) { |
| if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) { |
| // Must have only one template parameter |
| TemplateParameterList *Params = TpDecl->getTemplateParameters(); |
| if (Params->size() == 1) { |
| NonTypeTemplateParmDecl *PmDecl = |
| cast<NonTypeTemplateParmDecl>(Params->getParam(0)); |
| |
| // The template parameter must be a char parameter pack. |
| if (PmDecl && PmDecl->isTemplateParameterPack() && |
| Context.hasSameType(PmDecl->getType(), Context.CharTy)) |
| Valid = true; |
| } |
| } |
| } else { |
| // Check the first parameter |
| FunctionDecl::param_iterator Param = FnDecl->param_begin(); |
| |
| QualType T = (*Param)->getType(); |
| |
| // unsigned long long int, long double, and any character type are allowed |
| // as the only parameters. |
| if (Context.hasSameType(T, Context.UnsignedLongLongTy) || |
| Context.hasSameType(T, Context.LongDoubleTy) || |
| Context.hasSameType(T, Context.CharTy) || |
| Context.hasSameType(T, Context.WCharTy) || |
| Context.hasSameType(T, Context.Char16Ty) || |
| Context.hasSameType(T, Context.Char32Ty)) { |
| if (++Param == FnDecl->param_end()) |
| Valid = true; |
| goto FinishedParams; |
| } |
| |
| // Otherwise it must be a pointer to const; let's strip those qualifiers. |
| const PointerType *PT = T->getAs<PointerType>(); |
| if (!PT) |
| goto FinishedParams; |
| T = PT->getPointeeType(); |
| if (!T.isConstQualified()) |
| goto FinishedParams; |
| T = T.getUnqualifiedType(); |
| |
| // Move on to the second parameter; |
| ++Param; |
| |
| // If there is no second parameter, the first must be a const char * |
| if (Param == FnDecl->param_end()) { |
| if (Context.hasSameType(T, Context.CharTy)) |
| Valid = true; |
| goto FinishedParams; |
| } |
| |
| // const char *, const wchar_t*, const char16_t*, and const char32_t* |
| // are allowed as the first parameter to a two-parameter function |
| if (!(Context.hasSameType(T, Context.CharTy) || |
| Context.hasSameType(T, Context.WCharTy) || |
| Context.hasSameType(T, Context.Char16Ty) || |
| Context.hasSameType(T, Context.Char32Ty))) |
| goto FinishedParams; |
| |
| // The second and final parameter must be an std::size_t |
| T = (*Param)->getType().getUnqualifiedType(); |
| if (Context.hasSameType(T, Context.getSizeType()) && |
| ++Param == FnDecl->param_end()) |
| Valid = true; |
| } |
| |
| // FIXME: This diagnostic is absolutely terrible. |
| FinishedParams: |
| if (!Valid) { |
| Diag(FnDecl->getLocation(), diag::err_literal_operator_params) |
| << FnDecl->getDeclName(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ |
| /// linkage specification, including the language and (if present) |
| /// the '{'. ExternLoc is the location of the 'extern', LangLoc is |
| /// the location of the language string literal, which is provided |
| /// by Lang/StrSize. LBraceLoc, if valid, provides the location of |
| /// the '{' brace. Otherwise, this linkage specification does not |
| /// have any braces. |
| Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, |
| SourceLocation LangLoc, |
| llvm::StringRef Lang, |
| SourceLocation LBraceLoc) { |
| LinkageSpecDecl::LanguageIDs Language; |
| if (Lang == "\"C\"") |
| Language = LinkageSpecDecl::lang_c; |
| else if (Lang == "\"C++\"") |
| Language = LinkageSpecDecl::lang_cxx; |
| else { |
| Diag(LangLoc, diag::err_bad_language); |
| return 0; |
| } |
| |
| // FIXME: Add all the various semantics of linkage specifications |
| |
| LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, |
| LangLoc, Language, |
| LBraceLoc.isValid()); |
| CurContext->addDecl(D); |
| PushDeclContext(S, D); |
| return D; |
| } |
| |
| /// ActOnFinishLinkageSpecification - Complete the definition of |
| /// the C++ linkage specification LinkageSpec. If RBraceLoc is |
| /// valid, it's the position of the closing '}' brace in a linkage |
| /// specification that uses braces. |
| Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, |
| Decl *LinkageSpec, |
| SourceLocation RBraceLoc) { |
| if (LinkageSpec) |
| PopDeclContext(); |
| return LinkageSpec; |
| } |
| |
| /// \brief Perform semantic analysis for the variable declaration that |
| /// occurs within a C++ catch clause, returning the newly-created |
| /// variable. |
| VarDecl *Sema::BuildExceptionDeclaration(Scope *S, |
| TypeSourceInfo *TInfo, |
| IdentifierInfo *Name, |
| SourceLocation Loc) { |
| bool Invalid = false; |
| QualType ExDeclType = TInfo->getType(); |
| |
| // Arrays and functions decay. |
| if (ExDeclType->isArrayType()) |
| ExDeclType = Context.getArrayDecayedType(ExDeclType); |
| else if (ExDeclType->isFunctionType()) |
| ExDeclType = Context.getPointerType(ExDeclType); |
| |
| // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. |
| // The exception-declaration shall not denote a pointer or reference to an |
| // incomplete type, other than [cv] void*. |
| // N2844 forbids rvalue references. |
| if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { |
| Diag(Loc, diag::err_catch_rvalue_ref); |
| Invalid = true; |
| } |
| |
| // GCC allows catching pointers and references to incomplete types |
| // as an extension; so do we, but we warn by default. |
| |
| QualType BaseType = ExDeclType; |
| int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference |
| unsigned DK = diag::err_catch_incomplete; |
| bool IncompleteCatchIsInvalid = true; |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
| BaseType = Ptr->getPointeeType(); |
| Mode = 1; |
| DK = diag::ext_catch_incomplete_ptr; |
| IncompleteCatchIsInvalid = false; |
| } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { |
| // For the purpose of error recovery, we treat rvalue refs like lvalue refs. |
| BaseType = Ref->getPointeeType(); |
| Mode = 2; |
| DK = diag::ext_catch_incomplete_ref; |
| IncompleteCatchIsInvalid = false; |
| } |
| if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && |
| !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) && |
| IncompleteCatchIsInvalid) |
| Invalid = true; |
| |
| if (!Invalid && !ExDeclType->isDependentType() && |
| RequireNonAbstractType(Loc, ExDeclType, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| Invalid = true; |
| |
| // Only the non-fragile NeXT runtime currently supports C++ catches |
| // of ObjC types, and no runtime supports catching ObjC types by value. |
| if (!Invalid && getLangOptions().ObjC1) { |
| QualType T = ExDeclType; |
| if (const ReferenceType *RT = T->getAs<ReferenceType>()) |
| T = RT->getPointeeType(); |
| |
| if (T->isObjCObjectType()) { |
| Diag(Loc, diag::err_objc_object_catch); |
| Invalid = true; |
| } else if (T->isObjCObjectPointerType()) { |
| if (!getLangOptions().NeXTRuntime) { |
| Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu); |
| Invalid = true; |
| } else if (!getLangOptions().ObjCNonFragileABI) { |
| Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile); |
| Invalid = true; |
| } |
| } |
| } |
| |
| VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, |
| Name, ExDeclType, TInfo, SC_None, |
| SC_None); |
| ExDecl->setExceptionVariable(true); |
| |
| if (!Invalid) { |
| if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) { |
| // C++ [except.handle]p16: |
| // The object declared in an exception-declaration or, if the |
| // exception-declaration does not specify a name, a temporary (12.2) is |
| // copy-initialized (8.5) from the exception object. [...] |
| // The object is destroyed when the handler exits, after the destruction |
| // of any automatic objects initialized within the handler. |
| // |
| // We just pretend to initialize the object with itself, then make sure |
| // it can be destroyed later. |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl); |
| Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl, |
| Loc, ExDeclType, VK_LValue, 0); |
| InitializationKind Kind = InitializationKind::CreateCopy(Loc, |
| SourceLocation()); |
| InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &ExDeclRef, 1)); |
| if (Result.isInvalid()) |
| Invalid = true; |
| else |
| FinalizeVarWithDestructor(ExDecl, RecordTy); |
| } |
| } |
| |
| if (Invalid) |
| ExDecl->setInvalidDecl(); |
| |
| return ExDecl; |
| } |
| |
| /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch |
| /// handler. |
| Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| bool Invalid = D.isInvalidType(); |
| |
| // Check for unexpanded parameter packs. |
| if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
| UPPC_ExceptionType)) { |
| TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, |
| D.getIdentifierLoc()); |
| Invalid = true; |
| } |
| |
| IdentifierInfo *II = D.getIdentifier(); |
| if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), |
| LookupOrdinaryName, |
| ForRedeclaration)) { |
| // The scope should be freshly made just for us. There is just no way |
| // it contains any previous declaration. |
| assert(!S->isDeclScope(PrevDecl)); |
| if (PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| } |
| } |
| |
| if (D.getCXXScopeSpec().isSet() && !Invalid) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| Invalid = true; |
| } |
| |
| VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo, |
| D.getIdentifier(), |
| D.getIdentifierLoc()); |
| |
| if (Invalid) |
| ExDecl->setInvalidDecl(); |
| |
| // Add the exception declaration into this scope. |
| if (II) |
| PushOnScopeChains(ExDecl, S); |
| else |
| CurContext->addDecl(ExDecl); |
| |
| ProcessDeclAttributes(S, ExDecl, D); |
| return ExDecl; |
| } |
| |
| Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, |
| Expr *AssertExpr, |
| Expr *AssertMessageExpr_) { |
| StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_); |
| |
| if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { |
| llvm::APSInt Value(32); |
| if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { |
| Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << |
| AssertExpr->getSourceRange(); |
| return 0; |
| } |
| |
| if (Value == 0) { |
| Diag(AssertLoc, diag::err_static_assert_failed) |
| << AssertMessage->getString() << AssertExpr->getSourceRange(); |
| } |
| } |
| |
| if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) |
| return 0; |
| |
| Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, |
| AssertExpr, AssertMessage); |
| |
| CurContext->addDecl(Decl); |
| return Decl; |
| } |
| |
| /// \brief Perform semantic analysis of the given friend type declaration. |
| /// |
| /// \returns A friend declaration that. |
| FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc, |
| TypeSourceInfo *TSInfo) { |
| assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); |
| |
| QualType T = TSInfo->getType(); |
| SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); |
| |
| if (!getLangOptions().CPlusPlus0x) { |
| // C++03 [class.friend]p2: |
| // An elaborated-type-specifier shall be used in a friend declaration |
| // for a class.* |
| // |
| // * The class-key of the elaborated-type-specifier is required. |
| if (!ActiveTemplateInstantiations.empty()) { |
| // Do not complain about the form of friend template types during |
| // template instantiation; we will already have complained when the |
| // template was declared. |
| } else if (!T->isElaboratedTypeSpecifier()) { |
| // If we evaluated the type to a record type, suggest putting |
| // a tag in front. |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| RecordDecl *RD = RT->getDecl(); |
| |
| std::string InsertionText = std::string(" ") + RD->getKindName(); |
| |
| Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type) |
| << (unsigned) RD->getTagKind() |
| << T |
| << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc), |
| InsertionText); |
| } else { |
| Diag(FriendLoc, diag::ext_nonclass_type_friend) |
| << T |
| << SourceRange(FriendLoc, TypeRange.getEnd()); |
| } |
| } else if (T->getAs<EnumType>()) { |
| Diag(FriendLoc, diag::ext_enum_friend) |
| << T |
| << SourceRange(FriendLoc, TypeRange.getEnd()); |
| } |
| } |
| |
| // C++0x [class.friend]p3: |
| // If the type specifier in a friend declaration designates a (possibly |
| // cv-qualified) class type, that class is declared as a friend; otherwise, |
| // the friend declaration is ignored. |
| |
| // FIXME: C++0x has some syntactic restrictions on friend type declarations |
| // in [class.friend]p3 that we do not implement. |
| |
| return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc); |
| } |
| |
| /// Handle a friend tag declaration where the scope specifier was |
| /// templated. |
| Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, |
| unsigned TagSpec, SourceLocation TagLoc, |
| CXXScopeSpec &SS, |
| IdentifierInfo *Name, SourceLocation NameLoc, |
| AttributeList *Attr, |
| MultiTemplateParamsArg TempParamLists) { |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| |
| bool isExplicitSpecialization = false; |
| unsigned NumMatchedTemplateParamLists = TempParamLists.size(); |
| bool Invalid = false; |
| |
| if (TemplateParameterList *TemplateParams |
| = MatchTemplateParametersToScopeSpecifier(TagLoc, SS, |
| TempParamLists.get(), |
| TempParamLists.size(), |
| /*friend*/ true, |
| isExplicitSpecialization, |
| Invalid)) { |
| --NumMatchedTemplateParamLists; |
| |
| if (TemplateParams->size() > 0) { |
| // This is a declaration of a class template. |
| if (Invalid) |
| return 0; |
| |
| return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, |
| SS, Name, NameLoc, Attr, |
| TemplateParams, AS_public).take(); |
| } else { |
| // The "template<>" header is extraneous. |
| Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) |
| << TypeWithKeyword::getTagTypeKindName(Kind) << Name; |
| isExplicitSpecialization = true; |
| } |
| } |
| |
| if (Invalid) return 0; |
| |
| assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); |
| |
| bool isAllExplicitSpecializations = true; |
| for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) { |
| if (TempParamLists.get()[I]->size()) { |
| isAllExplicitSpecializations = false; |
| break; |
| } |
| } |
| |
| // FIXME: don't ignore attributes. |
| |
| // If it's explicit specializations all the way down, just forget |
| // about the template header and build an appropriate non-templated |
| // friend. TODO: for source fidelity, remember the headers. |
| if (isAllExplicitSpecializations) { |
| ElaboratedTypeKeyword Keyword |
| = TypeWithKeyword::getKeywordForTagTypeKind(Kind); |
| QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name, |
| TagLoc, SS.getRange(), NameLoc); |
| if (T.isNull()) |
| return 0; |
| |
| TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); |
| if (isa<DependentNameType>(T)) { |
| DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); |
| TL.setKeywordLoc(TagLoc); |
| TL.setQualifierRange(SS.getRange()); |
| TL.setNameLoc(NameLoc); |
| } else { |
| ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); |
| TL.setKeywordLoc(TagLoc); |
| TL.setQualifierRange(SS.getRange()); |
| cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc); |
| } |
| |
| FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, |
| TSI, FriendLoc); |
| Friend->setAccess(AS_public); |
| CurContext->addDecl(Friend); |
| return Friend; |
| } |
| |
| // Handle the case of a templated-scope friend class. e.g. |
| // template <class T> class A<T>::B; |
| // FIXME: we don't support these right now. |
| ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); |
| QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); |
| TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); |
| DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); |
| TL.setKeywordLoc(TagLoc); |
| TL.setQualifierRange(SS.getRange()); |
| TL.setNameLoc(NameLoc); |
| |
| FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, |
| TSI, FriendLoc); |
| Friend->setAccess(AS_public); |
| Friend->setUnsupportedFriend(true); |
| CurContext->addDecl(Friend); |
| return Friend; |
| } |
| |
| |
| /// Handle a friend type declaration. This works in tandem with |
| /// ActOnTag. |
| /// |
| /// Notes on friend class templates: |
| /// |
| /// We generally treat friend class declarations as if they were |
| /// declaring a class. So, for example, the elaborated type specifier |
| /// in a friend declaration is required to obey the restrictions of a |
| /// class-head (i.e. no typedefs in the scope chain), template |
| /// parameters are required to match up with simple template-ids, &c. |
| /// However, unlike when declaring a template specialization, it's |
| /// okay to refer to a template specialization without an empty |
| /// template parameter declaration, e.g. |
| /// friend class A<T>::B<unsigned>; |
| /// We permit this as a special case; if there are any template |
| /// parameters present at all, require proper matching, i.e. |
| /// template <> template <class T> friend class A<int>::B; |
| Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, |
| MultiTemplateParamsArg TempParams) { |
| SourceLocation Loc = DS.getSourceRange().getBegin(); |
| |
| assert(DS.isFriendSpecified()); |
| assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
| |
| // Try to convert the decl specifier to a type. This works for |
| // friend templates because ActOnTag never produces a ClassTemplateDecl |
| // for a TUK_Friend. |
| Declarator TheDeclarator(DS, Declarator::MemberContext); |
| TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); |
| QualType T = TSI->getType(); |
| if (TheDeclarator.isInvalidType()) |
| return 0; |
| |
| if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) |
| return 0; |
| |
| // This is definitely an error in C++98. It's probably meant to |
| // be forbidden in C++0x, too, but the specification is just |
| // poorly written. |
| // |
| // The problem is with declarations like the following: |
| // template <T> friend A<T>::foo; |
| // where deciding whether a class C is a friend or not now hinges |
| // on whether there exists an instantiation of A that causes |
| // 'foo' to equal C. There are restrictions on class-heads |
| // (which we declare (by fiat) elaborated friend declarations to |
| // be) that makes this tractable. |
| // |
| // FIXME: handle "template <> friend class A<T>;", which |
| // is possibly well-formed? Who even knows? |
| if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { |
| Diag(Loc, diag::err_tagless_friend_type_template) |
| << DS.getSourceRange(); |
| return 0; |
| } |
| |
| // C++98 [class.friend]p1: A friend of a class is a function |
| // or class that is not a member of the class . . . |
| // This is fixed in DR77, which just barely didn't make the C++03 |
| // deadline. It's also a very silly restriction that seriously |
| // affects inner classes and which nobody else seems to implement; |
| // thus we never diagnose it, not even in -pedantic. |
| // |
| // But note that we could warn about it: it's always useless to |
| // friend one of your own members (it's not, however, worthless to |
| // friend a member of an arbitrary specialization of your template). |
| |
| Decl *D; |
| if (unsigned NumTempParamLists = TempParams.size()) |
| D = FriendTemplateDecl::Create(Context, CurContext, Loc, |
| NumTempParamLists, |
| TempParams.release(), |
| TSI, |
| DS.getFriendSpecLoc()); |
| else |
| D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI); |
| |
| if (!D) |
| return 0; |
| |
| D->setAccess(AS_public); |
| CurContext->addDecl(D); |
| |
| return D; |
| } |
| |
| Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition, |
| MultiTemplateParamsArg TemplateParams) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| assert(DS.isFriendSpecified()); |
| assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
| |
| SourceLocation Loc = D.getIdentifierLoc(); |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType T = TInfo->getType(); |
| |
| // C++ [class.friend]p1 |
| // A friend of a class is a function or class.... |
| // Note that this sees through typedefs, which is intended. |
| // It *doesn't* see through dependent types, which is correct |
| // according to [temp.arg.type]p3: |
| // If a declaration acquires a function type through a |
| // type dependent on a template-parameter and this causes |
| // a declaration that does not use the syntactic form of a |
| // function declarator to have a function type, the program |
| // is ill-formed. |
| if (!T->isFunctionType()) { |
| Diag(Loc, diag::err_unexpected_friend); |
| |
| // It might be worthwhile to try to recover by creating an |
| // appropriate declaration. |
| return 0; |
| } |
| |
| // C++ [namespace.memdef]p3 |
| // - If a friend declaration in a non-local class first declares a |
| // class or function, the friend class or function is a member |
| // of the innermost enclosing namespace. |
| // - The name of the friend is not found by simple name lookup |
| // until a matching declaration is provided in that namespace |
| // scope (either before or after the class declaration granting |
| // friendship). |
| // - If a friend function is called, its name may be found by the |
| // name lookup that considers functions from namespaces and |
| // classes associated with the types of the function arguments. |
| // - When looking for a prior declaration of a class or a function |
| // declared as a friend, scopes outside the innermost enclosing |
| // namespace scope are not considered. |
| |
| CXXScopeSpec &SS = D.getCXXScopeSpec(); |
| DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| assert(Name); |
| |
| // Check for unexpanded parameter packs. |
| if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || |
| DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || |
| DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) |
| return 0; |
| |
| // The context we found the declaration in, or in which we should |
| // create the declaration. |
| DeclContext *DC; |
| Scope *DCScope = S; |
| LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| ForRedeclaration); |
| |
| // FIXME: there are different rules in local classes |
| |
| // There are four cases here. |
| // - There's no scope specifier, in which case we just go to the |
| // appropriate scope and look for a function or function template |
| // there as appropriate. |
| // Recover from invalid scope qualifiers as if they just weren't there. |
| if (SS.isInvalid() || !SS.isSet()) { |
| // C++0x [namespace.memdef]p3: |
| // If the name in a friend declaration is neither qualified nor |
| // a template-id and the declaration is a function or an |
| // elaborated-type-specifier, the lookup to determine whether |
| // the entity has been previously declared shall not consider |
| // any scopes outside the innermost enclosing namespace. |
| // C++0x [class.friend]p11: |
| // If a friend declaration appears in a local class and the name |
| // specified is an unqualified name, a prior declaration is |
| // looked up without considering scopes that are outside the |
| // innermost enclosing non-class scope. For a friend function |
| // declaration, if there is no prior declaration, the program is |
| // ill-formed. |
| bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass(); |
| bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId; |
| |
| // Find the appropriate context according to the above. |
| DC = CurContext; |
| while (true) { |
| // Skip class contexts. If someone can cite chapter and verse |
| // for this behavior, that would be nice --- it's what GCC and |
| // EDG do, and it seems like a reasonable intent, but the spec |
| // really only says that checks for unqualified existing |
| // declarations should stop at the nearest enclosing namespace, |
| // not that they should only consider the nearest enclosing |
| // namespace. |
| while (DC->isRecord()) |
| DC = DC->getParent(); |
| |
| LookupQualifiedName(Previous, DC); |
| |
| // TODO: decide what we think about using declarations. |
| if (isLocal || !Previous.empty()) |
| break; |
| |
| if (isTemplateId) { |
| if (isa<TranslationUnitDecl>(DC)) break; |
| } else { |
| if (DC->isFileContext()) break; |
| } |
| DC = DC->getParent(); |
| } |
| |
| // C++ [class.friend]p1: A friend of a class is a function or |
| // class that is not a member of the class . . . |
| // C++0x changes this for both friend types and functions. |
| // Most C++ 98 compilers do seem to give an error here, so |
| // we do, too. |
| if (!Previous.empty() && DC->Equals(CurContext) |
| && !getLangOptions().CPlusPlus0x) |
| Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); |
| |
| DCScope = getScopeForDeclContext(S, DC); |
| |
| // - There's a non-dependent scope specifier, in which case we |
| // compute it and do a previous lookup there for a function |
| // or function template. |
| } else if (!SS.getScopeRep()->isDependent()) { |
| DC = computeDeclContext(SS); |
| if (!DC) return 0; |
| |
| if (RequireCompleteDeclContext(SS, DC)) return 0; |
| |
| LookupQualifiedName(Previous, DC); |
| |
| // Ignore things found implicitly in the wrong scope. |
| // TODO: better diagnostics for this case. Suggesting the right |
| // qualified scope would be nice... |
| LookupResult::Filter F = Previous.makeFilter(); |
| while (F.hasNext()) { |
| NamedDecl *D = F.next(); |
| if (!DC->InEnclosingNamespaceSetOf( |
| D->getDeclContext()->getRedeclContext())) |
| F.erase(); |
| } |
| F.done(); |
| |
| if (Previous.empty()) { |
| D.setInvalidType(); |
| Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; |
| return 0; |
| } |
| |
| // C++ [class.friend]p1: A friend of a class is a function or |
| // class that is not a member of the class . . . |
| if (DC->Equals(CurContext)) |
| Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); |
| |
| // - There's a scope specifier that does not match any template |
| // parameter lists, in which case we use some arbitrary context, |
| // create a method or method template, and wait for instantiation. |
| // - There's a scope specifier that does match some template |
| // parameter lists, which we don't handle right now. |
| } else { |
| DC = CurContext; |
| assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); |
| } |
| |
| if (!DC->isRecord()) { |
| // This implies that it has to be an operator or function. |
| if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || |
| D.getName().getKind() == UnqualifiedId::IK_DestructorName || |
| D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { |
| Diag(Loc, diag::err_introducing_special_friend) << |
| (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : |
| D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); |
| return 0; |
| } |
| } |
| |
| bool Redeclaration = false; |
| NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous, |
| move(TemplateParams), |
| IsDefinition, |
| Redeclaration); |
| if (!ND) return 0; |
| |
| assert(ND->getDeclContext() == DC); |
| assert(ND->getLexicalDeclContext() == CurContext); |
| |
| // Add the function declaration to the appropriate lookup tables, |
| // adjusting the redeclarations list as necessary. We don't |
| // want to do this yet if the friending class is dependent. |
| // |
| // Also update the scope-based lookup if the target context's |
| // lookup context is in lexical scope. |
| if (!CurContext->isDependentContext()) { |
| DC = DC->getRedeclContext(); |
| DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); |
| if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); |
| } |
| |
| FriendDecl *FrD = FriendDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), ND, |
| DS.getFriendSpecLoc()); |
| FrD->setAccess(AS_public); |
| CurContext->addDecl(FrD); |
| |
| if (ND->isInvalidDecl()) |
| FrD->setInvalidDecl(); |
| else { |
| FunctionDecl *FD; |
| if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) |
| FD = FTD->getTemplatedDecl(); |
| else |
| FD = cast<FunctionDecl>(ND); |
| |
| // Mark templated-scope function declarations as unsupported. |
| if (FD->getNumTemplateParameterLists()) |
| FrD->setUnsupportedFriend(true); |
| } |
| |
| return ND; |
| } |
| |
| void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { |
| AdjustDeclIfTemplate(Dcl); |
| |
| FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); |
| if (!Fn) { |
| Diag(DelLoc, diag::err_deleted_non_function); |
| return; |
| } |
| if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { |
| Diag(DelLoc, diag::err_deleted_decl_not_first); |
| Diag(Prev->getLocation(), diag::note_previous_declaration); |
| // If the declaration wasn't the first, we delete the function anyway for |
| // recovery. |
| } |
| Fn->setDeleted(); |
| } |
| |
| static void SearchForReturnInStmt(Sema &Self, Stmt *S) { |
| for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; |
| ++CI) { |
| Stmt *SubStmt = *CI; |
| if (!SubStmt) |
| continue; |
| if (isa<ReturnStmt>(SubStmt)) |
| Self.Diag(SubStmt->getSourceRange().getBegin(), |
| diag::err_return_in_constructor_handler); |
| if (!isa<Expr>(SubStmt)) |
| SearchForReturnInStmt(Self, SubStmt); |
| } |
| } |
| |
| void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { |
| for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { |
| CXXCatchStmt *Handler = TryBlock->getHandler(I); |
| SearchForReturnInStmt(*this, Handler); |
| } |
| } |
| |
| bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, |
| const CXXMethodDecl *Old) { |
| QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType(); |
| QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType(); |
| |
| if (Context.hasSameType(NewTy, OldTy) || |
| NewTy->isDependentType() || OldTy->isDependentType()) |
| return false; |
| |
| // Check if the return types are covariant |
| QualType NewClassTy, OldClassTy; |
| |
| /// Both types must be pointers or references to classes. |
| if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { |
| if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { |
| NewClassTy = NewPT->getPointeeType(); |
| OldClassTy = OldPT->getPointeeType(); |
| } |
| } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { |
| if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { |
| if (NewRT->getTypeClass() == OldRT->getTypeClass()) { |
| NewClassTy = NewRT->getPointeeType(); |
| OldClassTy = OldRT->getPointeeType(); |
| } |
| } |
| } |
| |
| // The return types aren't either both pointers or references to a class type. |
| if (NewClassTy.isNull()) { |
| Diag(New->getLocation(), |
| diag::err_different_return_type_for_overriding_virtual_function) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| |
| return true; |
| } |
| |
| // C++ [class.virtual]p6: |
| // If the return type of D::f differs from the return type of B::f, the |
| // class type in the return type of D::f shall be complete at the point of |
| // declaration of D::f or shall be the class type D. |
| if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { |
| if (!RT->isBeingDefined() && |
| RequireCompleteType(New->getLocation(), NewClassTy, |
| PDiag(diag::err_covariant_return_incomplete) |
| << New->getDeclName())) |
| return true; |
| } |
| |
| if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { |
| // Check if the new class derives from the old class. |
| if (!IsDerivedFrom(NewClassTy, OldClassTy)) { |
| Diag(New->getLocation(), |
| diag::err_covariant_return_not_derived) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| } |
| |
| // Check if we the conversion from derived to base is valid. |
| if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, |
| diag::err_covariant_return_inaccessible_base, |
| diag::err_covariant_return_ambiguous_derived_to_base_conv, |
| // FIXME: Should this point to the return type? |
| New->getLocation(), SourceRange(), New->getDeclName(), 0)) { |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| } |
| } |
| |
| // The qualifiers of the return types must be the same. |
| if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { |
| Diag(New->getLocation(), |
| diag::err_covariant_return_type_different_qualifications) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| }; |
| |
| |
| // The new class type must have the same or less qualifiers as the old type. |
| if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { |
| Diag(New->getLocation(), |
| diag::err_covariant_return_type_class_type_more_qualified) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| }; |
| |
| return false; |
| } |
| |
| /// \brief Mark the given method pure. |
| /// |
| /// \param Method the method to be marked pure. |
| /// |
| /// \param InitRange the source range that covers the "0" initializer. |
| bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { |
| if (Method->isVirtual() || Method->getParent()->isDependentContext()) { |
| Method->setPure(); |
| return false; |
| } |
| |
| if (!Method->isInvalidDecl()) |
| Diag(Method->getLocation(), diag::err_non_virtual_pure) |
| << Method->getDeclName() << InitRange; |
| return true; |
| } |
| |
| /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse |
| /// an initializer for the out-of-line declaration 'Dcl'. The scope |
| /// is a fresh scope pushed for just this purpose. |
| /// |
| /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a |
| /// static data member of class X, names should be looked up in the scope of |
| /// class X. |
| void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { |
| // If there is no declaration, there was an error parsing it. |
| if (D == 0) return; |
| |
| // We should only get called for declarations with scope specifiers, like: |
| // int foo::bar; |
| assert(D->isOutOfLine()); |
| EnterDeclaratorContext(S, D->getDeclContext()); |
| } |
| |
| /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an |
| /// initializer for the out-of-line declaration 'D'. |
| void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { |
| // If there is no declaration, there was an error parsing it. |
| if (D == 0) return; |
| |
| assert(D->isOutOfLine()); |
| ExitDeclaratorContext(S); |
| } |
| |
| /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a |
| /// C++ if/switch/while/for statement. |
| /// e.g: "if (int x = f()) {...}" |
| DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { |
| // C++ 6.4p2: |
| // The declarator shall not specify a function or an array. |
| // The type-specifier-seq shall not contain typedef and shall not declare a |
| // new class or enumeration. |
| assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
| "Parser allowed 'typedef' as storage class of condition decl."); |
| |
| TagDecl *OwnedTag = 0; |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag); |
| QualType Ty = TInfo->getType(); |
| |
| if (Ty->isFunctionType()) { // The declarator shall not specify a function... |
| // We exit without creating a CXXConditionDeclExpr because a FunctionDecl |
| // would be created and CXXConditionDeclExpr wants a VarDecl. |
| Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type) |
| << D.getSourceRange(); |
| return DeclResult(); |
| } else if (OwnedTag && OwnedTag->isDefinition()) { |
| // The type-specifier-seq shall not declare a new class or enumeration. |
| Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition); |
| } |
| |
| Decl *Dcl = ActOnDeclarator(S, D); |
| if (!Dcl) |
| return DeclResult(); |
| |
| return Dcl; |
| } |
| |
| void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, |
| bool DefinitionRequired) { |
| // Ignore any vtable uses in unevaluated operands or for classes that do |
| // not have a vtable. |
| if (!Class->isDynamicClass() || Class->isDependentContext() || |
| CurContext->isDependentContext() || |
| ExprEvalContexts.back().Context == Unevaluated) |
| return; |
| |
| // Try to insert this class into the map. |
| Class = cast<CXXRecordDecl>(Class->getCanonicalDecl()); |
| std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> |
| Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); |
| if (!Pos.second) { |
| // If we already had an entry, check to see if we are promoting this vtable |
| // to required a definition. If so, we need to reappend to the VTableUses |
| // list, since we may have already processed the first entry. |
| if (DefinitionRequired && !Pos.first->second) { |
| Pos.first->second = true; |
| } else { |
| // Otherwise, we can early exit. |
| return; |
| } |
| } |
| |
| // Local classes need to have their virtual members marked |
| // immediately. For all other classes, we mark their virtual members |
| // at the end of the translation unit. |
| if (Class->isLocalClass()) |
| MarkVirtualMembersReferenced(Loc, Class); |
| else |
| VTableUses.push_back(std::make_pair(Class, Loc)); |
| } |
| |
| bool Sema::DefineUsedVTables() { |
| if (VTableUses.empty()) |
| return false; |
| |
| // Note: The VTableUses vector could grow as a result of marking |
| // the members of a class as "used", so we check the size each |
| // time through the loop and prefer indices (with are stable) to |
| // iterators (which are not). |
| for (unsigned I = 0; I != VTableUses.size(); ++I) { |
| CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); |
| if (!Class) |
| continue; |
| |
| SourceLocation Loc = VTableUses[I].second; |
| |
| // If this class has a key function, but that key function is |
| // defined in another translation unit, we don't need to emit the |
| // vtable even though we're using it. |
| const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class); |
| if (KeyFunction && !KeyFunction->hasBody()) { |
| switch (KeyFunction->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| case TSK_ExplicitInstantiationDeclaration: |
| // The key function is in another translation unit. |
| continue; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| case TSK_ImplicitInstantiation: |
| // We will be instantiating the key function. |
| break; |
| } |
| } else if (!KeyFunction) { |
| // If we have a class with no key function that is the subject |
| // of an explicit instantiation declaration, suppress the |
| // vtable; it will live with the explicit instantiation |
| // definition. |
| bool IsExplicitInstantiationDeclaration |
| = Class->getTemplateSpecializationKind() |
| == TSK_ExplicitInstantiationDeclaration; |
| for (TagDecl::redecl_iterator R = Class->redecls_begin(), |
| REnd = Class->redecls_end(); |
| R != REnd; ++R) { |
| TemplateSpecializationKind TSK |
| = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind(); |
| if (TSK == TSK_ExplicitInstantiationDeclaration) |
| IsExplicitInstantiationDeclaration = true; |
| else if (TSK == TSK_ExplicitInstantiationDefinition) { |
| IsExplicitInstantiationDeclaration = false; |
| break; |
| } |
| } |
| |
| if (IsExplicitInstantiationDeclaration) |
| continue; |
| } |
| |
| // Mark all of the virtual members of this class as referenced, so |
| // that we can build a vtable. Then, tell the AST consumer that a |
| // vtable for this class is required. |
| MarkVirtualMembersReferenced(Loc, Class); |
| CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl()); |
| Consumer.HandleVTable(Class, VTablesUsed[Canonical]); |
| |
| // Optionally warn if we're emitting a weak vtable. |
| if (Class->getLinkage() == ExternalLinkage && |
| Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { |
| if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined())) |
| Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; |
| } |
| } |
| VTableUses.clear(); |
| |
| return true; |
| } |
| |
| void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, |
| const CXXRecordDecl *RD) { |
| for (CXXRecordDecl::method_iterator i = RD->method_begin(), |
| e = RD->method_end(); i != e; ++i) { |
| CXXMethodDecl *MD = *i; |
| |
| // C++ [basic.def.odr]p2: |
| // [...] A virtual member function is used if it is not pure. [...] |
| if (MD->isVirtual() && !MD->isPure()) |
| MarkDeclarationReferenced(Loc, MD); |
| } |
| |
| // Only classes that have virtual bases need a VTT. |
| if (RD->getNumVBases() == 0) |
| return; |
| |
| for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), |
| e = RD->bases_end(); i != e; ++i) { |
| const CXXRecordDecl *Base = |
| cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); |
| if (Base->getNumVBases() == 0) |
| continue; |
| MarkVirtualMembersReferenced(Loc, Base); |
| } |
| } |
| |
| /// SetIvarInitializers - This routine builds initialization ASTs for the |
| /// Objective-C implementation whose ivars need be initialized. |
| void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { |
| if (!getLangOptions().CPlusPlus) |
| return; |
| if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { |
| llvm::SmallVector<ObjCIvarDecl*, 8> ivars; |
| CollectIvarsToConstructOrDestruct(OID, ivars); |
| if (ivars.empty()) |
| return; |
| llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit; |
| for (unsigned i = 0; i < ivars.size(); i++) { |
| FieldDecl *Field = ivars[i]; |
| if (Field->isInvalidDecl()) |
| continue; |
| |
| CXXCtorInitializer *Member; |
| InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); |
| InitializationKind InitKind = |
| InitializationKind::CreateDefault(ObjCImplementation->getLocation()); |
| |
| InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0); |
| ExprResult MemberInit = |
| InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg()); |
| MemberInit = MaybeCreateExprWithCleanups(MemberInit); |
| // Note, MemberInit could actually come back empty if no initialization |
| // is required (e.g., because it would call a trivial default constructor) |
| if (!MemberInit.get() || MemberInit.isInvalid()) |
| continue; |
| |
| Member = |
| new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), |
| SourceLocation(), |
| MemberInit.takeAs<Expr>(), |
| SourceLocation()); |
| AllToInit.push_back(Member); |
| |
| // Be sure that the destructor is accessible and is marked as referenced. |
| if (const RecordType *RecordTy |
| = Context.getBaseElementType(Field->getType()) |
| ->getAs<RecordType>()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { |
| MarkDeclarationReferenced(Field->getLocation(), Destructor); |
| CheckDestructorAccess(Field->getLocation(), Destructor, |
| PDiag(diag::err_access_dtor_ivar) |
| << Context.getBaseElementType(Field->getType())); |
| } |
| } |
| } |
| ObjCImplementation->setIvarInitializers(Context, |
| AllToInit.data(), AllToInit.size()); |
| } |
| } |