blob: 72ac5552201a12b33b9e11609f86deab2b710f20 [file] [log] [blame]
//===--- DeclBase.cpp - Declaration AST Node Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl and DeclContext classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclBase.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdio>
#include <functional>
#include <vector>
using namespace clang;
//===----------------------------------------------------------------------===//
// Statistics
//===----------------------------------------------------------------------===//
#define DECL(Derived, Base) static int n##Derived##s = 0;
#include "clang/AST/DeclNodes.def"
static bool StatSwitch = false;
// This keeps track of all decl attributes. Since so few decls have attrs, we
// keep them in a hash map instead of wasting space in the Decl class.
typedef llvm::DenseMap<const Decl*, Attr*> DeclAttrMapTy;
static DeclAttrMapTy *DeclAttrs = 0;
const char *Decl::getDeclKindName() const {
switch (DeclKind) {
default: assert(0 && "Declaration not in DeclNodes.def!");
#define DECL(Derived, Base) case Derived: return #Derived;
#include "clang/AST/DeclNodes.def"
}
}
const char *DeclContext::getDeclKindName() const {
switch (DeclKind) {
default: assert(0 && "Declaration context not in DeclNodes.def!");
#define DECL(Derived, Base) case Decl::Derived: return #Derived;
#include "clang/AST/DeclNodes.def"
}
}
bool Decl::CollectingStats(bool Enable) {
if (Enable)
StatSwitch = true;
return StatSwitch;
}
void Decl::PrintStats() {
fprintf(stderr, "*** Decl Stats:\n");
int totalDecls = 0;
#define DECL(Derived, Base) totalDecls += n##Derived##s;
#include "clang/AST/DeclNodes.def"
fprintf(stderr, " %d decls total.\n", totalDecls);
int totalBytes = 0;
#define DECL(Derived, Base) \
if (n##Derived##s > 0) { \
totalBytes += (int)(n##Derived##s * sizeof(Derived##Decl)); \
fprintf(stderr, " %d " #Derived " decls, %d each (%d bytes)\n", \
n##Derived##s, (int)sizeof(Derived##Decl), \
(int)(n##Derived##s * sizeof(Derived##Decl))); \
}
#include "clang/AST/DeclNodes.def"
fprintf(stderr, "Total bytes = %d\n", totalBytes);
}
void Decl::addDeclKind(Kind k) {
switch (k) {
default: assert(0 && "Declaration not in DeclNodes.def!");
#define DECL(Derived, Base) case Derived: ++n##Derived##s; break;
#include "clang/AST/DeclNodes.def"
}
}
//===----------------------------------------------------------------------===//
// PrettyStackTraceDecl Implementation
//===----------------------------------------------------------------------===//
void PrettyStackTraceDecl::print(llvm::raw_ostream &OS) const {
SourceLocation TheLoc = Loc;
if (TheLoc.isInvalid() && TheDecl)
TheLoc = TheDecl->getLocation();
if (TheLoc.isValid()) {
TheLoc.print(OS, SM);
OS << ": ";
}
OS << Message;
if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(TheDecl))
OS << " '" << DN->getQualifiedNameAsString() << '\'';
OS << '\n';
}
//===----------------------------------------------------------------------===//
// Decl Implementation
//===----------------------------------------------------------------------===//
// Out-of-line virtual method providing a home for Decl.
Decl::~Decl() {
if (isOutOfSemaDC())
delete getMultipleDC();
assert(!HasAttrs && "attributes should have been freed by Destroy");
}
void Decl::setDeclContext(DeclContext *DC) {
if (isOutOfSemaDC())
delete getMultipleDC();
DeclCtx.setPointer(DC);
DeclCtx.setInt(false);
}
void Decl::setLexicalDeclContext(DeclContext *DC) {
if (DC == getLexicalDeclContext())
return;
if (isInSemaDC()) {
MultipleDC *MDC = new MultipleDC();
MDC->SemanticDC = getDeclContext();
MDC->LexicalDC = DC;
DeclCtx.setPointer(MDC);
DeclCtx.setInt(true);
} else {
getMultipleDC()->LexicalDC = DC;
}
}
unsigned Decl::getIdentifierNamespaceForKind(Kind DeclKind) {
switch (DeclKind) {
default:
if (DeclKind >= FunctionFirst && DeclKind <= FunctionLast)
return IDNS_Ordinary;
assert(0 && "Unknown decl kind!");
case OverloadedFunction:
case Typedef:
case EnumConstant:
case Var:
case ImplicitParam:
case ParmVar:
case OriginalParmVar:
case NonTypeTemplateParm:
case ObjCMethod:
case ObjCContainer:
case ObjCCategory:
case ObjCInterface:
case ObjCCategoryImpl:
case ObjCProperty:
case ObjCCompatibleAlias:
return IDNS_Ordinary;
case ObjCProtocol:
return IDNS_Protocol;
case Field:
case ObjCAtDefsField:
case ObjCIvar:
return IDNS_Member;
case Record:
case CXXRecord:
case Enum:
case TemplateTypeParm:
return IDNS_Tag;
case Namespace:
case Template:
case FunctionTemplate:
case ClassTemplate:
case TemplateTemplateParm:
return IDNS_Tag | IDNS_Ordinary;
// Never have names.
case LinkageSpec:
case FileScopeAsm:
case StaticAssert:
case ObjCClass:
case ObjCImplementation:
case ObjCPropertyImpl:
case ObjCForwardProtocol:
case Block:
case TranslationUnit:
// Aren't looked up?
case UsingDirective:
case ClassTemplateSpecialization:
return 0;
}
}
void Decl::addAttr(Attr *NewAttr) {
if (!DeclAttrs)
DeclAttrs = new DeclAttrMapTy();
Attr *&ExistingAttr = (*DeclAttrs)[this];
NewAttr->setNext(ExistingAttr);
ExistingAttr = NewAttr;
HasAttrs = true;
}
void Decl::invalidateAttrs() {
if (!HasAttrs) return;
HasAttrs = false;
(*DeclAttrs)[this] = 0;
DeclAttrs->erase(this);
if (DeclAttrs->empty()) {
delete DeclAttrs;
DeclAttrs = 0;
}
}
const Attr *Decl::getAttrsImpl() const {
assert(HasAttrs && "getAttrs() should verify this!");
return (*DeclAttrs)[this];
}
void Decl::swapAttrs(Decl *RHS) {
bool HasLHSAttr = this->HasAttrs;
bool HasRHSAttr = RHS->HasAttrs;
// Usually, neither decl has attrs, nothing to do.
if (!HasLHSAttr && !HasRHSAttr) return;
// If 'this' has no attrs, swap the other way.
if (!HasLHSAttr)
return RHS->swapAttrs(this);
// Handle the case when both decls have attrs.
if (HasRHSAttr) {
std::swap((*DeclAttrs)[this], (*DeclAttrs)[RHS]);
return;
}
// Otherwise, LHS has an attr and RHS doesn't.
(*DeclAttrs)[RHS] = (*DeclAttrs)[this];
(*DeclAttrs).erase(this);
this->HasAttrs = false;
RHS->HasAttrs = true;
}
void Decl::Destroy(ASTContext &C) {
// Free attributes for this decl.
if (HasAttrs) {
DeclAttrMapTy::iterator it = DeclAttrs->find(this);
assert(it != DeclAttrs->end() && "No attrs found but HasAttrs is true!");
// release attributes.
it->second->Destroy(C);
invalidateAttrs();
HasAttrs = false;
}
#if 0
// FIXME: Once ownership is fully understood, we can enable this code
if (DeclContext *DC = dyn_cast<DeclContext>(this))
DC->decls_begin()->Destroy(C);
// Observe the unrolled recursion. By setting N->NextDeclInScope = 0x0
// within the loop, only the Destroy method for the first Decl
// will deallocate all of the Decls in a chain.
Decl* N = NextDeclInScope;
while (N) {
Decl* Tmp = N->NextDeclInScope;
N->NextDeclInScope = 0;
N->Destroy(C);
N = Tmp;
}
this->~Decl();
C.Deallocate((void *)this);
#endif
}
Decl *Decl::castFromDeclContext (const DeclContext *D) {
Decl::Kind DK = D->getDeclKind();
switch(DK) {
#define DECL_CONTEXT(Name) \
case Decl::Name: \
return static_cast<Name##Decl*>(const_cast<DeclContext*>(D));
#define DECL_CONTEXT_BASE(Name)
#include "clang/AST/DeclNodes.def"
default:
#define DECL_CONTEXT_BASE(Name) \
if (DK >= Decl::Name##First && DK <= Decl::Name##Last) \
return static_cast<Name##Decl*>(const_cast<DeclContext*>(D));
#include "clang/AST/DeclNodes.def"
assert(false && "a decl that inherits DeclContext isn't handled");
return 0;
}
}
DeclContext *Decl::castToDeclContext(const Decl *D) {
Decl::Kind DK = D->getKind();
switch(DK) {
#define DECL_CONTEXT(Name) \
case Decl::Name: \
return static_cast<Name##Decl*>(const_cast<Decl*>(D));
#define DECL_CONTEXT_BASE(Name)
#include "clang/AST/DeclNodes.def"
default:
#define DECL_CONTEXT_BASE(Name) \
if (DK >= Decl::Name##First && DK <= Decl::Name##Last) \
return static_cast<Name##Decl*>(const_cast<Decl*>(D));
#include "clang/AST/DeclNodes.def"
assert(false && "a decl that inherits DeclContext isn't handled");
return 0;
}
}
#ifndef NDEBUG
void Decl::CheckAccessDeclContext() const {
assert((Access != AS_none || !isa<CXXRecordDecl>(getDeclContext())) &&
"Access specifier is AS_none inside a record decl");
}
#endif
//===----------------------------------------------------------------------===//
// DeclContext Implementation
//===----------------------------------------------------------------------===//
bool DeclContext::classof(const Decl *D) {
switch (D->getKind()) {
#define DECL_CONTEXT(Name) case Decl::Name:
#define DECL_CONTEXT_BASE(Name)
#include "clang/AST/DeclNodes.def"
return true;
default:
#define DECL_CONTEXT_BASE(Name) \
if (D->getKind() >= Decl::Name##First && \
D->getKind() <= Decl::Name##Last) \
return true;
#include "clang/AST/DeclNodes.def"
return false;
}
}
/// StoredDeclsList - This is an array of decls optimized a common case of only
/// containing one entry.
struct StoredDeclsList {
/// Data - If the integer is 0, then the pointer is a NamedDecl*. If the
/// integer is 1, then it is a VectorTy;
llvm::PointerIntPair<void*, 1, bool> Data;
/// VectorTy - When in vector form, this is what the Data pointer points to.
typedef llvm::SmallVector<NamedDecl*, 4> VectorTy;
public:
StoredDeclsList() {}
StoredDeclsList(const StoredDeclsList &RHS) : Data(RHS.Data) {
if (isVector())
Data.setPointer(new VectorTy(getVector()));
}
~StoredDeclsList() {
// If this is a vector-form, free the vector.
if (isVector())
delete &getVector();
}
StoredDeclsList &operator=(const StoredDeclsList &RHS) {
if (isVector())
delete &getVector();
Data = RHS.Data;
if (isVector())
Data.setPointer(new VectorTy(getVector()));
return *this;
}
bool isVector() const { return Data.getInt() != 0; }
bool isInline() const { return Data.getInt() == 0; }
bool isNull() const { return Data.getPointer() == 0; }
void setOnlyValue(NamedDecl *ND) {
assert(isInline() && "Not inline");
Data.setPointer(ND);
}
/// getLookupResult - Return an array of all the decls that this list
/// represents.
DeclContext::lookup_result getLookupResult() {
// If we have a single inline unit, return it.
if (isInline()) {
assert(!isNull() && "Empty list isn't allowed");
// Data is a raw pointer to a NamedDecl*, return it.
void *Ptr = &Data;
return DeclContext::lookup_result((NamedDecl**)Ptr, (NamedDecl**)Ptr+1);
}
// Otherwise, we have a range result.
VectorTy &V = getVector();
return DeclContext::lookup_result(&V[0], &V[0]+V.size());
}
/// HandleRedeclaration - If this is a redeclaration of an existing decl,
/// replace the old one with D and return true. Otherwise return false.
bool HandleRedeclaration(NamedDecl *D) {
// Most decls only have one entry in their list, special case it.
if (isInline()) {
if (!D->declarationReplaces(getInlineValue()))
return false;
setOnlyValue(D);
return true;
}
// Determine if this declaration is actually a redeclaration.
VectorTy &Vec = getVector();
VectorTy::iterator RDI
= std::find_if(Vec.begin(), Vec.end(),
std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
D));
if (RDI == Vec.end())
return false;
*RDI = D;
return true;
}
/// AddSubsequentDecl - This is called on the second and later decl when it is
/// not a redeclaration to merge it into the appropriate place in our list.
///
void AddSubsequentDecl(NamedDecl *D) {
// If this is the second decl added to the list, convert this to vector
// form.
if (isInline()) {
NamedDecl *OldD = getInlineValue();
Data.setInt(1);
VectorTy *VT = new VectorTy();
VT->push_back(OldD);
Data.setPointer(VT);
}
VectorTy &Vec = getVector();
if (isa<UsingDirectiveDecl>(D) ||
D->getIdentifierNamespace() == Decl::IDNS_Tag)
Vec.push_back(D);
else if (Vec.back()->getIdentifierNamespace() == Decl::IDNS_Tag) {
NamedDecl *TagD = Vec.back();
Vec.back() = D;
Vec.push_back(TagD);
} else
Vec.push_back(D);
}
private:
VectorTy &getVector() const {
assert(isVector() && "Not in vector form");
return *static_cast<VectorTy*>(Data.getPointer());
}
NamedDecl *getInlineValue() const {
assert(isInline() && "Not in inline form");
return (NamedDecl*)Data.getPointer();
}
};
typedef llvm::DenseMap<DeclarationName, StoredDeclsList> StoredDeclsMap;
DeclContext::~DeclContext() {
if (isLookupMap())
delete static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
else
delete [] static_cast<NamedDecl**>(LookupPtr.getPointer());
}
void DeclContext::DestroyDecls(ASTContext &C) {
for (decl_iterator D = decls_begin(); D != decls_end(); )
(*D++)->Destroy(C);
}
bool DeclContext::isTransparentContext() const {
if (DeclKind == Decl::Enum)
return true; // FIXME: Check for C++0x scoped enums
else if (DeclKind == Decl::LinkageSpec)
return true;
else if (DeclKind >= Decl::RecordFirst && DeclKind <= Decl::RecordLast)
return cast<RecordDecl>(this)->isAnonymousStructOrUnion();
else if (DeclKind == Decl::Namespace)
return false; // FIXME: Check for C++0x inline namespaces
return false;
}
DeclContext *DeclContext::getPrimaryContext() {
switch (DeclKind) {
case Decl::TranslationUnit:
case Decl::LinkageSpec:
case Decl::Block:
// There is only one DeclContext for these entities.
return this;
case Decl::Namespace:
// The original namespace is our primary context.
return static_cast<NamespaceDecl*>(this)->getOriginalNamespace();
case Decl::ObjCMethod:
return this;
case Decl::ObjCInterface:
case Decl::ObjCProtocol:
case Decl::ObjCCategory:
// FIXME: Can Objective-C interfaces be forward-declared?
return this;
case Decl::ObjCImplementation:
case Decl::ObjCCategoryImpl:
return this;
default:
if (DeclKind >= Decl::TagFirst && DeclKind <= Decl::TagLast) {
// If this is a tag type that has a definition or is currently
// being defined, that definition is our primary context.
if (const TagType *TagT = cast<TagDecl>(this)->TypeForDecl->getAsTagType())
if (TagT->isBeingDefined() ||
(TagT->getDecl() && TagT->getDecl()->isDefinition()))
return TagT->getDecl();
return this;
}
assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast &&
"Unknown DeclContext kind");
return this;
}
}
DeclContext *DeclContext::getNextContext() {
switch (DeclKind) {
case Decl::Namespace:
// Return the next namespace
return static_cast<NamespaceDecl*>(this)->getNextNamespace();
default:
return 0;
}
}
void DeclContext::addDecl(Decl *D) {
assert(D->getLexicalDeclContext() == this &&
"Decl inserted into wrong lexical context");
assert(!D->NextDeclInScope && D != LastDecl &&
"Decl already inserted into a DeclContext");
if (FirstDecl) {
LastDecl->NextDeclInScope = D;
LastDecl = D;
} else {
FirstDecl = LastDecl = D;
}
if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
ND->getDeclContext()->makeDeclVisibleInContext(ND);
}
/// buildLookup - Build the lookup data structure with all of the
/// declarations in DCtx (and any other contexts linked to it or
/// transparent contexts nested within it).
void DeclContext::buildLookup(DeclContext *DCtx) {
for (; DCtx; DCtx = DCtx->getNextContext()) {
for (decl_iterator D = DCtx->decls_begin(), DEnd = DCtx->decls_end();
D != DEnd; ++D) {
// Insert this declaration into the lookup structure
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
makeDeclVisibleInContextImpl(ND);
// If this declaration is itself a transparent declaration context,
// add its members (recursively).
if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D))
if (InnerCtx->isTransparentContext())
buildLookup(InnerCtx->getPrimaryContext());
}
}
}
DeclContext::lookup_result
DeclContext::lookup(DeclarationName Name) {
DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this)
return PrimaryContext->lookup(Name);
/// If there is no lookup data structure, build one now by walking
/// all of the linked DeclContexts (in declaration order!) and
/// inserting their values.
if (LookupPtr.getPointer() == 0)
buildLookup(this);
if (isLookupMap()) {
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
StoredDeclsMap::iterator Pos = Map->find(Name);
if (Pos == Map->end())
return lookup_result(0, 0);
return Pos->second.getLookupResult();
}
// We have a small array. Look into it.
unsigned Size = LookupPtr.getInt();
NamedDecl **Array = static_cast<NamedDecl**>(LookupPtr.getPointer());
for (unsigned Idx = 0; Idx != Size; ++Idx)
if (Array[Idx]->getDeclName() == Name) {
unsigned Last = Idx + 1;
while (Last != Size && Array[Last]->getDeclName() == Name)
++Last;
return lookup_result(&Array[Idx], &Array[Last]);
}
return lookup_result(0, 0);
}
DeclContext::lookup_const_result
DeclContext::lookup(DeclarationName Name) const {
return const_cast<DeclContext*>(this)->lookup(Name);
}
DeclContext *DeclContext::getLookupContext() {
DeclContext *Ctx = this;
// Skip through transparent contexts.
while (Ctx->isTransparentContext())
Ctx = Ctx->getParent();
return Ctx;
}
DeclContext *DeclContext::getEnclosingNamespaceContext() {
DeclContext *Ctx = this;
// Skip through non-namespace, non-translation-unit contexts.
while (!Ctx->isFileContext() || Ctx->isTransparentContext())
Ctx = Ctx->getParent();
return Ctx->getPrimaryContext();
}
void DeclContext::makeDeclVisibleInContext(NamedDecl *D) {
// FIXME: This feels like a hack. Should DeclarationName support
// template-ids, or is there a better way to keep specializations
// from being visible?
if (isa<ClassTemplateSpecializationDecl>(D))
return;
DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this) {
PrimaryContext->makeDeclVisibleInContext(D);
return;
}
// If we already have a lookup data structure, perform the insertion
// into it. Otherwise, be lazy and don't build that structure until
// someone asks for it.
if (LookupPtr.getPointer())
makeDeclVisibleInContextImpl(D);
// If we are a transparent context, insert into our parent context,
// too. This operation is recursive.
if (isTransparentContext())
getParent()->makeDeclVisibleInContext(D);
}
void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D) {
// Skip unnamed declarations.
if (!D->getDeclName())
return;
// FIXME: This feels like a hack. Should DeclarationName support
// template-ids, or is there a better way to keep specializations
// from being visible?
if (isa<ClassTemplateSpecializationDecl>(D))
return;
bool MayBeRedeclaration = true;
if (!isLookupMap()) {
unsigned Size = LookupPtr.getInt();
// The lookup data is stored as an array. Search through the array
// to find the insertion location.
NamedDecl **Array;
if (Size == 0) {
Array = new NamedDecl*[LookupIsMap - 1];
LookupPtr.setPointer(Array);
} else {
Array = static_cast<NamedDecl **>(LookupPtr.getPointer());
}
// We always keep declarations of the same name next to each other
// in the array, so that it is easy to return multiple results
// from lookup().
unsigned FirstMatch;
for (FirstMatch = 0; FirstMatch != Size; ++FirstMatch)
if (Array[FirstMatch]->getDeclName() == D->getDeclName())
break;
unsigned InsertPos = FirstMatch;
if (FirstMatch != Size) {
// We found another declaration with the same name. First
// determine whether this is a redeclaration of an existing
// declaration in this scope, in which case we will replace the
// existing declaration.
unsigned LastMatch = FirstMatch;
for (; LastMatch != Size; ++LastMatch) {
if (Array[LastMatch]->getDeclName() != D->getDeclName())
break;
if (D->declarationReplaces(Array[LastMatch])) {
// D is a redeclaration of an existing element in the
// array. Replace that element with D.
Array[LastMatch] = D;
return;
}
}
// [FirstMatch, LastMatch) contains the set of declarations that
// have the same name as this declaration. Determine where the
// declaration D will be inserted into this range.
if (D->getKind() == Decl::UsingDirective ||
D->getIdentifierNamespace() == Decl::IDNS_Tag)
InsertPos = LastMatch;
else if (Array[LastMatch-1]->getIdentifierNamespace() == Decl::IDNS_Tag)
InsertPos = LastMatch - 1;
else
InsertPos = LastMatch;
}
if (Size < LookupIsMap - 1) {
// The new declaration will fit in the array. Insert the new
// declaration at the position Match in the array.
for (unsigned Idx = Size; Idx > InsertPos; --Idx)
Array[Idx] = Array[Idx-1];
Array[InsertPos] = D;
LookupPtr.setInt(Size + 1);
return;
}
// We've reached capacity in this array. Create a map and copy in
// all of the declarations that were stored in the array.
StoredDeclsMap *Map = new StoredDeclsMap(16);
LookupPtr.setPointer(Map);
LookupPtr.setInt(LookupIsMap);
for (unsigned Idx = 0; Idx != LookupIsMap - 1; ++Idx)
makeDeclVisibleInContextImpl(Array[Idx]);
delete [] Array;
// Fall through to perform insertion into the map.
MayBeRedeclaration = false;
}
// Insert this declaration into the map.
StoredDeclsMap &Map = *static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
StoredDeclsList &DeclNameEntries = Map[D->getDeclName()];
if (DeclNameEntries.isNull()) {
DeclNameEntries.setOnlyValue(D);
return;
}
// If it is possible that this is a redeclaration, check to see if there is
// already a decl for which declarationReplaces returns true. If there is
// one, just replace it and return.
if (MayBeRedeclaration && DeclNameEntries.HandleRedeclaration(D))
return;
// Put this declaration into the appropriate slot.
DeclNameEntries.AddSubsequentDecl(D);
}
/// Returns iterator range [First, Last) of UsingDirectiveDecls stored within
/// this context.
DeclContext::udir_iterator_range DeclContext::getUsingDirectives() const {
lookup_const_result Result = lookup(UsingDirectiveDecl::getName());
return udir_iterator_range(reinterpret_cast<udir_iterator>(Result.first),
reinterpret_cast<udir_iterator>(Result.second));
}