blob: ec0ca424220ea34960979a74bd123f31686d57bc [file] [log] [blame]
//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "TargetInfo.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGObjCRuntime.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/Intrinsics.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm;
/// getBuiltinLibFunction - Given a builtin id for a function like
/// "__builtin_fabsf", return a Function* for "fabsf".
llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
unsigned BuiltinID) {
assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
// Get the name, skip over the __builtin_ prefix (if necessary).
StringRef Name;
GlobalDecl D(FD);
// If the builtin has been declared explicitly with an assembler label,
// use the mangled name. This differs from the plain label on platforms
// that prefix labels.
if (FD->hasAttr<AsmLabelAttr>())
Name = getMangledName(D);
else
Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
}
/// Emit the conversions required to turn the given value into an
/// integer of the given size.
static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::IntegerType *IntType) {
V = CGF.EmitToMemory(V, T);
if (V->getType()->isPointerTy())
return CGF.Builder.CreatePtrToInt(V, IntType);
assert(V->getType() == IntType);
return V;
}
static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::Type *ResultType) {
V = CGF.EmitFromMemory(V, T);
if (ResultType->isPointerTy())
return CGF.Builder.CreateIntToPtr(V, ResultType);
assert(V->getType() == ResultType);
return V;
}
/// Utility to insert an atomic instruction based on Instrinsic::ID
/// and the expression node.
static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace =
cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
llvm::Value *Result =
CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
llvm::SequentiallyConsistent);
Result = EmitFromInt(CGF, Result, T, ValueType);
return RValue::get(Result);
}
/// Utility to insert an atomic instruction based Instrinsic::ID and
/// the expression node, where the return value is the result of the
/// operation.
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E,
Instruction::BinaryOps Op) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace =
cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
llvm::Value *Result =
CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
llvm::SequentiallyConsistent);
Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
Result = EmitFromInt(CGF, Result, T, ValueType);
return RValue::get(Result);
}
/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
/// which must be a scalar floating point type.
static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
assert(ValTyP && "isn't scalar fp type!");
StringRef FnName;
switch (ValTyP->getKind()) {
default: llvm_unreachable("Isn't a scalar fp type!");
case BuiltinType::Float: FnName = "fabsf"; break;
case BuiltinType::Double: FnName = "fabs"; break;
case BuiltinType::LongDouble: FnName = "fabsl"; break;
}
// The prototype is something that takes and returns whatever V's type is.
llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
false);
llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
return CGF.Builder.CreateCall(Fn, V, "abs");
}
static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
const CallExpr *E, llvm::Value *calleeValue) {
return CGF.EmitCall(E->getCallee()->getType(), calleeValue,
ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
}
RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E) {
// See if we can constant fold this builtin. If so, don't emit it at all.
Expr::EvalResult Result;
if (E->Evaluate(Result, CGM.getContext()) &&
!Result.hasSideEffects()) {
if (Result.Val.isInt())
return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
Result.Val.getInt()));
if (Result.Val.isFloat())
return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
Result.Val.getFloat()));
}
switch (BuiltinID) {
default: break; // Handle intrinsics and libm functions below.
case Builtin::BI__builtin___CFStringMakeConstantString:
case Builtin::BI__builtin___NSStringMakeConstantString:
return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__builtin_va_end: {
Value *ArgValue = EmitVAListRef(E->getArg(0));
llvm::Type *DestType = Int8PtrTy;
if (ArgValue->getType() != DestType)
ArgValue = Builder.CreateBitCast(ArgValue, DestType,
ArgValue->getName().data());
Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
Intrinsic::vaend : Intrinsic::vastart;
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
}
case Builtin::BI__builtin_va_copy: {
Value *DstPtr = EmitVAListRef(E->getArg(0));
Value *SrcPtr = EmitVAListRef(E->getArg(1));
llvm::Type *Type = Int8PtrTy;
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
DstPtr, SrcPtr));
}
case Builtin::BI__builtin_abs: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
Value *CmpResult =
Builder.CreateICmpSGE(ArgValue,
llvm::Constant::getNullValue(ArgValue->getType()),
"abscond");
Value *Result =
Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll: {
// ffs(x) -> x ? cttz(x) + 1 : 0
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue),
llvm::ConstantInt::get(ArgType, 1));
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll: {
// parity(x) -> ctpop(x) & 1
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateCall(F, ArgValue);
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_expect: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
"expval");
return RValue::get(Result);
}
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
return RValue::get(Builder.CreateCall(F, ArgValue));
}
case Builtin::BI__builtin_object_size: {
// We pass this builtin onto the optimizer so that it can
// figure out the object size in more complex cases.
llvm::Type *ResType = ConvertType(E->getType());
// LLVM only supports 0 and 2, make sure that we pass along that
// as a boolean.
Value *Ty = EmitScalarExpr(E->getArg(1));
ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
assert(CI);
uint64_t val = CI->getZExtValue();
CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
return RValue::get(Builder.CreateCall2(F,
EmitScalarExpr(E->getArg(0)),
CI));
}
case Builtin::BI__builtin_prefetch: {
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
// FIXME: Technically these constants should of type 'int', yes?
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
llvm::ConstantInt::get(Int32Ty, 0);
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
llvm::ConstantInt::get(Int32Ty, 3);
Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
}
case Builtin::BI__builtin_trap: {
Value *F = CGM.getIntrinsic(Intrinsic::trap);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_unreachable: {
if (CatchUndefined)
EmitBranch(getTrapBB());
else
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("unreachable.cont"));
return RValue::get(0);
}
case Builtin::BI__builtin_powi:
case Builtin::BI__builtin_powif:
case Builtin::BI__builtin_powil: {
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
return RValue::get(Builder.CreateCall2(F, Base, Exponent));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: llvm_unreachable("Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isnan: {
Value *V = EmitScalarExpr(E->getArg(0));
V = Builder.CreateFCmpUNO(V, V, "cmp");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isinf: {
// isinf(x) --> fabs(x) == infinity
Value *V = EmitScalarExpr(E->getArg(0));
V = EmitFAbs(*this, V, E->getArg(0)->getType());
V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
// TODO: BI__builtin_isinf_sign
// isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
case Builtin::BI__builtin_isnormal: {
// isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
Value *V = EmitScalarExpr(E->getArg(0));
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
Value *IsLessThanInf =
Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
V = Builder.CreateAnd(V, IsNormal, "and");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isfinite: {
// isfinite(x) --> x == x && fabs(x) != infinity;
Value *V = EmitScalarExpr(E->getArg(0));
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
Value *IsNotInf =
Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
V = Builder.CreateAnd(Eq, IsNotInf, "and");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_fpclassify: {
Value *V = EmitScalarExpr(E->getArg(5));
llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
// Create Result
BasicBlock *Begin = Builder.GetInsertBlock();
BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
Builder.SetInsertPoint(End);
PHINode *Result =
Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
"fpclassify_result");
// if (V==0) return FP_ZERO
Builder.SetInsertPoint(Begin);
Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
"iszero");
Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
Builder.CreateCondBr(IsZero, End, NotZero);
Result->addIncoming(ZeroLiteral, Begin);
// if (V != V) return FP_NAN
Builder.SetInsertPoint(NotZero);
Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
Value *NanLiteral = EmitScalarExpr(E->getArg(0));
BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
Builder.CreateCondBr(IsNan, End, NotNan);
Result->addIncoming(NanLiteral, NotZero);
// if (fabs(V) == infinity) return FP_INFINITY
Builder.SetInsertPoint(NotNan);
Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
Value *IsInf =
Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
"isinf");
Value *InfLiteral = EmitScalarExpr(E->getArg(1));
BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
Builder.CreateCondBr(IsInf, End, NotInf);
Result->addIncoming(InfLiteral, NotNan);
// if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
Builder.SetInsertPoint(NotInf);
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
Value *NormalResult =
Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(3)));
Builder.CreateBr(End);
Result->addIncoming(NormalResult, NotInf);
// return Result
Builder.SetInsertPoint(End);
return RValue::get(Result);
}
case Builtin::BIalloca:
case Builtin::BI__builtin_alloca: {
Value *Size = EmitScalarExpr(E->getArg(0));
return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
}
case Builtin::BIbzero:
case Builtin::BI__builtin_bzero: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *SizeVal = EmitScalarExpr(E->getArg(1));
Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, 1, false);
return RValue::get(Address);
}
case Builtin::BImemcpy:
case Builtin::BI__builtin_memcpy: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *SrcAddr = EmitScalarExpr(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
Builder.CreateMemCpy(Address, SrcAddr, SizeVal, 1, false);
return RValue::get(Address);
}
case Builtin::BI__builtin___memcpy_chk: {
// fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Value *Dest = EmitScalarExpr(E->getArg(0));
Value *Src = EmitScalarExpr(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemCpy(Dest, Src, SizeVal, 1, false);
return RValue::get(Dest);
}
case Builtin::BI__builtin_objc_memmove_collectable: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *SrcAddr = EmitScalarExpr(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
Address, SrcAddr, SizeVal);
return RValue::get(Address);
}
case Builtin::BI__builtin___memmove_chk: {
// fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Value *Dest = EmitScalarExpr(E->getArg(0));
Value *Src = EmitScalarExpr(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemMove(Dest, Src, SizeVal, 1, false);
return RValue::get(Dest);
}
case Builtin::BImemmove:
case Builtin::BI__builtin_memmove: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *SrcAddr = EmitScalarExpr(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
Builder.CreateMemMove(Address, SrcAddr, SizeVal, 1, false);
return RValue::get(Address);
}
case Builtin::BImemset:
case Builtin::BI__builtin_memset: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = EmitScalarExpr(E->getArg(2));
Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
return RValue::get(Address);
}
case Builtin::BI__builtin___memset_chk: {
// fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Value *Address = EmitScalarExpr(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
return RValue::get(Address);
}
case Builtin::BI__builtin_dwarf_cfa: {
// The offset in bytes from the first argument to the CFA.
//
// Why on earth is this in the frontend? Is there any reason at
// all that the backend can't reasonably determine this while
// lowering llvm.eh.dwarf.cfa()?
//
// TODO: If there's a satisfactory reason, add a target hook for
// this instead of hard-coding 0, which is correct for most targets.
int32_t Offset = 0;
Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
return RValue::get(Builder.CreateCall(F,
llvm::ConstantInt::get(Int32Ty, Offset)));
}
case Builtin::BI__builtin_return_address: {
Value *Depth = EmitScalarExpr(E->getArg(0));
Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_frame_address: {
Value *Depth = EmitScalarExpr(E->getArg(0));
Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_extract_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_frob_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_dwarf_sp_column: {
llvm::IntegerType *Ty
= cast<llvm::IntegerType>(ConvertType(E->getType()));
int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
if (Column == -1) {
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
return RValue::get(llvm::UndefValue::get(Ty));
}
return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
}
case Builtin::BI__builtin_init_dwarf_reg_size_table: {
Value *Address = EmitScalarExpr(E->getArg(0));
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
case Builtin::BI__builtin_eh_return: {
Value *Int = EmitScalarExpr(E->getArg(0));
Value *Ptr = EmitScalarExpr(E->getArg(1));
llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
? Intrinsic::eh_return_i32
: Intrinsic::eh_return_i64);
Builder.CreateCall2(F, Int, Ptr);
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("builtin_eh_return.cont"));
return RValue::get(0);
}
case Builtin::BI__builtin_unwind_init: {
Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_extend_pointer: {
// Extends a pointer to the size of an _Unwind_Word, which is
// uint64_t on all platforms. Generally this gets poked into a
// register and eventually used as an address, so if the
// addressing registers are wider than pointers and the platform
// doesn't implicitly ignore high-order bits when doing
// addressing, we need to make sure we zext / sext based on
// the platform's expectations.
//
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
// Cast the pointer to intptr_t.
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
// If that's 64 bits, we're done.
if (IntPtrTy->getBitWidth() == 64)
return RValue::get(Result);
// Otherwise, ask the codegen data what to do.
if (getTargetHooks().extendPointerWithSExt())
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
else
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
}
case Builtin::BI__builtin_setjmp: {
// Buffer is a void**.
Value *Buf = EmitScalarExpr(E->getArg(0));
// Store the frame pointer to the setjmp buffer.
Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
Builder.CreateStore(FrameAddr, Buf);
// Store the stack pointer to the setjmp buffer.
Value *StackAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
Value *StackSaveSlot =
Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
Builder.CreateStore(StackAddr, StackSaveSlot);
// Call LLVM's EH setjmp, which is lightweight.
Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
return RValue::get(Builder.CreateCall(F, Buf));
}
case Builtin::BI__builtin_longjmp: {
Value *Buf = EmitScalarExpr(E->getArg(0));
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
// Call LLVM's EH longjmp, which is lightweight.
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
// longjmp doesn't return; mark this as unreachable.
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("longjmp.cont"));
return RValue::get(0);
}
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
case Builtin::BI__sync_swap:
llvm_unreachable("Shouldn't make it through sema");
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
// Clang extensions: not overloaded yet.
case Builtin::BI__sync_fetch_and_min:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
case Builtin::BI__sync_fetch_and_max:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
case Builtin::BI__sync_fetch_and_umin:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
case Builtin::BI__sync_fetch_and_umax:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
llvm::Instruction::Add);
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
llvm::Instruction::Sub);
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
llvm::Instruction::And);
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
llvm::Instruction::Or);
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
llvm::Instruction::Xor);
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16: {
QualType T = E->getType();
llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace =
cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
Value *Args[3];
Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(*this, Args[1], T, IntType);
Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
llvm::SequentiallyConsistent);
Result = EmitFromInt(*this, Result, T, ValueType);
return RValue::get(Result);
}
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16: {
QualType T = E->getArg(1)->getType();
llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace =
cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
Value *Args[3];
Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
Value *OldVal = Args[1];
Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
llvm::SequentiallyConsistent);
Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
// zext bool to int.
Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
return RValue::get(Result);
}
case Builtin::BI__sync_swap_1:
case Builtin::BI__sync_swap_2:
case Builtin::BI__sync_swap_4:
case Builtin::BI__sync_swap_8:
case Builtin::BI__sync_swap_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
llvm::Type *ElLLVMTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
llvm::StoreInst *Store =
Builder.CreateStore(llvm::Constant::getNullValue(ElLLVMTy), Ptr);
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
Store->setAlignment(StoreSize.getQuantity());
Store->setAtomic(llvm::Release);
return RValue::get(0);
}
case Builtin::BI__sync_synchronize: {
// We assume this is supposed to correspond to a C++0x-style
// sequentially-consistent fence (i.e. this is only usable for
// synchonization, not device I/O or anything like that). This intrinsic
// is really badly designed in the sense that in theory, there isn't
// any way to safely use it... but in practice, it mostly works
// to use it with non-atomic loads and stores to get acquire/release
// semantics.
Builder.CreateFence(llvm::SequentiallyConsistent);
return RValue::get(0);
}
case Builtin::BI__atomic_thread_fence:
case Builtin::BI__atomic_signal_fence: {
llvm::SynchronizationScope Scope;
if (BuiltinID == Builtin::BI__atomic_signal_fence)
Scope = llvm::SingleThread;
else
Scope = llvm::CrossThread;
Value *Order = EmitScalarExpr(E->getArg(0));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Builder.CreateFence(llvm::Acquire, Scope);
break;
case 3: // memory_order_release
Builder.CreateFence(llvm::Release, Scope);
break;
case 4: // memory_order_acq_rel
Builder.CreateFence(llvm::AcquireRelease, Scope);
break;
case 5: // memory_order_seq_cst
Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
break;
}
return RValue::get(0);
}
llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
AcquireBB = createBasicBlock("acquire", CurFn);
ReleaseBB = createBasicBlock("release", CurFn);
AcqRelBB = createBasicBlock("acqrel", CurFn);
SeqCstBB = createBasicBlock("seqcst", CurFn);
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
Builder.SetInsertPoint(AcquireBB);
Builder.CreateFence(llvm::Acquire, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(1), AcquireBB);
SI->addCase(Builder.getInt32(2), AcquireBB);
Builder.SetInsertPoint(ReleaseBB);
Builder.CreateFence(llvm::Release, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(3), ReleaseBB);
Builder.SetInsertPoint(AcqRelBB);
Builder.CreateFence(llvm::AcquireRelease, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(4), AcqRelBB);
Builder.SetInsertPoint(SeqCstBB);
Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(5), SeqCstBB);
Builder.SetInsertPoint(ContBB);
return RValue::get(0);
}
// Library functions with special handling.
case Builtin::BIsqrt:
case Builtin::BIsqrtf:
case Builtin::BIsqrtl: {
// TODO: there is currently no set of optimizer flags
// sufficient for us to rewrite sqrt to @llvm.sqrt.
// -fmath-errno=0 is not good enough; we need finiteness.
// We could probably precondition the call with an ult
// against 0, but is that worth the complexity?
break;
}
case Builtin::BIpow:
case Builtin::BIpowf:
case Builtin::BIpowl: {
// Rewrite sqrt to intrinsic if allowed.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
return RValue::get(Builder.CreateCall2(F, Base, Exponent));
}
case Builtin::BIfma:
case Builtin::BIfmaf:
case Builtin::BIfmal:
case Builtin::BI__builtin_fma:
case Builtin::BI__builtin_fmaf:
case Builtin::BI__builtin_fmal: {
// Rewrite fma to intrinsic.
Value *FirstArg = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = FirstArg->getType();
Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
return RValue::get(Builder.CreateCall3(F, FirstArg,
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2))));
}
case Builtin::BI__builtin_signbit:
case Builtin::BI__builtin_signbitf:
case Builtin::BI__builtin_signbitl: {
LLVMContext &C = CGM.getLLVMContext();
Value *Arg = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgTy = Arg->getType();
if (ArgTy->isPPC_FP128Ty())
break; // FIXME: I'm not sure what the right implementation is here.
int ArgWidth = ArgTy->getPrimitiveSizeInBits();
llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
}
case Builtin::BI__builtin_annotation: {
llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
AnnVal->getType());
// Get the annotation string, go through casts. Sema requires this to be a
// non-wide string literal, potentially casted, so the cast<> is safe.
const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
llvm::StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
}
}
// If this is an alias for a lib function (e.g. __builtin_sin), emit
// the call using the normal call path, but using the unmangled
// version of the function name.
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E,
CGM.getBuiltinLibFunction(FD, BuiltinID));
// If this is a predefined lib function (e.g. malloc), emit the call
// using exactly the normal call path.
if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
// See if we have a target specific intrinsic.
const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
if (const char *Prefix =
llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
Function *F = CGM.getIntrinsic(IntrinsicID);
llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue;
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
ArgValue = EmitScalarExpr(E->getArg(i));
} else {
// If this is required to be a constant, constant fold it so that we
// know that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
assert(IsConst && "Constant arg isn't actually constant?");
(void)IsConst;
ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
}
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, Args);
QualType BuiltinRetType = E->getType();
llvm::Type *RetTy = llvm::Type::getVoidTy(getLLVMContext());
if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// See if we have a target specific builtin that needs to be lowered.
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
return RValue::get(V);
ErrorUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
if (hasAggregateLLVMType(E->getType()))
return RValue::getAggregate(CreateMemTemp(E->getType()));
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (Target.getTriple().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::thumb:
return EmitARMBuiltinExpr(BuiltinID, E);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return EmitX86BuiltinExpr(BuiltinID, E);
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
return EmitPPCBuiltinExpr(BuiltinID, E);
default:
return 0;
}
}
static llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type, bool q) {
switch (type) {
default: break;
case 0:
case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
case 6:
case 7:
case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
};
return 0;
}
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
SmallVector<Constant*, 16> Indices(nElts, C);
Value* SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(V, V, SV, "lane");
}
Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
const char *name,
unsigned shift, bool rightshift) {
unsigned j = 0;
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j)
if (shift > 0 && shift == j)
Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
else
Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
return Builder.CreateCall(F, Ops, name);
}
Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
bool neg) {
ConstantInt *CI = cast<ConstantInt>(V);
int SV = CI->getSExtValue();
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
return llvm::ConstantVector::get(CV);
}
/// GetPointeeAlignment - Given an expression with a pointer type, find the
/// alignment of the type referenced by the pointer. Skip over implicit
/// casts.
static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
unsigned Align = 1;
// Check if the type is a pointer. The implicit cast operand might not be.
while (Addr->getType()->isPointerType()) {
QualType PtTy = Addr->getType()->getPointeeType();
unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
if (NewA > Align)
Align = NewA;
// If the address is an implicit cast, repeat with the cast operand.
if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
Addr = CastAddr->getSubExpr();
continue;
}
break;
}
return llvm::ConstantInt::get(CGF.Int32Ty, Align);
}
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (BuiltinID == ARM::BI__clear_cache) {
const FunctionDecl *FD = E->getDirectCallee();
// Oddly people write this call without args on occasion and gcc accepts
// it - it's also marked as varargs in the description file.
SmallVector<Value*, 2> Ops;
for (unsigned i = 0; i < E->getNumArgs(); i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
Val0 = Builder.CreateZExt(Val0, Int64Ty);
Val1 = Builder.CreateZExt(Val1, Int64Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
return Builder.CreateOr(Val, Val1);
}
if (BuiltinID == ARM::BI__builtin_arm_strexd) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
Value *One = llvm::ConstantInt::get(Int32Ty, 1);
Value *Tmp = Builder.CreateAlloca(Int64Ty, One);
Value *Val = EmitScalarExpr(E->getArg(0));
Builder.CreateStore(Val, Tmp);
Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
Val = Builder.CreateLoad(LdPtr);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = EmitScalarExpr(E->getArg(1));
return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
}
SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
// vget_lane and vset_lane are not overloaded and do not have an extra
// argument that specifies the vector type.
switch (BuiltinID) {
default: break;
case ARM::BI__builtin_neon_vget_lane_i8:
case ARM::BI__builtin_neon_vget_lane_i16:
case ARM::BI__builtin_neon_vget_lane_i32:
case ARM::BI__builtin_neon_vget_lane_i64:
case ARM::BI__builtin_neon_vget_lane_f32:
case ARM::BI__builtin_neon_vgetq_lane_i8:
case ARM::BI__builtin_neon_vgetq_lane_i16:
case ARM::BI__builtin_neon_vgetq_lane_i32:
case ARM::BI__builtin_neon_vgetq_lane_i64:
case ARM::BI__builtin_neon_vgetq_lane_f32:
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case ARM::BI__builtin_neon_vset_lane_i8:
case ARM::BI__builtin_neon_vset_lane_i16:
case ARM::BI__builtin_neon_vset_lane_i32:
case ARM::BI__builtin_neon_vset_lane_i64:
case ARM::BI__builtin_neon_vset_lane_f32:
case ARM::BI__builtin_neon_vsetq_lane_i8:
case ARM::BI__builtin_neon_vsetq_lane_i16:
case ARM::BI__builtin_neon_vsetq_lane_i32:
case ARM::BI__builtin_neon_vsetq_lane_i64:
case ARM::BI__builtin_neon_vsetq_lane_f32:
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
}
// Get the last argument, which specifies the vector type.
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs()-1);
if (!Arg->isIntegerConstantExpr(Result, getContext()))
return 0;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
// Determine the overloaded type of this builtin.
llvm::Type *Ty;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
Ty = llvm::Type::getFloatTy(getLLVMContext());
else
Ty = llvm::Type::getDoubleTy(getLLVMContext());
// Determine whether this is an unsigned conversion or not.
bool usgn = Result.getZExtValue() == 1;
unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
// Call the appropriate intrinsic.
Function *F = CGM.getIntrinsic(Int, Ty);
return Builder.CreateCall(F, Ops, "vcvtr");
}
// Determine the type of this overloaded NEON intrinsic.
unsigned type = Result.getZExtValue();
bool usgn = type & 0x08;
bool quad = type & 0x10;
bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
(void)poly; // Only used in assert()s.
bool rightShift = false;
llvm::VectorType *VTy = GetNeonType(getLLVMContext(), type & 0x7, quad);
llvm::Type *Ty = VTy;
if (!Ty)
return 0;
unsigned Int;
switch (BuiltinID) {
default: return 0;
case ARM::BI__builtin_neon_vabd_v:
case ARM::BI__builtin_neon_vabdq_v:
Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
case ARM::BI__builtin_neon_vabs_v:
case ARM::BI__builtin_neon_vabsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
Ops, "vabs");
case ARM::BI__builtin_neon_vaddhn_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
Ops, "vaddhn");
case ARM::BI__builtin_neon_vcale_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcage_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
return EmitNeonCall(F, Ops, "vcage");
}
case ARM::BI__builtin_neon_vcaleq_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcageq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
return EmitNeonCall(F, Ops, "vcage");
}
case ARM::BI__builtin_neon_vcalt_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcagt_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
return EmitNeonCall(F, Ops, "vcagt");
}
case ARM::BI__builtin_neon_vcaltq_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcagtq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
return EmitNeonCall(F, Ops, "vcagt");
}
case ARM::BI__builtin_neon_vcls_v:
case ARM::BI__builtin_neon_vclsq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
return EmitNeonCall(F, Ops, "vcls");
}
case ARM::BI__builtin_neon_vclz_v:
case ARM::BI__builtin_neon_vclzq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, Ty);
return EmitNeonCall(F, Ops, "vclz");
}
case ARM::BI__builtin_neon_vcnt_v:
case ARM::BI__builtin_neon_vcntq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, Ty);
return EmitNeonCall(F, Ops, "vcnt");
}
case ARM::BI__builtin_neon_vcvt_f16_v: {
assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f16_v builtin");
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
return EmitNeonCall(F, Ops, "vcvt");
}
case ARM::BI__builtin_neon_vcvt_f32_f16: {
assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f32_f16 builtin");
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
return EmitNeonCall(F, Ops, "vcvt");
}
case ARM::BI__builtin_neon_vcvt_f32_v:
case ARM::BI__builtin_neon_vcvtq_f32_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(getLLVMContext(), 4, quad);
return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
}
case ARM::BI__builtin_neon_vcvt_s32_v:
case ARM::BI__builtin_neon_vcvt_u32_v:
case ARM::BI__builtin_neon_vcvtq_s32_v:
case ARM::BI__builtin_neon_vcvtq_u32_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(getLLVMContext(), 4, quad));
return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
: Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
}
case ARM::BI__builtin_neon_vcvt_n_f32_v:
case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
llvm::Type *Tys[2] = { GetNeonType(getLLVMContext(), 4, quad), Ty };
Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case ARM::BI__builtin_neon_vcvt_n_s32_v:
case ARM::BI__builtin_neon_vcvt_n_u32_v:
case ARM::BI__builtin_neon_vcvtq_n_s32_v:
case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
llvm::Type *Tys[2] = { Ty, GetNeonType(getLLVMContext(), 4, quad) };
Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case ARM::BI__builtin_neon_vext_v:
case ARM::BI__builtin_neon_vextq_v: {
int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Value *SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
}
case ARM::BI__builtin_neon_vhadd_v:
case ARM::BI__builtin_neon_vhaddq_v:
Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
case ARM::BI__builtin_neon_vhsub_v:
case ARM::BI__builtin_neon_vhsubq_v:
Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
case ARM::BI__builtin_neon_vld1_v:
case ARM::BI__builtin_neon_vld1q_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
Ops, "vld1");
case ARM::BI__builtin_neon_vld1_lane_v:
case ARM::BI__builtin_neon_vld1q_lane_v:
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[0] = Builder.CreateLoad(Ops[0]);
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
case ARM::BI__builtin_neon_vld1_dup_v:
case ARM::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[0] = Builder.CreateLoad(Ops[0]);
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
return EmitNeonSplat(Ops[0], CI);
}
case ARM::BI__builtin_neon_vld2_v:
case ARM::BI__builtin_neon_vld2q_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
Value *Align = GetPointeeAlignment(*this, E->getArg(1));
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld3_v:
case ARM::BI__builtin_neon_vld3q_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
Value *Align = GetPointeeAlignment(*this, E->getArg(1));
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld4_v:
case ARM::BI__builtin_neon_vld4q_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
Value *Align = GetPointeeAlignment(*this, E->getArg(1));
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld2_lane_v:
case ARM::BI__builtin_neon_vld2q_lane_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld3_lane_v:
case ARM::BI__builtin_neon_vld3q_lane_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld4_lane_v:
case ARM::BI__builtin_neon_vld4q_lane_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld2_dup_v:
case ARM::BI__builtin_neon_vld3_dup_v:
case ARM::BI__builtin_neon_vld4_dup_v: {
// Handle 64-bit elements as a special-case. There is no "dup" needed.
if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
switch (BuiltinID) {
case ARM::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2;
break;
case ARM::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld2;
break;
case ARM::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld2;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
Function *F = CGM.getIntrinsic(Int, Ty);
Value *Align = GetPointeeAlignment(*this, E->getArg(1));
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
switch (BuiltinID) {
case ARM::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2lane;
break;
case ARM::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld2lane;
break;
case ARM::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld2lane;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
Function *F = CGM.getIntrinsic(Int, Ty);
llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
SmallVector<Value*, 6> Args;
Args.push_back(Ops[1]);
Args.append(STy->getNumElements(), UndefValue::get(Ty));
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Args.push_back(CI);
Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
// splat lane 0 to all elts in each vector of the result.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Value *Val = Builder.CreateExtractValue(Ops[1], i);
Value *Elt = Builder.CreateBitCast(Val, Ty);
Elt = EmitNeonSplat(Elt, CI);
Elt = Builder.CreateBitCast(Elt, Val->getType());
Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
}
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vmax_v:
case ARM::BI__builtin_neon_vmaxq_v:
Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
case ARM::BI__builtin_neon_vmin_v:
case ARM::BI__builtin_neon_vminq_v:
Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
case ARM::BI__builtin_neon_vmovl_v: {
llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
if (usgn)
return Builder.CreateZExt(Ops[0], Ty, "vmovl");
return Builder.CreateSExt(Ops[0], Ty, "vmovl");
}
case ARM::BI__builtin_neon_vmovn_v: {
llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
}
case ARM::BI__builtin_neon_vmul_v:
case ARM::BI__builtin_neon_vmulq_v:
assert(poly && "vmul builtin only supported for polynomial types");
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
Ops, "vmul");
case ARM::BI__builtin_neon_vmull_v:
Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
Int = poly ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case ARM::BI__builtin_neon_vpadal_v:
case ARM::BI__builtin_neon_vpadalq_v: {
Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy =
llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
}
case ARM::BI__builtin_neon_vpadd_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
Ops, "vpadd");
case ARM::BI__builtin_neon_vpaddl_v:
case ARM::BI__builtin_neon_vpaddlq_v: {
Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
}
case ARM::BI__builtin_neon_vpmax_v:
Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
case ARM::BI__builtin_neon_vpmin_v:
Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
case ARM::BI__builtin_neon_vqabs_v:
case ARM::BI__builtin_neon_vqabsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
Ops, "vqabs");
case ARM::BI__builtin_neon_vqadd_v:
case ARM::BI__builtin_neon_vqaddq_v:
Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
case ARM::BI__builtin_neon_vqdmlal_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
Ops, "vqdmlal");
case ARM::BI__builtin_neon_vqdmlsl_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
Ops, "vqdmlsl");
case ARM::BI__builtin_neon_vqdmulh_v:
case ARM::BI__builtin_neon_vqdmulhq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
Ops, "vqdmulh");
case ARM::BI__builtin_neon_vqdmull_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
Ops, "vqdmull");
case ARM::BI__builtin_neon_vqmovn_v:
Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
case ARM::BI__builtin_neon_vqmovun_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
Ops, "vqdmull");
case ARM::BI__builtin_neon_vqneg_v:
case ARM::BI__builtin_neon_vqnegq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
Ops, "vqneg");
case ARM::BI__builtin_neon_vqrdmulh_v:
case ARM::BI__builtin_neon_vqrdmulhq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
Ops, "vqrdmulh");
case ARM::BI__builtin_neon_vqrshl_v:
case ARM::BI__builtin_neon_vqrshlq_v:
Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
case ARM::BI__builtin_neon_vqrshrn_n_v:
Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1, true);
case ARM::BI__builtin_neon_vqrshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
Ops, "vqrshrun_n", 1, true);
case ARM::BI__builtin_neon_vqshl_v:
case ARM::BI__builtin_neon_vqshlq_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
case ARM::BI__builtin_neon_vqshl_n_v:
case ARM::BI__builtin_neon_vqshlq_n_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1, false);
case ARM::BI__builtin_neon_vqshlu_n_v:
case ARM::BI__builtin_neon_vqshluq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
Ops, "vqshlu", 1, false);
case ARM::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1, true);
case ARM::BI__builtin_neon_vqshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
Ops, "vqshrun_n", 1, true);
case ARM::BI__builtin_neon_vqsub_v:
case ARM::BI__builtin_neon_vqsubq_v:
Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
case ARM::BI__builtin_neon_vraddhn_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
Ops, "vraddhn");
case ARM::BI__builtin_neon_vrecpe_v:
case ARM::BI__builtin_neon_vrecpeq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
Ops, "vrecpe");
case ARM::BI__builtin_neon_vrecps_v:
case ARM::BI__builtin_neon_vrecpsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
Ops, "vrecps");
case ARM::BI__builtin_neon_vrhadd_v:
case ARM::BI__builtin_neon_vrhaddq_v:
Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
case ARM::BI__builtin_neon_vrshl_v:
case ARM::BI__builtin_neon_vrshlq_v:
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
case ARM::BI__builtin_neon_vrshrn_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
Ops, "vrshrn_n", 1, true);
case ARM::BI__builtin_neon_vrshr_n_v:
case ARM::BI__builtin_neon_vrshrq_n_v:
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
case ARM::BI__builtin_neon_vrsqrte_v:
case ARM::BI__builtin_neon_vrsqrteq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
Ops, "vrsqrte");
case ARM::BI__builtin_neon_vrsqrts_v:
case ARM::BI__builtin_neon_vrsqrtsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
Ops, "vrsqrts");
case ARM::BI__builtin_neon_vrsra_n_v:
case ARM::BI__builtin_neon_vrsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
case ARM::BI__builtin_neon_vrsubhn_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
Ops, "vrsubhn");
case ARM::BI__builtin_neon_vshl_v:
case ARM::BI__builtin_neon_vshlq_v:
Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
case ARM::BI__builtin_neon_vshll_n_v:
Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
case ARM::BI__builtin_neon_vshl_n_v:
case ARM::BI__builtin_neon_vshlq_n_v:
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
case ARM::BI__builtin_neon_vshrn_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
Ops, "vshrn_n", 1, true);
case ARM::BI__builtin_neon_vshr_n_v:
case ARM::BI__builtin_neon_vshrq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
if (usgn)
return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
else
return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
case ARM::BI__builtin_neon_vsri_n_v:
case ARM::BI__builtin_neon_vsriq_n_v:
rightShift = true;
case ARM::BI__builtin_neon_vsli_n_v:
case ARM::BI__builtin_neon_vsliq_n_v:
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
Ops, "vsli_n");
case ARM::BI__builtin_neon_vsra_n_v:
case ARM::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
if (usgn)
Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
else
Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vst1_v:
case ARM::BI__builtin_neon_vst1q_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst1_lane_v:
case ARM::BI__builtin_neon_vst1q_lane_v:
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
case ARM::BI__builtin_neon_vst2_v:
case ARM::BI__builtin_neon_vst2q_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst2_lane_v:
case ARM::BI__builtin_neon_vst2q_lane_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst3_v:
case ARM::BI__builtin_neon_vst3q_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst3_lane_v:
case ARM::BI__builtin_neon_vst3q_lane_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst4_v:
case ARM::BI__builtin_neon_vst4q_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst4_lane_v:
case ARM::BI__builtin_neon_vst4q_lane_v:
Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
Ops, "");
case ARM::BI__builtin_neon_vsubhn_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
Ops, "vsubhn");
case ARM::BI__builtin_neon_vtbl1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
Ops, "vtbl1");
case ARM::BI__builtin_neon_vtbl2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
Ops, "vtbl2");
case ARM::BI__builtin_neon_vtbl3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
Ops, "vtbl3");
case ARM::BI__builtin_neon_vtbl4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
Ops, "vtbl4");
case ARM::BI__builtin_neon_vtbx1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
Ops, "vtbx1");
case ARM::BI__builtin_neon_vtbx2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
Ops, "vtbx2");
case ARM::BI__builtin_neon_vtbx3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
Ops, "vtbx3");
case ARM::BI__builtin_neon_vtbx4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
Ops, "vtbx4");
case ARM::BI__builtin_neon_vtst_v:
case ARM::BI__builtin_neon_vtstq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
ConstantAggregateZero::get(Ty));
return Builder.CreateSExt(Ops[0], Ty, "vtst");
}
case ARM::BI__builtin_neon_vtrn_v:
case ARM::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = 0;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
SV = Builder.CreateStore(SV, Addr);
}
return SV;
}
case ARM::BI__builtin_neon_vuzp_v:
case ARM::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = 0;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
SV = Builder.CreateStore(SV, Addr);
}
return SV;
}
case ARM::BI__builtin_neon_vzip_v:
case ARM::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = 0;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
SV = Builder.CreateStore(SV, Addr);
}
return SV;
}
}
}
llvm::Value *CodeGenFunction::
BuildVector(const SmallVectorImpl<llvm::Value*> &Ops) {
assert((Ops.size() & (Ops.size() - 1)) == 0 &&
"Not a power-of-two sized vector!");
bool AllConstants = true;
for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
AllConstants &= isa<Constant>(Ops[i]);
// If this is a constant vector, create a ConstantVector.
if (AllConstants) {
std::vector<llvm::Constant*> CstOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
CstOps.push_back(cast<Constant>(Ops[i]));
return llvm::ConstantVector::get(CstOps);
}
// Otherwise, insertelement the values to build the vector.
Value *Result =
llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Result = Builder.CreateInsertElement(Result, Ops[i],
llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), i));
return Result;
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
SmallVector<Value*, 4> Ops;
// Find out if any arguments are required to be integer constant expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
continue;
}
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
switch (BuiltinID) {
default: return 0;
case X86::BI__builtin_ia32_pslldi128:
case X86::BI__builtin_ia32_psllqi128:
case X86::BI__builtin_ia32_psllwi128:
case X86::BI__builtin_ia32_psradi128:
case X86::BI__builtin_ia32_psrawi128:
case X86::BI__builtin_ia32_psrldi128:
case X86::BI__builtin_ia32_psrlqi128:
case X86::BI__builtin_ia32_psrlwi128: {
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
Ops[1], Zero, "insert");
Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported shift intrinsic!");
case X86::BI__builtin_ia32_pslldi128:
name = "pslldi";
ID = Intrinsic::x86_sse2_psll_d;
break;
case X86::BI__builtin_ia32_psllqi128:
name = "psllqi";
ID = Intrinsic::x86_sse2_psll_q;
break;
case X86::BI__builtin_ia32_psllwi128:
name = "psllwi";
ID = Intrinsic::x86_sse2_psll_w;
break;
case X86::BI__builtin_ia32_psradi128:
name = "psradi";
ID = Intrinsic::x86_sse2_psra_d;
break;
case X86::BI__builtin_ia32_psrawi128:
name = "psrawi";
ID = Intrinsic::x86_sse2_psra_w;
break;
case X86::BI__builtin_ia32_psrldi128:
name = "psrldi";
ID = Intrinsic::x86_sse2_psrl_d;
break;
case X86::BI__builtin_ia32_psrlqi128:
name = "psrlqi";
ID = Intrinsic::x86_sse2_psrl_q;
break;
case X86::BI__builtin_ia32_psrlwi128:
name = "psrlwi";
ID = Intrinsic::x86_sse2_psrl_w;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, name);
}
case X86::BI__builtin_ia32_vec_init_v8qi:
case X86::BI__builtin_ia32_vec_init_v4hi:
case X86::BI__builtin_ia32_vec_init_v2si:
return Builder.CreateBitCast(BuildVector(Ops),
llvm::Type::getX86_MMXTy(getLLVMContext()));
case X86::BI__builtin_ia32_vec_ext_v2si:
return Builder.CreateExtractElement(Ops[0],
llvm::ConstantInt::get(Ops[1]->getType(), 0));
case X86::BI__builtin_ia32_pslldi:
case X86::BI__builtin_ia32_psllqi:
case X86::BI__builtin_ia32_psllwi:
case X86::BI__builtin_ia32_psradi:
case X86::BI__builtin_ia32_psrawi:
case X86::BI__builtin_ia32_psrldi:
case X86::BI__builtin_ia32_psrlqi:
case X86::BI__builtin_ia32_psrlwi: {
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported shift intrinsic!");
case X86::BI__builtin_ia32_pslldi:
name = "pslldi";
ID = Intrinsic::x86_mmx_psll_d;
break;
case X86::BI__builtin_ia32_psllqi:
name = "psllqi";
ID = Intrinsic::x86_mmx_psll_q;
break;
case X86::BI__builtin_ia32_psllwi:
name = "psllwi";
ID = Intrinsic::x86_mmx_psll_w;
break;
case X86::BI__builtin_ia32_psradi:
name = "psradi";
ID = Intrinsic::x86_mmx_psra_d;
break;
case X86::BI__builtin_ia32_psrawi:
name = "psrawi";
ID = Intrinsic::x86_mmx_psra_w;
break;
case X86::BI__builtin_ia32_psrldi:
name = "psrldi";
ID = Intrinsic::x86_mmx_psrl_d;
break;
case X86::BI__builtin_ia32_psrlqi:
name = "psrlqi";
ID = Intrinsic::x86_mmx_psrl_q;
break;
case X86::BI__builtin_ia32_psrlwi:
name = "psrlwi";
ID = Intrinsic::x86_mmx_psrl_w;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, name);
}
case X86::BI__builtin_ia32_cmpps: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
return Builder.CreateCall(F, Ops, "cmpps");
}
case X86::BI__builtin_ia32_cmpss: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
return Builder.CreateCall(F, Ops, "cmpss");
}
case X86::BI__builtin_ia32_ldmxcsr: {
llvm::Type *PtrTy = Int8PtrTy;
Value *One = llvm::ConstantInt::get(Int32Ty, 1);
Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
Builder.CreateStore(Ops[0], Tmp);
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
Builder.CreateBitCast(Tmp, PtrTy));
}
case X86::BI__builtin_ia32_stmxcsr: {
llvm::Type *PtrTy = Int8PtrTy;
Value *One = llvm::ConstantInt::get(Int32Ty, 1);
Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
Builder.CreateBitCast(Tmp, PtrTy));
return Builder.CreateLoad(Tmp, "stmxcsr");
}
case X86::BI__builtin_ia32_cmppd: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
return Builder.CreateCall(F, Ops, "cmppd");
}
case X86::BI__builtin_ia32_cmpsd: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
return Builder.CreateCall(F, Ops, "cmpsd");
}
case X86::BI__builtin_ia32_storehps:
case X86::BI__builtin_ia32_storelps: {
llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
// cast val v2i64
Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
// extract (0, 1)
unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
// cast pointer to i64 & store
Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case X86::BI__builtin_ia32_palignr: {
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
// If palignr is shifting the pair of input vectors less than 9 bytes,
// emit a shuffle instruction.
if (shiftVal <= 8) {
SmallVector<llvm::Constant*, 8> Indices;
for (unsigned i = 0; i != 8; ++i)
Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
Value* SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
}
// If palignr is shifting the pair of input vectors more than 8 but less
// than 16 bytes, emit a logical right shift of the destination.
if (shiftVal < 16) {
// MMX has these as 1 x i64 vectors for some odd optimization reasons.
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
// create i32 constant
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
}
// If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
case X86::BI__builtin_ia32_palignr128: {
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
// If palignr is shifting the pair of input vectors less than 17 bytes,
// emit a shuffle instruction.
if (shiftVal <= 16) {
SmallVector<llvm::Constant*, 16> Indices;
for (unsigned i = 0; i != 16; ++i)
Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
Value* SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
}
// If palignr is shifting the pair of input vectors more than 16 but less
// than 32 bytes, emit a logical right shift of the destination.
if (shiftVal < 32) {
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
// create i32 constant
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
}
// If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
case X86::BI__builtin_ia32_movntps:
case X86::BI__builtin_ia32_movntpd:
case X86::BI__builtin_ia32_movntdq:
case X86::BI__builtin_ia32_movnti: {
llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
Builder.getInt32(1));
// Convert the type of the pointer to a pointer to the stored type.
Value *BC = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()),
"cast");
StoreInst *SI = Builder.CreateStore(Ops[1], BC);
SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
SI->setAlignment(16);
return SI;
}
// 3DNow!
case X86::BI__builtin_ia32_pavgusb:
case X86::BI__builtin_ia32_pf2id:
case X86::BI__builtin_ia32_pfacc:
case X86::BI__builtin_ia32_pfadd:
case X86::BI__builtin_ia32_pfcmpeq:
case X86::BI__builtin_ia32_pfcmpge:
case X86::BI__builtin_ia32_pfcmpgt:
case X86::BI__builtin_ia32_pfmax:
case X86::BI__builtin_ia32_pfmin:
case X86::BI__builtin_ia32_pfmul:
case X86::BI__builtin_ia32_pfrcp:
case X86::BI__builtin_ia32_pfrcpit1:
case X86::BI__builtin_ia32_pfrcpit2:
case X86::BI__builtin_ia32_pfrsqrt:
case X86::BI__builtin_ia32_pfrsqit1:
case X86::BI__builtin_ia32_pfrsqrtit1:
case X86::BI__builtin_ia32_pfsub:
case X86::BI__builtin_ia32_pfsubr:
case X86::BI__builtin_ia32_pi2fd:
case X86::BI__builtin_ia32_pmulhrw:
case X86::BI__builtin_ia32_pf2iw:
case X86::BI__builtin_ia32_pfnacc:
case X86::BI__builtin_ia32_pfpnacc:
case X86::BI__builtin_ia32_pi2fw:
case X86::BI__builtin_ia32_pswapdsf:
case X86::BI__builtin_ia32_pswapdsi: {
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch(BuiltinID) {
case X86::BI__builtin_ia32_pavgusb:
name = "pavgusb";
ID = Intrinsic::x86_3dnow_pavgusb;
break;
case X86::BI__builtin_ia32_pf2id:
name = "pf2id";
ID = Intrinsic::x86_3dnow_pf2id;
break;
case X86::BI__builtin_ia32_pfacc:
name = "pfacc";
ID = Intrinsic::x86_3dnow_pfacc;
break;
case X86::BI__builtin_ia32_pfadd:
name = "pfadd";
ID = Intrinsic::x86_3dnow_pfadd;
break;
case X86::BI__builtin_ia32_pfcmpeq:
name = "pfcmpeq";
ID = Intrinsic::x86_3dnow_pfcmpeq;
break;
case X86::BI__builtin_ia32_pfcmpge:
name = "pfcmpge";
ID = Intrinsic::x86_3dnow_pfcmpge;
break;
case X86::BI__builtin_ia32_pfcmpgt:
name = "pfcmpgt";
ID = Intrinsic::x86_3dnow_pfcmpgt;
break;
case X86::BI__builtin_ia32_pfmax:
name = "pfmax";
ID = Intrinsic::x86_3dnow_pfmax;
break;
case X86::BI__builtin_ia32_pfmin:
name = "pfmin";
ID = Intrinsic::x86_3dnow_pfmin;
break;
case X86::BI__builtin_ia32_pfmul:
name = "pfmul";
ID = Intrinsic::x86_3dnow_pfmul;
break;
case X86::BI__builtin_ia32_pfrcp:
name = "pfrcp";
ID = Intrinsic::x86_3dnow_pfrcp;
break;
case X86::BI__builtin_ia32_pfrcpit1:
name = "pfrcpit1";
ID = Intrinsic::x86_3dnow_pfrcpit1;
break;
case X86::BI__builtin_ia32_pfrcpit2:
name = "pfrcpit2";
ID = Intrinsic::x86_3dnow_pfrcpit2;
break;
case X86::BI__builtin_ia32_pfrsqrt:
name = "pfrsqrt";
ID = Intrinsic::x86_3dnow_pfrsqrt;
break;
case X86::BI__builtin_ia32_pfrsqit1:
case X86::BI__builtin_ia32_pfrsqrtit1:
name = "pfrsqit1";
ID = Intrinsic::x86_3dnow_pfrsqit1;
break;
case X86::BI__builtin_ia32_pfsub:
name = "pfsub";
ID = Intrinsic::x86_3dnow_pfsub;
break;
case X86::BI__builtin_ia32_pfsubr:
name = "pfsubr";
ID = Intrinsic::x86_3dnow_pfsubr;
break;
case X86::BI__builtin_ia32_pi2fd:
name = "pi2fd";
ID = Intrinsic::x86_3dnow_pi2fd;
break;
case X86::BI__builtin_ia32_pmulhrw:
name = "pmulhrw";
ID = Intrinsic::x86_3dnow_pmulhrw;
break;
case X86::BI__builtin_ia32_pf2iw:
name = "pf2iw";
ID = Intrinsic::x86_3dnowa_pf2iw;
break;
case X86::BI__builtin_ia32_pfnacc:
name = "pfnacc";
ID = Intrinsic::x86_3dnowa_pfnacc;
break;
case X86::BI__builtin_ia32_pfpnacc:
name = "pfpnacc";
ID = Intrinsic::x86_3dnowa_pfpnacc;
break;
case X86::BI__builtin_ia32_pi2fw:
name = "pi2fw";
ID = Intrinsic::x86_3dnowa_pi2fw;
break;
case X86::BI__builtin_ia32_pswapdsf:
case X86::BI__builtin_ia32_pswapdsi:
name = "pswapd";
ID = Intrinsic::x86_3dnowa_pswapd;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, name);
}
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: return 0;
// vec_ld, vec_lvsl, vec_lvsr
case PPC::BI__builtin_altivec_lvx:
case PPC::BI__builtin_altivec_lvxl:
case PPC::BI__builtin_altivec_lvebx:
case PPC::BI__builtin_altivec_lvehx:
case PPC::BI__builtin_altivec_lvewx:
case PPC::BI__builtin_altivec_lvsl:
case PPC::BI__builtin_altivec_lvsr:
{
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
Ops.pop_back();
switch (BuiltinID) {
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
case PPC::BI__builtin_altivec_lvx:
ID = Intrinsic::ppc_altivec_lvx;
break;
case PPC::BI__builtin_altivec_lvxl:
ID = Intrinsic::ppc_altivec_lvxl;
break;
case PPC::BI__builtin_altivec_lvebx:
ID = Intrinsic::ppc_altivec_lvebx;
break;
case PPC::BI__builtin_altivec_lvehx:
ID = Intrinsic::ppc_altivec_lvehx;
break;
case PPC::BI__builtin_altivec_lvewx:
ID = Intrinsic::ppc_altivec_lvewx;
break;
case PPC::BI__builtin_altivec_lvsl:
ID = Intrinsic::ppc_altivec_lvsl;
break;
case PPC::BI__builtin_altivec_lvsr:
ID = Intrinsic::ppc_altivec_lvsr;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// vec_st
case PPC::BI__builtin_altivec_stvx:
case PPC::BI__builtin_altivec_stvxl:
case PPC::BI__builtin_altivec_stvebx:
case PPC::BI__builtin_altivec_stvehx:
case PPC::BI__builtin_altivec_stvewx:
{
Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
Ops.pop_back();
switch (BuiltinID) {
default: llvm_unreachable("Unsupported st intrinsic!");
case PPC::BI__builtin_altivec_stvx:
ID = Intrinsic::ppc_altivec_stvx;
break;
case PPC::BI__builtin_altivec_stvxl:
ID = Intrinsic::ppc_altivec_stvxl;
break;
case PPC::BI__builtin_altivec_stvebx:
ID = Intrinsic::ppc_altivec_stvebx;
break;
case PPC::BI__builtin_altivec_stvehx:
ID = Intrinsic::ppc_altivec_stvehx;
break;
case PPC::BI__builtin_altivec_stvewx:
ID = Intrinsic::ppc_altivec_stvewx;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
}
return 0;
}