| //===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Preprocessor interface. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Options to support: |
| // -H - Print the name of each header file used. |
| // -d[MDNI] - Dump various things. |
| // -fworking-directory - #line's with preprocessor's working dir. |
| // -fpreprocessed |
| // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD |
| // -W* |
| // -w |
| // |
| // Messages to emit: |
| // "Multiple include guards may be useful for:\n" |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Lex/PPCallbacks.h" |
| #include "clang/Lex/Pragma.h" |
| #include "clang/Lex/ScratchBuffer.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include <iostream> |
| #include <ctime> |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| |
| Preprocessor::Preprocessor(Diagnostic &diags, const LangOptions &opts, |
| TargetInfo &target, SourceManager &SM, |
| HeaderSearch &Headers) |
| : Diags(diags), Features(opts), Target(target), FileMgr(Headers.getFileMgr()), |
| SourceMgr(SM), HeaderInfo(Headers), Identifiers(opts), |
| CurLexer(0), CurDirLookup(0), CurMacroExpander(0), Callbacks(0) { |
| ScratchBuf = new ScratchBuffer(SourceMgr); |
| |
| // Clear stats. |
| NumDirectives = NumDefined = NumUndefined = NumPragma = 0; |
| NumIf = NumElse = NumEndif = 0; |
| NumEnteredSourceFiles = 0; |
| NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0; |
| NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0; |
| MaxIncludeStackDepth = 0; |
| NumSkipped = 0; |
| |
| // Default to discarding comments. |
| KeepComments = false; |
| KeepMacroComments = false; |
| |
| // Macro expansion is enabled. |
| DisableMacroExpansion = false; |
| InMacroArgs = false; |
| NumCachedMacroExpanders = 0; |
| |
| // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. |
| // This gets unpoisoned where it is allowed. |
| (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); |
| |
| Predefines = 0; |
| |
| // Initialize the pragma handlers. |
| PragmaHandlers = new PragmaNamespace(0); |
| RegisterBuiltinPragmas(); |
| |
| // Initialize builtin macros like __LINE__ and friends. |
| RegisterBuiltinMacros(); |
| } |
| |
| Preprocessor::~Preprocessor() { |
| // Free any active lexers. |
| delete CurLexer; |
| |
| while (!IncludeMacroStack.empty()) { |
| delete IncludeMacroStack.back().TheLexer; |
| delete IncludeMacroStack.back().TheMacroExpander; |
| IncludeMacroStack.pop_back(); |
| } |
| |
| // Free any macro definitions. |
| for (llvm::DenseMap<IdentifierInfo*, MacroInfo*>::iterator I = |
| Macros.begin(), E = Macros.end(); I != E; ++I) { |
| // Free the macro definition. |
| delete I->second; |
| I->second = 0; |
| I->first->setHasMacroDefinition(false); |
| } |
| |
| // Free any cached macro expanders. |
| for (unsigned i = 0, e = NumCachedMacroExpanders; i != e; ++i) |
| delete MacroExpanderCache[i]; |
| |
| // Release pragma information. |
| delete PragmaHandlers; |
| |
| // Delete the scratch buffer info. |
| delete ScratchBuf; |
| } |
| |
| PPCallbacks::~PPCallbacks() { |
| } |
| |
| /// Diag - Forwarding function for diagnostics. This emits a diagnostic at |
| /// the specified Token's location, translating the token's start |
| /// position in the current buffer into a SourcePosition object for rendering. |
| void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID) { |
| Diags.Report(Loc, DiagID); |
| } |
| |
| void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID, |
| const std::string &Msg) { |
| Diags.Report(Loc, DiagID, &Msg, 1); |
| } |
| |
| void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { |
| std::cerr << tok::getTokenName(Tok.getKind()) << " '" |
| << getSpelling(Tok) << "'"; |
| |
| if (!DumpFlags) return; |
| std::cerr << "\t"; |
| if (Tok.isAtStartOfLine()) |
| std::cerr << " [StartOfLine]"; |
| if (Tok.hasLeadingSpace()) |
| std::cerr << " [LeadingSpace]"; |
| if (Tok.isExpandDisabled()) |
| std::cerr << " [ExpandDisabled]"; |
| if (Tok.needsCleaning()) { |
| const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); |
| std::cerr << " [UnClean='" << std::string(Start, Start+Tok.getLength()) |
| << "']"; |
| } |
| } |
| |
| void Preprocessor::DumpMacro(const MacroInfo &MI) const { |
| std::cerr << "MACRO: "; |
| for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { |
| DumpToken(MI.getReplacementToken(i)); |
| std::cerr << " "; |
| } |
| std::cerr << "\n"; |
| } |
| |
| void Preprocessor::PrintStats() { |
| std::cerr << "\n*** Preprocessor Stats:\n"; |
| std::cerr << NumDirectives << " directives found:\n"; |
| std::cerr << " " << NumDefined << " #define.\n"; |
| std::cerr << " " << NumUndefined << " #undef.\n"; |
| std::cerr << " #include/#include_next/#import:\n"; |
| std::cerr << " " << NumEnteredSourceFiles << " source files entered.\n"; |
| std::cerr << " " << MaxIncludeStackDepth << " max include stack depth\n"; |
| std::cerr << " " << NumIf << " #if/#ifndef/#ifdef.\n"; |
| std::cerr << " " << NumElse << " #else/#elif.\n"; |
| std::cerr << " " << NumEndif << " #endif.\n"; |
| std::cerr << " " << NumPragma << " #pragma.\n"; |
| std::cerr << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; |
| |
| std::cerr << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" |
| << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " |
| << NumFastMacroExpanded << " on the fast path.\n"; |
| std::cerr << (NumFastTokenPaste+NumTokenPaste) |
| << " token paste (##) operations performed, " |
| << NumFastTokenPaste << " on the fast path.\n"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Token Spelling |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// getSpelling() - Return the 'spelling' of this token. The spelling of a |
| /// token are the characters used to represent the token in the source file |
| /// after trigraph expansion and escaped-newline folding. In particular, this |
| /// wants to get the true, uncanonicalized, spelling of things like digraphs |
| /// UCNs, etc. |
| std::string Preprocessor::getSpelling(const Token &Tok) const { |
| assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); |
| |
| // If this token contains nothing interesting, return it directly. |
| const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation()); |
| if (!Tok.needsCleaning()) |
| return std::string(TokStart, TokStart+Tok.getLength()); |
| |
| std::string Result; |
| Result.reserve(Tok.getLength()); |
| |
| // Otherwise, hard case, relex the characters into the string. |
| for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); |
| Ptr != End; ) { |
| unsigned CharSize; |
| Result.push_back(Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features)); |
| Ptr += CharSize; |
| } |
| assert(Result.size() != unsigned(Tok.getLength()) && |
| "NeedsCleaning flag set on something that didn't need cleaning!"); |
| return Result; |
| } |
| |
| /// getSpelling - This method is used to get the spelling of a token into a |
| /// preallocated buffer, instead of as an std::string. The caller is required |
| /// to allocate enough space for the token, which is guaranteed to be at least |
| /// Tok.getLength() bytes long. The actual length of the token is returned. |
| /// |
| /// Note that this method may do two possible things: it may either fill in |
| /// the buffer specified with characters, or it may *change the input pointer* |
| /// to point to a constant buffer with the data already in it (avoiding a |
| /// copy). The caller is not allowed to modify the returned buffer pointer |
| /// if an internal buffer is returned. |
| unsigned Preprocessor::getSpelling(const Token &Tok, |
| const char *&Buffer) const { |
| assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); |
| |
| // If this token is an identifier, just return the string from the identifier |
| // table, which is very quick. |
| if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { |
| Buffer = II->getName(); |
| |
| // Return the length of the token. If the token needed cleaning, don't |
| // include the size of the newlines or trigraphs in it. |
| if (!Tok.needsCleaning()) |
| return Tok.getLength(); |
| else |
| return strlen(Buffer); |
| } |
| |
| // Otherwise, compute the start of the token in the input lexer buffer. |
| const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation()); |
| |
| // If this token contains nothing interesting, return it directly. |
| if (!Tok.needsCleaning()) { |
| Buffer = TokStart; |
| return Tok.getLength(); |
| } |
| // Otherwise, hard case, relex the characters into the string. |
| char *OutBuf = const_cast<char*>(Buffer); |
| for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); |
| Ptr != End; ) { |
| unsigned CharSize; |
| *OutBuf++ = Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features); |
| Ptr += CharSize; |
| } |
| assert(unsigned(OutBuf-Buffer) != Tok.getLength() && |
| "NeedsCleaning flag set on something that didn't need cleaning!"); |
| |
| return OutBuf-Buffer; |
| } |
| |
| |
| /// CreateString - Plop the specified string into a scratch buffer and return a |
| /// location for it. If specified, the source location provides a source |
| /// location for the token. |
| SourceLocation Preprocessor:: |
| CreateString(const char *Buf, unsigned Len, SourceLocation SLoc) { |
| if (SLoc.isValid()) |
| return ScratchBuf->getToken(Buf, Len, SLoc); |
| return ScratchBuf->getToken(Buf, Len); |
| } |
| |
| |
| /// AdvanceToTokenCharacter - Given a location that specifies the start of a |
| /// token, return a new location that specifies a character within the token. |
| SourceLocation Preprocessor::AdvanceToTokenCharacter(SourceLocation TokStart, |
| unsigned CharNo) { |
| // If they request the first char of the token, we're trivially done. If this |
| // is a macro expansion, it doesn't make sense to point to a character within |
| // the instantiation point (the name). We could point to the source |
| // character, but without also pointing to instantiation info, this is |
| // confusing. |
| if (CharNo == 0 || TokStart.isMacroID()) return TokStart; |
| |
| // Figure out how many physical characters away the specified logical |
| // character is. This needs to take into consideration newlines and |
| // trigraphs. |
| const char *TokPtr = SourceMgr.getCharacterData(TokStart); |
| unsigned PhysOffset = 0; |
| |
| // The usual case is that tokens don't contain anything interesting. Skip |
| // over the uninteresting characters. If a token only consists of simple |
| // chars, this method is extremely fast. |
| while (CharNo && Lexer::isObviouslySimpleCharacter(*TokPtr)) |
| ++TokPtr, --CharNo, ++PhysOffset; |
| |
| // If we have a character that may be a trigraph or escaped newline, create a |
| // lexer to parse it correctly. |
| if (CharNo != 0) { |
| // Create a lexer starting at this token position. |
| Lexer TheLexer(TokStart, *this, TokPtr); |
| Token Tok; |
| // Skip over characters the remaining characters. |
| const char *TokStartPtr = TokPtr; |
| for (; CharNo; --CharNo) |
| TheLexer.getAndAdvanceChar(TokPtr, Tok); |
| |
| PhysOffset += TokPtr-TokStartPtr; |
| } |
| |
| return TokStart.getFileLocWithOffset(PhysOffset); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Initialization Methods |
| //===----------------------------------------------------------------------===// |
| |
| // Append a #define line to Buf for Macro. Macro should be of the form XXX, |
| // in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit |
| // "#define XXX Y z W". To get a #define with no value, use "XXX=". |
| static void DefineBuiltinMacro(std::vector<char> &Buf, const char *Macro, |
| const char *Command = "#define ") { |
| Buf.insert(Buf.end(), Command, Command+strlen(Command)); |
| if (const char *Equal = strchr(Macro, '=')) { |
| // Turn the = into ' '. |
| Buf.insert(Buf.end(), Macro, Equal); |
| Buf.push_back(' '); |
| Buf.insert(Buf.end(), Equal+1, Equal+strlen(Equal)); |
| } else { |
| // Push "macroname 1". |
| Buf.insert(Buf.end(), Macro, Macro+strlen(Macro)); |
| Buf.push_back(' '); |
| Buf.push_back('1'); |
| } |
| Buf.push_back('\n'); |
| } |
| |
| |
| static void InitializePredefinedMacros(Preprocessor &PP, |
| std::vector<char> &Buf) { |
| // FIXME: Implement magic like cpp_init_builtins for things like __STDC__ |
| // and __DATE__ etc. |
| #if 0 |
| /* __STDC__ has the value 1 under normal circumstances. |
| However, if (a) we are in a system header, (b) the option |
| stdc_0_in_system_headers is true (set by target config), and |
| (c) we are not in strictly conforming mode, then it has the |
| value 0. (b) and (c) are already checked in cpp_init_builtins. */ |
| //case BT_STDC: |
| if (cpp_in_system_header (pfile)) |
| number = 0; |
| else |
| number = 1; |
| break; |
| #endif |
| // These should all be defined in the preprocessor according to the |
| // current language configuration. |
| DefineBuiltinMacro(Buf, "__STDC__=1"); |
| //DefineBuiltinMacro(Buf, "__ASSEMBLER__=1"); |
| if (PP.getLangOptions().C99 && !PP.getLangOptions().CPlusPlus) |
| DefineBuiltinMacro(Buf, "__STDC_VERSION__=199901L"); |
| else if (0) // STDC94 ? |
| DefineBuiltinMacro(Buf, "__STDC_VERSION__=199409L"); |
| |
| DefineBuiltinMacro(Buf, "__STDC_HOSTED__=1"); |
| if (PP.getLangOptions().ObjC1) |
| DefineBuiltinMacro(Buf, "__OBJC__=1"); |
| if (PP.getLangOptions().ObjC2) |
| DefineBuiltinMacro(Buf, "__OBJC2__=1"); |
| |
| if (PP.getLangOptions().ObjC1) { |
| // Predefine all the ObjC goodies (traditionally declared in <objc/objc.h>). |
| // We define the following header guard for source compatibility. It has |
| // the effect of ignoring any explicit inclusion of <objc/objc.h>:-) |
| DefineBuiltinMacro(Buf, "_OBJC_OBJC_H_=1"); |
| DefineBuiltinMacro(Buf, "OBJC_EXPORT=extern"); |
| DefineBuiltinMacro(Buf, "OBJC_IMPORT=extern"); |
| const char *ObjcType; |
| ObjcType = "typedef struct objc_class *Class;\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "typedef struct objc_object { Class isa; } *id;\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "typedef struct objc_selector *SEL;\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "typedef id (*IMP)(id, SEL, ...);\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "typedef signed char BOOL;\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| DefineBuiltinMacro(Buf, "YES=(BOOL)1"); |
| DefineBuiltinMacro(Buf, "NO=(BOOL)0"); |
| DefineBuiltinMacro(Buf, "Nil=0"); |
| DefineBuiltinMacro(Buf, "nil=0"); |
| ObjcType = "OBJC_EXPORT const char *sel_getName(SEL sel);\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "OBJC_EXPORT SEL sel_getUid(const char *str);\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| |
| // Predefine ObjC primitive functions, traditionally declared in |
| // <objc/objc-runtime.h>. Unlike the declarations above, we don't protect |
| // these with a header guard (since multiple identical function declarations |
| // don't result in an error. |
| ObjcType = "OBJC_EXPORT id objc_getClass(const char *name);\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "OBJC_EXPORT id objc_getMetaClass(const char *name);\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "OBJC_EXPORT id objc_msgSend(id self, SEL op, ...);\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| ObjcType = "OBJC_EXPORT id objc_msgSendSuper(struct objc_super *super, SEL op, ...);\n"; |
| Buf.insert(Buf.end(), ObjcType, ObjcType+strlen(ObjcType)); |
| } |
| |
| // Add __builtin_va_list typedef. |
| { |
| const char *VAList = PP.getTargetInfo().getVAListDeclaration(); |
| Buf.insert(Buf.end(), VAList, VAList+strlen(VAList)); |
| Buf.push_back('\n'); |
| } |
| |
| // Get the target #defines. |
| PP.getTargetInfo().getTargetDefines(Buf); |
| |
| // Compiler set macros. |
| DefineBuiltinMacro(Buf, "__APPLE_CC__=5250"); |
| DefineBuiltinMacro(Buf, "__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__=1030"); |
| DefineBuiltinMacro(Buf, "__GNUC_MINOR__=0"); |
| DefineBuiltinMacro(Buf, "__GNUC_PATCHLEVEL__=1"); |
| DefineBuiltinMacro(Buf, "__GNUC__=4"); |
| DefineBuiltinMacro(Buf, "__GXX_ABI_VERSION=1002"); |
| DefineBuiltinMacro(Buf, "__VERSION__=\"4.0.1 (Apple Computer, Inc. " |
| "build 5250)\""); |
| |
| // Build configuration options. |
| DefineBuiltinMacro(Buf, "__DYNAMIC__=1"); |
| DefineBuiltinMacro(Buf, "__FINITE_MATH_ONLY__=0"); |
| DefineBuiltinMacro(Buf, "__NO_INLINE__=1"); |
| DefineBuiltinMacro(Buf, "__PIC__=1"); |
| |
| |
| if (PP.getLangOptions().CPlusPlus) { |
| DefineBuiltinMacro(Buf, "__DEPRECATED=1"); |
| DefineBuiltinMacro(Buf, "__EXCEPTIONS=1"); |
| DefineBuiltinMacro(Buf, "__GNUG__=4"); |
| DefineBuiltinMacro(Buf, "__GXX_WEAK__=1"); |
| DefineBuiltinMacro(Buf, "__cplusplus=1"); |
| DefineBuiltinMacro(Buf, "__private_extern__=extern"); |
| } |
| |
| // FIXME: Should emit a #line directive here. |
| } |
| |
| |
| /// EnterMainSourceFile - Enter the specified FileID as the main source file, |
| /// which implicitly adds the builting defines etc. |
| void Preprocessor::EnterMainSourceFile(unsigned MainFileID) { |
| // Enter the main file source buffer. |
| EnterSourceFile(MainFileID, 0); |
| |
| |
| std::vector<char> PrologFile; |
| PrologFile.reserve(4080); |
| |
| // Install things like __POWERPC__, __GNUC__, etc into the macro table. |
| InitializePredefinedMacros(*this, PrologFile); |
| |
| // Add on the predefines from the driver. |
| PrologFile.insert(PrologFile.end(), Predefines,Predefines+strlen(Predefines)); |
| |
| // Memory buffer must end with a null byte! |
| PrologFile.push_back(0); |
| |
| // Now that we have emitted the predefined macros, #includes, etc into |
| // PrologFile, preprocess it to populate the initial preprocessor state. |
| llvm::MemoryBuffer *SB = |
| llvm::MemoryBuffer::getMemBufferCopy(&PrologFile.front(),&PrologFile.back(), |
| "<predefines>"); |
| assert(SB && "Cannot fail to create predefined source buffer"); |
| unsigned FileID = SourceMgr.createFileIDForMemBuffer(SB); |
| assert(FileID && "Could not create FileID for predefines?"); |
| |
| // Start parsing the predefines. |
| EnterSourceFile(FileID, 0); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Source File Location Methods. |
| //===----------------------------------------------------------------------===// |
| |
| /// LookupFile - Given a "foo" or <foo> reference, look up the indicated file, |
| /// return null on failure. isAngled indicates whether the file reference is |
| /// for system #include's or not (i.e. using <> instead of ""). |
| const FileEntry *Preprocessor::LookupFile(const char *FilenameStart, |
| const char *FilenameEnd, |
| bool isAngled, |
| const DirectoryLookup *FromDir, |
| const DirectoryLookup *&CurDir) { |
| // If the header lookup mechanism may be relative to the current file, pass in |
| // info about where the current file is. |
| const FileEntry *CurFileEnt = 0; |
| if (!FromDir) { |
| SourceLocation FileLoc = getCurrentFileLexer()->getFileLoc(); |
| CurFileEnt = SourceMgr.getFileEntryForLoc(FileLoc); |
| } |
| |
| // Do a standard file entry lookup. |
| CurDir = CurDirLookup; |
| const FileEntry *FE = |
| HeaderInfo.LookupFile(FilenameStart, FilenameEnd, |
| isAngled, FromDir, CurDir, CurFileEnt); |
| if (FE) return FE; |
| |
| // Otherwise, see if this is a subframework header. If so, this is relative |
| // to one of the headers on the #include stack. Walk the list of the current |
| // headers on the #include stack and pass them to HeaderInfo. |
| if (CurLexer && !CurLexer->Is_PragmaLexer) { |
| CurFileEnt = SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()); |
| if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd, |
| CurFileEnt))) |
| return FE; |
| } |
| |
| for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) { |
| IncludeStackInfo &ISEntry = IncludeMacroStack[e-i-1]; |
| if (ISEntry.TheLexer && !ISEntry.TheLexer->Is_PragmaLexer) { |
| CurFileEnt = SourceMgr.getFileEntryForLoc(ISEntry.TheLexer->getFileLoc()); |
| if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd, |
| CurFileEnt))) |
| return FE; |
| } |
| } |
| |
| // Otherwise, we really couldn't find the file. |
| return 0; |
| } |
| |
| /// isInPrimaryFile - Return true if we're in the top-level file, not in a |
| /// #include. |
| bool Preprocessor::isInPrimaryFile() const { |
| if (CurLexer && !CurLexer->Is_PragmaLexer) |
| return IncludeMacroStack.empty(); |
| |
| // If there are any stacked lexers, we're in a #include. |
| assert(IncludeMacroStack[0].TheLexer && |
| !IncludeMacroStack[0].TheLexer->Is_PragmaLexer && |
| "Top level include stack isn't our primary lexer?"); |
| for (unsigned i = 1, e = IncludeMacroStack.size(); i != e; ++i) |
| if (IncludeMacroStack[i].TheLexer && |
| !IncludeMacroStack[i].TheLexer->Is_PragmaLexer) |
| return false; |
| return true; |
| } |
| |
| /// getCurrentLexer - Return the current file lexer being lexed from. Note |
| /// that this ignores any potentially active macro expansions and _Pragma |
| /// expansions going on at the time. |
| Lexer *Preprocessor::getCurrentFileLexer() const { |
| if (CurLexer && !CurLexer->Is_PragmaLexer) return CurLexer; |
| |
| // Look for a stacked lexer. |
| for (unsigned i = IncludeMacroStack.size(); i != 0; --i) { |
| Lexer *L = IncludeMacroStack[i-1].TheLexer; |
| if (L && !L->Is_PragmaLexer) // Ignore macro & _Pragma expansions. |
| return L; |
| } |
| return 0; |
| } |
| |
| |
| /// EnterSourceFile - Add a source file to the top of the include stack and |
| /// start lexing tokens from it instead of the current buffer. Return true |
| /// on failure. |
| void Preprocessor::EnterSourceFile(unsigned FileID, |
| const DirectoryLookup *CurDir) { |
| assert(CurMacroExpander == 0 && "Cannot #include a file inside a macro!"); |
| ++NumEnteredSourceFiles; |
| |
| if (MaxIncludeStackDepth < IncludeMacroStack.size()) |
| MaxIncludeStackDepth = IncludeMacroStack.size(); |
| |
| Lexer *TheLexer = new Lexer(SourceLocation::getFileLoc(FileID, 0), *this); |
| EnterSourceFileWithLexer(TheLexer, CurDir); |
| } |
| |
| /// EnterSourceFile - Add a source file to the top of the include stack and |
| /// start lexing tokens from it instead of the current buffer. |
| void Preprocessor::EnterSourceFileWithLexer(Lexer *TheLexer, |
| const DirectoryLookup *CurDir) { |
| |
| // Add the current lexer to the include stack. |
| if (CurLexer || CurMacroExpander) |
| IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, |
| CurMacroExpander)); |
| |
| CurLexer = TheLexer; |
| CurDirLookup = CurDir; |
| CurMacroExpander = 0; |
| |
| // Notify the client, if desired, that we are in a new source file. |
| if (Callbacks && !CurLexer->Is_PragmaLexer) { |
| DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir; |
| |
| // Get the file entry for the current file. |
| if (const FileEntry *FE = |
| SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc())) |
| FileType = HeaderInfo.getFileDirFlavor(FE); |
| |
| Callbacks->FileChanged(CurLexer->getFileLoc(), |
| PPCallbacks::EnterFile, FileType); |
| } |
| } |
| |
| |
| |
| /// EnterMacro - Add a Macro to the top of the include stack and start lexing |
| /// tokens from it instead of the current buffer. |
| void Preprocessor::EnterMacro(Token &Tok, MacroArgs *Args) { |
| IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, |
| CurMacroExpander)); |
| CurLexer = 0; |
| CurDirLookup = 0; |
| |
| if (NumCachedMacroExpanders == 0) { |
| CurMacroExpander = new MacroExpander(Tok, Args, *this); |
| } else { |
| CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders]; |
| CurMacroExpander->Init(Tok, Args); |
| } |
| } |
| |
| /// EnterTokenStream - Add a "macro" context to the top of the include stack, |
| /// which will cause the lexer to start returning the specified tokens. Note |
| /// that these tokens will be re-macro-expanded when/if expansion is enabled. |
| /// This method assumes that the specified stream of tokens has a permanent |
| /// owner somewhere, so they do not need to be copied. |
| void Preprocessor::EnterTokenStream(const Token *Toks, unsigned NumToks) { |
| // Save our current state. |
| IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, |
| CurMacroExpander)); |
| CurLexer = 0; |
| CurDirLookup = 0; |
| |
| // Create a macro expander to expand from the specified token stream. |
| if (NumCachedMacroExpanders == 0) { |
| CurMacroExpander = new MacroExpander(Toks, NumToks, *this); |
| } else { |
| CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders]; |
| CurMacroExpander->Init(Toks, NumToks); |
| } |
| } |
| |
| /// RemoveTopOfLexerStack - Pop the current lexer/macro exp off the top of the |
| /// lexer stack. This should only be used in situations where the current |
| /// state of the top-of-stack lexer is known. |
| void Preprocessor::RemoveTopOfLexerStack() { |
| assert(!IncludeMacroStack.empty() && "Ran out of stack entries to load"); |
| |
| if (CurMacroExpander) { |
| // Delete or cache the now-dead macro expander. |
| if (NumCachedMacroExpanders == MacroExpanderCacheSize) |
| delete CurMacroExpander; |
| else |
| MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander; |
| } else { |
| delete CurLexer; |
| } |
| CurLexer = IncludeMacroStack.back().TheLexer; |
| CurDirLookup = IncludeMacroStack.back().TheDirLookup; |
| CurMacroExpander = IncludeMacroStack.back().TheMacroExpander; |
| IncludeMacroStack.pop_back(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Macro Expansion Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// setMacroInfo - Specify a macro for this identifier. |
| /// |
| void Preprocessor::setMacroInfo(IdentifierInfo *II, MacroInfo *MI) { |
| if (MI == 0) { |
| if (II->hasMacroDefinition()) { |
| Macros.erase(II); |
| II->setHasMacroDefinition(false); |
| } |
| } else { |
| Macros[II] = MI; |
| II->setHasMacroDefinition(true); |
| } |
| } |
| |
| /// RegisterBuiltinMacro - Register the specified identifier in the identifier |
| /// table and mark it as a builtin macro to be expanded. |
| IdentifierInfo *Preprocessor::RegisterBuiltinMacro(const char *Name) { |
| // Get the identifier. |
| IdentifierInfo *Id = getIdentifierInfo(Name); |
| |
| // Mark it as being a macro that is builtin. |
| MacroInfo *MI = new MacroInfo(SourceLocation()); |
| MI->setIsBuiltinMacro(); |
| setMacroInfo(Id, MI); |
| return Id; |
| } |
| |
| |
| /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the |
| /// identifier table. |
| void Preprocessor::RegisterBuiltinMacros() { |
| Ident__LINE__ = RegisterBuiltinMacro("__LINE__"); |
| Ident__FILE__ = RegisterBuiltinMacro("__FILE__"); |
| Ident__DATE__ = RegisterBuiltinMacro("__DATE__"); |
| Ident__TIME__ = RegisterBuiltinMacro("__TIME__"); |
| Ident_Pragma = RegisterBuiltinMacro("_Pragma"); |
| |
| // GCC Extensions. |
| Ident__BASE_FILE__ = RegisterBuiltinMacro("__BASE_FILE__"); |
| Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro("__INCLUDE_LEVEL__"); |
| Ident__TIMESTAMP__ = RegisterBuiltinMacro("__TIMESTAMP__"); |
| } |
| |
| /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token |
| /// in its expansion, currently expands to that token literally. |
| static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, |
| const IdentifierInfo *MacroIdent, |
| Preprocessor &PP) { |
| IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); |
| |
| // If the token isn't an identifier, it's always literally expanded. |
| if (II == 0) return true; |
| |
| // If the identifier is a macro, and if that macro is enabled, it may be |
| // expanded so it's not a trivial expansion. |
| if (II->hasMacroDefinition() && PP.getMacroInfo(II)->isEnabled() && |
| // Fast expanding "#define X X" is ok, because X would be disabled. |
| II != MacroIdent) |
| return false; |
| |
| // If this is an object-like macro invocation, it is safe to trivially expand |
| // it. |
| if (MI->isObjectLike()) return true; |
| |
| // If this is a function-like macro invocation, it's safe to trivially expand |
| // as long as the identifier is not a macro argument. |
| for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end(); |
| I != E; ++I) |
| if (*I == II) |
| return false; // Identifier is a macro argument. |
| |
| return true; |
| } |
| |
| |
| /// isNextPPTokenLParen - Determine whether the next preprocessor token to be |
| /// lexed is a '('. If so, consume the token and return true, if not, this |
| /// method should have no observable side-effect on the lexed tokens. |
| bool Preprocessor::isNextPPTokenLParen() { |
| // Do some quick tests for rejection cases. |
| unsigned Val; |
| if (CurLexer) |
| Val = CurLexer->isNextPPTokenLParen(); |
| else |
| Val = CurMacroExpander->isNextTokenLParen(); |
| |
| if (Val == 2) { |
| // We have run off the end. If it's a source file we don't |
| // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the |
| // macro stack. |
| if (CurLexer) |
| return false; |
| for (unsigned i = IncludeMacroStack.size(); i != 0; --i) { |
| IncludeStackInfo &Entry = IncludeMacroStack[i-1]; |
| if (Entry.TheLexer) |
| Val = Entry.TheLexer->isNextPPTokenLParen(); |
| else |
| Val = Entry.TheMacroExpander->isNextTokenLParen(); |
| |
| if (Val != 2) |
| break; |
| |
| // Ran off the end of a source file? |
| if (Entry.TheLexer) |
| return false; |
| } |
| } |
| |
| // Okay, if we know that the token is a '(', lex it and return. Otherwise we |
| // have found something that isn't a '(' or we found the end of the |
| // translation unit. In either case, return false. |
| if (Val != 1) |
| return false; |
| |
| Token Tok; |
| LexUnexpandedToken(Tok); |
| assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); |
| return true; |
| } |
| |
| /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be |
| /// expanded as a macro, handle it and return the next token as 'Identifier'. |
| bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, |
| MacroInfo *MI) { |
| |
| // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. |
| if (MI->isBuiltinMacro()) { |
| ExpandBuiltinMacro(Identifier); |
| return false; |
| } |
| |
| // If this is the first use of a target-specific macro, warn about it. |
| if (MI->isTargetSpecific()) { |
| MI->setIsTargetSpecific(false); // Don't warn on second use. |
| getTargetInfo().DiagnoseNonPortability(Identifier.getLocation(), |
| diag::port_target_macro_use); |
| } |
| |
| /// Args - If this is a function-like macro expansion, this contains, |
| /// for each macro argument, the list of tokens that were provided to the |
| /// invocation. |
| MacroArgs *Args = 0; |
| |
| // If this is a function-like macro, read the arguments. |
| if (MI->isFunctionLike()) { |
| // C99 6.10.3p10: If the preprocessing token immediately after the the macro |
| // name isn't a '(', this macro should not be expanded. Otherwise, consume |
| // it. |
| if (!isNextPPTokenLParen()) |
| return true; |
| |
| // Remember that we are now parsing the arguments to a macro invocation. |
| // Preprocessor directives used inside macro arguments are not portable, and |
| // this enables the warning. |
| InMacroArgs = true; |
| Args = ReadFunctionLikeMacroArgs(Identifier, MI); |
| |
| // Finished parsing args. |
| InMacroArgs = false; |
| |
| // If there was an error parsing the arguments, bail out. |
| if (Args == 0) return false; |
| |
| ++NumFnMacroExpanded; |
| } else { |
| ++NumMacroExpanded; |
| } |
| |
| // Notice that this macro has been used. |
| MI->setIsUsed(true); |
| |
| // If we started lexing a macro, enter the macro expansion body. |
| |
| // If this macro expands to no tokens, don't bother to push it onto the |
| // expansion stack, only to take it right back off. |
| if (MI->getNumTokens() == 0) { |
| // No need for arg info. |
| if (Args) Args->destroy(); |
| |
| // Ignore this macro use, just return the next token in the current |
| // buffer. |
| bool HadLeadingSpace = Identifier.hasLeadingSpace(); |
| bool IsAtStartOfLine = Identifier.isAtStartOfLine(); |
| |
| Lex(Identifier); |
| |
| // If the identifier isn't on some OTHER line, inherit the leading |
| // whitespace/first-on-a-line property of this token. This handles |
| // stuff like "! XX," -> "! ," and " XX," -> " ,", when XX is |
| // empty. |
| if (!Identifier.isAtStartOfLine()) { |
| if (IsAtStartOfLine) Identifier.setFlag(Token::StartOfLine); |
| if (HadLeadingSpace) Identifier.setFlag(Token::LeadingSpace); |
| } |
| ++NumFastMacroExpanded; |
| return false; |
| |
| } else if (MI->getNumTokens() == 1 && |
| isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), |
| *this)){ |
| // Otherwise, if this macro expands into a single trivially-expanded |
| // token: expand it now. This handles common cases like |
| // "#define VAL 42". |
| |
| // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro |
| // identifier to the expanded token. |
| bool isAtStartOfLine = Identifier.isAtStartOfLine(); |
| bool hasLeadingSpace = Identifier.hasLeadingSpace(); |
| |
| // Remember where the token is instantiated. |
| SourceLocation InstantiateLoc = Identifier.getLocation(); |
| |
| // Replace the result token. |
| Identifier = MI->getReplacementToken(0); |
| |
| // Restore the StartOfLine/LeadingSpace markers. |
| Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); |
| Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); |
| |
| // Update the tokens location to include both its logical and physical |
| // locations. |
| SourceLocation Loc = |
| SourceMgr.getInstantiationLoc(Identifier.getLocation(), InstantiateLoc); |
| Identifier.setLocation(Loc); |
| |
| // If this is #define X X, we must mark the result as unexpandible. |
| if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) |
| if (getMacroInfo(NewII) == MI) |
| Identifier.setFlag(Token::DisableExpand); |
| |
| // Since this is not an identifier token, it can't be macro expanded, so |
| // we're done. |
| ++NumFastMacroExpanded; |
| return false; |
| } |
| |
| // Start expanding the macro. |
| EnterMacro(Identifier, Args); |
| |
| // Now that the macro is at the top of the include stack, ask the |
| // preprocessor to read the next token from it. |
| Lex(Identifier); |
| return false; |
| } |
| |
| /// ReadFunctionLikeMacroArgs - After reading "MACRO(", this method is |
| /// invoked to read all of the actual arguments specified for the macro |
| /// invocation. This returns null on error. |
| MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName, |
| MacroInfo *MI) { |
| // The number of fixed arguments to parse. |
| unsigned NumFixedArgsLeft = MI->getNumArgs(); |
| bool isVariadic = MI->isVariadic(); |
| |
| // Outer loop, while there are more arguments, keep reading them. |
| Token Tok; |
| Tok.setKind(tok::comma); |
| --NumFixedArgsLeft; // Start reading the first arg. |
| |
| // ArgTokens - Build up a list of tokens that make up each argument. Each |
| // argument is separated by an EOF token. Use a SmallVector so we can avoid |
| // heap allocations in the common case. |
| llvm::SmallVector<Token, 64> ArgTokens; |
| |
| unsigned NumActuals = 0; |
| while (Tok.is(tok::comma)) { |
| // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note |
| // that we already consumed the first one. |
| unsigned NumParens = 0; |
| |
| while (1) { |
| // Read arguments as unexpanded tokens. This avoids issues, e.g., where |
| // an argument value in a macro could expand to ',' or '(' or ')'. |
| LexUnexpandedToken(Tok); |
| |
| if (Tok.is(tok::eof)) { |
| Diag(MacroName, diag::err_unterm_macro_invoc); |
| // Do not lose the EOF. Return it to the client. |
| MacroName = Tok; |
| return 0; |
| } else if (Tok.is(tok::r_paren)) { |
| // If we found the ) token, the macro arg list is done. |
| if (NumParens-- == 0) |
| break; |
| } else if (Tok.is(tok::l_paren)) { |
| ++NumParens; |
| } else if (Tok.is(tok::comma) && NumParens == 0) { |
| // Comma ends this argument if there are more fixed arguments expected. |
| if (NumFixedArgsLeft) |
| break; |
| |
| // If this is not a variadic macro, too many args were specified. |
| if (!isVariadic) { |
| // Emit the diagnostic at the macro name in case there is a missing ). |
| // Emitting it at the , could be far away from the macro name. |
| Diag(MacroName, diag::err_too_many_args_in_macro_invoc); |
| return 0; |
| } |
| // Otherwise, continue to add the tokens to this variable argument. |
| } else if (Tok.is(tok::comment) && !KeepMacroComments) { |
| // If this is a comment token in the argument list and we're just in |
| // -C mode (not -CC mode), discard the comment. |
| continue; |
| } |
| |
| ArgTokens.push_back(Tok); |
| } |
| |
| // Empty arguments are standard in C99 and supported as an extension in |
| // other modes. |
| if (ArgTokens.empty() && !Features.C99) |
| Diag(Tok, diag::ext_empty_fnmacro_arg); |
| |
| // Add a marker EOF token to the end of the token list for this argument. |
| Token EOFTok; |
| EOFTok.startToken(); |
| EOFTok.setKind(tok::eof); |
| EOFTok.setLocation(Tok.getLocation()); |
| EOFTok.setLength(0); |
| ArgTokens.push_back(EOFTok); |
| ++NumActuals; |
| --NumFixedArgsLeft; |
| }; |
| |
| // Okay, we either found the r_paren. Check to see if we parsed too few |
| // arguments. |
| unsigned MinArgsExpected = MI->getNumArgs(); |
| |
| // See MacroArgs instance var for description of this. |
| bool isVarargsElided = false; |
| |
| if (NumActuals < MinArgsExpected) { |
| // There are several cases where too few arguments is ok, handle them now. |
| if (NumActuals+1 == MinArgsExpected && MI->isVariadic()) { |
| // Varargs where the named vararg parameter is missing: ok as extension. |
| // #define A(x, ...) |
| // A("blah") |
| Diag(Tok, diag::ext_missing_varargs_arg); |
| |
| // Remember this occurred if this is a C99 macro invocation with at least |
| // one actual argument. |
| isVarargsElided = MI->isC99Varargs() && MI->getNumArgs() > 1; |
| } else if (MI->getNumArgs() == 1) { |
| // #define A(x) |
| // A() |
| // is ok because it is an empty argument. |
| |
| // Empty arguments are standard in C99 and supported as an extension in |
| // other modes. |
| if (ArgTokens.empty() && !Features.C99) |
| Diag(Tok, diag::ext_empty_fnmacro_arg); |
| } else { |
| // Otherwise, emit the error. |
| Diag(Tok, diag::err_too_few_args_in_macro_invoc); |
| return 0; |
| } |
| |
| // Add a marker EOF token to the end of the token list for this argument. |
| SourceLocation EndLoc = Tok.getLocation(); |
| Tok.startToken(); |
| Tok.setKind(tok::eof); |
| Tok.setLocation(EndLoc); |
| Tok.setLength(0); |
| ArgTokens.push_back(Tok); |
| } |
| |
| return MacroArgs::create(MI, &ArgTokens[0], ArgTokens.size(),isVarargsElided); |
| } |
| |
| /// ComputeDATE_TIME - Compute the current time, enter it into the specified |
| /// scratch buffer, then return DATELoc/TIMELoc locations with the position of |
| /// the identifier tokens inserted. |
| static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, |
| Preprocessor &PP) { |
| time_t TT = time(0); |
| struct tm *TM = localtime(&TT); |
| |
| static const char * const Months[] = { |
| "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" |
| }; |
| |
| char TmpBuffer[100]; |
| sprintf(TmpBuffer, "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday, |
| TM->tm_year+1900); |
| DATELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer)); |
| |
| sprintf(TmpBuffer, "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec); |
| TIMELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer)); |
| } |
| |
| /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded |
| /// as a builtin macro, handle it and return the next token as 'Tok'. |
| void Preprocessor::ExpandBuiltinMacro(Token &Tok) { |
| // Figure out which token this is. |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| assert(II && "Can't be a macro without id info!"); |
| |
| // If this is an _Pragma directive, expand it, invoke the pragma handler, then |
| // lex the token after it. |
| if (II == Ident_Pragma) |
| return Handle_Pragma(Tok); |
| |
| ++NumBuiltinMacroExpanded; |
| |
| char TmpBuffer[100]; |
| |
| // Set up the return result. |
| Tok.setIdentifierInfo(0); |
| Tok.clearFlag(Token::NeedsCleaning); |
| |
| if (II == Ident__LINE__) { |
| // __LINE__ expands to a simple numeric value. |
| sprintf(TmpBuffer, "%u", SourceMgr.getLogicalLineNumber(Tok.getLocation())); |
| unsigned Length = strlen(TmpBuffer); |
| Tok.setKind(tok::numeric_constant); |
| Tok.setLength(Length); |
| Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation())); |
| } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) { |
| SourceLocation Loc = Tok.getLocation(); |
| if (II == Ident__BASE_FILE__) { |
| Diag(Tok, diag::ext_pp_base_file); |
| SourceLocation NextLoc = SourceMgr.getIncludeLoc(Loc); |
| while (NextLoc.isValid()) { |
| Loc = NextLoc; |
| NextLoc = SourceMgr.getIncludeLoc(Loc); |
| } |
| } |
| |
| // Escape this filename. Turn '\' -> '\\' '"' -> '\"' |
| std::string FN = SourceMgr.getSourceName(SourceMgr.getLogicalLoc(Loc)); |
| FN = '"' + Lexer::Stringify(FN) + '"'; |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(FN.size()); |
| Tok.setLocation(CreateString(&FN[0], FN.size(), Tok.getLocation())); |
| } else if (II == Ident__DATE__) { |
| if (!DATELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, *this); |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(strlen("\"Mmm dd yyyy\"")); |
| Tok.setLocation(SourceMgr.getInstantiationLoc(DATELoc, Tok.getLocation())); |
| } else if (II == Ident__TIME__) { |
| if (!TIMELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, *this); |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(strlen("\"hh:mm:ss\"")); |
| Tok.setLocation(SourceMgr.getInstantiationLoc(TIMELoc, Tok.getLocation())); |
| } else if (II == Ident__INCLUDE_LEVEL__) { |
| Diag(Tok, diag::ext_pp_include_level); |
| |
| // Compute the include depth of this token. |
| unsigned Depth = 0; |
| SourceLocation Loc = SourceMgr.getIncludeLoc(Tok.getLocation()); |
| for (; Loc.isValid(); ++Depth) |
| Loc = SourceMgr.getIncludeLoc(Loc); |
| |
| // __INCLUDE_LEVEL__ expands to a simple numeric value. |
| sprintf(TmpBuffer, "%u", Depth); |
| unsigned Length = strlen(TmpBuffer); |
| Tok.setKind(tok::numeric_constant); |
| Tok.setLength(Length); |
| Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation())); |
| } else if (II == Ident__TIMESTAMP__) { |
| // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be |
| // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. |
| Diag(Tok, diag::ext_pp_timestamp); |
| |
| // Get the file that we are lexing out of. If we're currently lexing from |
| // a macro, dig into the include stack. |
| const FileEntry *CurFile = 0; |
| Lexer *TheLexer = getCurrentFileLexer(); |
| |
| if (TheLexer) |
| CurFile = SourceMgr.getFileEntryForLoc(TheLexer->getFileLoc()); |
| |
| // If this file is older than the file it depends on, emit a diagnostic. |
| const char *Result; |
| if (CurFile) { |
| time_t TT = CurFile->getModificationTime(); |
| struct tm *TM = localtime(&TT); |
| Result = asctime(TM); |
| } else { |
| Result = "??? ??? ?? ??:??:?? ????\n"; |
| } |
| TmpBuffer[0] = '"'; |
| strcpy(TmpBuffer+1, Result); |
| unsigned Len = strlen(TmpBuffer); |
| TmpBuffer[Len-1] = '"'; // Replace the newline with a quote. |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(Len); |
| Tok.setLocation(CreateString(TmpBuffer, Len, Tok.getLocation())); |
| } else { |
| assert(0 && "Unknown identifier!"); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer Event Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// LookUpIdentifierInfo - Given a tok::identifier token, look up the |
| /// identifier information for the token and install it into the token. |
| IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier, |
| const char *BufPtr) { |
| assert(Identifier.is(tok::identifier) && "Not an identifier!"); |
| assert(Identifier.getIdentifierInfo() == 0 && "Identinfo already exists!"); |
| |
| // Look up this token, see if it is a macro, or if it is a language keyword. |
| IdentifierInfo *II; |
| if (BufPtr && !Identifier.needsCleaning()) { |
| // No cleaning needed, just use the characters from the lexed buffer. |
| II = getIdentifierInfo(BufPtr, BufPtr+Identifier.getLength()); |
| } else { |
| // Cleaning needed, alloca a buffer, clean into it, then use the buffer. |
| llvm::SmallVector<char, 64> IdentifierBuffer; |
| IdentifierBuffer.resize(Identifier.getLength()); |
| const char *TmpBuf = &IdentifierBuffer[0]; |
| unsigned Size = getSpelling(Identifier, TmpBuf); |
| II = getIdentifierInfo(TmpBuf, TmpBuf+Size); |
| } |
| Identifier.setIdentifierInfo(II); |
| return II; |
| } |
| |
| |
| /// HandleIdentifier - This callback is invoked when the lexer reads an |
| /// identifier. This callback looks up the identifier in the map and/or |
| /// potentially macro expands it or turns it into a named token (like 'for'). |
| void Preprocessor::HandleIdentifier(Token &Identifier) { |
| assert(Identifier.getIdentifierInfo() && |
| "Can't handle identifiers without identifier info!"); |
| |
| IdentifierInfo &II = *Identifier.getIdentifierInfo(); |
| |
| // If this identifier was poisoned, and if it was not produced from a macro |
| // expansion, emit an error. |
| if (II.isPoisoned() && CurLexer) { |
| if (&II != Ident__VA_ARGS__) // We warn about __VA_ARGS__ with poisoning. |
| Diag(Identifier, diag::err_pp_used_poisoned_id); |
| else |
| Diag(Identifier, diag::ext_pp_bad_vaargs_use); |
| } |
| |
| // If this is a macro to be expanded, do it. |
| if (MacroInfo *MI = getMacroInfo(&II)) { |
| if (!DisableMacroExpansion && !Identifier.isExpandDisabled()) { |
| if (MI->isEnabled()) { |
| if (!HandleMacroExpandedIdentifier(Identifier, MI)) |
| return; |
| } else { |
| // C99 6.10.3.4p2 says that a disabled macro may never again be |
| // expanded, even if it's in a context where it could be expanded in the |
| // future. |
| Identifier.setFlag(Token::DisableExpand); |
| } |
| } |
| } else if (II.isOtherTargetMacro() && !DisableMacroExpansion) { |
| // If this identifier is a macro on some other target, emit a diagnostic. |
| // This diagnosic is only emitted when macro expansion is enabled, because |
| // the macro would not have been expanded for the other target either. |
| II.setIsOtherTargetMacro(false); // Don't warn on second use. |
| getTargetInfo().DiagnoseNonPortability(Identifier.getLocation(), |
| diag::port_target_macro_use); |
| |
| } |
| |
| // C++ 2.11p2: If this is an alternative representation of a C++ operator, |
| // then we act as if it is the actual operator and not the textual |
| // representation of it. |
| if (II.isCPlusPlusOperatorKeyword()) |
| Identifier.setIdentifierInfo(0); |
| |
| // Change the kind of this identifier to the appropriate token kind, e.g. |
| // turning "for" into a keyword. |
| Identifier.setKind(II.getTokenID()); |
| |
| // If this is an extension token, diagnose its use. |
| // FIXME: tried (unsuccesfully) to shut this up when compiling with gnu99 |
| // For now, I'm just commenting it out (while I work on attributes). |
| if (II.isExtensionToken() && Features.C99) |
| Diag(Identifier, diag::ext_token_used); |
| } |
| |
| /// HandleEndOfFile - This callback is invoked when the lexer hits the end of |
| /// the current file. This either returns the EOF token or pops a level off |
| /// the include stack and keeps going. |
| bool Preprocessor::HandleEndOfFile(Token &Result, bool isEndOfMacro) { |
| assert(!CurMacroExpander && |
| "Ending a file when currently in a macro!"); |
| |
| // See if this file had a controlling macro. |
| if (CurLexer) { // Not ending a macro, ignore it. |
| if (const IdentifierInfo *ControllingMacro = |
| CurLexer->MIOpt.GetControllingMacroAtEndOfFile()) { |
| // Okay, this has a controlling macro, remember in PerFileInfo. |
| if (const FileEntry *FE = |
| SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc())) |
| HeaderInfo.SetFileControllingMacro(FE, ControllingMacro); |
| } |
| } |
| |
| // If this is a #include'd file, pop it off the include stack and continue |
| // lexing the #includer file. |
| if (!IncludeMacroStack.empty()) { |
| // We're done with the #included file. |
| RemoveTopOfLexerStack(); |
| |
| // Notify the client, if desired, that we are in a new source file. |
| if (Callbacks && !isEndOfMacro && CurLexer) { |
| DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir; |
| |
| // Get the file entry for the current file. |
| if (const FileEntry *FE = |
| SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc())) |
| FileType = HeaderInfo.getFileDirFlavor(FE); |
| |
| Callbacks->FileChanged(CurLexer->getSourceLocation(CurLexer->BufferPtr), |
| PPCallbacks::ExitFile, FileType); |
| } |
| |
| // Client should lex another token. |
| return false; |
| } |
| |
| Result.startToken(); |
| CurLexer->BufferPtr = CurLexer->BufferEnd; |
| CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd); |
| Result.setKind(tok::eof); |
| |
| // We're done with the #included file. |
| delete CurLexer; |
| CurLexer = 0; |
| |
| // This is the end of the top-level file. If the diag::pp_macro_not_used |
| // diagnostic is enabled, look for macros that have not been used. |
| if (Diags.getDiagnosticLevel(diag::pp_macro_not_used) != Diagnostic::Ignored){ |
| for (llvm::DenseMap<IdentifierInfo*, MacroInfo*>::iterator I = |
| Macros.begin(), E = Macros.end(); I != E; ++I) { |
| if (!I->second->isUsed()) |
| Diag(I->second->getDefinitionLoc(), diag::pp_macro_not_used); |
| } |
| } |
| return true; |
| } |
| |
| /// HandleEndOfMacro - This callback is invoked when the lexer hits the end of |
| /// the current macro expansion or token stream expansion. |
| bool Preprocessor::HandleEndOfMacro(Token &Result) { |
| assert(CurMacroExpander && !CurLexer && |
| "Ending a macro when currently in a #include file!"); |
| |
| // Delete or cache the now-dead macro expander. |
| if (NumCachedMacroExpanders == MacroExpanderCacheSize) |
| delete CurMacroExpander; |
| else |
| MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander; |
| |
| // Handle this like a #include file being popped off the stack. |
| CurMacroExpander = 0; |
| return HandleEndOfFile(Result, true); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Utility Methods for Preprocessor Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// DiscardUntilEndOfDirective - Read and discard all tokens remaining on the |
| /// current line until the tok::eom token is found. |
| void Preprocessor::DiscardUntilEndOfDirective() { |
| Token Tmp; |
| do { |
| LexUnexpandedToken(Tmp); |
| } while (Tmp.isNot(tok::eom)); |
| } |
| |
| /// isCXXNamedOperator - Returns "true" if the token is a named operator in C++. |
| static bool isCXXNamedOperator(const std::string &Spelling) { |
| return Spelling == "and" || Spelling == "bitand" || Spelling == "bitor" || |
| Spelling == "compl" || Spelling == "not" || Spelling == "not_eq" || |
| Spelling == "or" || Spelling == "xor"; |
| } |
| |
| /// ReadMacroName - Lex and validate a macro name, which occurs after a |
| /// #define or #undef. This sets the token kind to eom and discards the rest |
| /// of the macro line if the macro name is invalid. isDefineUndef is 1 if |
| /// this is due to a a #define, 2 if #undef directive, 0 if it is something |
| /// else (e.g. #ifdef). |
| void Preprocessor::ReadMacroName(Token &MacroNameTok, char isDefineUndef) { |
| // Read the token, don't allow macro expansion on it. |
| LexUnexpandedToken(MacroNameTok); |
| |
| // Missing macro name? |
| if (MacroNameTok.is(tok::eom)) |
| return Diag(MacroNameTok, diag::err_pp_missing_macro_name); |
| |
| IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); |
| if (II == 0) { |
| std::string Spelling = getSpelling(MacroNameTok); |
| if (isCXXNamedOperator(Spelling)) |
| // C++ 2.5p2: Alternative tokens behave the same as its primary token |
| // except for their spellings. |
| Diag(MacroNameTok, diag::err_pp_operator_used_as_macro_name, Spelling); |
| else |
| Diag(MacroNameTok, diag::err_pp_macro_not_identifier); |
| // Fall through on error. |
| } else if (isDefineUndef && II->getPPKeywordID() == tok::pp_defined) { |
| // Error if defining "defined": C99 6.10.8.4. |
| Diag(MacroNameTok, diag::err_defined_macro_name); |
| } else if (isDefineUndef && II->hasMacroDefinition() && |
| getMacroInfo(II)->isBuiltinMacro()) { |
| // Error if defining "__LINE__" and other builtins: C99 6.10.8.4. |
| if (isDefineUndef == 1) |
| Diag(MacroNameTok, diag::pp_redef_builtin_macro); |
| else |
| Diag(MacroNameTok, diag::pp_undef_builtin_macro); |
| } else { |
| // Okay, we got a good identifier node. Return it. |
| return; |
| } |
| |
| // Invalid macro name, read and discard the rest of the line. Then set the |
| // token kind to tok::eom. |
| MacroNameTok.setKind(tok::eom); |
| return DiscardUntilEndOfDirective(); |
| } |
| |
| /// CheckEndOfDirective - Ensure that the next token is a tok::eom token. If |
| /// not, emit a diagnostic and consume up until the eom. |
| void Preprocessor::CheckEndOfDirective(const char *DirType) { |
| Token Tmp; |
| Lex(Tmp); |
| // There should be no tokens after the directive, but we allow them as an |
| // extension. |
| while (Tmp.is(tok::comment)) // Skip comments in -C mode. |
| Lex(Tmp); |
| |
| if (Tmp.isNot(tok::eom)) { |
| Diag(Tmp, diag::ext_pp_extra_tokens_at_eol, DirType); |
| DiscardUntilEndOfDirective(); |
| } |
| } |
| |
| |
| |
| /// SkipExcludedConditionalBlock - We just read a #if or related directive and |
| /// decided that the subsequent tokens are in the #if'd out portion of the |
| /// file. Lex the rest of the file, until we see an #endif. If |
| /// FoundNonSkipPortion is true, then we have already emitted code for part of |
| /// this #if directive, so #else/#elif blocks should never be entered. If ElseOk |
| /// is true, then #else directives are ok, if not, then we have already seen one |
| /// so a #else directive is a duplicate. When this returns, the caller can lex |
| /// the first valid token. |
| void Preprocessor::SkipExcludedConditionalBlock(SourceLocation IfTokenLoc, |
| bool FoundNonSkipPortion, |
| bool FoundElse) { |
| ++NumSkipped; |
| assert(CurMacroExpander == 0 && CurLexer && |
| "Lexing a macro, not a file?"); |
| |
| CurLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/false, |
| FoundNonSkipPortion, FoundElse); |
| |
| // Enter raw mode to disable identifier lookup (and thus macro expansion), |
| // disabling warnings, etc. |
| CurLexer->LexingRawMode = true; |
| Token Tok; |
| while (1) { |
| CurLexer->Lex(Tok); |
| |
| // If this is the end of the buffer, we have an error. |
| if (Tok.is(tok::eof)) { |
| // Emit errors for each unterminated conditional on the stack, including |
| // the current one. |
| while (!CurLexer->ConditionalStack.empty()) { |
| Diag(CurLexer->ConditionalStack.back().IfLoc, |
| diag::err_pp_unterminated_conditional); |
| CurLexer->ConditionalStack.pop_back(); |
| } |
| |
| // Just return and let the caller lex after this #include. |
| break; |
| } |
| |
| // If this token is not a preprocessor directive, just skip it. |
| if (Tok.isNot(tok::hash) || !Tok.isAtStartOfLine()) |
| continue; |
| |
| // We just parsed a # character at the start of a line, so we're in |
| // directive mode. Tell the lexer this so any newlines we see will be |
| // converted into an EOM token (this terminates the macro). |
| CurLexer->ParsingPreprocessorDirective = true; |
| CurLexer->KeepCommentMode = false; |
| |
| |
| // Read the next token, the directive flavor. |
| LexUnexpandedToken(Tok); |
| |
| // If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or |
| // something bogus), skip it. |
| if (Tok.isNot(tok::identifier)) { |
| CurLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| CurLexer->KeepCommentMode = KeepComments; |
| continue; |
| } |
| |
| // If the first letter isn't i or e, it isn't intesting to us. We know that |
| // this is safe in the face of spelling differences, because there is no way |
| // to spell an i/e in a strange way that is another letter. Skipping this |
| // allows us to avoid looking up the identifier info for #define/#undef and |
| // other common directives. |
| const char *RawCharData = SourceMgr.getCharacterData(Tok.getLocation()); |
| char FirstChar = RawCharData[0]; |
| if (FirstChar >= 'a' && FirstChar <= 'z' && |
| FirstChar != 'i' && FirstChar != 'e') { |
| CurLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| CurLexer->KeepCommentMode = KeepComments; |
| continue; |
| } |
| |
| // Get the identifier name without trigraphs or embedded newlines. Note |
| // that we can't use Tok.getIdentifierInfo() because its lookup is disabled |
| // when skipping. |
| // TODO: could do this with zero copies in the no-clean case by using |
| // strncmp below. |
| char Directive[20]; |
| unsigned IdLen; |
| if (!Tok.needsCleaning() && Tok.getLength() < 20) { |
| IdLen = Tok.getLength(); |
| memcpy(Directive, RawCharData, IdLen); |
| Directive[IdLen] = 0; |
| } else { |
| std::string DirectiveStr = getSpelling(Tok); |
| IdLen = DirectiveStr.size(); |
| if (IdLen >= 20) { |
| CurLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| CurLexer->KeepCommentMode = KeepComments; |
| continue; |
| } |
| memcpy(Directive, &DirectiveStr[0], IdLen); |
| Directive[IdLen] = 0; |
| } |
| |
| if (FirstChar == 'i' && Directive[1] == 'f') { |
| if ((IdLen == 2) || // "if" |
| (IdLen == 5 && !strcmp(Directive+2, "def")) || // "ifdef" |
| (IdLen == 6 && !strcmp(Directive+2, "ndef"))) { // "ifndef" |
| // We know the entire #if/#ifdef/#ifndef block will be skipped, don't |
| // bother parsing the condition. |
| DiscardUntilEndOfDirective(); |
| CurLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true, |
| /*foundnonskip*/false, |
| /*fnddelse*/false); |
| } |
| } else if (FirstChar == 'e') { |
| if (IdLen == 5 && !strcmp(Directive+1, "ndif")) { // "endif" |
| CheckEndOfDirective("#endif"); |
| PPConditionalInfo CondInfo; |
| CondInfo.WasSkipping = true; // Silence bogus warning. |
| bool InCond = CurLexer->popConditionalLevel(CondInfo); |
| InCond = InCond; // Silence warning in no-asserts mode. |
| assert(!InCond && "Can't be skipping if not in a conditional!"); |
| |
| // If we popped the outermost skipping block, we're done skipping! |
| if (!CondInfo.WasSkipping) |
| break; |
| } else if (IdLen == 4 && !strcmp(Directive+1, "lse")) { // "else". |
| // #else directive in a skipping conditional. If not in some other |
| // skipping conditional, and if #else hasn't already been seen, enter it |
| // as a non-skipping conditional. |
| CheckEndOfDirective("#else"); |
| PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel(); |
| |
| // If this is a #else with a #else before it, report the error. |
| if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_else_after_else); |
| |
| // Note that we've seen a #else in this conditional. |
| CondInfo.FoundElse = true; |
| |
| // If the conditional is at the top level, and the #if block wasn't |
| // entered, enter the #else block now. |
| if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) { |
| CondInfo.FoundNonSkip = true; |
| break; |
| } |
| } else if (IdLen == 4 && !strcmp(Directive+1, "lif")) { // "elif". |
| PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel(); |
| |
| bool ShouldEnter; |
| // If this is in a skipping block or if we're already handled this #if |
| // block, don't bother parsing the condition. |
| if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) { |
| DiscardUntilEndOfDirective(); |
| ShouldEnter = false; |
| } else { |
| // Restore the value of LexingRawMode so that identifiers are |
| // looked up, etc, inside the #elif expression. |
| assert(CurLexer->LexingRawMode && "We have to be skipping here!"); |
| CurLexer->LexingRawMode = false; |
| IdentifierInfo *IfNDefMacro = 0; |
| ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro); |
| CurLexer->LexingRawMode = true; |
| } |
| |
| // If this is a #elif with a #else before it, report the error. |
| if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else); |
| |
| // If this condition is true, enter it! |
| if (ShouldEnter) { |
| CondInfo.FoundNonSkip = true; |
| break; |
| } |
| } |
| } |
| |
| CurLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| CurLexer->KeepCommentMode = KeepComments; |
| } |
| |
| // Finally, if we are out of the conditional (saw an #endif or ran off the end |
| // of the file, just stop skipping and return to lexing whatever came after |
| // the #if block. |
| CurLexer->LexingRawMode = false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// HandleDirective - This callback is invoked when the lexer sees a # token |
| /// at the start of a line. This consumes the directive, modifies the |
| /// lexer/preprocessor state, and advances the lexer(s) so that the next token |
| /// read is the correct one. |
| void Preprocessor::HandleDirective(Token &Result) { |
| // FIXME: Traditional: # with whitespace before it not recognized by K&R? |
| |
| // We just parsed a # character at the start of a line, so we're in directive |
| // mode. Tell the lexer this so any newlines we see will be converted into an |
| // EOM token (which terminates the directive). |
| CurLexer->ParsingPreprocessorDirective = true; |
| |
| ++NumDirectives; |
| |
| // We are about to read a token. For the multiple-include optimization FA to |
| // work, we have to remember if we had read any tokens *before* this |
| // pp-directive. |
| bool ReadAnyTokensBeforeDirective = CurLexer->MIOpt.getHasReadAnyTokensVal(); |
| |
| // Read the next token, the directive flavor. This isn't expanded due to |
| // C99 6.10.3p8. |
| LexUnexpandedToken(Result); |
| |
| // C99 6.10.3p11: Is this preprocessor directive in macro invocation? e.g.: |
| // #define A(x) #x |
| // A(abc |
| // #warning blah |
| // def) |
| // If so, the user is relying on non-portable behavior, emit a diagnostic. |
| if (InMacroArgs) |
| Diag(Result, diag::ext_embedded_directive); |
| |
| TryAgain: |
| switch (Result.getKind()) { |
| case tok::eom: |
| return; // null directive. |
| case tok::comment: |
| // Handle stuff like "# /*foo*/ define X" in -E -C mode. |
| LexUnexpandedToken(Result); |
| goto TryAgain; |
| |
| case tok::numeric_constant: |
| // FIXME: implement # 7 line numbers! |
| DiscardUntilEndOfDirective(); |
| return; |
| default: |
| IdentifierInfo *II = Result.getIdentifierInfo(); |
| if (II == 0) break; // Not an identifier. |
| |
| // Ask what the preprocessor keyword ID is. |
| switch (II->getPPKeywordID()) { |
| default: break; |
| // C99 6.10.1 - Conditional Inclusion. |
| case tok::pp_if: |
| return HandleIfDirective(Result, ReadAnyTokensBeforeDirective); |
| case tok::pp_ifdef: |
| return HandleIfdefDirective(Result, false, true/*not valid for miopt*/); |
| case tok::pp_ifndef: |
| return HandleIfdefDirective(Result, true, ReadAnyTokensBeforeDirective); |
| case tok::pp_elif: |
| return HandleElifDirective(Result); |
| case tok::pp_else: |
| return HandleElseDirective(Result); |
| case tok::pp_endif: |
| return HandleEndifDirective(Result); |
| |
| // C99 6.10.2 - Source File Inclusion. |
| case tok::pp_include: |
| return HandleIncludeDirective(Result); // Handle #include. |
| |
| // C99 6.10.3 - Macro Replacement. |
| case tok::pp_define: |
| return HandleDefineDirective(Result, false); |
| case tok::pp_undef: |
| return HandleUndefDirective(Result); |
| |
| // C99 6.10.4 - Line Control. |
| case tok::pp_line: |
| // FIXME: implement #line |
| DiscardUntilEndOfDirective(); |
| return; |
| |
| // C99 6.10.5 - Error Directive. |
| case tok::pp_error: |
| return HandleUserDiagnosticDirective(Result, false); |
| |
| // C99 6.10.6 - Pragma Directive. |
| case tok::pp_pragma: |
| return HandlePragmaDirective(); |
| |
| // GNU Extensions. |
| case tok::pp_import: |
| return HandleImportDirective(Result); |
| case tok::pp_include_next: |
| return HandleIncludeNextDirective(Result); |
| |
| case tok::pp_warning: |
| Diag(Result, diag::ext_pp_warning_directive); |
| return HandleUserDiagnosticDirective(Result, true); |
| case tok::pp_ident: |
| return HandleIdentSCCSDirective(Result); |
| case tok::pp_sccs: |
| return HandleIdentSCCSDirective(Result); |
| case tok::pp_assert: |
| //isExtension = true; // FIXME: implement #assert |
| break; |
| case tok::pp_unassert: |
| //isExtension = true; // FIXME: implement #unassert |
| break; |
| |
| // clang extensions. |
| case tok::pp_define_target: |
| return HandleDefineDirective(Result, true); |
| case tok::pp_define_other_target: |
| return HandleDefineOtherTargetDirective(Result); |
| } |
| break; |
| } |
| |
| // If we reached here, the preprocessing token is not valid! |
| Diag(Result, diag::err_pp_invalid_directive); |
| |
| // Read the rest of the PP line. |
| DiscardUntilEndOfDirective(); |
| |
| // Okay, we're done parsing the directive. |
| } |
| |
| void Preprocessor::HandleUserDiagnosticDirective(Token &Tok, |
| bool isWarning) { |
| // Read the rest of the line raw. We do this because we don't want macros |
| // to be expanded and we don't require that the tokens be valid preprocessing |
| // tokens. For example, this is allowed: "#warning ` 'foo". GCC does |
| // collapse multiple consequtive white space between tokens, but this isn't |
| // specified by the standard. |
| std::string Message = CurLexer->ReadToEndOfLine(); |
| |
| unsigned DiagID = isWarning ? diag::pp_hash_warning : diag::err_pp_hash_error; |
| return Diag(Tok, DiagID, Message); |
| } |
| |
| /// HandleIdentSCCSDirective - Handle a #ident/#sccs directive. |
| /// |
| void Preprocessor::HandleIdentSCCSDirective(Token &Tok) { |
| // Yes, this directive is an extension. |
| Diag(Tok, diag::ext_pp_ident_directive); |
| |
| // Read the string argument. |
| Token StrTok; |
| Lex(StrTok); |
| |
| // If the token kind isn't a string, it's a malformed directive. |
| if (StrTok.isNot(tok::string_literal) && |
| StrTok.isNot(tok::wide_string_literal)) |
| return Diag(StrTok, diag::err_pp_malformed_ident); |
| |
| // Verify that there is nothing after the string, other than EOM. |
| CheckEndOfDirective("#ident"); |
| |
| if (Callbacks) |
| Callbacks->Ident(Tok.getLocation(), getSpelling(StrTok)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Include Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// GetIncludeFilenameSpelling - Turn the specified lexer token into a fully |
| /// checked and spelled filename, e.g. as an operand of #include. This returns |
| /// true if the input filename was in <>'s or false if it were in ""'s. The |
| /// caller is expected to provide a buffer that is large enough to hold the |
| /// spelling of the filename, but is also expected to handle the case when |
| /// this method decides to use a different buffer. |
| bool Preprocessor::GetIncludeFilenameSpelling(SourceLocation Loc, |
| const char *&BufStart, |
| const char *&BufEnd) { |
| // Get the text form of the filename. |
| assert(BufStart != BufEnd && "Can't have tokens with empty spellings!"); |
| |
| // Make sure the filename is <x> or "x". |
| bool isAngled; |
| if (BufStart[0] == '<') { |
| if (BufEnd[-1] != '>') { |
| Diag(Loc, diag::err_pp_expects_filename); |
| BufStart = 0; |
| return true; |
| } |
| isAngled = true; |
| } else if (BufStart[0] == '"') { |
| if (BufEnd[-1] != '"') { |
| Diag(Loc, diag::err_pp_expects_filename); |
| BufStart = 0; |
| return true; |
| } |
| isAngled = false; |
| } else { |
| Diag(Loc, diag::err_pp_expects_filename); |
| BufStart = 0; |
| return true; |
| } |
| |
| // Diagnose #include "" as invalid. |
| if (BufEnd-BufStart <= 2) { |
| Diag(Loc, diag::err_pp_empty_filename); |
| BufStart = 0; |
| return ""; |
| } |
| |
| // Skip the brackets. |
| ++BufStart; |
| --BufEnd; |
| return isAngled; |
| } |
| |
| /// ConcatenateIncludeName - Handle cases where the #include name is expanded |
| /// from a macro as multiple tokens, which need to be glued together. This |
| /// occurs for code like: |
| /// #define FOO <a/b.h> |
| /// #include FOO |
| /// because in this case, "<a/b.h>" is returned as 7 tokens, not one. |
| /// |
| /// This code concatenates and consumes tokens up to the '>' token. It returns |
| /// false if the > was found, otherwise it returns true if it finds and consumes |
| /// the EOM marker. |
| static bool ConcatenateIncludeName(llvm::SmallVector<char, 128> &FilenameBuffer, |
| Preprocessor &PP) { |
| Token CurTok; |
| |
| PP.Lex(CurTok); |
| while (CurTok.isNot(tok::eom)) { |
| // Append the spelling of this token to the buffer. If there was a space |
| // before it, add it now. |
| if (CurTok.hasLeadingSpace()) |
| FilenameBuffer.push_back(' '); |
| |
| // Get the spelling of the token, directly into FilenameBuffer if possible. |
| unsigned PreAppendSize = FilenameBuffer.size(); |
| FilenameBuffer.resize(PreAppendSize+CurTok.getLength()); |
| |
| const char *BufPtr = &FilenameBuffer[PreAppendSize]; |
| unsigned ActualLen = PP.getSpelling(CurTok, BufPtr); |
| |
| // If the token was spelled somewhere else, copy it into FilenameBuffer. |
| if (BufPtr != &FilenameBuffer[PreAppendSize]) |
| memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); |
| |
| // Resize FilenameBuffer to the correct size. |
| if (CurTok.getLength() != ActualLen) |
| FilenameBuffer.resize(PreAppendSize+ActualLen); |
| |
| // If we found the '>' marker, return success. |
| if (CurTok.is(tok::greater)) |
| return false; |
| |
| PP.Lex(CurTok); |
| } |
| |
| // If we hit the eom marker, emit an error and return true so that the caller |
| // knows the EOM has been read. |
| PP.Diag(CurTok.getLocation(), diag::err_pp_expects_filename); |
| return true; |
| } |
| |
| /// HandleIncludeDirective - The "#include" tokens have just been read, read the |
| /// file to be included from the lexer, then include it! This is a common |
| /// routine with functionality shared between #include, #include_next and |
| /// #import. |
| void Preprocessor::HandleIncludeDirective(Token &IncludeTok, |
| const DirectoryLookup *LookupFrom, |
| bool isImport) { |
| |
| Token FilenameTok; |
| CurLexer->LexIncludeFilename(FilenameTok); |
| |
| // Reserve a buffer to get the spelling. |
| llvm::SmallVector<char, 128> FilenameBuffer; |
| const char *FilenameStart, *FilenameEnd; |
| |
| switch (FilenameTok.getKind()) { |
| case tok::eom: |
| // If the token kind is EOM, the error has already been diagnosed. |
| return; |
| |
| case tok::angle_string_literal: |
| case tok::string_literal: { |
| FilenameBuffer.resize(FilenameTok.getLength()); |
| FilenameStart = &FilenameBuffer[0]; |
| unsigned Len = getSpelling(FilenameTok, FilenameStart); |
| FilenameEnd = FilenameStart+Len; |
| break; |
| } |
| |
| case tok::less: |
| // This could be a <foo/bar.h> file coming from a macro expansion. In this |
| // case, glue the tokens together into FilenameBuffer and interpret those. |
| FilenameBuffer.push_back('<'); |
| if (ConcatenateIncludeName(FilenameBuffer, *this)) |
| return; // Found <eom> but no ">"? Diagnostic already emitted. |
| FilenameStart = &FilenameBuffer[0]; |
| FilenameEnd = &FilenameBuffer[FilenameBuffer.size()]; |
| break; |
| default: |
| Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename); |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| bool isAngled = GetIncludeFilenameSpelling(FilenameTok.getLocation(), |
| FilenameStart, FilenameEnd); |
| // If GetIncludeFilenameSpelling set the start ptr to null, there was an |
| // error. |
| if (FilenameStart == 0) { |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| // Verify that there is nothing after the filename, other than EOM. Use the |
| // preprocessor to lex this in case lexing the filename entered a macro. |
| CheckEndOfDirective("#include"); |
| |
| // Check that we don't have infinite #include recursion. |
| if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1) |
| return Diag(FilenameTok, diag::err_pp_include_too_deep); |
| |
| // Search include directories. |
| const DirectoryLookup *CurDir; |
| const FileEntry *File = LookupFile(FilenameStart, FilenameEnd, |
| isAngled, LookupFrom, CurDir); |
| if (File == 0) |
| return Diag(FilenameTok, diag::err_pp_file_not_found, |
| std::string(FilenameStart, FilenameEnd)); |
| |
| // Ask HeaderInfo if we should enter this #include file. |
| if (!HeaderInfo.ShouldEnterIncludeFile(File, isImport)) { |
| // If it returns true, #including this file will have no effect. |
| return; |
| } |
| |
| // Look up the file, create a File ID for it. |
| unsigned FileID = SourceMgr.createFileID(File, FilenameTok.getLocation()); |
| if (FileID == 0) |
| return Diag(FilenameTok, diag::err_pp_file_not_found, |
| std::string(FilenameStart, FilenameEnd)); |
| |
| // Finally, if all is good, enter the new file! |
| EnterSourceFile(FileID, CurDir); |
| } |
| |
| /// HandleIncludeNextDirective - Implements #include_next. |
| /// |
| void Preprocessor::HandleIncludeNextDirective(Token &IncludeNextTok) { |
| Diag(IncludeNextTok, diag::ext_pp_include_next_directive); |
| |
| // #include_next is like #include, except that we start searching after |
| // the current found directory. If we can't do this, issue a |
| // diagnostic. |
| const DirectoryLookup *Lookup = CurDirLookup; |
| if (isInPrimaryFile()) { |
| Lookup = 0; |
| Diag(IncludeNextTok, diag::pp_include_next_in_primary); |
| } else if (Lookup == 0) { |
| Diag(IncludeNextTok, diag::pp_include_next_absolute_path); |
| } else { |
| // Start looking up in the next directory. |
| ++Lookup; |
| } |
| |
| return HandleIncludeDirective(IncludeNextTok, Lookup); |
| } |
| |
| /// HandleImportDirective - Implements #import. |
| /// |
| void Preprocessor::HandleImportDirective(Token &ImportTok) { |
| Diag(ImportTok, diag::ext_pp_import_directive); |
| |
| return HandleIncludeDirective(ImportTok, 0, true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Macro Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// ReadMacroDefinitionArgList - The ( starting an argument list of a macro |
| /// definition has just been read. Lex the rest of the arguments and the |
| /// closing ), updating MI with what we learn. Return true if an error occurs |
| /// parsing the arg list. |
| bool Preprocessor::ReadMacroDefinitionArgList(MacroInfo *MI) { |
| llvm::SmallVector<IdentifierInfo*, 32> Arguments; |
| |
| Token Tok; |
| while (1) { |
| LexUnexpandedToken(Tok); |
| switch (Tok.getKind()) { |
| case tok::r_paren: |
| // Found the end of the argument list. |
| if (Arguments.empty()) { // #define FOO() |
| MI->setArgumentList(Arguments.begin(), Arguments.end()); |
| return false; |
| } |
| // Otherwise we have #define FOO(A,) |
| Diag(Tok, diag::err_pp_expected_ident_in_arg_list); |
| return true; |
| case tok::ellipsis: // #define X(... -> C99 varargs |
| // Warn if use of C99 feature in non-C99 mode. |
| if (!Features.C99) Diag(Tok, diag::ext_variadic_macro); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| if (Tok.isNot(tok::r_paren)) { |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| } |
| // Add the __VA_ARGS__ identifier as an argument. |
| Arguments.push_back(Ident__VA_ARGS__); |
| MI->setIsC99Varargs(); |
| MI->setArgumentList(Arguments.begin(), Arguments.end()); |
| return false; |
| case tok::eom: // #define X( |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| default: |
| // Handle keywords and identifiers here to accept things like |
| // #define Foo(for) for. |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| if (II == 0) { |
| // #define X(1 |
| Diag(Tok, diag::err_pp_invalid_tok_in_arg_list); |
| return true; |
| } |
| |
| // If this is already used as an argument, it is used multiple times (e.g. |
| // #define X(A,A. |
| if (std::find(Arguments.begin(), Arguments.end(), II) != |
| Arguments.end()) { // C99 6.10.3p6 |
| Diag(Tok, diag::err_pp_duplicate_name_in_arg_list, II->getName()); |
| return true; |
| } |
| |
| // Add the argument to the macro info. |
| Arguments.push_back(II); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| |
| switch (Tok.getKind()) { |
| default: // #define X(A B |
| Diag(Tok, diag::err_pp_expected_comma_in_arg_list); |
| return true; |
| case tok::r_paren: // #define X(A) |
| MI->setArgumentList(Arguments.begin(), Arguments.end()); |
| return false; |
| case tok::comma: // #define X(A, |
| break; |
| case tok::ellipsis: // #define X(A... -> GCC extension |
| // Diagnose extension. |
| Diag(Tok, diag::ext_named_variadic_macro); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| if (Tok.isNot(tok::r_paren)) { |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| } |
| |
| MI->setIsGNUVarargs(); |
| MI->setArgumentList(Arguments.begin(), Arguments.end()); |
| return false; |
| } |
| } |
| } |
| } |
| |
| /// HandleDefineDirective - Implements #define. This consumes the entire macro |
| /// line then lets the caller lex the next real token. If 'isTargetSpecific' is |
| /// true, then this is a "#define_target", otherwise this is a "#define". |
| /// |
| void Preprocessor::HandleDefineDirective(Token &DefineTok, |
| bool isTargetSpecific) { |
| ++NumDefined; |
| |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok, 1); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eom)) |
| return; |
| |
| // If we are supposed to keep comments in #defines, reenable comment saving |
| // mode. |
| CurLexer->KeepCommentMode = KeepMacroComments; |
| |
| // Create the new macro. |
| MacroInfo *MI = new MacroInfo(MacroNameTok.getLocation()); |
| if (isTargetSpecific) MI->setIsTargetSpecific(); |
| |
| // If the identifier is an 'other target' macro, clear this bit. |
| MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false); |
| |
| |
| Token Tok; |
| LexUnexpandedToken(Tok); |
| |
| // If this is a function-like macro definition, parse the argument list, |
| // marking each of the identifiers as being used as macro arguments. Also, |
| // check other constraints on the first token of the macro body. |
| if (Tok.is(tok::eom)) { |
| // If there is no body to this macro, we have no special handling here. |
| } else if (Tok.is(tok::l_paren) && !Tok.hasLeadingSpace()) { |
| // This is a function-like macro definition. Read the argument list. |
| MI->setIsFunctionLike(); |
| if (ReadMacroDefinitionArgList(MI)) { |
| // Forget about MI. |
| delete MI; |
| // Throw away the rest of the line. |
| if (CurLexer->ParsingPreprocessorDirective) |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| // Read the first token after the arg list for down below. |
| LexUnexpandedToken(Tok); |
| } else if (!Tok.hasLeadingSpace()) { |
| // C99 requires whitespace between the macro definition and the body. Emit |
| // a diagnostic for something like "#define X+". |
| if (Features.C99) { |
| Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name); |
| } else { |
| // FIXME: C90/C++ do not get this diagnostic, but it does get a similar |
| // one in some cases! |
| } |
| } else { |
| // This is a normal token with leading space. Clear the leading space |
| // marker on the first token to get proper expansion. |
| Tok.clearFlag(Token::LeadingSpace); |
| } |
| |
| // If this is a definition of a variadic C99 function-like macro, not using |
| // the GNU named varargs extension, enabled __VA_ARGS__. |
| |
| // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. |
| // This gets unpoisoned where it is allowed. |
| assert(Ident__VA_ARGS__->isPoisoned() && "__VA_ARGS__ should be poisoned!"); |
| if (MI->isC99Varargs()) |
| Ident__VA_ARGS__->setIsPoisoned(false); |
| |
| // Read the rest of the macro body. |
| if (MI->isObjectLike()) { |
| // Object-like macros are very simple, just read their body. |
| while (Tok.isNot(tok::eom)) { |
| MI->AddTokenToBody(Tok); |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| } |
| |
| } else { |
| // Otherwise, read the body of a function-like macro. This has to validate |
| // the # (stringize) operator. |
| while (Tok.isNot(tok::eom)) { |
| MI->AddTokenToBody(Tok); |
| |
| // Check C99 6.10.3.2p1: ensure that # operators are followed by macro |
| // parameters in function-like macro expansions. |
| if (Tok.isNot(tok::hash)) { |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| continue; |
| } |
| |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| |
| // Not a macro arg identifier? |
| if (!Tok.getIdentifierInfo() || |
| MI->getArgumentNum(Tok.getIdentifierInfo()) == -1) { |
| Diag(Tok, diag::err_pp_stringize_not_parameter); |
| delete MI; |
| |
| // Disable __VA_ARGS__ again. |
| Ident__VA_ARGS__->setIsPoisoned(true); |
| return; |
| } |
| |
| // Things look ok, add the param name token to the macro. |
| MI->AddTokenToBody(Tok); |
| |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| } |
| } |
| |
| |
| // Disable __VA_ARGS__ again. |
| Ident__VA_ARGS__->setIsPoisoned(true); |
| |
| // Check that there is no paste (##) operator at the begining or end of the |
| // replacement list. |
| unsigned NumTokens = MI->getNumTokens(); |
| if (NumTokens != 0) { |
| if (MI->getReplacementToken(0).is(tok::hashhash)) { |
| Diag(MI->getReplacementToken(0), diag::err_paste_at_start); |
| delete MI; |
| return; |
| } |
| if (MI->getReplacementToken(NumTokens-1).is(tok::hashhash)) { |
| Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end); |
| delete MI; |
| return; |
| } |
| } |
| |
| // If this is the primary source file, remember that this macro hasn't been |
| // used yet. |
| if (isInPrimaryFile()) |
| MI->setIsUsed(false); |
| |
| // Finally, if this identifier already had a macro defined for it, verify that |
| // the macro bodies are identical and free the old definition. |
| if (MacroInfo *OtherMI = getMacroInfo(MacroNameTok.getIdentifierInfo())) { |
| if (!OtherMI->isUsed()) |
| Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used); |
| |
| // Macros must be identical. This means all tokes and whitespace separation |
| // must be the same. C99 6.10.3.2. |
| if (!MI->isIdenticalTo(*OtherMI, *this)) { |
| Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef, |
| MacroNameTok.getIdentifierInfo()->getName()); |
| Diag(OtherMI->getDefinitionLoc(), diag::ext_pp_macro_redef2); |
| } |
| delete OtherMI; |
| } |
| |
| setMacroInfo(MacroNameTok.getIdentifierInfo(), MI); |
| } |
| |
| /// HandleDefineOtherTargetDirective - Implements #define_other_target. |
| void Preprocessor::HandleDefineOtherTargetDirective(Token &Tok) { |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok, 1); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eom)) |
| return; |
| |
| // Check to see if this is the last token on the #undef line. |
| CheckEndOfDirective("#define_other_target"); |
| |
| // If there is already a macro defined by this name, turn it into a |
| // target-specific define. |
| if (MacroInfo *MI = getMacroInfo(MacroNameTok.getIdentifierInfo())) { |
| MI->setIsTargetSpecific(true); |
| return; |
| } |
| |
| // Mark the identifier as being a macro on some other target. |
| MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(); |
| } |
| |
| |
| /// HandleUndefDirective - Implements #undef. |
| /// |
| void Preprocessor::HandleUndefDirective(Token &UndefTok) { |
| ++NumUndefined; |
| |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok, 2); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eom)) |
| return; |
| |
| // Check to see if this is the last token on the #undef line. |
| CheckEndOfDirective("#undef"); |
| |
| // Okay, we finally have a valid identifier to undef. |
| MacroInfo *MI = getMacroInfo(MacroNameTok.getIdentifierInfo()); |
| |
| // #undef untaints an identifier if it were marked by define_other_target. |
| MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false); |
| |
| // If the macro is not defined, this is a noop undef, just return. |
| if (MI == 0) return; |
| |
| if (!MI->isUsed()) |
| Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used); |
| |
| // Free macro definition. |
| delete MI; |
| setMacroInfo(MacroNameTok.getIdentifierInfo(), 0); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Conditional Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// HandleIfdefDirective - Implements the #ifdef/#ifndef directive. isIfndef is |
| /// true when this is a #ifndef directive. ReadAnyTokensBeforeDirective is true |
| /// if any tokens have been returned or pp-directives activated before this |
| /// #ifndef has been lexed. |
| /// |
| void Preprocessor::HandleIfdefDirective(Token &Result, bool isIfndef, |
| bool ReadAnyTokensBeforeDirective) { |
| ++NumIf; |
| Token DirectiveTok = Result; |
| |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eom)) { |
| // Skip code until we get to #endif. This helps with recovery by not |
| // emitting an error when the #endif is reached. |
| SkipExcludedConditionalBlock(DirectiveTok.getLocation(), |
| /*Foundnonskip*/false, /*FoundElse*/false); |
| return; |
| } |
| |
| // Check to see if this is the last token on the #if[n]def line. |
| CheckEndOfDirective(isIfndef ? "#ifndef" : "#ifdef"); |
| |
| // If the start of a top-level #ifdef, inform MIOpt. |
| if (!ReadAnyTokensBeforeDirective && |
| CurLexer->getConditionalStackDepth() == 0) { |
| assert(isIfndef && "#ifdef shouldn't reach here"); |
| CurLexer->MIOpt.EnterTopLevelIFNDEF(MacroNameTok.getIdentifierInfo()); |
| } |
| |
| IdentifierInfo *MII = MacroNameTok.getIdentifierInfo(); |
| MacroInfo *MI = getMacroInfo(MII); |
| |
| // If there is a macro, process it. |
| if (MI) { |
| // Mark it used. |
| MI->setIsUsed(true); |
| |
| // If this is the first use of a target-specific macro, warn about it. |
| if (MI->isTargetSpecific()) { |
| MI->setIsTargetSpecific(false); // Don't warn on second use. |
| getTargetInfo().DiagnoseNonPortability(MacroNameTok.getLocation(), |
| diag::port_target_macro_use); |
| } |
| } else { |
| // Use of a target-specific macro for some other target? If so, warn. |
| if (MII->isOtherTargetMacro()) { |
| MII->setIsOtherTargetMacro(false); // Don't warn on second use. |
| getTargetInfo().DiagnoseNonPortability(MacroNameTok.getLocation(), |
| diag::port_target_macro_use); |
| } |
| } |
| |
| // Should we include the stuff contained by this directive? |
| if (!MI == isIfndef) { |
| // Yes, remember that we are inside a conditional, then lex the next token. |
| CurLexer->pushConditionalLevel(DirectiveTok.getLocation(), /*wasskip*/false, |
| /*foundnonskip*/true, /*foundelse*/false); |
| } else { |
| // No, skip the contents of this block and return the first token after it. |
| SkipExcludedConditionalBlock(DirectiveTok.getLocation(), |
| /*Foundnonskip*/false, |
| /*FoundElse*/false); |
| } |
| } |
| |
| /// HandleIfDirective - Implements the #if directive. |
| /// |
| void Preprocessor::HandleIfDirective(Token &IfToken, |
| bool ReadAnyTokensBeforeDirective) { |
| ++NumIf; |
| |
| // Parse and evaluation the conditional expression. |
| IdentifierInfo *IfNDefMacro = 0; |
| bool ConditionalTrue = EvaluateDirectiveExpression(IfNDefMacro); |
| |
| // Should we include the stuff contained by this directive? |
| if (ConditionalTrue) { |
| // If this condition is equivalent to #ifndef X, and if this is the first |
| // directive seen, handle it for the multiple-include optimization. |
| if (!ReadAnyTokensBeforeDirective && |
| CurLexer->getConditionalStackDepth() == 0 && IfNDefMacro) |
| CurLexer->MIOpt.EnterTopLevelIFNDEF(IfNDefMacro); |
| |
| // Yes, remember that we are inside a conditional, then lex the next token. |
| CurLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false, |
| /*foundnonskip*/true, /*foundelse*/false); |
| } else { |
| // No, skip the contents of this block and return the first token after it. |
| SkipExcludedConditionalBlock(IfToken.getLocation(), /*Foundnonskip*/false, |
| /*FoundElse*/false); |
| } |
| } |
| |
| /// HandleEndifDirective - Implements the #endif directive. |
| /// |
| void Preprocessor::HandleEndifDirective(Token &EndifToken) { |
| ++NumEndif; |
| |
| // Check that this is the whole directive. |
| CheckEndOfDirective("#endif"); |
| |
| PPConditionalInfo CondInfo; |
| if (CurLexer->popConditionalLevel(CondInfo)) { |
| // No conditionals on the stack: this is an #endif without an #if. |
| return Diag(EndifToken, diag::err_pp_endif_without_if); |
| } |
| |
| // If this the end of a top-level #endif, inform MIOpt. |
| if (CurLexer->getConditionalStackDepth() == 0) |
| CurLexer->MIOpt.ExitTopLevelConditional(); |
| |
| assert(!CondInfo.WasSkipping && !CurLexer->LexingRawMode && |
| "This code should only be reachable in the non-skipping case!"); |
| } |
| |
| |
| void Preprocessor::HandleElseDirective(Token &Result) { |
| ++NumElse; |
| |
| // #else directive in a non-skipping conditional... start skipping. |
| CheckEndOfDirective("#else"); |
| |
| PPConditionalInfo CI; |
| if (CurLexer->popConditionalLevel(CI)) |
| return Diag(Result, diag::pp_err_else_without_if); |
| |
| // If this is a top-level #else, inform the MIOpt. |
| if (CurLexer->getConditionalStackDepth() == 0) |
| CurLexer->MIOpt.FoundTopLevelElse(); |
| |
| // If this is a #else with a #else before it, report the error. |
| if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else); |
| |
| // Finally, skip the rest of the contents of this block and return the first |
| // token after it. |
| return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, |
| /*FoundElse*/true); |
| } |
| |
| void Preprocessor::HandleElifDirective(Token &ElifToken) { |
| ++NumElse; |
| |
| // #elif directive in a non-skipping conditional... start skipping. |
| // We don't care what the condition is, because we will always skip it (since |
| // the block immediately before it was included). |
| DiscardUntilEndOfDirective(); |
| |
| PPConditionalInfo CI; |
| if (CurLexer->popConditionalLevel(CI)) |
| return Diag(ElifToken, diag::pp_err_elif_without_if); |
| |
| // If this is a top-level #elif, inform the MIOpt. |
| if (CurLexer->getConditionalStackDepth() == 0) |
| CurLexer->MIOpt.FoundTopLevelElse(); |
| |
| // If this is a #elif with a #else before it, report the error. |
| if (CI.FoundElse) Diag(ElifToken, diag::pp_err_elif_after_else); |
| |
| // Finally, skip the rest of the contents of this block and return the first |
| // token after it. |
| return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, |
| /*FoundElse*/CI.FoundElse); |
| } |
| |