blob: 387a30cf63f921048b8deda55540bb607ca6960e [file] [log] [blame]
//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This files defines RValue, LValue, and NonLValue, classes that represent
// abstract r-values for use with path-sensitive value tracking.
//
//===----------------------------------------------------------------------===//
#include "RValues.h"
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// SymbolManager.
//===----------------------------------------------------------------------===//
SymbolID SymbolManager::getSymbol(ParmVarDecl* D) {
SymbolID& X = DataToSymbol[getKey(D)];
if (!X.isInitialized()) {
X = SymbolToData.size();
SymbolToData.push_back(SymbolDataParmVar(D));
}
return X;
}
SymbolID SymbolManager::getContentsOfSymbol(SymbolID sym) {
SymbolID& X = DataToSymbol[getKey(sym)];
if (!X.isInitialized()) {
X = SymbolToData.size();
SymbolToData.push_back(SymbolDataContentsOf(sym));
}
return X;
}
QualType SymbolData::getType() const {
switch (getKind()) {
default:
assert (false && "getType() not implemented for this symbol.");
case ParmKind:
return cast<SymbolDataParmVar>(this)->getDecl()->getType();
}
}
SymbolManager::SymbolManager() {}
SymbolManager::~SymbolManager() {}
//===----------------------------------------------------------------------===//
// Values and ValueManager.
//===----------------------------------------------------------------------===//
ValueManager::~ValueManager() {
// Note that the dstor for the contents of APSIntSet will never be called,
// so we iterate over the set and invoke the dstor for each APSInt. This
// frees an aux. memory allocated to represent very large constants.
for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
I->getValue().~APSInt();
}
const APSInt& ValueManager::getValue(const APSInt& X) {
llvm::FoldingSetNodeID ID;
void* InsertPos;
typedef llvm::FoldingSetNodeWrapper<APSInt> FoldNodeTy;
X.Profile(ID);
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(X);
APSIntSet.InsertNode(P, InsertPos);
}
return *P;
}
const APSInt& ValueManager::getValue(uint64_t X, unsigned BitWidth,
bool isUnsigned) {
APSInt V(BitWidth, isUnsigned);
V = X;
return getValue(V);
}
const APSInt& ValueManager::getValue(uint64_t X, QualType T,
SourceLocation Loc) {
unsigned bits = Ctx.getTypeSize(T, Loc);
APSInt V(bits, T->isUnsignedIntegerType());
V = X;
return getValue(V);
}
const SymIntConstraint&
ValueManager::getConstraint(SymbolID sym, BinaryOperator::Opcode Op,
const llvm::APSInt& V) {
llvm::FoldingSetNodeID ID;
SymIntConstraint::Profile(ID, sym, Op, V);
void* InsertPos;
SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos);
if (!C) {
C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>();
new (C) SymIntConstraint(sym, Op, V);
SymIntCSet.InsertNode(C, InsertPos);
}
return *C;
}
//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//
RValue RValue::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const {
switch (getBaseKind()) {
default: assert(false && "Invalid RValue."); break;
case LValueKind: return cast<LValue>(this)->EvalCast(ValMgr, CastExpr);
case NonLValueKind: return cast<NonLValue>(this)->EvalCast(ValMgr, CastExpr);
case UninitializedKind: case InvalidKind: break;
}
return *this;
}
//===----------------------------------------------------------------------===//
// Transfer function dispatch for Non-LValues.
//===----------------------------------------------------------------------===//
// Binary Operators (except assignments and comma).
NonLValue NonLValue::EvalBinaryOp(ValueManager& ValMgr,
BinaryOperator::Opcode Op,
const NonLValue& RHS) const {
if (isa<InvalidValue>(this) || isa<InvalidValue>(RHS))
return cast<NonLValue>(InvalidValue());
if (isa<UninitializedValue>(this) || isa<UninitializedValue>(RHS))
return cast<NonLValue>(UninitializedValue());
switch (getSubKind()) {
default:
assert (false && "Binary Operators not implemented for this NonLValue");
case nonlval::ConcreteIntKind:
if (isa<nonlval::ConcreteInt>(RHS)) {
nonlval::ConcreteInt& self = cast<nonlval::ConcreteInt>(*this);
return self.EvalBinaryOp(ValMgr, Op,
cast<nonlval::ConcreteInt>(RHS));
}
else if(isa<InvalidValue>(RHS))
return cast<NonLValue>(InvalidValue());
else
return RHS.EvalBinaryOp(ValMgr, Op, *this);
case nonlval::SymbolValKind: {
const nonlval::SymbolVal& self = cast<nonlval::SymbolVal>(*this);
switch (RHS.getSubKind()) {
default: assert ("Not Implemented." && false);
case nonlval::ConcreteIntKind: {
const SymIntConstraint& C =
ValMgr.getConstraint(self.getSymbol(), Op,
cast<nonlval::ConcreteInt>(RHS).getValue());
return nonlval::SymIntConstraintVal(C);
}
}
}
}
}
static const
llvm::APSInt& EvaluateAPSInt(ValueManager& ValMgr, BinaryOperator::Opcode Op,
const llvm::APSInt& V1, const llvm::APSInt& V2) {
switch (Op) {
default:
assert (false && "Invalid Opcode.");
case BinaryOperator::Mul:
return ValMgr.getValue( V1 * V2 );
case BinaryOperator::Div:
return ValMgr.getValue( V1 / V2 );
case BinaryOperator::Rem:
return ValMgr.getValue( V1 % V2 );
case BinaryOperator::Add:
return ValMgr.getValue( V1 + V2 );
case BinaryOperator::Sub:
return ValMgr.getValue( V1 - V2 );
#if 0
case BinaryOperator::Shl:
return ValMgr.getValue( V1 << V2 );
case BinaryOperator::Shr:
return ValMgr.getValue( V1 >> V2 );
#endif
case BinaryOperator::LT:
return ValMgr.getTruthValue( V1 < V2 );
case BinaryOperator::GT:
return ValMgr.getTruthValue( V1 > V2 );
case BinaryOperator::LE:
return ValMgr.getTruthValue( V1 <= V2 );
case BinaryOperator::GE:
return ValMgr.getTruthValue( V1 >= V2 );
case BinaryOperator::EQ:
return ValMgr.getTruthValue( V1 == V2 );
case BinaryOperator::NE:
return ValMgr.getTruthValue( V1 != V2 );
// Note: LAnd, LOr, Comma are handled specially by higher-level logic.
case BinaryOperator::And:
return ValMgr.getValue( V1 & V2 );
case BinaryOperator::Or:
return ValMgr.getValue( V1 | V2 );
}
}
nonlval::ConcreteInt
nonlval::ConcreteInt::EvalBinaryOp(ValueManager& ValMgr,
BinaryOperator::Opcode Op,
const nonlval::ConcreteInt& RHS) const {
return EvaluateAPSInt(ValMgr, Op, getValue(), RHS.getValue());
}
// Bitwise-Complement.
NonLValue NonLValue::EvalComplement(ValueManager& ValMgr) const {
switch (getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(this)->EvalComplement(ValMgr);
default:
return cast<NonLValue>(InvalidValue());
}
}
nonlval::ConcreteInt
nonlval::ConcreteInt::EvalComplement(ValueManager& ValMgr) const {
return ValMgr.getValue(~getValue());
}
// Casts.
RValue NonLValue::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const {
if (!isa<nonlval::ConcreteInt>(this))
return InvalidValue();
APSInt V = cast<nonlval::ConcreteInt>(this)->getValue();
QualType T = CastExpr->getType();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType());
V.extOrTrunc(ValMgr.getContext().getTypeSize(T, CastExpr->getLocStart()));
if (CastExpr->getType()->isPointerType())
return lval::ConcreteInt(ValMgr.getValue(V));
else
return nonlval::ConcreteInt(ValMgr.getValue(V));
}
// Unary Minus.
NonLValue NonLValue::EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const {
switch (getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(this)->EvalMinus(ValMgr, U);
default:
return cast<NonLValue>(InvalidValue());
}
}
nonlval::ConcreteInt
nonlval::ConcreteInt::EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const {
assert (U->getType() == U->getSubExpr()->getType());
assert (U->getType()->isIntegerType());
return ValMgr.getValue(-getValue());
}
//===----------------------------------------------------------------------===//
// Transfer function dispatch for LValues.
//===----------------------------------------------------------------------===//
// Binary Operators (except assignments and comma).
RValue LValue::EvalBinaryOp(ValueManager& ValMgr,
BinaryOperator::Opcode Op,
const LValue& RHS) const {
switch (Op) {
default:
assert (false && "Not yet implemented.");
case BinaryOperator::EQ:
return EQ(ValMgr, RHS);
case BinaryOperator::NE:
return NE(ValMgr, RHS);
}
}
lval::ConcreteInt
lval::ConcreteInt::EvalBinaryOp(ValueManager& ValMgr,
BinaryOperator::Opcode Op,
const lval::ConcreteInt& RHS) const {
assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub ||
(Op >= BinaryOperator::LT && Op <= BinaryOperator::NE));
return EvaluateAPSInt(ValMgr, Op, getValue(), RHS.getValue());
}
NonLValue LValue::EQ(ValueManager& ValMgr, const LValue& RHS) const {
switch (getSubKind()) {
default:
assert(false && "EQ not implemented for this LValue.");
return cast<NonLValue>(InvalidValue());
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(RHS)) {
bool b = cast<lval::ConcreteInt>(this)->getValue() ==
cast<lval::ConcreteInt>(RHS).getValue();
return NonLValue::GetIntTruthValue(ValMgr, b);
}
else if (isa<lval::SymbolVal>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(RHS).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(this)->getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(this)->getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(RHS).getValue());
return nonlval::SymIntConstraintVal(C);
}
assert (!isa<lval::SymbolVal>(RHS) && "FIXME: Implement unification.");
break;
}
case lval::DeclValKind:
if (isa<lval::DeclVal>(RHS)) {
bool b = cast<lval::DeclVal>(*this) == cast<lval::DeclVal>(RHS);
return NonLValue::GetIntTruthValue(ValMgr, b);
}
break;
}
return NonLValue::GetIntTruthValue(ValMgr, false);
}
NonLValue LValue::NE(ValueManager& ValMgr, const LValue& RHS) const {
switch (getSubKind()) {
default:
assert(false && "NE not implemented for this LValue.");
return cast<NonLValue>(InvalidValue());
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(RHS)) {
bool b = cast<lval::ConcreteInt>(this)->getValue() !=
cast<lval::ConcreteInt>(RHS).getValue();
return NonLValue::GetIntTruthValue(ValMgr, b);
}
else if (isa<lval::SymbolVal>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(RHS).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(this)->getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(this)->getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(RHS).getValue());
return nonlval::SymIntConstraintVal(C);
}
assert (!isa<lval::SymbolVal>(RHS) && "FIXME: Implement sym !=.");
break;
}
case lval::DeclValKind:
if (isa<lval::DeclVal>(RHS)) {
bool b = cast<lval::DeclVal>(*this) == cast<lval::DeclVal>(RHS);
return NonLValue::GetIntTruthValue(ValMgr, b);
}
break;
}
return NonLValue::GetIntTruthValue(ValMgr, true);
}
// Casts.
RValue LValue::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const {
if (CastExpr->getType()->isPointerType())
return *this;
assert (CastExpr->getType()->isIntegerType());
if (!isa<lval::ConcreteInt>(*this))
return InvalidValue();
APSInt V = cast<lval::ConcreteInt>(this)->getValue();
QualType T = CastExpr->getType();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType());
V.extOrTrunc(ValMgr.getContext().getTypeSize(T, CastExpr->getLocStart()));
return nonlval::ConcreteInt(ValMgr.getValue(V));
}
//===----------------------------------------------------------------------===//
// Utility methods for constructing Non-LValues.
//===----------------------------------------------------------------------===//
NonLValue NonLValue::GetValue(ValueManager& ValMgr, uint64_t X, QualType T,
SourceLocation Loc) {
return nonlval::ConcreteInt(ValMgr.getValue(X, T, Loc));
}
NonLValue NonLValue::GetValue(ValueManager& ValMgr, IntegerLiteral* I) {
return nonlval::ConcreteInt(ValMgr.getValue(APSInt(I->getValue(),
I->getType()->isUnsignedIntegerType())));
}
NonLValue NonLValue::GetIntTruthValue(ValueManager& ValMgr, bool b) {
return nonlval::ConcreteInt(ValMgr.getTruthValue(b));
}
RValue RValue::GetSymbolValue(SymbolManager& SymMgr, ParmVarDecl* D) {
QualType T = D->getType();
if (T->isPointerType() || T->isReferenceType())
return lval::SymbolVal(SymMgr.getSymbol(D));
else
return nonlval::SymbolVal(SymMgr.getSymbol(D));
}
void RValue::print() const {
print(*llvm::cerr.stream());
}
//===----------------------------------------------------------------------===//
// Pretty-Printing.
//===----------------------------------------------------------------------===//
void RValue::print(std::ostream& Out) const {
switch (getBaseKind()) {
case InvalidKind:
Out << "Invalid";
break;
case NonLValueKind:
cast<NonLValue>(this)->print(Out);
break;
case LValueKind:
cast<LValue>(this)->print(Out);
break;
case UninitializedKind:
Out << "Uninitialized";
break;
default:
assert (false && "Invalid RValue.");
}
}
static void printOpcode(std::ostream& Out, BinaryOperator::Opcode Op) {
switch (Op) {
case BinaryOperator::Add: Out << "+" ; break;
case BinaryOperator::Sub: Out << "-" ; break;
case BinaryOperator::EQ: Out << "=="; break;
case BinaryOperator::NE: Out << "!="; break;
default: assert(false && "Not yet implemented.");
}
}
void NonLValue::print(std::ostream& Out) const {
switch (getSubKind()) {
case nonlval::ConcreteIntKind:
Out << cast<nonlval::ConcreteInt>(this)->getValue().toString();
if (cast<nonlval::ConcreteInt>(this)->getValue().isUnsigned())
Out << 'U';
break;
case nonlval::SymbolValKind:
Out << '$' << cast<nonlval::SymbolVal>(this)->getSymbol();
break;
case nonlval::SymIntConstraintValKind: {
const nonlval::SymIntConstraintVal& C =
*cast<nonlval::SymIntConstraintVal>(this);
Out << '$' << C.getConstraint().getSymbol() << ' ';
printOpcode(Out, C.getConstraint().getOpcode());
Out << ' ' << C.getConstraint().getInt().toString();
if (C.getConstraint().getInt().isUnsigned())
Out << 'U';
break;
}
default:
assert (false && "Pretty-printed not implemented for this NonLValue.");
break;
}
}
void LValue::print(std::ostream& Out) const {
switch (getSubKind()) {
case lval::ConcreteIntKind:
Out << cast<lval::ConcreteInt>(this)->getValue().toString()
<< " (LValue)";
break;
case lval::SymbolValKind:
Out << '$' << cast<lval::SymbolVal>(this)->getSymbol();
break;
case lval::DeclValKind:
Out << '&'
<< cast<lval::DeclVal>(this)->getDecl()->getIdentifier()->getName();
break;
default:
assert (false && "Pretty-printed not implemented for this LValue.");
break;
}
}