| //= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This files defines RValue, LValue, and NonLValue, classes that represent |
| // abstract r-values for use with path-sensitive value tracking. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RValues.h" |
| |
| using namespace clang; |
| using llvm::dyn_cast; |
| using llvm::cast; |
| using llvm::APSInt; |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolManager. |
| //===----------------------------------------------------------------------===// |
| |
| SymbolID SymbolManager::getSymbol(ParmVarDecl* D) { |
| SymbolID& X = DataToSymbol[getKey(D)]; |
| |
| if (!X.isInitialized()) { |
| X = SymbolToData.size(); |
| SymbolToData.push_back(SymbolDataParmVar(D)); |
| } |
| |
| return X; |
| } |
| |
| SymbolID SymbolManager::getContentsOfSymbol(SymbolID sym) { |
| SymbolID& X = DataToSymbol[getKey(sym)]; |
| |
| if (!X.isInitialized()) { |
| X = SymbolToData.size(); |
| SymbolToData.push_back(SymbolDataContentsOf(sym)); |
| } |
| |
| return X; |
| } |
| |
| QualType SymbolData::getType() const { |
| switch (getKind()) { |
| default: |
| assert (false && "getType() not implemented for this symbol."); |
| |
| case ParmKind: |
| return cast<SymbolDataParmVar>(this)->getDecl()->getType(); |
| |
| } |
| } |
| |
| SymbolManager::SymbolManager() {} |
| SymbolManager::~SymbolManager() {} |
| |
| //===----------------------------------------------------------------------===// |
| // Values and ValueManager. |
| //===----------------------------------------------------------------------===// |
| |
| ValueManager::~ValueManager() { |
| // Note that the dstor for the contents of APSIntSet will never be called, |
| // so we iterate over the set and invoke the dstor for each APSInt. This |
| // frees an aux. memory allocated to represent very large constants. |
| for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I) |
| I->getValue().~APSInt(); |
| } |
| |
| const APSInt& ValueManager::getValue(const APSInt& X) { |
| llvm::FoldingSetNodeID ID; |
| void* InsertPos; |
| typedef llvm::FoldingSetNodeWrapper<APSInt> FoldNodeTy; |
| |
| X.Profile(ID); |
| FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!P) { |
| P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); |
| new (P) FoldNodeTy(X); |
| APSIntSet.InsertNode(P, InsertPos); |
| } |
| |
| return *P; |
| } |
| |
| const APSInt& ValueManager::getValue(uint64_t X, unsigned BitWidth, |
| bool isUnsigned) { |
| APSInt V(BitWidth, isUnsigned); |
| V = X; |
| return getValue(V); |
| } |
| |
| const APSInt& ValueManager::getValue(uint64_t X, QualType T, |
| SourceLocation Loc) { |
| |
| unsigned bits = Ctx.getTypeSize(T, Loc); |
| APSInt V(bits, T->isUnsignedIntegerType()); |
| V = X; |
| return getValue(V); |
| } |
| |
| const SymIntConstraint& |
| ValueManager::getConstraint(SymbolID sym, BinaryOperator::Opcode Op, |
| const llvm::APSInt& V) { |
| |
| llvm::FoldingSetNodeID ID; |
| SymIntConstraint::Profile(ID, sym, Op, V); |
| void* InsertPos; |
| |
| SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!C) { |
| C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>(); |
| new (C) SymIntConstraint(sym, Op, V); |
| SymIntCSet.InsertNode(C, InsertPos); |
| } |
| |
| return *C; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function for Casts. |
| //===----------------------------------------------------------------------===// |
| |
| RValue RValue::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const { |
| switch (getBaseKind()) { |
| default: assert(false && "Invalid RValue."); break; |
| case LValueKind: return cast<LValue>(this)->EvalCast(ValMgr, CastExpr); |
| case NonLValueKind: return cast<NonLValue>(this)->EvalCast(ValMgr, CastExpr); |
| case UninitializedKind: case InvalidKind: break; |
| } |
| |
| return *this; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function dispatch for Non-LValues. |
| //===----------------------------------------------------------------------===// |
| |
| // Binary Operators (except assignments and comma). |
| |
| NonLValue NonLValue::EvalBinaryOp(ValueManager& ValMgr, |
| BinaryOperator::Opcode Op, |
| const NonLValue& RHS) const { |
| |
| if (isa<InvalidValue>(this) || isa<InvalidValue>(RHS)) |
| return cast<NonLValue>(InvalidValue()); |
| |
| if (isa<UninitializedValue>(this) || isa<UninitializedValue>(RHS)) |
| return cast<NonLValue>(UninitializedValue()); |
| |
| switch (getSubKind()) { |
| default: |
| assert (false && "Binary Operators not implemented for this NonLValue"); |
| |
| case nonlval::ConcreteIntKind: |
| |
| if (isa<nonlval::ConcreteInt>(RHS)) { |
| nonlval::ConcreteInt& self = cast<nonlval::ConcreteInt>(*this); |
| return self.EvalBinaryOp(ValMgr, Op, |
| cast<nonlval::ConcreteInt>(RHS)); |
| } |
| else if(isa<InvalidValue>(RHS)) |
| return cast<NonLValue>(InvalidValue()); |
| else |
| return RHS.EvalBinaryOp(ValMgr, Op, *this); |
| |
| case nonlval::SymbolValKind: { |
| const nonlval::SymbolVal& self = cast<nonlval::SymbolVal>(*this); |
| |
| switch (RHS.getSubKind()) { |
| default: assert ("Not Implemented." && false); |
| case nonlval::ConcreteIntKind: { |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(self.getSymbol(), Op, |
| cast<nonlval::ConcreteInt>(RHS).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| } |
| } |
| } |
| } |
| |
| static const |
| llvm::APSInt& EvaluateAPSInt(ValueManager& ValMgr, BinaryOperator::Opcode Op, |
| const llvm::APSInt& V1, const llvm::APSInt& V2) { |
| |
| switch (Op) { |
| default: |
| assert (false && "Invalid Opcode."); |
| |
| case BinaryOperator::Mul: |
| return ValMgr.getValue( V1 * V2 ); |
| |
| case BinaryOperator::Div: |
| return ValMgr.getValue( V1 / V2 ); |
| |
| case BinaryOperator::Rem: |
| return ValMgr.getValue( V1 % V2 ); |
| |
| case BinaryOperator::Add: |
| return ValMgr.getValue( V1 + V2 ); |
| |
| case BinaryOperator::Sub: |
| return ValMgr.getValue( V1 - V2 ); |
| |
| #if 0 |
| case BinaryOperator::Shl: |
| return ValMgr.getValue( V1 << V2 ); |
| |
| case BinaryOperator::Shr: |
| return ValMgr.getValue( V1 >> V2 ); |
| #endif |
| |
| case BinaryOperator::LT: |
| return ValMgr.getTruthValue( V1 < V2 ); |
| |
| case BinaryOperator::GT: |
| return ValMgr.getTruthValue( V1 > V2 ); |
| |
| case BinaryOperator::LE: |
| return ValMgr.getTruthValue( V1 <= V2 ); |
| |
| case BinaryOperator::GE: |
| return ValMgr.getTruthValue( V1 >= V2 ); |
| |
| case BinaryOperator::EQ: |
| return ValMgr.getTruthValue( V1 == V2 ); |
| |
| case BinaryOperator::NE: |
| return ValMgr.getTruthValue( V1 != V2 ); |
| |
| // Note: LAnd, LOr, Comma are handled specially by higher-level logic. |
| |
| case BinaryOperator::And: |
| return ValMgr.getValue( V1 & V2 ); |
| |
| case BinaryOperator::Or: |
| return ValMgr.getValue( V1 | V2 ); |
| } |
| } |
| |
| nonlval::ConcreteInt |
| nonlval::ConcreteInt::EvalBinaryOp(ValueManager& ValMgr, |
| BinaryOperator::Opcode Op, |
| const nonlval::ConcreteInt& RHS) const { |
| |
| return EvaluateAPSInt(ValMgr, Op, getValue(), RHS.getValue()); |
| } |
| |
| |
| // Bitwise-Complement. |
| |
| NonLValue NonLValue::EvalComplement(ValueManager& ValMgr) const { |
| switch (getSubKind()) { |
| case nonlval::ConcreteIntKind: |
| return cast<nonlval::ConcreteInt>(this)->EvalComplement(ValMgr); |
| default: |
| return cast<NonLValue>(InvalidValue()); |
| } |
| } |
| |
| nonlval::ConcreteInt |
| nonlval::ConcreteInt::EvalComplement(ValueManager& ValMgr) const { |
| return ValMgr.getValue(~getValue()); |
| } |
| |
| // Casts. |
| |
| RValue NonLValue::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const { |
| if (!isa<nonlval::ConcreteInt>(this)) |
| return InvalidValue(); |
| |
| APSInt V = cast<nonlval::ConcreteInt>(this)->getValue(); |
| QualType T = CastExpr->getType(); |
| V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType()); |
| V.extOrTrunc(ValMgr.getContext().getTypeSize(T, CastExpr->getLocStart())); |
| |
| if (CastExpr->getType()->isPointerType()) |
| return lval::ConcreteInt(ValMgr.getValue(V)); |
| else |
| return nonlval::ConcreteInt(ValMgr.getValue(V)); |
| } |
| |
| // Unary Minus. |
| |
| NonLValue NonLValue::EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const { |
| switch (getSubKind()) { |
| case nonlval::ConcreteIntKind: |
| return cast<nonlval::ConcreteInt>(this)->EvalMinus(ValMgr, U); |
| default: |
| return cast<NonLValue>(InvalidValue()); |
| } |
| } |
| |
| nonlval::ConcreteInt |
| nonlval::ConcreteInt::EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const { |
| assert (U->getType() == U->getSubExpr()->getType()); |
| assert (U->getType()->isIntegerType()); |
| return ValMgr.getValue(-getValue()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function dispatch for LValues. |
| //===----------------------------------------------------------------------===// |
| |
| // Binary Operators (except assignments and comma). |
| |
| RValue LValue::EvalBinaryOp(ValueManager& ValMgr, |
| BinaryOperator::Opcode Op, |
| const LValue& RHS) const { |
| |
| switch (Op) { |
| default: |
| assert (false && "Not yet implemented."); |
| |
| case BinaryOperator::EQ: |
| return EQ(ValMgr, RHS); |
| |
| case BinaryOperator::NE: |
| return NE(ValMgr, RHS); |
| } |
| } |
| |
| |
| lval::ConcreteInt |
| lval::ConcreteInt::EvalBinaryOp(ValueManager& ValMgr, |
| BinaryOperator::Opcode Op, |
| const lval::ConcreteInt& RHS) const { |
| |
| assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub || |
| (Op >= BinaryOperator::LT && Op <= BinaryOperator::NE)); |
| |
| return EvaluateAPSInt(ValMgr, Op, getValue(), RHS.getValue()); |
| } |
| |
| NonLValue LValue::EQ(ValueManager& ValMgr, const LValue& RHS) const { |
| switch (getSubKind()) { |
| default: |
| assert(false && "EQ not implemented for this LValue."); |
| return cast<NonLValue>(InvalidValue()); |
| |
| case lval::ConcreteIntKind: |
| if (isa<lval::ConcreteInt>(RHS)) { |
| bool b = cast<lval::ConcreteInt>(this)->getValue() == |
| cast<lval::ConcreteInt>(RHS).getValue(); |
| |
| return NonLValue::GetIntTruthValue(ValMgr, b); |
| } |
| else if (isa<lval::SymbolVal>(RHS)) { |
| |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(RHS).getSymbol(), |
| BinaryOperator::EQ, |
| cast<lval::ConcreteInt>(this)->getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| break; |
| |
| case lval::SymbolValKind: { |
| if (isa<lval::ConcreteInt>(RHS)) { |
| |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(this)->getSymbol(), |
| BinaryOperator::EQ, |
| cast<lval::ConcreteInt>(RHS).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| assert (!isa<lval::SymbolVal>(RHS) && "FIXME: Implement unification."); |
| |
| break; |
| } |
| |
| case lval::DeclValKind: |
| if (isa<lval::DeclVal>(RHS)) { |
| bool b = cast<lval::DeclVal>(*this) == cast<lval::DeclVal>(RHS); |
| return NonLValue::GetIntTruthValue(ValMgr, b); |
| } |
| |
| break; |
| } |
| |
| return NonLValue::GetIntTruthValue(ValMgr, false); |
| } |
| |
| NonLValue LValue::NE(ValueManager& ValMgr, const LValue& RHS) const { |
| switch (getSubKind()) { |
| default: |
| assert(false && "NE not implemented for this LValue."); |
| return cast<NonLValue>(InvalidValue()); |
| |
| case lval::ConcreteIntKind: |
| if (isa<lval::ConcreteInt>(RHS)) { |
| bool b = cast<lval::ConcreteInt>(this)->getValue() != |
| cast<lval::ConcreteInt>(RHS).getValue(); |
| |
| return NonLValue::GetIntTruthValue(ValMgr, b); |
| } |
| else if (isa<lval::SymbolVal>(RHS)) { |
| |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(RHS).getSymbol(), |
| BinaryOperator::NE, |
| cast<lval::ConcreteInt>(this)->getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| break; |
| |
| case lval::SymbolValKind: { |
| if (isa<lval::ConcreteInt>(RHS)) { |
| |
| const SymIntConstraint& C = |
| ValMgr.getConstraint(cast<lval::SymbolVal>(this)->getSymbol(), |
| BinaryOperator::NE, |
| cast<lval::ConcreteInt>(RHS).getValue()); |
| |
| return nonlval::SymIntConstraintVal(C); |
| } |
| |
| assert (!isa<lval::SymbolVal>(RHS) && "FIXME: Implement sym !=."); |
| |
| break; |
| } |
| |
| case lval::DeclValKind: |
| if (isa<lval::DeclVal>(RHS)) { |
| bool b = cast<lval::DeclVal>(*this) == cast<lval::DeclVal>(RHS); |
| return NonLValue::GetIntTruthValue(ValMgr, b); |
| } |
| |
| break; |
| } |
| |
| return NonLValue::GetIntTruthValue(ValMgr, true); |
| } |
| |
| // Casts. |
| |
| RValue LValue::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const { |
| if (CastExpr->getType()->isPointerType()) |
| return *this; |
| |
| assert (CastExpr->getType()->isIntegerType()); |
| |
| if (!isa<lval::ConcreteInt>(*this)) |
| return InvalidValue(); |
| |
| APSInt V = cast<lval::ConcreteInt>(this)->getValue(); |
| QualType T = CastExpr->getType(); |
| V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType()); |
| V.extOrTrunc(ValMgr.getContext().getTypeSize(T, CastExpr->getLocStart())); |
| return nonlval::ConcreteInt(ValMgr.getValue(V)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility methods for constructing Non-LValues. |
| //===----------------------------------------------------------------------===// |
| |
| NonLValue NonLValue::GetValue(ValueManager& ValMgr, uint64_t X, QualType T, |
| SourceLocation Loc) { |
| |
| return nonlval::ConcreteInt(ValMgr.getValue(X, T, Loc)); |
| } |
| |
| NonLValue NonLValue::GetValue(ValueManager& ValMgr, IntegerLiteral* I) { |
| return nonlval::ConcreteInt(ValMgr.getValue(APSInt(I->getValue(), |
| I->getType()->isUnsignedIntegerType()))); |
| } |
| |
| NonLValue NonLValue::GetIntTruthValue(ValueManager& ValMgr, bool b) { |
| return nonlval::ConcreteInt(ValMgr.getTruthValue(b)); |
| } |
| |
| RValue RValue::GetSymbolValue(SymbolManager& SymMgr, ParmVarDecl* D) { |
| QualType T = D->getType(); |
| |
| if (T->isPointerType() || T->isReferenceType()) |
| return lval::SymbolVal(SymMgr.getSymbol(D)); |
| else |
| return nonlval::SymbolVal(SymMgr.getSymbol(D)); |
| } |
| |
| void RValue::print() const { |
| print(*llvm::cerr.stream()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pretty-Printing. |
| //===----------------------------------------------------------------------===// |
| |
| void RValue::print(std::ostream& Out) const { |
| switch (getBaseKind()) { |
| case InvalidKind: |
| Out << "Invalid"; |
| break; |
| |
| case NonLValueKind: |
| cast<NonLValue>(this)->print(Out); |
| break; |
| |
| case LValueKind: |
| cast<LValue>(this)->print(Out); |
| break; |
| |
| case UninitializedKind: |
| Out << "Uninitialized"; |
| break; |
| |
| default: |
| assert (false && "Invalid RValue."); |
| } |
| } |
| |
| static void printOpcode(std::ostream& Out, BinaryOperator::Opcode Op) { |
| switch (Op) { |
| case BinaryOperator::Add: Out << "+" ; break; |
| case BinaryOperator::Sub: Out << "-" ; break; |
| case BinaryOperator::EQ: Out << "=="; break; |
| case BinaryOperator::NE: Out << "!="; break; |
| default: assert(false && "Not yet implemented."); |
| } |
| } |
| |
| void NonLValue::print(std::ostream& Out) const { |
| switch (getSubKind()) { |
| case nonlval::ConcreteIntKind: |
| Out << cast<nonlval::ConcreteInt>(this)->getValue().toString(); |
| |
| if (cast<nonlval::ConcreteInt>(this)->getValue().isUnsigned()) |
| Out << 'U'; |
| |
| break; |
| |
| case nonlval::SymbolValKind: |
| Out << '$' << cast<nonlval::SymbolVal>(this)->getSymbol(); |
| break; |
| |
| case nonlval::SymIntConstraintValKind: { |
| const nonlval::SymIntConstraintVal& C = |
| *cast<nonlval::SymIntConstraintVal>(this); |
| |
| Out << '$' << C.getConstraint().getSymbol() << ' '; |
| printOpcode(Out, C.getConstraint().getOpcode()); |
| Out << ' ' << C.getConstraint().getInt().toString(); |
| |
| if (C.getConstraint().getInt().isUnsigned()) |
| Out << 'U'; |
| |
| break; |
| } |
| |
| default: |
| assert (false && "Pretty-printed not implemented for this NonLValue."); |
| break; |
| } |
| } |
| |
| |
| void LValue::print(std::ostream& Out) const { |
| switch (getSubKind()) { |
| case lval::ConcreteIntKind: |
| Out << cast<lval::ConcreteInt>(this)->getValue().toString() |
| << " (LValue)"; |
| break; |
| |
| case lval::SymbolValKind: |
| Out << '$' << cast<lval::SymbolVal>(this)->getSymbol(); |
| break; |
| |
| case lval::DeclValKind: |
| Out << '&' |
| << cast<lval::DeclVal>(this)->getDecl()->getIdentifier()->getName(); |
| break; |
| |
| default: |
| assert (false && "Pretty-printed not implemented for this LValue."); |
| break; |
| } |
| } |
| |