blob: 402e54c0e80190f8525ea44801c3b289e6a21f11 [file] [log] [blame]
//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective-C expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/ADT/SmallString.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
using namespace sema;
ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
Expr **strings,
unsigned NumStrings) {
StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings);
// Most ObjC strings are formed out of a single piece. However, we *can*
// have strings formed out of multiple @ strings with multiple pptokens in
// each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
// StringLiteral for ObjCStringLiteral to hold onto.
StringLiteral *S = Strings[0];
// If we have a multi-part string, merge it all together.
if (NumStrings != 1) {
// Concatenate objc strings.
llvm::SmallString<128> StrBuf;
SmallVector<SourceLocation, 8> StrLocs;
for (unsigned i = 0; i != NumStrings; ++i) {
S = Strings[i];
// ObjC strings can't be wide or UTF.
if (!S->isAscii()) {
Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant)
<< S->getSourceRange();
return true;
}
// Append the string.
StrBuf += S->getString();
// Get the locations of the string tokens.
StrLocs.append(S->tokloc_begin(), S->tokloc_end());
}
// Create the aggregate string with the appropriate content and location
// information.
S = StringLiteral::Create(Context, StrBuf,
StringLiteral::Ascii, /*Pascal=*/false,
Context.getPointerType(Context.CharTy),
&StrLocs[0], StrLocs.size());
}
// Verify that this composite string is acceptable for ObjC strings.
if (CheckObjCString(S))
return true;
// Initialize the constant string interface lazily. This assumes
// the NSString interface is seen in this translation unit. Note: We
// don't use NSConstantString, since the runtime team considers this
// interface private (even though it appears in the header files).
QualType Ty = Context.getObjCConstantStringInterface();
if (!Ty.isNull()) {
Ty = Context.getObjCObjectPointerType(Ty);
} else if (getLangOptions().NoConstantCFStrings) {
IdentifierInfo *NSIdent=0;
std::string StringClass(getLangOptions().ObjCConstantStringClass);
if (StringClass.empty())
NSIdent = &Context.Idents.get("NSConstantString");
else
NSIdent = &Context.Idents.get(StringClass);
NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0],
LookupOrdinaryName);
if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
Context.setObjCConstantStringInterface(StrIF);
Ty = Context.getObjCConstantStringInterface();
Ty = Context.getObjCObjectPointerType(Ty);
} else {
// If there is no NSConstantString interface defined then treat this
// as error and recover from it.
Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent
<< S->getSourceRange();
Ty = Context.getObjCIdType();
}
} else {
IdentifierInfo *NSIdent = &Context.Idents.get("NSString");
NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0],
LookupOrdinaryName);
if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
Context.setObjCConstantStringInterface(StrIF);
Ty = Context.getObjCConstantStringInterface();
Ty = Context.getObjCObjectPointerType(Ty);
} else {
// If there is no NSString interface defined then treat constant
// strings as untyped objects and let the runtime figure it out later.
Ty = Context.getObjCIdType();
}
}
return new (Context) ObjCStringLiteral(S, Ty, AtLocs[0]);
}
ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
TypeSourceInfo *EncodedTypeInfo,
SourceLocation RParenLoc) {
QualType EncodedType = EncodedTypeInfo->getType();
QualType StrTy;
if (EncodedType->isDependentType())
StrTy = Context.DependentTy;
else {
if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
!EncodedType->isVoidType()) // void is handled too.
if (RequireCompleteType(AtLoc, EncodedType,
PDiag(diag::err_incomplete_type_objc_at_encode)
<< EncodedTypeInfo->getTypeLoc().getSourceRange()))
return ExprError();
std::string Str;
Context.getObjCEncodingForType(EncodedType, Str);
// The type of @encode is the same as the type of the corresponding string,
// which is an array type.
StrTy = Context.CharTy;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
StrTy.addConst();
StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1),
ArrayType::Normal, 0);
}
return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
}
ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
ParsedType ty,
SourceLocation RParenLoc) {
// FIXME: Preserve type source info ?
TypeSourceInfo *TInfo;
QualType EncodedType = GetTypeFromParser(ty, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
PP.getLocForEndOfToken(LParenLoc));
return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
}
ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LParenLoc, RParenLoc), false, false);
if (!Method)
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LParenLoc, RParenLoc));
if (!Method)
Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
if (!Method ||
Method->getImplementationControl() != ObjCMethodDecl::Optional) {
llvm::DenseMap<Selector, SourceLocation>::iterator Pos
= ReferencedSelectors.find(Sel);
if (Pos == ReferencedSelectors.end())
ReferencedSelectors.insert(std::make_pair(Sel, SelLoc));
}
// In ARC, forbid the user from using @selector for
// retain/release/autorelease/dealloc/retainCount.
if (getLangOptions().ObjCAutoRefCount) {
switch (Sel.getMethodFamily()) {
case OMF_retain:
case OMF_release:
case OMF_autorelease:
case OMF_retainCount:
case OMF_dealloc:
Diag(AtLoc, diag::err_arc_illegal_selector) <<
Sel << SourceRange(LParenLoc, RParenLoc);
break;
case OMF_None:
case OMF_alloc:
case OMF_copy:
case OMF_finalize:
case OMF_init:
case OMF_mutableCopy:
case OMF_new:
case OMF_self:
case OMF_performSelector:
break;
}
}
QualType Ty = Context.getObjCSelType();
return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
}
ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc);
if (!PDecl) {
Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
return true;
}
QualType Ty = Context.getObjCProtoType();
if (Ty.isNull())
return true;
Ty = Context.getObjCObjectPointerType(Ty);
return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc);
}
/// Try to capture an implicit reference to 'self'.
ObjCMethodDecl *Sema::tryCaptureObjCSelf() {
// Ignore block scopes: we can capture through them.
DeclContext *DC = CurContext;
while (true) {
if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
else break;
}
// If we're not in an ObjC method, error out. Note that, unlike the
// C++ case, we don't require an instance method --- class methods
// still have a 'self', and we really do still need to capture it!
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
if (!method)
return 0;
ImplicitParamDecl *self = method->getSelfDecl();
assert(self && "capturing 'self' in non-definition?");
// Mark that we're closing on 'this' in all the block scopes, if applicable.
for (unsigned idx = FunctionScopes.size() - 1;
isa<BlockScopeInfo>(FunctionScopes[idx]);
--idx) {
BlockScopeInfo *blockScope = cast<BlockScopeInfo>(FunctionScopes[idx]);
unsigned &captureIndex = blockScope->CaptureMap[self];
if (captureIndex) break;
bool nested = isa<BlockScopeInfo>(FunctionScopes[idx-1]);
blockScope->Captures.push_back(
BlockDecl::Capture(self, /*byref*/ false, nested, /*copy*/ 0));
captureIndex = blockScope->Captures.size(); // +1
}
return method;
}
QualType Sema::getMessageSendResultType(QualType ReceiverType,
ObjCMethodDecl *Method,
bool isClassMessage, bool isSuperMessage) {
assert(Method && "Must have a method");
if (!Method->hasRelatedResultType())
return Method->getSendResultType();
// If a method has a related return type:
// - if the method found is an instance method, but the message send
// was a class message send, T is the declared return type of the method
// found
if (Method->isInstanceMethod() && isClassMessage)
return Method->getSendResultType();
// - if the receiver is super, T is a pointer to the class of the
// enclosing method definition
if (isSuperMessage) {
if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface())
return Context.getObjCObjectPointerType(
Context.getObjCInterfaceType(Class));
}
// - if the receiver is the name of a class U, T is a pointer to U
if (ReceiverType->getAs<ObjCInterfaceType>() ||
ReceiverType->isObjCQualifiedInterfaceType())
return Context.getObjCObjectPointerType(ReceiverType);
// - if the receiver is of type Class or qualified Class type,
// T is the declared return type of the method.
if (ReceiverType->isObjCClassType() ||
ReceiverType->isObjCQualifiedClassType())
return Method->getSendResultType();
// - if the receiver is id, qualified id, Class, or qualified Class, T
// is the receiver type, otherwise
// - T is the type of the receiver expression.
return ReceiverType;
}
void Sema::EmitRelatedResultTypeNote(const Expr *E) {
E = E->IgnoreParenImpCasts();
const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
if (!MsgSend)
return;
const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
if (!Method)
return;
if (!Method->hasRelatedResultType())
return;
if (Context.hasSameUnqualifiedType(Method->getResultType()
.getNonReferenceType(),
MsgSend->getType()))
return;
Diag(Method->getLocation(), diag::note_related_result_type_inferred)
<< Method->isInstanceMethod() << Method->getSelector()
<< MsgSend->getType();
}
bool Sema::CheckMessageArgumentTypes(QualType ReceiverType,
Expr **Args, unsigned NumArgs,
Selector Sel, ObjCMethodDecl *Method,
bool isClassMessage, bool isSuperMessage,
SourceLocation lbrac, SourceLocation rbrac,
QualType &ReturnType, ExprValueKind &VK) {
if (!Method) {
// Apply default argument promotion as for (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
if (Args[i]->isTypeDependent())
continue;
ExprResult Result = DefaultArgumentPromotion(Args[i]);
if (Result.isInvalid())
return true;
Args[i] = Result.take();
}
unsigned DiagID;
if (getLangOptions().ObjCAutoRefCount)
DiagID = diag::err_arc_method_not_found;
else
DiagID = isClassMessage ? diag::warn_class_method_not_found
: diag::warn_inst_method_not_found;
Diag(lbrac, DiagID)
<< Sel << isClassMessage << SourceRange(lbrac, rbrac);
// In debuggers, we want to use __unknown_anytype for these
// results so that clients can cast them.
if (getLangOptions().DebuggerSupport) {
ReturnType = Context.UnknownAnyTy;
} else {
ReturnType = Context.getObjCIdType();
}
VK = VK_RValue;
return false;
}
ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage,
isSuperMessage);
VK = Expr::getValueKindForType(Method->getResultType());
unsigned NumNamedArgs = Sel.getNumArgs();
// Method might have more arguments than selector indicates. This is due
// to addition of c-style arguments in method.
if (Method->param_size() > Sel.getNumArgs())
NumNamedArgs = Method->param_size();
// FIXME. This need be cleaned up.
if (NumArgs < NumNamedArgs) {
Diag(lbrac, diag::err_typecheck_call_too_few_args)
<< 2 << NumNamedArgs << NumArgs;
return false;
}
bool IsError = false;
for (unsigned i = 0; i < NumNamedArgs; i++) {
// We can't do any type-checking on a type-dependent argument.
if (Args[i]->isTypeDependent())
continue;
Expr *argExpr = Args[i];
ParmVarDecl *Param = Method->param_begin()[i];
assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
Param->getType(),
PDiag(diag::err_call_incomplete_argument)
<< argExpr->getSourceRange()))
return true;
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
Param);
ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr));
if (ArgE.isInvalid())
IsError = true;
else
Args[i] = ArgE.takeAs<Expr>();
}
// Promote additional arguments to variadic methods.
if (Method->isVariadic()) {
for (unsigned i = NumNamedArgs; i < NumArgs; ++i) {
if (Args[i]->isTypeDependent())
continue;
ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
IsError |= Arg.isInvalid();
Args[i] = Arg.take();
}
} else {
// Check for extra arguments to non-variadic methods.
if (NumArgs != NumNamedArgs) {
Diag(Args[NumNamedArgs]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 2 /*method*/ << NumNamedArgs << NumArgs
<< Method->getSourceRange()
<< SourceRange(Args[NumNamedArgs]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
}
}
// diagnose nonnull arguments.
for (specific_attr_iterator<NonNullAttr>
i = Method->specific_attr_begin<NonNullAttr>(),
e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
CheckNonNullArguments(*i, Args, lbrac);
}
DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs);
return IsError;
}
bool Sema::isSelfExpr(Expr *receiver) {
// 'self' is objc 'self' in an objc method only.
DeclContext *DC = CurContext;
while (isa<BlockDecl>(DC))
DC = DC->getParent();
if (DC && !isa<ObjCMethodDecl>(DC))
return false;
receiver = receiver->IgnoreParenLValueCasts();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
if (DRE->getDecl()->getIdentifier() == &Context.Idents.get("self"))
return true;
return false;
}
// Helper method for ActOnClassMethod/ActOnInstanceMethod.
// Will search "local" class/category implementations for a method decl.
// If failed, then we search in class's root for an instance method.
// Returns 0 if no method is found.
ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel,
ObjCInterfaceDecl *ClassDecl) {
ObjCMethodDecl *Method = 0;
// lookup in class and all superclasses
while (ClassDecl && !Method) {
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Method = ImpDecl->getClassMethod(Sel);
// Look through local category implementations associated with the class.
if (!Method)
Method = ClassDecl->getCategoryClassMethod(Sel);
// Before we give up, check if the selector is an instance method.
// But only in the root. This matches gcc's behaviour and what the
// runtime expects.
if (!Method && !ClassDecl->getSuperClass()) {
Method = ClassDecl->lookupInstanceMethod(Sel);
// Look through local category implementations associated
// with the root class.
if (!Method)
Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
}
ClassDecl = ClassDecl->getSuperClass();
}
return Method;
}
ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel,
ObjCInterfaceDecl *ClassDecl) {
ObjCMethodDecl *Method = 0;
while (ClassDecl && !Method) {
// If we have implementations in scope, check "private" methods.
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Method = ImpDecl->getInstanceMethod(Sel);
// Look through local category implementations associated with the class.
if (!Method)
Method = ClassDecl->getCategoryInstanceMethod(Sel);
ClassDecl = ClassDecl->getSuperClass();
}
return Method;
}
/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
/// list of a qualified objective pointer type.
ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
const ObjCObjectPointerType *OPT,
bool Instance)
{
ObjCMethodDecl *MD = 0;
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I) {
ObjCProtocolDecl *PROTO = (*I);
if ((MD = PROTO->lookupMethod(Sel, Instance))) {
return MD;
}
}
return 0;
}
/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
/// objective C interface. This is a property reference expression.
ExprResult Sema::
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
Expr *BaseExpr, SourceLocation OpLoc,
DeclarationName MemberName,
SourceLocation MemberLoc,
SourceLocation SuperLoc, QualType SuperType,
bool Super) {
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
if (MemberName.getNameKind() != DeclarationName::Identifier) {
Diag(MemberLoc, diag::err_invalid_property_name)
<< MemberName << QualType(OPT, 0);
return ExprError();
}
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
if (IFace->isForwardDecl()) {
Diag(MemberLoc, diag::err_property_not_found_forward_class)
<< MemberName << QualType(OPT, 0);
Diag(IFace->getLocation(), diag::note_forward_class);
return ExprError();
}
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
QualType ResTy = PD->getType();
ResTy = ResTy.getNonLValueExprType(Context);
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
if (Getter &&
(Getter->hasRelatedResultType()
|| DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc)))
ResTy = getMessageSendResultType(QualType(OPT, 0), Getter, false,
Super);
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
VK_LValue, OK_ObjCProperty,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
VK_LValue, OK_ObjCProperty,
MemberLoc, BaseExpr));
}
// Check protocols on qualified interfaces.
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
QualType T = PD->getType();
if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
T = getMessageSendResultType(QualType(OPT, 0), Getter, false, Super);
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(PD, T,
VK_LValue,
OK_ObjCProperty,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(PD, T,
VK_LValue,
OK_ObjCProperty,
MemberLoc,
BaseExpr));
}
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
// FIXME: The logic for looking up nullary and unary selectors should be
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// May be founf in property's qualified list.
if (!Getter)
Getter = LookupMethodInQualifiedType(Sel, OPT, true);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
Getter = IFace->lookupPrivateMethod(Sel);
// Look through local category implementations associated with the class.
if (!Getter)
Getter = IFace->getCategoryInstanceMethod(Sel);
if (Getter) {
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), Member);
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
// May be founf in property's qualified list.
if (!Setter)
Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = IFace->lookupPrivateMethod(SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryInstanceMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
if (Getter)
PType = getMessageSendResultType(QualType(OPT, 0), Getter, false, Super);
else {
ParmVarDecl *ArgDecl = *Setter->param_begin();
PType = ArgDecl->getType();
}
ExprValueKind VK = VK_LValue;
ExprObjectKind OK = OK_ObjCProperty;
if (!getLangOptions().CPlusPlus && !PType.hasQualifiers() &&
PType->isVoidType())
VK = VK_RValue, OK = OK_Ordinary;
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
PType, VK, OK,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
PType, VK, OK,
MemberLoc, BaseExpr));
}
// Attempt to correct for typos in property names.
TypoCorrection Corrected = CorrectTypo(
DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL,
NULL, IFace, false, CTC_NoKeywords, OPT);
if (ObjCPropertyDecl *Property =
Corrected.getCorrectionDeclAs<ObjCPropertyDecl>()) {
DeclarationName TypoResult = Corrected.getCorrection();
Diag(MemberLoc, diag::err_property_not_found_suggest)
<< MemberName << QualType(OPT, 0) << TypoResult
<< FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString());
Diag(Property->getLocation(), diag::note_previous_decl)
<< Property->getDeclName();
return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
TypoResult, MemberLoc,
SuperLoc, SuperType, Super);
}
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *Ivar =
IFace->lookupInstanceVariable(Member, ClassDeclared)) {
QualType T = Ivar->getType();
if (const ObjCObjectPointerType * OBJPT =
T->getAsObjCInterfacePointerType()) {
const ObjCInterfaceType *IFaceT = OBJPT->getInterfaceType();
if (ObjCInterfaceDecl *IFace = IFaceT->getDecl())
if (IFace->isForwardDecl()) {
Diag(MemberLoc, diag::err_property_not_as_forward_class)
<< MemberName << IFace;
Diag(IFace->getLocation(), diag::note_forward_class);
return ExprError();
}
}
Diag(MemberLoc,
diag::err_ivar_access_using_property_syntax_suggest)
<< MemberName << QualType(OPT, 0) << Ivar->getDeclName()
<< FixItHint::CreateReplacement(OpLoc, "->");
return ExprError();
}
Diag(MemberLoc, diag::err_property_not_found)
<< MemberName << QualType(OPT, 0);
if (Setter)
Diag(Setter->getLocation(), diag::note_getter_unavailable)
<< MemberName << BaseExpr->getSourceRange();
return ExprError();
}
ExprResult Sema::
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation receiverNameLoc,
SourceLocation propertyNameLoc) {
IdentifierInfo *receiverNamePtr = &receiverName;
ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
receiverNameLoc);
bool IsSuper = false;
if (IFace == 0) {
// If the "receiver" is 'super' in a method, handle it as an expression-like
// property reference.
if (receiverNamePtr->isStr("super")) {
IsSuper = true;
if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf()) {
if (CurMethod->isInstanceMethod()) {
QualType T =
Context.getObjCInterfaceType(CurMethod->getClassInterface());
T = Context.getObjCObjectPointerType(T);
return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(),
/*BaseExpr*/0,
SourceLocation()/*OpLoc*/,
&propertyName,
propertyNameLoc,
receiverNameLoc, T, true);
}
// Otherwise, if this is a class method, try dispatching to our
// superclass.
IFace = CurMethod->getClassInterface()->getSuperClass();
}
}
if (IFace == 0) {
Diag(receiverNameLoc, diag::err_expected_ident_or_lparen);
return ExprError();
}
}
// Search for a declared property first.
Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName);
ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Getter = ImpDecl->getClassMethod(Sel);
if (Getter) {
// FIXME: refactor/share with ActOnMemberReference().
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
return ExprError();
}
// Look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &propertyName);
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Setter = ImpDecl->getClassMethod(SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryClassMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
ExprValueKind VK = VK_LValue;
if (Getter) {
PType = getMessageSendResultType(Context.getObjCInterfaceType(IFace),
Getter, true,
receiverNamePtr->isStr("super"));
if (!getLangOptions().CPlusPlus &&
!PType.hasQualifiers() && PType->isVoidType())
VK = VK_RValue;
} else {
for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
E = Setter->param_end(); PI != E; ++PI)
PType = (*PI)->getType();
VK = VK_LValue;
}
ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
if (IsSuper)
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
PType, VK, OK,
propertyNameLoc,
receiverNameLoc,
Context.getObjCInterfaceType(IFace)));
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
PType, VK, OK,
propertyNameLoc,
receiverNameLoc, IFace));
}
return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
<< &propertyName << Context.getObjCInterfaceType(IFace));
}
Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool IsSuper,
bool HasTrailingDot,
ParsedType &ReceiverType) {
ReceiverType = ParsedType();
// If the identifier is "super" and there is no trailing dot, we're
// messaging super. If the identifier is "super" and there is a
// trailing dot, it's an instance message.
if (IsSuper && S->isInObjcMethodScope())
return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
LookupName(Result, S);
switch (Result.getResultKind()) {
case LookupResult::NotFound:
// Normal name lookup didn't find anything. If we're in an
// Objective-C method, look for ivars. If we find one, we're done!
// FIXME: This is a hack. Ivar lookup should be part of normal
// lookup.
if (ObjCMethodDecl *Method = getCurMethodDecl()) {
ObjCInterfaceDecl *ClassDeclared;
if (Method->getClassInterface()->lookupInstanceVariable(Name,
ClassDeclared))
return ObjCInstanceMessage;
}
// Break out; we'll perform typo correction below.
break;
case LookupResult::NotFoundInCurrentInstantiation:
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
case LookupResult::Ambiguous:
Result.suppressDiagnostics();
return ObjCInstanceMessage;
case LookupResult::Found: {
// If the identifier is a class or not, and there is a trailing dot,
// it's an instance message.
if (HasTrailingDot)
return ObjCInstanceMessage;
// We found something. If it's a type, then we have a class
// message. Otherwise, it's an instance message.
NamedDecl *ND = Result.getFoundDecl();
QualType T;
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
T = Context.getObjCInterfaceType(Class);
else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND))
T = Context.getTypeDeclType(Type);
else
return ObjCInstanceMessage;
// We have a class message, and T is the type we're
// messaging. Build source-location information for it.
TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
ReceiverType = CreateParsedType(T, TSInfo);
return ObjCClassMessage;
}
}
// Determine our typo-correction context.
CorrectTypoContext CTC = CTC_Expression;
if (ObjCMethodDecl *Method = getCurMethodDecl())
if (Method->getClassInterface() &&
Method->getClassInterface()->getSuperClass())
CTC = CTC_ObjCMessageReceiver;
if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
Result.getLookupKind(), S, NULL,
NULL, false, CTC)) {
if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
// If we found a declaration, correct when it refers to an Objective-C
// class.
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) {
Diag(NameLoc, diag::err_unknown_receiver_suggest)
<< Name << Corrected.getCorrection()
<< FixItHint::CreateReplacement(SourceRange(NameLoc),
ND->getNameAsString());
Diag(ND->getLocation(), diag::note_previous_decl)
<< Corrected.getCorrection();
QualType T = Context.getObjCInterfaceType(Class);
TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
ReceiverType = CreateParsedType(T, TSInfo);
return ObjCClassMessage;
}
} else if (Corrected.isKeyword() &&
Corrected.getCorrectionAsIdentifierInfo()->isStr("super")) {
// If we've found the keyword "super", this is a send to super.
Diag(NameLoc, diag::err_unknown_receiver_suggest)
<< Name << Corrected.getCorrection()
<< FixItHint::CreateReplacement(SourceRange(NameLoc), "super");
return ObjCSuperMessage;
}
}
// Fall back: let the parser try to parse it as an instance message.
return ObjCInstanceMessage;
}
ExprResult Sema::ActOnSuperMessage(Scope *S,
SourceLocation SuperLoc,
Selector Sel,
SourceLocation LBracLoc,
SourceLocation SelectorLoc,
SourceLocation RBracLoc,
MultiExprArg Args) {
// Determine whether we are inside a method or not.
ObjCMethodDecl *Method = tryCaptureObjCSelf();
if (!Method) {
Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
return ExprError();
}
ObjCInterfaceDecl *Class = Method->getClassInterface();
if (!Class) {
Diag(SuperLoc, diag::error_no_super_class_message)
<< Method->getDeclName();
return ExprError();
}
ObjCInterfaceDecl *Super = Class->getSuperClass();
if (!Super) {
// The current class does not have a superclass.
Diag(SuperLoc, diag::error_root_class_cannot_use_super)
<< Class->getIdentifier();
return ExprError();
}
// We are in a method whose class has a superclass, so 'super'
// is acting as a keyword.
if (Method->isInstanceMethod()) {
if (Sel.getMethodFamily() == OMF_dealloc)
ObjCShouldCallSuperDealloc = false;
if (Sel.getMethodFamily() == OMF_finalize)
ObjCShouldCallSuperFinalize = false;
// Since we are in an instance method, this is an instance
// message to the superclass instance.
QualType SuperTy = Context.getObjCInterfaceType(Super);
SuperTy = Context.getObjCObjectPointerType(SuperTy);
return BuildInstanceMessage(0, SuperTy, SuperLoc,
Sel, /*Method=*/0,
LBracLoc, SelectorLoc, RBracLoc, move(Args));
}
// Since we are in a class method, this is a class message to
// the superclass.
return BuildClassMessage(/*ReceiverTypeInfo=*/0,
Context.getObjCInterfaceType(Super),
SuperLoc, Sel, /*Method=*/0,
LBracLoc, SelectorLoc, RBracLoc, move(Args));
}
/// \brief Build an Objective-C class message expression.
///
/// This routine takes care of both normal class messages and
/// class messages to the superclass.
///
/// \param ReceiverTypeInfo Type source information that describes the
/// receiver of this message. This may be NULL, in which case we are
/// sending to the superclass and \p SuperLoc must be a valid source
/// location.
/// \param ReceiverType The type of the object receiving the
/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
/// type as that refers to. For a superclass send, this is the type of
/// the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this class message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBrac The location of the closing square bracket ']'.
///
/// \param Args The message arguments.
ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
SourceLocation SelectorLoc,
SourceLocation RBracLoc,
MultiExprArg ArgsIn) {
SourceLocation Loc = SuperLoc.isValid()? SuperLoc
: ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
if (LBracLoc.isInvalid()) {
Diag(Loc, diag::err_missing_open_square_message_send)
<< FixItHint::CreateInsertion(Loc, "[");
LBracLoc = Loc;
}
if (ReceiverType->isDependentType()) {
// If the receiver type is dependent, we can't type-check anything
// at this point. Build a dependent expression.
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
assert(SuperLoc.isInvalid() && "Message to super with dependent type");
return Owned(ObjCMessageExpr::Create(Context, ReceiverType,
VK_RValue, LBracLoc, ReceiverTypeInfo,
Sel, SelectorLoc, /*Method=*/0,
Args, NumArgs, RBracLoc));
}
// Find the class to which we are sending this message.
ObjCInterfaceDecl *Class = 0;
const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
if (!ClassType || !(Class = ClassType->getInterface())) {
Diag(Loc, diag::err_invalid_receiver_class_message)
<< ReceiverType;
return ExprError();
}
assert(Class && "We don't know which class we're messaging?");
(void)DiagnoseUseOfDecl(Class, Loc);
// Find the method we are messaging.
if (!Method) {
if (Class->isForwardDecl()) {
if (getLangOptions().ObjCAutoRefCount) {
Diag(Loc, diag::err_arc_receiver_forward_class) << ReceiverType;
} else {
Diag(Loc, diag::warn_receiver_forward_class) << Class->getDeclName();
}
// A forward class used in messaging is treated as a 'Class'
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc));
if (Method && !getLangOptions().ObjCAutoRefCount)
Diag(Method->getLocation(), diag::note_method_sent_forward_class)
<< Method->getDeclName();
}
if (!Method)
Method = Class->lookupClassMethod(Sel);
// If we have an implementation in scope, check "private" methods.
if (!Method)
Method = LookupPrivateClassMethod(Sel, Class);
if (Method && DiagnoseUseOfDecl(Method, Loc))
return ExprError();
}
// Check the argument types and determine the result type.
QualType ReturnType;
ExprValueKind VK = VK_RValue;
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true,
SuperLoc.isValid(), LBracLoc, RBracLoc,
ReturnType, VK))
return ExprError();
if (Method && !Method->getResultType()->isVoidType() &&
RequireCompleteType(LBracLoc, Method->getResultType(),
diag::err_illegal_message_expr_incomplete_type))
return ExprError();
// Construct the appropriate ObjCMessageExpr.
Expr *Result;
if (SuperLoc.isValid())
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
SuperLoc, /*IsInstanceSuper=*/false,
ReceiverType, Sel, SelectorLoc,
Method, Args, NumArgs, RBracLoc);
else
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
ReceiverTypeInfo, Sel, SelectorLoc,
Method, Args, NumArgs, RBracLoc);
return MaybeBindToTemporary(Result);
}
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
ExprResult Sema::ActOnClassMessage(Scope *S,
ParsedType Receiver,
Selector Sel,
SourceLocation LBracLoc,
SourceLocation SelectorLoc,
SourceLocation RBracLoc,
MultiExprArg Args) {
TypeSourceInfo *ReceiverTypeInfo;
QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
if (ReceiverType.isNull())
return ExprError();
if (!ReceiverTypeInfo)
ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
/*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
LBracLoc, SelectorLoc, RBracLoc, move(Args));
}
/// \brief Build an Objective-C instance message expression.
///
/// This routine takes care of both normal instance messages and
/// instance messages to the superclass instance.
///
/// \param Receiver The expression that computes the object that will
/// receive this message. This may be empty, in which case we are
/// sending to the superclass instance and \p SuperLoc must be a valid
/// source location.
///
/// \param ReceiverType The (static) type of the object receiving the
/// message. When a \p Receiver expression is provided, this is the
/// same type as that expression. For a superclass instance send, this
/// is a pointer to the type of the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass instance message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this instance message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBrac The location of the closing square bracket ']'.
///
/// \param Args The message arguments.
ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
SourceLocation SelectorLoc,
SourceLocation RBracLoc,
MultiExprArg ArgsIn) {
// The location of the receiver.
SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();
if (LBracLoc.isInvalid()) {
Diag(Loc, diag::err_missing_open_square_message_send)
<< FixItHint::CreateInsertion(Loc, "[");
LBracLoc = Loc;
}
// If we have a receiver expression, perform appropriate promotions
// and determine receiver type.
if (Receiver) {
if (Receiver->isTypeDependent()) {
// If the receiver is type-dependent, we can't type-check anything
// at this point. Build a dependent expression.
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
assert(SuperLoc.isInvalid() && "Message to super with dependent type");
return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy,
VK_RValue, LBracLoc, Receiver, Sel,
SelectorLoc, /*Method=*/0,
Args, NumArgs, RBracLoc));
}
// If necessary, apply function/array conversion to the receiver.
// C99 6.7.5.3p[7,8].
ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
if (Result.isInvalid())
return ExprError();
Receiver = Result.take();
ReceiverType = Receiver->getType();
}
if (!Method) {
// Handle messages to id.
bool receiverIsId = ReceiverType->isObjCIdType();
if (receiverIsId || ReceiverType->isBlockPointerType() ||
(Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc),
receiverIsId);
if (!Method)
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc),
receiverIsId);
} else if (ReceiverType->isObjCClassType() ||
ReceiverType->isObjCQualifiedClassType()) {
// Handle messages to Class.
// We allow sending a message to a qualified Class ("Class<foo>"), which
// is ok as long as one of the protocols implements the selector (if not, warn).
if (const ObjCObjectPointerType *QClassTy
= ReceiverType->getAsObjCQualifiedClassType()) {
// Search protocols for class methods.
Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
if (!Method) {
Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
// warn if instance method found for a Class message.
if (Method) {
Diag(Loc, diag::warn_instance_method_on_class_found)
<< Method->getSelector() << Sel;
Diag(Method->getLocation(), diag::note_method_declared_at);
}
}
} else {
if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
// First check the public methods in the class interface.
Method = ClassDecl->lookupClassMethod(Sel);
if (!Method)
Method = LookupPrivateClassMethod(Sel, ClassDecl);
}
if (Method && DiagnoseUseOfDecl(Method, Loc))
return ExprError();
}
if (!Method) {
// If not messaging 'self', look for any factory method named 'Sel'.
if (!Receiver || !isSelfExpr(Receiver)) {
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc),
true);
if (!Method) {
// If no class (factory) method was found, check if an _instance_
// method of the same name exists in the root class only.
Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc),
true);
if (Method)
if (const ObjCInterfaceDecl *ID =
dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
if (ID->getSuperClass())
Diag(Loc, diag::warn_root_inst_method_not_found)
<< Sel << SourceRange(LBracLoc, RBracLoc);
}
}
}
}
}
} else {
ObjCInterfaceDecl* ClassDecl = 0;
// We allow sending a message to a qualified ID ("id<foo>"), which is ok as
// long as one of the protocols implements the selector (if not, warn).
if (const ObjCObjectPointerType *QIdTy
= ReceiverType->getAsObjCQualifiedIdType()) {
// Search protocols for instance methods.
Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
if (!Method)
Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
} else if (const ObjCObjectPointerType *OCIType
= ReceiverType->getAsObjCInterfacePointerType()) {
// We allow sending a message to a pointer to an interface (an object).
ClassDecl = OCIType->getInterfaceDecl();
if (ClassDecl->isForwardDecl() && getLangOptions().ObjCAutoRefCount) {
Diag(Loc, diag::err_arc_receiver_forward_instance)
<< OCIType->getPointeeType()
<< (Receiver ? Receiver->getSourceRange() : SourceRange(SuperLoc));
return ExprError();
}
// FIXME: consider using LookupInstanceMethodInGlobalPool, since it will be
// faster than the following method (which can do *many* linear searches).
// The idea is to add class info to MethodPool.
Method = ClassDecl->lookupInstanceMethod(Sel);
if (!Method)
// Search protocol qualifiers.
Method = LookupMethodInQualifiedType(Sel, OCIType, true);
const ObjCInterfaceDecl *forwardClass = 0;
if (!Method) {
// If we have implementations in scope, check "private" methods.
Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
if (!Method && getLangOptions().ObjCAutoRefCount) {
Diag(Loc, diag::err_arc_may_not_respond)
<< OCIType->getPointeeType() << Sel;
return ExprError();
}
if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
// If we still haven't found a method, look in the global pool. This
// behavior isn't very desirable, however we need it for GCC
// compatibility. FIXME: should we deviate??
if (OCIType->qual_empty()) {
Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc));
if (OCIType->getInterfaceDecl()->isForwardDecl())
forwardClass = OCIType->getInterfaceDecl();
if (Method && !forwardClass)
Diag(Loc, diag::warn_maynot_respond)
<< OCIType->getInterfaceDecl()->getIdentifier() << Sel;
}
}
}
if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass))
return ExprError();
} else if (!getLangOptions().ObjCAutoRefCount &&
!Context.getObjCIdType().isNull() &&
(ReceiverType->isPointerType() ||
ReceiverType->isIntegerType())) {
// Implicitly convert integers and pointers to 'id' but emit a warning.
// But not in ARC.
Diag(Loc, diag::warn_bad_receiver_type)
<< ReceiverType
<< Receiver->getSourceRange();
if (ReceiverType->isPointerType())
Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
CK_BitCast).take();
else {
// TODO: specialized warning on null receivers?
bool IsNull = Receiver->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
IsNull ? CK_NullToPointer : CK_IntegralToPointer).take();
}
ReceiverType = Receiver->getType();
}
else {
ExprResult ReceiverRes;
if (getLangOptions().CPlusPlus)
ReceiverRes = PerformContextuallyConvertToObjCId(Receiver);
if (ReceiverRes.isUsable()) {
Receiver = ReceiverRes.take();
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Receiver)) {
Receiver = ICE->getSubExpr();
ReceiverType = Receiver->getType();
}
return BuildInstanceMessage(Receiver,
ReceiverType,
SuperLoc,
Sel,
Method,
LBracLoc,
SelectorLoc,
RBracLoc,
move(ArgsIn));
} else {
// Reject other random receiver types (e.g. structs).
Diag(Loc, diag::err_bad_receiver_type)
<< ReceiverType << Receiver->getSourceRange();
return ExprError();
}
}
}
}
// Check the message arguments.
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
QualType ReturnType;
ExprValueKind VK = VK_RValue;
bool ClassMessage = (ReceiverType->isObjCClassType() ||
ReceiverType->isObjCQualifiedClassType());
if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method,
ClassMessage, SuperLoc.isValid(),
LBracLoc, RBracLoc, ReturnType, VK))
return ExprError();
if (Method && !Method->getResultType()->isVoidType() &&
RequireCompleteType(LBracLoc, Method->getResultType(),
diag::err_illegal_message_expr_incomplete_type))
return ExprError();
// In ARC, forbid the user from sending messages to
// retain/release/autorelease/dealloc/retainCount explicitly.
if (getLangOptions().ObjCAutoRefCount) {
ObjCMethodFamily family =
(Method ? Method->getMethodFamily() : Sel.getMethodFamily());
switch (family) {
case OMF_init:
if (Method)
checkInitMethod(Method, ReceiverType);
case OMF_None:
case OMF_alloc:
case OMF_copy:
case OMF_finalize:
case OMF_mutableCopy:
case OMF_new:
case OMF_self:
break;
case OMF_dealloc:
case OMF_retain:
case OMF_release:
case OMF_autorelease:
case OMF_retainCount:
Diag(Loc, diag::err_arc_illegal_explicit_message)
<< Sel << SelectorLoc;
break;
case OMF_performSelector:
if (Method && NumArgs >= 1) {
if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) {
Selector ArgSel = SelExp->getSelector();
ObjCMethodDecl *SelMethod =
LookupInstanceMethodInGlobalPool(ArgSel,
SelExp->getSourceRange());
if (!SelMethod)
SelMethod =
LookupFactoryMethodInGlobalPool(ArgSel,
SelExp->getSourceRange());
if (SelMethod) {
ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
switch (SelFamily) {
case OMF_alloc:
case OMF_copy:
case OMF_mutableCopy:
case OMF_new:
case OMF_self:
case OMF_init:
// Issue error, unless ns_returns_not_retained.
if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
// selector names a +1 method
Diag(SelectorLoc,
diag::err_arc_perform_selector_retains);
Diag(SelMethod->getLocation(), diag::note_method_declared_at);
}
break;
default:
// +0 call. OK. unless ns_returns_retained.
if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
// selector names a +1 method
Diag(SelectorLoc,
diag::err_arc_perform_selector_retains);
Diag(SelMethod->getLocation(), diag::note_method_declared_at);
}
break;
}
}
} else {
// error (may leak).
Diag(SelectorLoc, diag::warn_arc_perform_selector_leaks);
Diag(Args[0]->getExprLoc(), diag::note_used_here);
}
}
break;
}
}
// Construct the appropriate ObjCMessageExpr instance.
ObjCMessageExpr *Result;
if (SuperLoc.isValid())
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
SuperLoc, /*IsInstanceSuper=*/true,
ReceiverType, Sel, SelectorLoc, Method,
Args, NumArgs, RBracLoc);
else
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
Receiver, Sel, SelectorLoc, Method,
Args, NumArgs, RBracLoc);
if (getLangOptions().ObjCAutoRefCount) {
// In ARC, annotate delegate init calls.
if (Result->getMethodFamily() == OMF_init &&
(SuperLoc.isValid() || isSelfExpr(Receiver))) {
// Only consider init calls *directly* in init implementations,
// not within blocks.
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
if (method && method->getMethodFamily() == OMF_init) {
// The implicit assignment to self means we also don't want to
// consume the result.
Result->setDelegateInitCall(true);
return Owned(Result);
}
}
// In ARC, check for message sends which are likely to introduce
// retain cycles.
checkRetainCycles(Result);
}
return MaybeBindToTemporary(Result);
}
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
ExprResult Sema::ActOnInstanceMessage(Scope *S,
Expr *Receiver,
Selector Sel,
SourceLocation LBracLoc,
SourceLocation SelectorLoc,
SourceLocation RBracLoc,
MultiExprArg Args) {
if (!Receiver)
return ExprError();
return BuildInstanceMessage(Receiver, Receiver->getType(),
/*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
LBracLoc, SelectorLoc, RBracLoc, move(Args));
}
enum ARCConversionTypeClass {
ACTC_none,
ACTC_retainable,
ACTC_indirectRetainable
};
static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
ARCConversionTypeClass ACTC = ACTC_retainable;
// Ignore an outermost reference type.
if (const ReferenceType *ref = type->getAs<ReferenceType>())
type = ref->getPointeeType();
// Drill through pointers and arrays recursively.
while (true) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
type = ptr->getPointeeType();
} else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
} else {
break;
}
ACTC = ACTC_indirectRetainable;
}
if (!type->isObjCRetainableType()) return ACTC_none;
return ACTC;
}
namespace {
/// Return true if the given expression can be reasonably converted
/// between a retainable pointer type and a C pointer type.
struct ARCCastChecker : StmtVisitor<ARCCastChecker, bool> {
ASTContext &Context;
ARCCastChecker(ASTContext &Context) : Context(Context) {}
bool VisitStmt(Stmt *s) {
return false;
}
bool VisitExpr(Expr *e) {
return e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
}
bool VisitParenExpr(ParenExpr *e) {
return Visit(e->getSubExpr());
}
bool VisitCastExpr(CastExpr *e) {
switch (e->getCastKind()) {
case CK_NullToPointer:
return true;
case CK_NoOp:
case CK_LValueToRValue:
case CK_BitCast:
case CK_AnyPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
return Visit(e->getSubExpr());
default:
return false;
}
}
bool VisitUnaryExtension(UnaryOperator *e) {
return Visit(e->getSubExpr());
}
bool VisitBinComma(BinaryOperator *e) {
return Visit(e->getRHS());
}
bool VisitConditionalOperator(ConditionalOperator *e) {
// Conditional operators are okay if both sides are okay.
return Visit(e->getTrueExpr()) && Visit(e->getFalseExpr());
}
bool VisitObjCStringLiteral(ObjCStringLiteral *e) {
// Always white-list Objective-C string literals.
return true;
}
bool VisitStmtExpr(StmtExpr *e) {
return Visit(e->getSubStmt()->body_back());
}
bool VisitDeclRefExpr(DeclRefExpr *e) {
// White-list references to global extern strings from system
// headers.
if (VarDecl *var = dyn_cast<VarDecl>(e->getDecl()))
if (var->getStorageClass() == SC_Extern &&
var->getType().isConstQualified() &&
Context.getSourceManager().isInSystemHeader(var->getLocation()))
return true;
return false;
}
};
}
bool
Sema::ValidObjCARCNoBridgeCastExpr(Expr *&Exp, QualType castType) {
Expr *NewExp = Exp->IgnoreParenCasts();
if (!isa<ObjCMessageExpr>(NewExp) && !isa<ObjCPropertyRefExpr>(NewExp)
&& !isa<CallExpr>(NewExp))
return false;
ObjCMethodDecl *method = 0;
bool MethodReturnsPlusOne = false;
if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(NewExp)) {
method = PRE->getExplicitProperty()->getGetterMethodDecl();
}
else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(NewExp))
method = ME->getMethodDecl();
else {
CallExpr *CE = cast<CallExpr>(NewExp);
Decl *CallDecl = CE->getCalleeDecl();
if (!CallDecl)
return false;
if (CallDecl->hasAttr<CFReturnsNotRetainedAttr>())
return true;
MethodReturnsPlusOne = CallDecl->hasAttr<CFReturnsRetainedAttr>();
if (!MethodReturnsPlusOne) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(CallDecl))
if (const IdentifierInfo *Id = ND->getIdentifier())
if (Id->isStr("__builtin___CFStringMakeConstantString"))
return true;
}
}
if (!MethodReturnsPlusOne) {
if (!method)
return false;
if (method->hasAttr<CFReturnsNotRetainedAttr>())
return true;
MethodReturnsPlusOne = method->hasAttr<CFReturnsRetainedAttr>();
if (!MethodReturnsPlusOne) {
ObjCMethodFamily family = method->getSelector().getMethodFamily();
switch (family) {
case OMF_alloc:
case OMF_copy:
case OMF_mutableCopy:
case OMF_new:
MethodReturnsPlusOne = true;
break;
default:
break;
}
}
}
if (MethodReturnsPlusOne) {
TypeSourceInfo *TSInfo =
Context.getTrivialTypeSourceInfo(castType, SourceLocation());
ExprResult ExpRes = BuildObjCBridgedCast(SourceLocation(), OBC_BridgeTransfer,
SourceLocation(), TSInfo, Exp);
Exp = ExpRes.take();
}
return true;
}
void
Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType,
Expr *&castExpr, CheckedConversionKind CCK) {
QualType castExprType = castExpr->getType();
ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
if (exprACTC == castACTC) return;
if (exprACTC && castType->isIntegralType(Context)) return;
// Allow casts between pointers to lifetime types (e.g., __strong id*)
// and pointers to void (e.g., cv void *). Casting from void* to lifetime*
// must be explicit.
if (const PointerType *CastPtr = castType->getAs<PointerType>()) {
if (const PointerType *CastExprPtr = castExprType->getAs<PointerType>()) {
QualType CastPointee = CastPtr->getPointeeType();
QualType CastExprPointee = CastExprPtr->getPointeeType();
if ((CCK != CCK_ImplicitConversion &&
CastPointee->isObjCIndirectLifetimeType() &&
CastExprPointee->isVoidType()) ||
(CastPointee->isVoidType() &&
CastExprPointee->isObjCIndirectLifetimeType()))
return;
}
}
if (ARCCastChecker(Context).Visit(castExpr))
return;
SourceLocation loc =
(castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
if (makeUnavailableInSystemHeader(loc,
"converts between Objective-C and C pointers in -fobjc-arc"))
return;
unsigned srcKind = 0;
switch (exprACTC) {
case ACTC_none:
srcKind = (castExprType->isPointerType() ? 1 : 0);
break;
case ACTC_retainable:
srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
break;
case ACTC_indirectRetainable:
srcKind = 4;
break;
}
if (CCK == CCK_CStyleCast) {
// Check whether this could be fixed with a bridge cast.
SourceLocation AfterLParen = PP.getLocForEndOfToken(castRange.getBegin());
SourceLocation NoteLoc = AfterLParen.isValid()? AfterLParen : loc;
if (castType->isObjCARCBridgableType() &&
castExprType->isCARCBridgableType()) {
// explicit unbridged casts are allowed if the source of the cast is a
// message sent to an objc method (or property access)
if (ValidObjCARCNoBridgeCastExpr(castExpr, castType))
return;
Diag(loc, diag::err_arc_cast_requires_bridge)
<< 2
<< castExprType
<< (castType->isBlockPointerType()? 1 : 0)
<< castType
<< castRange
<< castExpr->getSourceRange();
Diag(NoteLoc, diag::note_arc_bridge)
<< FixItHint::CreateInsertion(AfterLParen, "__bridge ");
Diag(NoteLoc, diag::note_arc_bridge_transfer)
<< castExprType
<< FixItHint::CreateInsertion(AfterLParen, "__bridge_transfer ");
return;
}
if (castType->isCARCBridgableType() &&
castExprType->isObjCARCBridgableType()){
Diag(loc, diag::err_arc_cast_requires_bridge)
<< (castExprType->isBlockPointerType()? 1 : 0)
<< castExprType
<< 2
<< castType
<< castRange
<< castExpr->getSourceRange();
Diag(NoteLoc, diag::note_arc_bridge)
<< FixItHint::CreateInsertion(AfterLParen, "__bridge ");
Diag(NoteLoc, diag::note_arc_bridge_retained)
<< castType
<< FixItHint::CreateInsertion(AfterLParen, "__bridge_retained ");
return;
}
}
Diag(loc, diag::err_arc_mismatched_cast)
<< (CCK != CCK_ImplicitConversion) << srcKind << castExprType << castType
<< castRange << castExpr->getSourceRange();
}
bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
QualType exprType) {
QualType canCastType =
Context.getCanonicalType(castType).getUnqualifiedType();
QualType canExprType =
Context.getCanonicalType(exprType).getUnqualifiedType();
if (isa<ObjCObjectPointerType>(canCastType) &&
castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
canExprType->isObjCObjectPointerType()) {
if (const ObjCObjectPointerType *ObjT =
canExprType->getAs<ObjCObjectPointerType>())
if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable())
return false;
}
return true;
}
/// Look for an ObjCReclaimReturnedObject cast and destroy it.
static Expr *maybeUndoReclaimObject(Expr *e) {
// For now, we just undo operands that are *immediately* reclaim
// expressions, which prevents the vast majority of potential
// problems here. To catch them all, we'd need to rebuild arbitrary
// value-propagating subexpressions --- we can't reliably rebuild
// in-place because of expression sharing.
if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
if (ice->getCastKind() == CK_ObjCReclaimReturnedObject)
return ice->getSubExpr();
return e;
}
ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
TypeSourceInfo *TSInfo,
Expr *SubExpr) {
ExprResult SubResult = UsualUnaryConversions(SubExpr);
if (SubResult.isInvalid()) return ExprError();
SubExpr = SubResult.take();
QualType T = TSInfo->getType();
QualType FromType = SubExpr->getType();
bool MustConsume = false;
if (T->isDependentType() || SubExpr->isTypeDependent()) {
// Okay: we'll build a dependent expression type.
} else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
// Casting CF -> id
switch (Kind) {
case OBC_Bridge:
break;
case OBC_BridgeRetained:
Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
<< 2
<< FromType
<< (T->isBlockPointerType()? 1 : 0)
<< T
<< SubExpr->getSourceRange()
<< Kind;
Diag(BridgeKeywordLoc, diag::note_arc_bridge)
<< FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
<< FromType
<< FixItHint::CreateReplacement(BridgeKeywordLoc,
"__bridge_transfer ");
Kind = OBC_Bridge;
break;
case OBC_BridgeTransfer:
// We must consume the Objective-C object produced by the cast.
MustConsume = true;
break;
}
} else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
// Okay: id -> CF
switch (Kind) {
case OBC_Bridge:
// Reclaiming a value that's going to be __bridge-casted to CF
// is very dangerous, so we don't do it.
SubExpr = maybeUndoReclaimObject(SubExpr);
break;
case OBC_BridgeRetained:
// Produce the object before casting it.
SubExpr = ImplicitCastExpr::Create(Context, FromType,
CK_ObjCProduceObject,
SubExpr, 0, VK_RValue);
break;
case OBC_BridgeTransfer:
Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
<< (FromType->isBlockPointerType()? 1 : 0)
<< FromType
<< 2
<< T
<< SubExpr->getSourceRange()
<< Kind;
Diag(BridgeKeywordLoc, diag::note_arc_bridge)
<< FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
<< T
<< FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge_retained ");
Kind = OBC_Bridge;
break;
}
} else {
Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
<< FromType << T << Kind
<< SubExpr->getSourceRange()
<< TSInfo->getTypeLoc().getSourceRange();
return ExprError();
}
Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind,
BridgeKeywordLoc,
TSInfo, SubExpr);
if (MustConsume) {
ExprNeedsCleanups = true;
Result = ImplicitCastExpr::Create(Context, T, CK_ObjCConsumeObject, Result,
0, VK_RValue);
}
return Result;
}
ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
ParsedType Type,
SourceLocation RParenLoc,
Expr *SubExpr) {
TypeSourceInfo *TSInfo = 0;
QualType T = GetTypeFromParser(Type, &TSInfo);
if (!TSInfo)
TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
SubExpr);
}