| //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements decl-related attribute processing. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include <llvm/ADT/StringExtras.h> |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions |
| //===----------------------------------------------------------------------===// |
| |
| static const FunctionType *getFunctionType(Decl *d) { |
| QualType Ty; |
| if (ValueDecl *decl = dyn_cast<ValueDecl>(d)) |
| Ty = decl->getType(); |
| else if (FieldDecl *decl = dyn_cast<FieldDecl>(d)) |
| Ty = decl->getType(); |
| else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d)) |
| Ty = decl->getUnderlyingType(); |
| else |
| return 0; |
| |
| if (Ty->isFunctionPointerType()) |
| Ty = Ty->getAsPointerType()->getPointeeType(); |
| |
| return Ty->getAsFunctionType(); |
| } |
| |
| // FIXME: We should provide an abstraction around a method or function |
| // to provide the following bits of information. |
| |
| /// isFunctionOrMethod - Return true if the given decl has function |
| /// type (function or function-typed variable) or an Objective-C |
| /// method. |
| static bool isFunctionOrMethod(Decl *d) { |
| return getFunctionType(d) || isa<ObjCMethodDecl>(d); |
| } |
| |
| /// hasFunctionProto - Return true if the given decl has a argument |
| /// information. This decl should have already passed |
| /// isFunctionOrMethod. |
| static bool hasFunctionProto(Decl *d) { |
| if (const FunctionType *FnTy = getFunctionType(d)) { |
| return isa<FunctionTypeProto>(FnTy); |
| } else { |
| assert(isa<ObjCMethodDecl>(d)); |
| return true; |
| } |
| } |
| |
| /// getFunctionOrMethodNumArgs - Return number of function or method |
| /// arguments. It is an error to call this on a K&R function (use |
| /// hasFunctionProto first). |
| static unsigned getFunctionOrMethodNumArgs(Decl *d) { |
| if (const FunctionType *FnTy = getFunctionType(d)) { |
| const FunctionTypeProto *proto = cast<FunctionTypeProto>(FnTy); |
| return proto->getNumArgs(); |
| } else { |
| return cast<ObjCMethodDecl>(d)->getNumParams(); |
| } |
| } |
| |
| static QualType getFunctionOrMethodArgType(Decl *d, unsigned Idx) { |
| if (const FunctionType *FnTy = getFunctionType(d)) { |
| const FunctionTypeProto *proto = cast<FunctionTypeProto>(FnTy); |
| return proto->getArgType(Idx); |
| } else { |
| return cast<ObjCMethodDecl>(d)->getParamDecl(Idx)->getType(); |
| } |
| } |
| |
| static bool isFunctionOrMethodVariadic(Decl *d) { |
| if (const FunctionType *FnTy = getFunctionType(d)) { |
| const FunctionTypeProto *proto = cast<FunctionTypeProto>(FnTy); |
| return proto->isVariadic(); |
| } else { |
| return cast<ObjCMethodDecl>(d)->isVariadic(); |
| } |
| } |
| |
| static inline bool isNSStringType(QualType T, ASTContext &Ctx) { |
| const PointerType *PT = T->getAsPointerType(); |
| if (!PT) |
| return false; |
| |
| const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAsObjCInterfaceType(); |
| if (!ClsT) |
| return false; |
| |
| IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier(); |
| |
| // FIXME: Should we walk the chain of classes? |
| return ClsName == &Ctx.Idents.get("NSString") || |
| ClsName == &Ctx.Idents.get("NSMutableString"); |
| } |
| |
| static inline bool isCFStringType(QualType T, ASTContext &Ctx) { |
| const PointerType *PT = T->getAsPointerType(); |
| if (!PT) |
| return false; |
| |
| const RecordType *RT = PT->getPointeeType()->getAsRecordType(); |
| if (!RT) |
| return false; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->getTagKind() != TagDecl::TK_struct) |
| return false; |
| |
| return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute Implementations |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: All this manual attribute parsing code is gross. At the |
| // least add some helper functions to check most argument patterns (# |
| // and types of args). |
| |
| static void HandleExtVectorTypeAttr(Decl *d, const AttributeList &Attr, |
| Sema &S) { |
| TypedefDecl *tDecl = dyn_cast<TypedefDecl>(d); |
| if (tDecl == 0) { |
| S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef); |
| return; |
| } |
| |
| QualType curType = tDecl->getUnderlyingType(); |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) |
| << "ext_vector_type" << sizeExpr->getSourceRange(); |
| return; |
| } |
| // unlike gcc's vector_size attribute, we do not allow vectors to be defined |
| // in conjunction with complex types (pointers, arrays, functions, etc.). |
| if (!curType->isIntegerType() && !curType->isRealFloatingType()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << curType; |
| return; |
| } |
| // unlike gcc's vector_size attribute, the size is specified as the |
| // number of elements, not the number of bytes. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue()); |
| |
| if (vectorSize == 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_zero_size) |
| << sizeExpr->getSourceRange(); |
| return; |
| } |
| // Instantiate/Install the vector type, the number of elements is > 0. |
| tDecl->setUnderlyingType(S.Context.getExtVectorType(curType, vectorSize)); |
| // Remember this typedef decl, we will need it later for diagnostics. |
| S.ExtVectorDecls.push_back(tDecl); |
| } |
| |
| |
| /// HandleVectorSizeAttribute - this attribute is only applicable to |
| /// integral and float scalars, although arrays, pointers, and function |
| /// return values are allowed in conjunction with this construct. Aggregates |
| /// with this attribute are invalid, even if they are of the same size as a |
| /// corresponding scalar. |
| /// The raw attribute should contain precisely 1 argument, the vector size |
| /// for the variable, measured in bytes. If curType and rawAttr are well |
| /// formed, this routine will return a new vector type. |
| static void HandleVectorSizeAttr(Decl *D, const AttributeList &Attr, Sema &S) { |
| QualType CurType; |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) |
| CurType = VD->getType(); |
| else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) |
| CurType = TD->getUnderlyingType(); |
| else { |
| S.Diag(D->getLocation(), diag::err_attr_wrong_decl) |
| << "vector_size" << SourceRange(Attr.getLoc(), Attr.getLoc()); |
| return; |
| } |
| |
| // Check the attribute arugments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) |
| << "vector_size" << sizeExpr->getSourceRange(); |
| return; |
| } |
| // navigate to the base type - we need to provide for vector pointers, |
| // vector arrays, and functions returning vectors. |
| if (CurType->isPointerType() || CurType->isArrayType() || |
| CurType->isFunctionType()) { |
| assert(0 && "HandleVector(): Complex type construction unimplemented"); |
| /* FIXME: rebuild the type from the inside out, vectorizing the inner type. |
| do { |
| if (PointerType *PT = dyn_cast<PointerType>(canonType)) |
| canonType = PT->getPointeeType().getTypePtr(); |
| else if (ArrayType *AT = dyn_cast<ArrayType>(canonType)) |
| canonType = AT->getElementType().getTypePtr(); |
| else if (FunctionType *FT = dyn_cast<FunctionType>(canonType)) |
| canonType = FT->getResultType().getTypePtr(); |
| } while (canonType->isPointerType() || canonType->isArrayType() || |
| canonType->isFunctionType()); |
| */ |
| } |
| // the base type must be integer or float. |
| if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; |
| return; |
| } |
| unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType)); |
| // vecSize is specified in bytes - convert to bits. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8); |
| |
| // the vector size needs to be an integral multiple of the type size. |
| if (vectorSize % typeSize) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size) |
| << sizeExpr->getSourceRange(); |
| return; |
| } |
| if (vectorSize == 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_zero_size) |
| << sizeExpr->getSourceRange(); |
| return; |
| } |
| |
| // Success! Instantiate the vector type, the number of elements is > 0, and |
| // not required to be a power of 2, unlike GCC. |
| CurType = S.Context.getVectorType(CurType, vectorSize/typeSize); |
| |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) |
| VD->setType(CurType); |
| else |
| cast<TypedefDecl>(D)->setUnderlyingType(CurType); |
| } |
| |
| static void HandlePackedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() > 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| if (TagDecl *TD = dyn_cast<TagDecl>(d)) |
| TD->addAttr(new PackedAttr(1)); |
| else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) { |
| // If the alignment is less than or equal to 8 bits, the packed attribute |
| // has no effect. |
| if (!FD->getType()->isIncompleteType() && |
| S.Context.getTypeAlign(FD->getType()) <= 8) |
| S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) |
| << Attr.getName() << FD->getType(); |
| else |
| FD->addAttr(new PackedAttr(1)); |
| } else |
| S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); |
| } |
| |
| static void HandleIBOutletAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() > 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| // The IBOutlet attribute only applies to instance variables of Objective-C |
| // classes. |
| if (ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(d)) |
| ID->addAttr(new IBOutletAttr()); |
| else |
| S.Diag(Attr.getLoc(), diag::err_attribute_iboutlet_non_ivar); |
| } |
| |
| static void HandleNonNullAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // GCC ignores the nonnull attribute on K&R style function |
| // prototypes, so we ignore it as well |
| if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "nonnull" << "function"; |
| return; |
| } |
| |
| unsigned NumArgs = getFunctionOrMethodNumArgs(d); |
| |
| // The nonnull attribute only applies to pointers. |
| llvm::SmallVector<unsigned, 10> NonNullArgs; |
| |
| for (AttributeList::arg_iterator I=Attr.arg_begin(), |
| E=Attr.arg_end(); I!=E; ++I) { |
| |
| |
| // The argument must be an integer constant expression. |
| Expr *Ex = static_cast<Expr *>(*I); |
| llvm::APSInt ArgNum(32); |
| if (!Ex->isIntegerConstantExpr(ArgNum, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) |
| << "nonnull" << Ex->getSourceRange(); |
| return; |
| } |
| |
| unsigned x = (unsigned) ArgNum.getZExtValue(); |
| |
| if (x < 1 || x > NumArgs) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << "nonnull" << I.getArgNum() << Ex->getSourceRange(); |
| return; |
| } |
| |
| --x; |
| |
| // Is the function argument a pointer type? |
| QualType T = getFunctionOrMethodArgType(d, x); |
| if (!T->isPointerType() && !T->isBlockPointerType()) { |
| // FIXME: Should also highlight argument in decl. |
| S.Diag(Attr.getLoc(), diag::err_nonnull_pointers_only) |
| << "nonnull" << Ex->getSourceRange(); |
| continue; |
| } |
| |
| NonNullArgs.push_back(x); |
| } |
| |
| // If no arguments were specified to __attribute__((nonnull)) then all |
| // pointer arguments have a nonnull attribute. |
| if (NonNullArgs.empty()) { |
| for (unsigned I = 0, E = getFunctionOrMethodNumArgs(d); I != E; ++I) { |
| QualType T = getFunctionOrMethodArgType(d, I); |
| if (T->isPointerType() || T->isBlockPointerType()) |
| NonNullArgs.push_back(I); |
| } |
| |
| if (NonNullArgs.empty()) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); |
| return; |
| } |
| } |
| |
| unsigned* start = &NonNullArgs[0]; |
| unsigned size = NonNullArgs.size(); |
| std::sort(start, start + size); |
| d->addAttr(new NonNullAttr(start, size)); |
| } |
| |
| static void HandleAliasAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| |
| Expr *Arg = static_cast<Expr*>(Attr.getArg(0)); |
| Arg = Arg->IgnoreParenCasts(); |
| StringLiteral *Str = dyn_cast<StringLiteral>(Arg); |
| |
| if (Str == 0 || Str->isWide()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) |
| << "alias" << 1; |
| return; |
| } |
| |
| const char *Alias = Str->getStrData(); |
| unsigned AliasLen = Str->getByteLength(); |
| |
| // FIXME: check if target symbol exists in current file |
| |
| d->addAttr(new AliasAttr(std::string(Alias, AliasLen))); |
| } |
| |
| static void HandleAlwaysInlineAttr(Decl *d, const AttributeList &Attr, |
| Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new AlwaysInlineAttr()); |
| } |
| |
| static void HandleNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| if (!isFunctionOrMethod(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "noreturn" << "function"; |
| return; |
| } |
| |
| d->addAttr(new NoReturnAttr()); |
| } |
| |
| static void HandleUnusedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| if (!isa<VarDecl>(d) && !isFunctionOrMethod(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "unused" << "variable and function"; |
| return; |
| } |
| |
| d->addAttr(new UnusedAttr()); |
| } |
| |
| static void HandleConstructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
| << "0 or 1"; |
| return; |
| } |
| |
| int priority = 65535; // FIXME: Do not hardcode such constants. |
| if (Attr.getNumArgs() > 0) { |
| Expr *E = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Idx(32); |
| if (!E->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) |
| << "constructor" << 1 << E->getSourceRange(); |
| return; |
| } |
| priority = Idx.getZExtValue(); |
| } |
| |
| FunctionDecl *Fn = dyn_cast<FunctionDecl>(d); |
| if (!Fn) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "constructor" << "function"; |
| return; |
| } |
| |
| d->addAttr(new ConstructorAttr(priority)); |
| } |
| |
| static void HandleDestructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
| << "0 or 1"; |
| return; |
| } |
| |
| int priority = 65535; // FIXME: Do not hardcode such constants. |
| if (Attr.getNumArgs() > 0) { |
| Expr *E = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Idx(32); |
| if (!E->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) |
| << "destructor" << 1 << E->getSourceRange(); |
| return; |
| } |
| priority = Idx.getZExtValue(); |
| } |
| |
| if (!isa<FunctionDecl>(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "destructor" << "function"; |
| return; |
| } |
| |
| d->addAttr(new DestructorAttr(priority)); |
| } |
| |
| static void HandleDeprecatedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new DeprecatedAttr()); |
| } |
| |
| static void HandleUnavailableAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new UnavailableAttr()); |
| } |
| |
| static void HandleVisibilityAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| |
| Expr *Arg = static_cast<Expr*>(Attr.getArg(0)); |
| Arg = Arg->IgnoreParenCasts(); |
| StringLiteral *Str = dyn_cast<StringLiteral>(Arg); |
| |
| if (Str == 0 || Str->isWide()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) |
| << "visibility" << 1; |
| return; |
| } |
| |
| const char *TypeStr = Str->getStrData(); |
| unsigned TypeLen = Str->getByteLength(); |
| VisibilityAttr::VisibilityTypes type; |
| |
| if (TypeLen == 7 && !memcmp(TypeStr, "default", 7)) |
| type = VisibilityAttr::DefaultVisibility; |
| else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6)) |
| type = VisibilityAttr::HiddenVisibility; |
| else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8)) |
| type = VisibilityAttr::HiddenVisibility; // FIXME |
| else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9)) |
| type = VisibilityAttr::ProtectedVisibility; |
| else { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr; |
| return; |
| } |
| |
| d->addAttr(new VisibilityAttr(type)); |
| } |
| |
| static void HandleObjCGCAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| if (!Attr.getParameterName()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) |
| << "objc_gc" << 1; |
| return; |
| } |
| |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| |
| |
| ObjCGCAttr::GCAttrTypes type; |
| if (Attr.getParameterName()->isStr("weak")) { |
| if (isa<FieldDecl>(d) && !isa<ObjCIvarDecl>(d)) |
| S.Diag(Attr.getLoc(), diag::warn_attribute_weak_on_field); |
| type = ObjCGCAttr::Weak; |
| } |
| else if (Attr.getParameterName()->isStr("strong")) |
| type = ObjCGCAttr::Strong; |
| else { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) |
| << "objc_gc" << Attr.getParameterName(); |
| return; |
| } |
| |
| d->addAttr(new ObjCGCAttr(type)); |
| } |
| |
| static void HandleBlocksAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| if (!Attr.getParameterName()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) |
| << "blocks" << 1; |
| return; |
| } |
| |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| |
| BlocksAttr::BlocksAttrTypes type; |
| if (Attr.getParameterName()->isStr("byref")) |
| type = BlocksAttr::ByRef; |
| else { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) |
| << "blocks" << Attr.getParameterName(); |
| return; |
| } |
| |
| d->addAttr(new BlocksAttr(type)); |
| } |
| |
| static void HandleSentinelAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() > 2) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
| << "0, 1 or 2"; |
| return; |
| } |
| |
| int sentinel = 0; |
| if (Attr.getNumArgs() > 0) { |
| Expr *E = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Idx(32); |
| if (!E->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) |
| << "sentinel" << 1 << E->getSourceRange(); |
| return; |
| } |
| sentinel = Idx.getZExtValue(); |
| |
| if (sentinel < 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| int nullPos = 0; |
| if (Attr.getNumArgs() > 1) { |
| Expr *E = static_cast<Expr *>(Attr.getArg(1)); |
| llvm::APSInt Idx(32); |
| if (!E->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) |
| << "sentinel" << 2 << E->getSourceRange(); |
| return; |
| } |
| nullPos = Idx.getZExtValue(); |
| |
| if (nullPos > 1 || nullPos < 0) { |
| // FIXME: This error message could be improved, it would be nice |
| // to say what the bounds actually are. |
| S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(d)) { |
| QualType FT = FD->getType(); |
| if (!FT->getAsFunctionTypeProto()->isVariadic()) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic); |
| return; |
| } |
| } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(d)) { |
| if (!MD->isVariadic()) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic); |
| return; |
| } |
| } else { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "sentinel" << "function or method"; |
| return; |
| } |
| |
| // FIXME: Actually create the attribute. |
| } |
| |
| static void HandleWeakAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new WeakAttr()); |
| } |
| |
| static void HandleDLLImportAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new DLLImportAttr()); |
| } |
| |
| static void HandleDLLExportAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new DLLExportAttr()); |
| } |
| |
| static void HandleStdCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // Attribute has no arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| // Attribute can be applied only to functions. |
| if (!isa<FunctionDecl>(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "stdcall" << "function"; |
| return; |
| } |
| |
| // stdcall and fastcall attributes are mutually incompatible. |
| if (d->getAttr<FastCallAttr>()) { |
| S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) |
| << "stdcall" << "fastcall"; |
| return; |
| } |
| |
| d->addAttr(new StdCallAttr()); |
| } |
| |
| static void HandleFastCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // Attribute has no arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| if (!isa<FunctionDecl>(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "fastcall" << "function"; |
| return; |
| } |
| |
| // stdcall and fastcall attributes are mutually incompatible. |
| if (d->getAttr<StdCallAttr>()) { |
| S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) |
| << "fastcall" << "stdcall"; |
| return; |
| } |
| |
| d->addAttr(new FastCallAttr()); |
| } |
| |
| static void HandleNothrowAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new NoThrowAttr()); |
| } |
| |
| static void HandleConstAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new ConstAttr()); |
| } |
| |
| static void HandlePureAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| d->addAttr(new PureAttr()); |
| } |
| |
| /// Handle __attribute__((format(type,idx,firstarg))) attributes |
| /// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
| static void HandleFormatAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| |
| if (!Attr.getParameterName()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) |
| << "format" << 1; |
| return; |
| } |
| |
| if (Attr.getNumArgs() != 2) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3; |
| return; |
| } |
| |
| if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "format" << "function"; |
| return; |
| } |
| |
| // FIXME: in C++ the implicit 'this' function parameter also counts. |
| // this is needed in order to be compatible with GCC |
| // the index must start in 1 and the limit is numargs+1 |
| unsigned NumArgs = getFunctionOrMethodNumArgs(d); |
| unsigned FirstIdx = 1; |
| |
| const char *Format = Attr.getParameterName()->getName(); |
| unsigned FormatLen = Attr.getParameterName()->getLength(); |
| |
| // Normalize the argument, __foo__ becomes foo. |
| if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' && |
| Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') { |
| Format += 2; |
| FormatLen -= 4; |
| } |
| |
| bool Supported = false; |
| bool is_NSString = false; |
| bool is_strftime = false; |
| bool is_CFString = false; |
| |
| switch (FormatLen) { |
| default: break; |
| case 5: Supported = !memcmp(Format, "scanf", 5); break; |
| case 6: Supported = !memcmp(Format, "printf", 6); break; |
| case 7: Supported = !memcmp(Format, "strfmon", 7); break; |
| case 8: |
| Supported = (is_strftime = !memcmp(Format, "strftime", 8)) || |
| (is_NSString = !memcmp(Format, "NSString", 8)) || |
| (is_CFString = !memcmp(Format, "CFString", 8)); |
| break; |
| } |
| |
| if (!Supported) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) |
| << "format" << Attr.getParameterName()->getName(); |
| return; |
| } |
| |
| // checks for the 2nd argument |
| Expr *IdxExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Idx(32); |
| if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) |
| << "format" << 2 << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << "format" << 2 << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| // FIXME: Do we need to bounds check? |
| unsigned ArgIdx = Idx.getZExtValue() - 1; |
| |
| // make sure the format string is really a string |
| QualType Ty = getFunctionOrMethodArgType(d, ArgIdx); |
| |
| if (is_CFString) { |
| if (!isCFStringType(Ty, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_format_attribute_not) |
| << "a CFString" << IdxExpr->getSourceRange(); |
| return; |
| } |
| } else if (is_NSString) { |
| // FIXME: do we need to check if the type is NSString*? What are |
| // the semantics? |
| if (!isNSStringType(Ty, S.Context)) { |
| // FIXME: Should highlight the actual expression that has the |
| // wrong type. |
| S.Diag(Attr.getLoc(), diag::err_format_attribute_not) |
| << "an NSString" << IdxExpr->getSourceRange(); |
| return; |
| } |
| } else if (!Ty->isPointerType() || |
| !Ty->getAsPointerType()->getPointeeType()->isCharType()) { |
| // FIXME: Should highlight the actual expression that has the |
| // wrong type. |
| S.Diag(Attr.getLoc(), diag::err_format_attribute_not) |
| << "a string type" << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| // check the 3rd argument |
| Expr *FirstArgExpr = static_cast<Expr *>(Attr.getArg(1)); |
| llvm::APSInt FirstArg(32); |
| if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) |
| << "format" << 3 << FirstArgExpr->getSourceRange(); |
| return; |
| } |
| |
| // check if the function is variadic if the 3rd argument non-zero |
| if (FirstArg != 0) { |
| if (isFunctionOrMethodVariadic(d)) { |
| ++NumArgs; // +1 for ... |
| } else { |
| S.Diag(d->getLocation(), diag::err_format_attribute_requires_variadic); |
| return; |
| } |
| } |
| |
| // strftime requires FirstArg to be 0 because it doesn't read from any |
| // variable the input is just the current time + the format string. |
| if (is_strftime) { |
| if (FirstArg != 0) { |
| S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) |
| << FirstArgExpr->getSourceRange(); |
| return; |
| } |
| // if 0 it disables parameter checking (to use with e.g. va_list) |
| } else if (FirstArg != 0 && FirstArg != NumArgs) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << "format" << 3 << FirstArgExpr->getSourceRange(); |
| return; |
| } |
| |
| d->addAttr(new FormatAttr(std::string(Format, FormatLen), |
| Idx.getZExtValue(), FirstArg.getZExtValue())); |
| } |
| |
| static void HandleTransparentUnionAttr(Decl *d, const AttributeList &Attr, |
| Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| // FIXME: This shouldn't be restricted to typedefs |
| TypedefDecl *TD = dyn_cast<TypedefDecl>(d); |
| if (!TD || !TD->getUnderlyingType()->isUnionType()) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << "transparent_union" << "union"; |
| return; |
| } |
| |
| RecordDecl* RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); |
| |
| // FIXME: Should we do a check for RD->isDefinition()? |
| |
| // FIXME: This isn't supposed to be restricted to pointers, but otherwise |
| // we might silently generate incorrect code; see following code |
| for (RecordDecl::field_iterator Field = RD->field_begin(), |
| FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (!Field->getType()->isPointerType()) { |
| S.Diag(Attr.getLoc(), diag::warn_transparent_union_nonpointer); |
| return; |
| } |
| } |
| |
| // FIXME: This is a complete hack; we should be properly propagating |
| // transparent_union through Sema. That said, this is close enough to |
| // correctly compile all the common cases of transparent_union without |
| // errors or warnings |
| QualType NewTy = S.Context.VoidPtrTy; |
| NewTy.addConst(); |
| TD->setUnderlyingType(NewTy); |
| } |
| |
| static void HandleAnnotateAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| Expr *argExpr = static_cast<Expr *>(Attr.getArg(0)); |
| StringLiteral *SE = dyn_cast<StringLiteral>(argExpr); |
| |
| // Make sure that there is a string literal as the annotation's single |
| // argument. |
| if (!SE) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string); |
| return; |
| } |
| d->addAttr(new AnnotateAttr(std::string(SE->getStrData(), |
| SE->getByteLength()))); |
| } |
| |
| static void HandleAlignedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() > 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; |
| return; |
| } |
| |
| unsigned Align = 0; |
| if (Attr.getNumArgs() == 0) { |
| // FIXME: This should be the target specific maximum alignment. |
| // (For now we just use 128 bits which is the maximum on X86. |
| Align = 128; |
| return; |
| } |
| |
| Expr *alignmentExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Alignment(32); |
| if (!alignmentExpr->isIntegerConstantExpr(Alignment, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) |
| << "aligned" << alignmentExpr->getSourceRange(); |
| return; |
| } |
| d->addAttr(new AlignedAttr(Alignment.getZExtValue() * 8)); |
| } |
| |
| /// HandleModeAttr - This attribute modifies the width of a decl with |
| /// primitive type. |
| /// |
| /// Despite what would be logical, the mode attribute is a decl attribute, |
| /// not a type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make |
| /// 'G' be HImode, not an intermediate pointer. |
| /// |
| static void HandleModeAttr(Decl *D, const AttributeList &Attr, Sema &S) { |
| // This attribute isn't documented, but glibc uses it. It changes |
| // the width of an int or unsigned int to the specified size. |
| |
| // Check that there aren't any arguments |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; |
| return; |
| } |
| |
| IdentifierInfo *Name = Attr.getParameterName(); |
| if (!Name) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name); |
| return; |
| } |
| const char *Str = Name->getName(); |
| unsigned Len = Name->getLength(); |
| |
| // Normalize the attribute name, __foo__ becomes foo. |
| if (Len > 4 && Str[0] == '_' && Str[1] == '_' && |
| Str[Len - 2] == '_' && Str[Len - 1] == '_') { |
| Str += 2; |
| Len -= 4; |
| } |
| |
| unsigned DestWidth = 0; |
| bool IntegerMode = true; |
| switch (Len) { |
| case 2: |
| if (!memcmp(Str, "QI", 2)) { DestWidth = 8; break; } |
| if (!memcmp(Str, "HI", 2)) { DestWidth = 16; break; } |
| if (!memcmp(Str, "SI", 2)) { DestWidth = 32; break; } |
| if (!memcmp(Str, "DI", 2)) { DestWidth = 64; break; } |
| if (!memcmp(Str, "TI", 2)) { DestWidth = 128; break; } |
| if (!memcmp(Str, "SF", 2)) { DestWidth = 32; IntegerMode = false; break; } |
| if (!memcmp(Str, "DF", 2)) { DestWidth = 64; IntegerMode = false; break; } |
| if (!memcmp(Str, "XF", 2)) { DestWidth = 96; IntegerMode = false; break; } |
| if (!memcmp(Str, "TF", 2)) { DestWidth = 128; IntegerMode = false; break; } |
| break; |
| case 4: |
| // FIXME: glibc uses 'word' to define register_t; this is narrower than a |
| // pointer on PIC16 and other embedded platforms. |
| if (!memcmp(Str, "word", 4)) |
| DestWidth = S.Context.Target.getPointerWidth(0); |
| if (!memcmp(Str, "byte", 4)) |
| DestWidth = S.Context.Target.getCharWidth(); |
| break; |
| case 7: |
| if (!memcmp(Str, "pointer", 7)) |
| DestWidth = S.Context.Target.getPointerWidth(0); |
| break; |
| } |
| |
| QualType OldTy; |
| if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) |
| OldTy = TD->getUnderlyingType(); |
| else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) |
| OldTy = VD->getType(); |
| else { |
| S.Diag(D->getLocation(), diag::err_attr_wrong_decl) |
| << "mode" << SourceRange(Attr.getLoc(), Attr.getLoc()); |
| return; |
| } |
| |
| // FIXME: Need proper fixed-width types |
| QualType NewTy; |
| switch (DestWidth) { |
| case 0: |
| S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name; |
| return; |
| default: |
| S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; |
| return; |
| case 8: |
| assert(IntegerMode); |
| if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.SignedCharTy; |
| else |
| NewTy = S.Context.UnsignedCharTy; |
| break; |
| case 16: |
| assert(IntegerMode); |
| if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.ShortTy; |
| else |
| NewTy = S.Context.UnsignedShortTy; |
| break; |
| case 32: |
| if (!IntegerMode) |
| NewTy = S.Context.FloatTy; |
| else if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.IntTy; |
| else |
| NewTy = S.Context.UnsignedIntTy; |
| break; |
| case 64: |
| if (!IntegerMode) |
| NewTy = S.Context.DoubleTy; |
| else if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.LongLongTy; |
| else |
| NewTy = S.Context.UnsignedLongLongTy; |
| break; |
| } |
| |
| if (!OldTy->getAsBuiltinType()) |
| S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); |
| else if (!(IntegerMode && OldTy->isIntegerType()) && |
| !(!IntegerMode && OldTy->isFloatingType())) { |
| S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); |
| } |
| |
| // Install the new type. |
| if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) |
| TD->setUnderlyingType(NewTy); |
| else |
| cast<ValueDecl>(D)->setType(NewTy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top Level Sema Entry Points |
| //===----------------------------------------------------------------------===// |
| |
| /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if |
| /// the attribute applies to decls. If the attribute is a type attribute, just |
| /// silently ignore it. |
| static void ProcessDeclAttribute(Decl *D, const AttributeList &Attr, Sema &S) { |
| switch (Attr.getKind()) { |
| case AttributeList::AT_IBOutlet: HandleIBOutletAttr (D, Attr, S); break; |
| case AttributeList::AT_address_space: |
| // Ignore this, this is a type attribute, handled by ProcessTypeAttributes. |
| break; |
| case AttributeList::AT_alias: HandleAliasAttr (D, Attr, S); break; |
| case AttributeList::AT_aligned: HandleAlignedAttr (D, Attr, S); break; |
| case AttributeList::AT_always_inline: |
| HandleAlwaysInlineAttr (D, Attr, S); break; |
| case AttributeList::AT_annotate: HandleAnnotateAttr (D, Attr, S); break; |
| case AttributeList::AT_constructor: HandleConstructorAttr(D, Attr, S); break; |
| case AttributeList::AT_deprecated: HandleDeprecatedAttr(D, Attr, S); break; |
| case AttributeList::AT_destructor: HandleDestructorAttr(D, Attr, S); break; |
| case AttributeList::AT_dllexport: HandleDLLExportAttr (D, Attr, S); break; |
| case AttributeList::AT_dllimport: HandleDLLImportAttr (D, Attr, S); break; |
| case AttributeList::AT_ext_vector_type: |
| HandleExtVectorTypeAttr(D, Attr, S); |
| break; |
| case AttributeList::AT_fastcall: HandleFastCallAttr (D, Attr, S); break; |
| case AttributeList::AT_format: HandleFormatAttr (D, Attr, S); break; |
| case AttributeList::AT_mode: HandleModeAttr (D, Attr, S); break; |
| case AttributeList::AT_nonnull: HandleNonNullAttr (D, Attr, S); break; |
| case AttributeList::AT_noreturn: HandleNoReturnAttr (D, Attr, S); break; |
| case AttributeList::AT_nothrow: HandleNothrowAttr (D, Attr, S); break; |
| case AttributeList::AT_packed: HandlePackedAttr (D, Attr, S); break; |
| case AttributeList::AT_stdcall: HandleStdCallAttr (D, Attr, S); break; |
| case AttributeList::AT_unavailable: HandleUnavailableAttr(D, Attr, S); break; |
| case AttributeList::AT_unused: HandleUnusedAttr (D, Attr, S); break; |
| case AttributeList::AT_vector_size: HandleVectorSizeAttr(D, Attr, S); break; |
| case AttributeList::AT_visibility: HandleVisibilityAttr(D, Attr, S); break; |
| case AttributeList::AT_weak: HandleWeakAttr (D, Attr, S); break; |
| case AttributeList::AT_transparent_union: |
| HandleTransparentUnionAttr(D, Attr, S); |
| break; |
| case AttributeList::AT_objc_gc: HandleObjCGCAttr (D, Attr, S); break; |
| case AttributeList::AT_blocks: HandleBlocksAttr (D, Attr, S); break; |
| case AttributeList::AT_sentinel: HandleSentinelAttr (D, Attr, S); break; |
| case AttributeList::AT_const: HandleConstAttr (D, Attr, S); break; |
| case AttributeList::AT_pure: HandlePureAttr (D, Attr, S); break; |
| default: |
| #if 0 |
| // TODO: when we have the full set of attributes, warn about unknown ones. |
| S.Diag(Attr->getLoc(), diag::warn_attribute_ignored) << Attr->getName(); |
| #endif |
| break; |
| } |
| } |
| |
| /// ProcessDeclAttributeList - Apply all the decl attributes in the specified |
| /// attribute list to the specified decl, ignoring any type attributes. |
| void Sema::ProcessDeclAttributeList(Decl *D, const AttributeList *AttrList) { |
| while (AttrList) { |
| ProcessDeclAttribute(D, *AttrList, *this); |
| AttrList = AttrList->getNext(); |
| } |
| } |
| |
| |
| /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in |
| /// it, apply them to D. This is a bit tricky because PD can have attributes |
| /// specified in many different places, and we need to find and apply them all. |
| void Sema::ProcessDeclAttributes(Decl *D, const Declarator &PD) { |
| // Apply decl attributes from the DeclSpec if present. |
| if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes()) |
| ProcessDeclAttributeList(D, Attrs); |
| |
| // Walk the declarator structure, applying decl attributes that were in a type |
| // position to the decl itself. This handles cases like: |
| // int *__attr__(x)** D; |
| // when X is a decl attribute. |
| for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) |
| if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) |
| ProcessDeclAttributeList(D, Attrs); |
| |
| // Finally, apply any attributes on the decl itself. |
| if (const AttributeList *Attrs = PD.getAttributes()) |
| ProcessDeclAttributeList(D, Attrs); |
| } |
| |