blob: 32c4db6abecf08890429cde22951c523ecf121e6 [file] [log] [blame]
//===- CIndexUSR.cpp - Clang-C Source Indexing Library --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the generation and use of USRs from CXEntities.
//
//===----------------------------------------------------------------------===//
#include "CIndexer.h"
#include "CXCursor.h"
#include "CXString.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/Frontend/ASTUnit.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace clang::cxstring;
//===----------------------------------------------------------------------===//
// USR generation.
//===----------------------------------------------------------------------===//
namespace {
class USRGenerator : public DeclVisitor<USRGenerator> {
llvm::OwningPtr<llvm::SmallString<128> > OwnedBuf;
SmallVectorImpl<char> &Buf;
llvm::raw_svector_ostream Out;
bool IgnoreResults;
ASTContext *Context;
bool generatedLoc;
llvm::DenseMap<const Type *, unsigned> TypeSubstitutions;
public:
explicit USRGenerator(ASTContext *Ctx = 0, SmallVectorImpl<char> *extBuf = 0)
: OwnedBuf(extBuf ? 0 : new llvm::SmallString<128>()),
Buf(extBuf ? *extBuf : *OwnedBuf.get()),
Out(Buf),
IgnoreResults(false),
Context(Ctx),
generatedLoc(false)
{
// Add the USR space prefix.
Out << "c:";
}
StringRef str() {
return Out.str();
}
USRGenerator* operator->() { return this; }
template <typename T>
llvm::raw_svector_ostream &operator<<(const T &x) {
Out << x;
return Out;
}
bool ignoreResults() const { return IgnoreResults; }
// Visitation methods from generating USRs from AST elements.
void VisitDeclContext(DeclContext *D);
void VisitFieldDecl(FieldDecl *D);
void VisitFunctionDecl(FunctionDecl *D);
void VisitNamedDecl(NamedDecl *D);
void VisitNamespaceDecl(NamespaceDecl *D);
void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
void VisitClassTemplateDecl(ClassTemplateDecl *D);
void VisitObjCClassDecl(ObjCClassDecl *CD);
void VisitObjCContainerDecl(ObjCContainerDecl *CD);
void VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *P);
void VisitObjCMethodDecl(ObjCMethodDecl *MD);
void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
void VisitTagDecl(TagDecl *D);
void VisitTypedefDecl(TypedefDecl *D);
void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
void VisitVarDecl(VarDecl *D);
void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
void VisitLinkageSpecDecl(LinkageSpecDecl *D) {
IgnoreResults = true;
}
void VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
IgnoreResults = true;
}
void VisitUsingDecl(UsingDecl *D) {
IgnoreResults = true;
}
void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
IgnoreResults = true;
}
void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) {
IgnoreResults = true;
}
/// Generate the string component containing the location of the
/// declaration.
bool GenLoc(const Decl *D);
/// String generation methods used both by the visitation methods
/// and from other clients that want to directly generate USRs. These
/// methods do not construct complete USRs (which incorporate the parents
/// of an AST element), but only the fragments concerning the AST element
/// itself.
/// Generate a USR for an Objective-C class.
void GenObjCClass(StringRef cls);
/// Generate a USR for an Objective-C class category.
void GenObjCCategory(StringRef cls, StringRef cat);
/// Generate a USR fragment for an Objective-C instance variable. The
/// complete USR can be created by concatenating the USR for the
/// encompassing class with this USR fragment.
void GenObjCIvar(StringRef ivar);
/// Generate a USR fragment for an Objective-C method.
void GenObjCMethod(StringRef sel, bool isInstanceMethod);
/// Generate a USR fragment for an Objective-C property.
void GenObjCProperty(StringRef prop);
/// Generate a USR for an Objective-C protocol.
void GenObjCProtocol(StringRef prot);
void VisitType(QualType T);
void VisitTemplateParameterList(const TemplateParameterList *Params);
void VisitTemplateName(TemplateName Name);
void VisitTemplateArgument(const TemplateArgument &Arg);
/// Emit a Decl's name using NamedDecl::printName() and return true if
/// the decl had no name.
bool EmitDeclName(const NamedDecl *D);
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Generating USRs from ASTS.
//===----------------------------------------------------------------------===//
bool USRGenerator::EmitDeclName(const NamedDecl *D) {
Out.flush();
const unsigned startSize = Buf.size();
D->printName(Out);
Out.flush();
const unsigned endSize = Buf.size();
return startSize == endSize;
}
static bool InAnonymousNamespace(const Decl *D) {
if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(D->getDeclContext()))
return ND->isAnonymousNamespace();
return false;
}
static inline bool ShouldGenerateLocation(const NamedDecl *D) {
return D->getLinkage() != ExternalLinkage && !InAnonymousNamespace(D);
}
void USRGenerator::VisitDeclContext(DeclContext *DC) {
if (NamedDecl *D = dyn_cast<NamedDecl>(DC))
Visit(D);
}
void USRGenerator::VisitFieldDecl(FieldDecl *D) {
// The USR for an ivar declared in a class extension is based on the
// ObjCInterfaceDecl, not the ObjCCategoryDecl.
if (ObjCInterfaceDecl *ID = Context->getObjContainingInterface(D))
Visit(ID);
else
VisitDeclContext(D->getDeclContext());
Out << (isa<ObjCIvarDecl>(D) ? "@" : "@FI@");
if (EmitDeclName(D)) {
// Bit fields can be anonymous.
IgnoreResults = true;
return;
}
}
void USRGenerator::VisitFunctionDecl(FunctionDecl *D) {
if (ShouldGenerateLocation(D) && GenLoc(D))
return;
VisitDeclContext(D->getDeclContext());
if (FunctionTemplateDecl *FunTmpl = D->getDescribedFunctionTemplate()) {
Out << "@FT@";
VisitTemplateParameterList(FunTmpl->getTemplateParameters());
} else
Out << "@F@";
D->printName(Out);
ASTContext &Ctx = *Context;
if (!Ctx.getLangOptions().CPlusPlus || D->isExternC())
return;
// Mangle in type information for the arguments.
for (FunctionDecl::param_iterator I = D->param_begin(), E = D->param_end();
I != E; ++I) {
Out << '#';
if (ParmVarDecl *PD = *I)
VisitType(PD->getType());
}
if (D->isVariadic())
Out << '.';
Out << '#';
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
if (MD->isStatic())
Out << 'S';
if (unsigned quals = MD->getTypeQualifiers())
Out << (char)('0' + quals);
}
}
void USRGenerator::VisitNamedDecl(NamedDecl *D) {
VisitDeclContext(D->getDeclContext());
Out << "@";
if (EmitDeclName(D)) {
// The string can be empty if the declaration has no name; e.g., it is
// the ParmDecl with no name for declaration of a function pointer type,
// e.g.: void (*f)(void *);
// In this case, don't generate a USR.
IgnoreResults = true;
}
}
void USRGenerator::VisitVarDecl(VarDecl *D) {
// VarDecls can be declared 'extern' within a function or method body,
// but their enclosing DeclContext is the function, not the TU. We need
// to check the storage class to correctly generate the USR.
if (ShouldGenerateLocation(D) && GenLoc(D))
return;
VisitDeclContext(D->getDeclContext());
// Variables always have simple names.
StringRef s = D->getName();
// The string can be empty if the declaration has no name; e.g., it is
// the ParmDecl with no name for declaration of a function pointer type, e.g.:
// void (*f)(void *);
// In this case, don't generate a USR.
if (s.empty())
IgnoreResults = true;
else
Out << '@' << s;
}
void USRGenerator::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
GenLoc(D);
return;
}
void USRGenerator::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
GenLoc(D);
return;
}
void USRGenerator::VisitNamespaceDecl(NamespaceDecl *D) {
if (D->isAnonymousNamespace()) {
Out << "@aN";
return;
}
VisitDeclContext(D->getDeclContext());
if (!IgnoreResults)
Out << "@N@" << D->getName();
}
void USRGenerator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
VisitFunctionDecl(D->getTemplatedDecl());
}
void USRGenerator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
VisitTagDecl(D->getTemplatedDecl());
}
void USRGenerator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
VisitDeclContext(D->getDeclContext());
if (!IgnoreResults)
Out << "@NA@" << D->getName();
}
void USRGenerator::VisitObjCMethodDecl(ObjCMethodDecl *D) {
DeclContext *container = D->getDeclContext();
if (ObjCProtocolDecl *pd = dyn_cast<ObjCProtocolDecl>(container)) {
Visit(pd);
}
else {
// The USR for a method declared in a class extension or category is based on
// the ObjCInterfaceDecl, not the ObjCCategoryDecl.
ObjCInterfaceDecl *ID = D->getClassInterface();
if (!ID) {
IgnoreResults = true;
return;
}
Visit(ID);
}
// Ideally we would use 'GenObjCMethod', but this is such a hot path
// for Objective-C code that we don't want to use
// DeclarationName::getAsString().
Out << (D->isInstanceMethod() ? "(im)" : "(cm)");
DeclarationName N(D->getSelector());
N.printName(Out);
}
void USRGenerator::VisitObjCClassDecl(ObjCClassDecl *D) {
// FIXME: @class declarations can refer to multiple classes. We need
// to be able to traverse these.
IgnoreResults = true;
}
void USRGenerator::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D) {
// FIXME: @protocol declarations can refer to multiple protocols. We need
// to be able to traverse these.
IgnoreResults = true;
}
void USRGenerator::VisitObjCContainerDecl(ObjCContainerDecl *D) {
switch (D->getKind()) {
default:
llvm_unreachable("Invalid ObjC container.");
case Decl::ObjCInterface:
case Decl::ObjCImplementation:
GenObjCClass(D->getName());
break;
case Decl::ObjCCategory: {
ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
ObjCInterfaceDecl *ID = CD->getClassInterface();
if (!ID) {
// Handle invalid code where the @interface might not
// have been specified.
// FIXME: We should be able to generate this USR even if the
// @interface isn't available.
IgnoreResults = true;
return;
}
// Specially handle class extensions, which are anonymous categories.
// We want to mangle in the location to uniquely distinguish them.
if (CD->IsClassExtension()) {
Out << "objc(ext)" << ID->getName() << '@';
GenLoc(CD);
}
else
GenObjCCategory(ID->getName(), CD->getName());
break;
}
case Decl::ObjCCategoryImpl: {
ObjCCategoryImplDecl *CD = cast<ObjCCategoryImplDecl>(D);
ObjCInterfaceDecl *ID = CD->getClassInterface();
if (!ID) {
// Handle invalid code where the @interface might not
// have been specified.
// FIXME: We should be able to generate this USR even if the
// @interface isn't available.
IgnoreResults = true;
return;
}
GenObjCCategory(ID->getName(), CD->getName());
break;
}
case Decl::ObjCProtocol:
GenObjCProtocol(cast<ObjCProtocolDecl>(D)->getName());
break;
}
}
void USRGenerator::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
// The USR for a property declared in a class extension or category is based
// on the ObjCInterfaceDecl, not the ObjCCategoryDecl.
if (ObjCInterfaceDecl *ID = Context->getObjContainingInterface(D))
Visit(ID);
else
Visit(cast<Decl>(D->getDeclContext()));
GenObjCProperty(D->getName());
}
void USRGenerator::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
if (ObjCPropertyDecl *PD = D->getPropertyDecl()) {
VisitObjCPropertyDecl(PD);
return;
}
IgnoreResults = true;
}
void USRGenerator::VisitTagDecl(TagDecl *D) {
// Add the location of the tag decl to handle resolution across
// translation units.
if (ShouldGenerateLocation(D) && GenLoc(D))
return;
D = D->getCanonicalDecl();
VisitDeclContext(D->getDeclContext());
bool AlreadyStarted = false;
if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(D)) {
if (ClassTemplateDecl *ClassTmpl = CXXRecord->getDescribedClassTemplate()) {
AlreadyStarted = true;
switch (D->getTagKind()) {
case TTK_Struct: Out << "@ST"; break;
case TTK_Class: Out << "@CT"; break;
case TTK_Union: Out << "@UT"; break;
case TTK_Enum: llvm_unreachable("enum template"); break;
}
VisitTemplateParameterList(ClassTmpl->getTemplateParameters());
} else if (ClassTemplatePartialSpecializationDecl *PartialSpec
= dyn_cast<ClassTemplatePartialSpecializationDecl>(CXXRecord)) {
AlreadyStarted = true;
switch (D->getTagKind()) {
case TTK_Struct: Out << "@SP"; break;
case TTK_Class: Out << "@CP"; break;
case TTK_Union: Out << "@UP"; break;
case TTK_Enum: llvm_unreachable("enum partial specialization"); break;
}
VisitTemplateParameterList(PartialSpec->getTemplateParameters());
}
}
if (!AlreadyStarted) {
switch (D->getTagKind()) {
case TTK_Struct: Out << "@S"; break;
case TTK_Class: Out << "@C"; break;
case TTK_Union: Out << "@U"; break;
case TTK_Enum: Out << "@E"; break;
}
}
Out << '@';
Out.flush();
assert(Buf.size() > 0);
const unsigned off = Buf.size() - 1;
if (EmitDeclName(D)) {
if (const TypedefNameDecl *TD = D->getTypedefNameForAnonDecl()) {
Buf[off] = 'A';
Out << '@' << *TD;
}
else
Buf[off] = 'a';
}
// For a class template specialization, mangle the template arguments.
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(D)) {
const TemplateArgumentList &Args = Spec->getTemplateInstantiationArgs();
Out << '>';
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
Out << '#';
VisitTemplateArgument(Args.get(I));
}
}
}
void USRGenerator::VisitTypedefDecl(TypedefDecl *D) {
if (ShouldGenerateLocation(D) && GenLoc(D))
return;
DeclContext *DC = D->getDeclContext();
if (NamedDecl *DCN = dyn_cast<NamedDecl>(DC))
Visit(DCN);
Out << "@T@";
Out << D->getName();
}
void USRGenerator::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
GenLoc(D);
return;
}
bool USRGenerator::GenLoc(const Decl *D) {
if (generatedLoc)
return IgnoreResults;
generatedLoc = true;
// Guard against null declarations in invalid code.
if (!D) {
IgnoreResults = true;
return true;
}
// Use the location of canonical decl.
D = D->getCanonicalDecl();
const SourceManager &SM = Context->getSourceManager();
SourceLocation L = D->getLocStart();
if (L.isInvalid()) {
IgnoreResults = true;
return true;
}
L = SM.getExpansionLoc(L);
const std::pair<FileID, unsigned> &Decomposed = SM.getDecomposedLoc(L);
const FileEntry *FE = SM.getFileEntryForID(Decomposed.first);
if (FE) {
Out << llvm::sys::path::filename(FE->getName());
}
else {
// This case really isn't interesting.
IgnoreResults = true;
return true;
}
// Use the offest into the FileID to represent the location. Using
// a line/column can cause us to look back at the original source file,
// which is expensive.
Out << '@' << Decomposed.second;
return IgnoreResults;
}
void USRGenerator::VisitType(QualType T) {
// This method mangles in USR information for types. It can possibly
// just reuse the naming-mangling logic used by codegen, although the
// requirements for USRs might not be the same.
ASTContext &Ctx = *Context;
do {
T = Ctx.getCanonicalType(T);
Qualifiers Q = T.getQualifiers();
unsigned qVal = 0;
if (Q.hasConst())
qVal |= 0x1;
if (Q.hasVolatile())
qVal |= 0x2;
if (Q.hasRestrict())
qVal |= 0x4;
if(qVal)
Out << ((char) ('0' + qVal));
// Mangle in ObjC GC qualifiers?
if (const PackExpansionType *Expansion = T->getAs<PackExpansionType>()) {
Out << 'P';
T = Expansion->getPattern();
}
if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
unsigned char c = '\0';
switch (BT->getKind()) {
case BuiltinType::Void:
c = 'v'; break;
case BuiltinType::Bool:
c = 'b'; break;
case BuiltinType::Char_U:
case BuiltinType::UChar:
c = 'c'; break;
case BuiltinType::Char16:
c = 'q'; break;
case BuiltinType::Char32:
c = 'w'; break;
case BuiltinType::UShort:
c = 's'; break;
case BuiltinType::UInt:
c = 'i'; break;
case BuiltinType::ULong:
c = 'l'; break;
case BuiltinType::ULongLong:
c = 'k'; break;
case BuiltinType::UInt128:
c = 'j'; break;
case BuiltinType::Char_S:
case BuiltinType::SChar:
c = 'C'; break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
c = 'W'; break;
case BuiltinType::Short:
c = 'S'; break;
case BuiltinType::Int:
c = 'I'; break;
case BuiltinType::Long:
c = 'L'; break;
case BuiltinType::LongLong:
c = 'K'; break;
case BuiltinType::Int128:
c = 'J'; break;
case BuiltinType::Half:
c = 'h'; break;
case BuiltinType::Float:
c = 'f'; break;
case BuiltinType::Double:
c = 'd'; break;
case BuiltinType::LongDouble:
c = 'D'; break;
case BuiltinType::NullPtr:
c = 'n'; break;
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
IgnoreResults = true;
return;
case BuiltinType::ObjCId:
c = 'o'; break;
case BuiltinType::ObjCClass:
c = 'O'; break;
case BuiltinType::ObjCSel:
c = 'e'; break;
}
Out << c;
return;
}
// If we have already seen this (non-built-in) type, use a substitution
// encoding.
llvm::DenseMap<const Type *, unsigned>::iterator Substitution
= TypeSubstitutions.find(T.getTypePtr());
if (Substitution != TypeSubstitutions.end()) {
Out << 'S' << Substitution->second << '_';
return;
} else {
// Record this as a substitution.
unsigned Number = TypeSubstitutions.size();
TypeSubstitutions[T.getTypePtr()] = Number;
}
if (const PointerType *PT = T->getAs<PointerType>()) {
Out << '*';
T = PT->getPointeeType();
continue;
}
if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
Out << '&';
T = RT->getPointeeType();
continue;
}
if (const FunctionProtoType *FT = T->getAs<FunctionProtoType>()) {
Out << 'F';
VisitType(FT->getResultType());
for (FunctionProtoType::arg_type_iterator
I = FT->arg_type_begin(), E = FT->arg_type_end(); I!=E; ++I) {
VisitType(*I);
}
if (FT->isVariadic())
Out << '.';
return;
}
if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
Out << 'B';
T = BT->getPointeeType();
continue;
}
if (const ComplexType *CT = T->getAs<ComplexType>()) {
Out << '<';
T = CT->getElementType();
continue;
}
if (const TagType *TT = T->getAs<TagType>()) {
Out << '$';
VisitTagDecl(TT->getDecl());
return;
}
if (const TemplateTypeParmType *TTP = T->getAs<TemplateTypeParmType>()) {
Out << 't' << TTP->getDepth() << '.' << TTP->getIndex();
return;
}
if (const TemplateSpecializationType *Spec
= T->getAs<TemplateSpecializationType>()) {
Out << '>';
VisitTemplateName(Spec->getTemplateName());
Out << Spec->getNumArgs();
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
VisitTemplateArgument(Spec->getArg(I));
return;
}
// Unhandled type.
Out << ' ';
break;
} while (true);
}
void USRGenerator::VisitTemplateParameterList(
const TemplateParameterList *Params) {
if (!Params)
return;
Out << '>' << Params->size();
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
Out << '#';
if (isa<TemplateTypeParmDecl>(*P)) {
if (cast<TemplateTypeParmDecl>(*P)->isParameterPack())
Out<< 'p';
Out << 'T';
continue;
}
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
if (NTTP->isParameterPack())
Out << 'p';
Out << 'N';
VisitType(NTTP->getType());
continue;
}
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
if (TTP->isParameterPack())
Out << 'p';
Out << 't';
VisitTemplateParameterList(TTP->getTemplateParameters());
}
}
void USRGenerator::VisitTemplateName(TemplateName Name) {
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(Template)) {
Out << 't' << TTP->getDepth() << '.' << TTP->getIndex();
return;
}
Visit(Template);
return;
}
// FIXME: Visit dependent template names.
}
void USRGenerator::VisitTemplateArgument(const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
break;
case TemplateArgument::Declaration:
if (Decl *D = Arg.getAsDecl())
Visit(D);
break;
case TemplateArgument::TemplateExpansion:
Out << 'P'; // pack expansion of...
// Fall through
case TemplateArgument::Template:
VisitTemplateName(Arg.getAsTemplateOrTemplatePattern());
break;
case TemplateArgument::Expression:
// FIXME: Visit expressions.
break;
case TemplateArgument::Pack:
Out << 'p' << Arg.pack_size();
for (TemplateArgument::pack_iterator P = Arg.pack_begin(), PEnd = Arg.pack_end();
P != PEnd; ++P)
VisitTemplateArgument(*P);
break;
case TemplateArgument::Type:
VisitType(Arg.getAsType());
break;
case TemplateArgument::Integral:
Out << 'V';
VisitType(Arg.getIntegralType());
Out << *Arg.getAsIntegral();
break;
}
}
//===----------------------------------------------------------------------===//
// General purpose USR generation methods.
//===----------------------------------------------------------------------===//
void USRGenerator::GenObjCClass(StringRef cls) {
Out << "objc(cs)" << cls;
}
void USRGenerator::GenObjCCategory(StringRef cls, StringRef cat) {
Out << "objc(cy)" << cls << '@' << cat;
}
void USRGenerator::GenObjCIvar(StringRef ivar) {
Out << '@' << ivar;
}
void USRGenerator::GenObjCMethod(StringRef meth, bool isInstanceMethod) {
Out << (isInstanceMethod ? "(im)" : "(cm)") << meth;
}
void USRGenerator::GenObjCProperty(StringRef prop) {
Out << "(py)" << prop;
}
void USRGenerator::GenObjCProtocol(StringRef prot) {
Out << "objc(pl)" << prot;
}
//===----------------------------------------------------------------------===//
// API hooks.
//===----------------------------------------------------------------------===//
static inline StringRef extractUSRSuffix(StringRef s) {
return s.startswith("c:") ? s.substr(2) : "";
}
bool cxcursor::getDeclCursorUSR(const Decl *D, SmallVectorImpl<char> &Buf) {
// Don't generate USRs for things with invalid locations.
if (!D || D->getLocStart().isInvalid())
return true;
// Check if the cursor has 'NoLinkage'.
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
switch (ND->getLinkage()) {
case ExternalLinkage:
// Generate USRs for all entities with external linkage.
break;
case NoLinkage:
case UniqueExternalLinkage:
// We allow enums, typedefs, and structs that have no linkage to
// have USRs that are anchored to the file they were defined in
// (e.g., the header). This is a little gross, but in principal
// enums/anonymous structs/etc. defined in a common header file
// are referred to across multiple translation units.
if (isa<TagDecl>(ND) || isa<TypedefDecl>(ND) ||
isa<EnumConstantDecl>(ND) || isa<FieldDecl>(ND) ||
isa<VarDecl>(ND) || isa<NamespaceDecl>(ND))
break;
// Fall-through.
case InternalLinkage:
if (isa<FunctionDecl>(ND))
break;
}
{
USRGenerator UG(&D->getASTContext(), &Buf);
UG->Visit(const_cast<Decl*>(D));
if (UG->ignoreResults())
return true;
}
return false;
}
extern "C" {
CXString clang_getCursorUSR(CXCursor C) {
const CXCursorKind &K = clang_getCursorKind(C);
if (clang_isDeclaration(K)) {
Decl *D = cxcursor::getCursorDecl(C);
CXTranslationUnit TU = cxcursor::getCursorTU(C);
if (!TU)
return createCXString("");
CXStringBuf *buf = cxstring::getCXStringBuf(TU);
if (!buf)
return createCXString("");
bool Ignore = cxcursor::getDeclCursorUSR(D, buf->Data);
if (Ignore) {
disposeCXStringBuf(buf);
return createCXString("");
}
// Return the C-string, but don't make a copy since it is already in
// the string buffer.
buf->Data.push_back('\0');
return createCXString(buf);
}
if (K == CXCursor_MacroDefinition) {
CXTranslationUnit TU = cxcursor::getCursorTU(C);
if (!TU)
return createCXString("");
CXStringBuf *buf = cxstring::getCXStringBuf(TU);
if (!buf)
return createCXString("");
{
USRGenerator UG(&cxcursor::getCursorASTUnit(C)->getASTContext(),
&buf->Data);
UG << "macro@"
<< cxcursor::getCursorMacroDefinition(C)->getName()->getNameStart();
}
buf->Data.push_back('\0');
return createCXString(buf);
}
return createCXString("");
}
CXString clang_constructUSR_ObjCIvar(const char *name, CXString classUSR) {
USRGenerator UG;
UG << extractUSRSuffix(clang_getCString(classUSR));
UG->GenObjCIvar(name);
return createCXString(UG.str(), true);
}
CXString clang_constructUSR_ObjCMethod(const char *name,
unsigned isInstanceMethod,
CXString classUSR) {
USRGenerator UG;
UG << extractUSRSuffix(clang_getCString(classUSR));
UG->GenObjCMethod(name, isInstanceMethod);
return createCXString(UG.str(), true);
}
CXString clang_constructUSR_ObjCClass(const char *name) {
USRGenerator UG;
UG->GenObjCClass(name);
return createCXString(UG.str(), true);
}
CXString clang_constructUSR_ObjCProtocol(const char *name) {
USRGenerator UG;
UG->GenObjCProtocol(name);
return createCXString(UG.str(), true);
}
CXString clang_constructUSR_ObjCCategory(const char *class_name,
const char *category_name) {
USRGenerator UG;
UG->GenObjCCategory(class_name, category_name);
return createCXString(UG.str(), true);
}
CXString clang_constructUSR_ObjCProperty(const char *property,
CXString classUSR) {
USRGenerator UG;
UG << extractUSRSuffix(clang_getCString(classUSR));
UG->GenObjCProperty(property);
return createCXString(UG.str(), true);
}
} // end extern "C"