| //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "SemaInherit.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclVisitor.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/Compiler.h" |
| #include <algorithm> // for std::equal |
| #include <map> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // CheckDefaultArgumentVisitor |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses |
| /// the default argument of a parameter to determine whether it |
| /// contains any ill-formed subexpressions. For example, this will |
| /// diagnose the use of local variables or parameters within the |
| /// default argument expression. |
| class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor |
| : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { |
| Expr *DefaultArg; |
| Sema *S; |
| |
| public: |
| CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) |
| : DefaultArg(defarg), S(s) {} |
| |
| bool VisitExpr(Expr *Node); |
| bool VisitDeclRefExpr(DeclRefExpr *DRE); |
| bool VisitCXXThisExpr(CXXThisExpr *ThisE); |
| }; |
| |
| /// VisitExpr - Visit all of the children of this expression. |
| bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { |
| bool IsInvalid = false; |
| for (Stmt::child_iterator I = Node->child_begin(), |
| E = Node->child_end(); I != E; ++I) |
| IsInvalid |= Visit(*I); |
| return IsInvalid; |
| } |
| |
| /// VisitDeclRefExpr - Visit a reference to a declaration, to |
| /// determine whether this declaration can be used in the default |
| /// argument expression. |
| bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { |
| NamedDecl *Decl = DRE->getDecl(); |
| if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { |
| // C++ [dcl.fct.default]p9 |
| // Default arguments are evaluated each time the function is |
| // called. The order of evaluation of function arguments is |
| // unspecified. Consequently, parameters of a function shall not |
| // be used in default argument expressions, even if they are not |
| // evaluated. Parameters of a function declared before a default |
| // argument expression are in scope and can hide namespace and |
| // class member names. |
| return S->Diag(DRE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_param) |
| << Param->getDeclName() << DefaultArg->getSourceRange(); |
| } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { |
| // C++ [dcl.fct.default]p7 |
| // Local variables shall not be used in default argument |
| // expressions. |
| if (VDecl->isBlockVarDecl()) |
| return S->Diag(DRE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_local) |
| << VDecl->getDeclName() << DefaultArg->getSourceRange(); |
| } |
| |
| return false; |
| } |
| |
| /// VisitCXXThisExpr - Visit a C++ "this" expression. |
| bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { |
| // C++ [dcl.fct.default]p8: |
| // The keyword this shall not be used in a default argument of a |
| // member function. |
| return S->Diag(ThisE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_this) |
| << ThisE->getSourceRange(); |
| } |
| } |
| |
| /// ActOnParamDefaultArgument - Check whether the default argument |
| /// provided for a function parameter is well-formed. If so, attach it |
| /// to the parameter declaration. |
| void |
| Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, |
| ExprArg defarg) { |
| ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); |
| ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>()); |
| QualType ParamType = Param->getType(); |
| |
| // Default arguments are only permitted in C++ |
| if (!getLangOptions().CPlusPlus) { |
| Diag(EqualLoc, diag::err_param_default_argument) |
| << DefaultArg->getSourceRange(); |
| Param->setInvalidDecl(); |
| return; |
| } |
| |
| // C++ [dcl.fct.default]p5 |
| // A default argument expression is implicitly converted (clause |
| // 4) to the parameter type. The default argument expression has |
| // the same semantic constraints as the initializer expression in |
| // a declaration of a variable of the parameter type, using the |
| // copy-initialization semantics (8.5). |
| Expr *DefaultArgPtr = DefaultArg.get(); |
| bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType, |
| EqualLoc, |
| Param->getDeclName(), |
| /*DirectInit=*/false); |
| if (DefaultArgPtr != DefaultArg.get()) { |
| DefaultArg.take(); |
| DefaultArg.reset(DefaultArgPtr); |
| } |
| if (DefaultInitFailed) { |
| return; |
| } |
| |
| // Check that the default argument is well-formed |
| CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); |
| if (DefaultArgChecker.Visit(DefaultArg.get())) { |
| Param->setInvalidDecl(); |
| return; |
| } |
| |
| // Okay: add the default argument to the parameter |
| Param->setDefaultArg(DefaultArg.take()); |
| } |
| |
| /// ActOnParamUnparsedDefaultArgument - We've seen a default |
| /// argument for a function parameter, but we can't parse it yet |
| /// because we're inside a class definition. Note that this default |
| /// argument will be parsed later. |
| void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param, |
| SourceLocation EqualLoc) { |
| ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); |
| if (Param) |
| Param->setUnparsedDefaultArg(); |
| } |
| |
| /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of |
| /// the default argument for the parameter param failed. |
| void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) { |
| cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl(); |
| } |
| |
| /// CheckExtraCXXDefaultArguments - Check for any extra default |
| /// arguments in the declarator, which is not a function declaration |
| /// or definition and therefore is not permitted to have default |
| /// arguments. This routine should be invoked for every declarator |
| /// that is not a function declaration or definition. |
| void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { |
| // C++ [dcl.fct.default]p3 |
| // A default argument expression shall be specified only in the |
| // parameter-declaration-clause of a function declaration or in a |
| // template-parameter (14.1). It shall not be specified for a |
| // parameter pack. If it is specified in a |
| // parameter-declaration-clause, it shall not occur within a |
| // declarator or abstract-declarator of a parameter-declaration. |
| for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| DeclaratorChunk &chunk = D.getTypeObject(i); |
| if (chunk.Kind == DeclaratorChunk::Function) { |
| for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { |
| ParmVarDecl *Param = |
| cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>()); |
| if (Param->hasUnparsedDefaultArg()) { |
| CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; |
| Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); |
| delete Toks; |
| chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; |
| } else if (Param->getDefaultArg()) { |
| Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| << Param->getDefaultArg()->getSourceRange(); |
| Param->setDefaultArg(0); |
| } |
| } |
| } |
| } |
| } |
| |
| // MergeCXXFunctionDecl - Merge two declarations of the same C++ |
| // function, once we already know that they have the same |
| // type. Subroutine of MergeFunctionDecl. Returns true if there was an |
| // error, false otherwise. |
| bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { |
| bool Invalid = false; |
| |
| // C++ [dcl.fct.default]p4: |
| // |
| // For non-template functions, default arguments can be added in |
| // later declarations of a function in the same |
| // scope. Declarations in different scopes have completely |
| // distinct sets of default arguments. That is, declarations in |
| // inner scopes do not acquire default arguments from |
| // declarations in outer scopes, and vice versa. In a given |
| // function declaration, all parameters subsequent to a |
| // parameter with a default argument shall have default |
| // arguments supplied in this or previous declarations. A |
| // default argument shall not be redefined by a later |
| // declaration (not even to the same value). |
| for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *OldParam = Old->getParamDecl(p); |
| ParmVarDecl *NewParam = New->getParamDecl(p); |
| |
| if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) { |
| Diag(NewParam->getLocation(), |
| diag::err_param_default_argument_redefinition) |
| << NewParam->getDefaultArg()->getSourceRange(); |
| Diag(OldParam->getLocation(), diag::note_previous_definition); |
| Invalid = true; |
| } else if (OldParam->getDefaultArg()) { |
| // Merge the old default argument into the new parameter |
| NewParam->setDefaultArg(OldParam->getDefaultArg()); |
| } |
| } |
| |
| return Invalid; |
| } |
| |
| /// CheckCXXDefaultArguments - Verify that the default arguments for a |
| /// function declaration are well-formed according to C++ |
| /// [dcl.fct.default]. |
| void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { |
| unsigned NumParams = FD->getNumParams(); |
| unsigned p; |
| |
| // Find first parameter with a default argument |
| for (p = 0; p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (Param->getDefaultArg()) |
| break; |
| } |
| |
| // C++ [dcl.fct.default]p4: |
| // In a given function declaration, all parameters |
| // subsequent to a parameter with a default argument shall |
| // have default arguments supplied in this or previous |
| // declarations. A default argument shall not be redefined |
| // by a later declaration (not even to the same value). |
| unsigned LastMissingDefaultArg = 0; |
| for(; p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (!Param->getDefaultArg()) { |
| if (Param->isInvalidDecl()) |
| /* We already complained about this parameter. */; |
| else if (Param->getIdentifier()) |
| Diag(Param->getLocation(), |
| diag::err_param_default_argument_missing_name) |
| << Param->getIdentifier(); |
| else |
| Diag(Param->getLocation(), |
| diag::err_param_default_argument_missing); |
| |
| LastMissingDefaultArg = p; |
| } |
| } |
| |
| if (LastMissingDefaultArg > 0) { |
| // Some default arguments were missing. Clear out all of the |
| // default arguments up to (and including) the last missing |
| // default argument, so that we leave the function parameters |
| // in a semantically valid state. |
| for (p = 0; p <= LastMissingDefaultArg; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (Param->getDefaultArg()) { |
| if (!Param->hasUnparsedDefaultArg()) |
| Param->getDefaultArg()->Destroy(Context); |
| Param->setDefaultArg(0); |
| } |
| } |
| } |
| } |
| |
| /// isCurrentClassName - Determine whether the identifier II is the |
| /// name of the class type currently being defined. In the case of |
| /// nested classes, this will only return true if II is the name of |
| /// the innermost class. |
| bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, |
| const CXXScopeSpec *SS) { |
| CXXRecordDecl *CurDecl; |
| if (SS && SS->isSet() && !SS->isInvalid()) { |
| DeclContext *DC = computeDeclContext(*SS); |
| CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); |
| } else |
| CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); |
| |
| if (CurDecl) |
| return &II == CurDecl->getIdentifier(); |
| else |
| return false; |
| } |
| |
| /// \brief Check the validity of a C++ base class specifier. |
| /// |
| /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics |
| /// and returns NULL otherwise. |
| CXXBaseSpecifier * |
| Sema::CheckBaseSpecifier(CXXRecordDecl *Class, |
| SourceRange SpecifierRange, |
| bool Virtual, AccessSpecifier Access, |
| QualType BaseType, |
| SourceLocation BaseLoc) { |
| // C++ [class.union]p1: |
| // A union shall not have base classes. |
| if (Class->isUnion()) { |
| Diag(Class->getLocation(), diag::err_base_clause_on_union) |
| << SpecifierRange; |
| return 0; |
| } |
| |
| if (BaseType->isDependentType()) |
| return new CXXBaseSpecifier(SpecifierRange, Virtual, |
| Class->getTagKind() == RecordDecl::TK_class, |
| Access, BaseType); |
| |
| // Base specifiers must be record types. |
| if (!BaseType->isRecordType()) { |
| Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; |
| return 0; |
| } |
| |
| // C++ [class.union]p1: |
| // A union shall not be used as a base class. |
| if (BaseType->isUnionType()) { |
| Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; |
| return 0; |
| } |
| |
| // C++ [class.derived]p2: |
| // The class-name in a base-specifier shall not be an incompletely |
| // defined class. |
| if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, |
| SpecifierRange)) |
| return 0; |
| |
| // If the base class is polymorphic, the new one is, too. |
| RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl(); |
| assert(BaseDecl && "Record type has no declaration"); |
| BaseDecl = BaseDecl->getDefinition(Context); |
| assert(BaseDecl && "Base type is not incomplete, but has no definition"); |
| if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic()) |
| Class->setPolymorphic(true); |
| |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is [...] a class with [...] no base classes [...]. |
| Class->setAggregate(false); |
| Class->setPOD(false); |
| |
| if (Virtual) { |
| // C++ [class.ctor]p5: |
| // A constructor is trivial if its class has no virtual base classes. |
| Class->setHasTrivialConstructor(false); |
| } else { |
| // C++ [class.ctor]p5: |
| // A constructor is trivial if all the direct base classes of its |
| // class have trivial constructors. |
| Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)-> |
| hasTrivialConstructor()); |
| } |
| |
| // C++ [class.ctor]p3: |
| // A destructor is trivial if all the direct base classes of its class |
| // have trivial destructors. |
| Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)-> |
| hasTrivialDestructor()); |
| |
| // Create the base specifier. |
| // FIXME: Allocate via ASTContext? |
| return new CXXBaseSpecifier(SpecifierRange, Virtual, |
| Class->getTagKind() == RecordDecl::TK_class, |
| Access, BaseType); |
| } |
| |
| /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is |
| /// one entry in the base class list of a class specifier, for |
| /// example: |
| /// class foo : public bar, virtual private baz { |
| /// 'public bar' and 'virtual private baz' are each base-specifiers. |
| Sema::BaseResult |
| Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, |
| bool Virtual, AccessSpecifier Access, |
| TypeTy *basetype, SourceLocation BaseLoc) { |
| AdjustDeclIfTemplate(classdecl); |
| CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>()); |
| QualType BaseType = QualType::getFromOpaquePtr(basetype); |
| if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, |
| Virtual, Access, |
| BaseType, BaseLoc)) |
| return BaseSpec; |
| |
| return true; |
| } |
| |
| /// \brief Performs the actual work of attaching the given base class |
| /// specifiers to a C++ class. |
| bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, |
| unsigned NumBases) { |
| if (NumBases == 0) |
| return false; |
| |
| // Used to keep track of which base types we have already seen, so |
| // that we can properly diagnose redundant direct base types. Note |
| // that the key is always the unqualified canonical type of the base |
| // class. |
| std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; |
| |
| // Copy non-redundant base specifiers into permanent storage. |
| unsigned NumGoodBases = 0; |
| bool Invalid = false; |
| for (unsigned idx = 0; idx < NumBases; ++idx) { |
| QualType NewBaseType |
| = Context.getCanonicalType(Bases[idx]->getType()); |
| NewBaseType = NewBaseType.getUnqualifiedType(); |
| |
| if (KnownBaseTypes[NewBaseType]) { |
| // C++ [class.mi]p3: |
| // A class shall not be specified as a direct base class of a |
| // derived class more than once. |
| Diag(Bases[idx]->getSourceRange().getBegin(), |
| diag::err_duplicate_base_class) |
| << KnownBaseTypes[NewBaseType]->getType() |
| << Bases[idx]->getSourceRange(); |
| |
| // Delete the duplicate base class specifier; we're going to |
| // overwrite its pointer later. |
| delete Bases[idx]; |
| |
| Invalid = true; |
| } else { |
| // Okay, add this new base class. |
| KnownBaseTypes[NewBaseType] = Bases[idx]; |
| Bases[NumGoodBases++] = Bases[idx]; |
| } |
| } |
| |
| // Attach the remaining base class specifiers to the derived class. |
| Class->setBases(Bases, NumGoodBases); |
| |
| // Delete the remaining (good) base class specifiers, since their |
| // data has been copied into the CXXRecordDecl. |
| for (unsigned idx = 0; idx < NumGoodBases; ++idx) |
| delete Bases[idx]; |
| |
| return Invalid; |
| } |
| |
| /// ActOnBaseSpecifiers - Attach the given base specifiers to the |
| /// class, after checking whether there are any duplicate base |
| /// classes. |
| void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, |
| unsigned NumBases) { |
| if (!ClassDecl || !Bases || !NumBases) |
| return; |
| |
| AdjustDeclIfTemplate(ClassDecl); |
| AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()), |
| (CXXBaseSpecifier**)(Bases), NumBases); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C++ class member Handling |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member |
| /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the |
| /// bitfield width if there is one and 'InitExpr' specifies the initializer if |
| /// any. |
| Sema::DeclPtrTy |
| Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, |
| ExprTy *BW, ExprTy *InitExpr, bool Deleted) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| DeclarationName Name = GetNameForDeclarator(D); |
| Expr *BitWidth = static_cast<Expr*>(BW); |
| Expr *Init = static_cast<Expr*>(InitExpr); |
| SourceLocation Loc = D.getIdentifierLoc(); |
| |
| bool isFunc = D.isFunctionDeclarator(); |
| |
| // C++ 9.2p6: A member shall not be declared to have automatic storage |
| // duration (auto, register) or with the extern storage-class-specifier. |
| // C++ 7.1.1p8: The mutable specifier can be applied only to names of class |
| // data members and cannot be applied to names declared const or static, |
| // and cannot be applied to reference members. |
| switch (DS.getStorageClassSpec()) { |
| case DeclSpec::SCS_unspecified: |
| case DeclSpec::SCS_typedef: |
| case DeclSpec::SCS_static: |
| // FALL THROUGH. |
| break; |
| case DeclSpec::SCS_mutable: |
| if (isFunc) { |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); |
| else |
| Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); |
| |
| // FIXME: It would be nicer if the keyword was ignored only for this |
| // declarator. Otherwise we could get follow-up errors. |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } else { |
| QualType T = GetTypeForDeclarator(D, S); |
| diag::kind err = static_cast<diag::kind>(0); |
| if (T->isReferenceType()) |
| err = diag::err_mutable_reference; |
| else if (T.isConstQualified()) |
| err = diag::err_mutable_const; |
| if (err != 0) { |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), err); |
| else |
| Diag(DS.getThreadSpecLoc(), err); |
| // FIXME: It would be nicer if the keyword was ignored only for this |
| // declarator. Otherwise we could get follow-up errors. |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| } |
| break; |
| default: |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_storageclass_invalid_for_member); |
| else |
| Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| if (!isFunc && |
| D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename && |
| D.getNumTypeObjects() == 0) { |
| // Check also for this case: |
| // |
| // typedef int f(); |
| // f a; |
| // |
| QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep()); |
| isFunc = TDType->isFunctionType(); |
| } |
| |
| bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || |
| DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && |
| !isFunc); |
| |
| Decl *Member; |
| if (isInstField) { |
| Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, |
| AS); |
| assert(Member && "HandleField never returns null"); |
| } else { |
| Member = ActOnDeclarator(S, D).getAs<Decl>(); |
| if (!Member) { |
| if (BitWidth) DeleteExpr(BitWidth); |
| return DeclPtrTy(); |
| } |
| |
| // Non-instance-fields can't have a bitfield. |
| if (BitWidth) { |
| if (Member->isInvalidDecl()) { |
| // don't emit another diagnostic. |
| } else if (isa<VarDecl>(Member)) { |
| // C++ 9.6p3: A bit-field shall not be a static member. |
| // "static member 'A' cannot be a bit-field" |
| Diag(Loc, diag::err_static_not_bitfield) |
| << Name << BitWidth->getSourceRange(); |
| } else if (isa<TypedefDecl>(Member)) { |
| // "typedef member 'x' cannot be a bit-field" |
| Diag(Loc, diag::err_typedef_not_bitfield) |
| << Name << BitWidth->getSourceRange(); |
| } else { |
| // A function typedef ("typedef int f(); f a;"). |
| // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
| Diag(Loc, diag::err_not_integral_type_bitfield) |
| << Name << cast<ValueDecl>(Member)->getType() |
| << BitWidth->getSourceRange(); |
| } |
| |
| DeleteExpr(BitWidth); |
| BitWidth = 0; |
| Member->setInvalidDecl(); |
| } |
| |
| Member->setAccess(AS); |
| } |
| |
| assert((Name || isInstField) && "No identifier for non-field ?"); |
| |
| if (Init) |
| AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false); |
| if (Deleted) // FIXME: Source location is not very good. |
| SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin()); |
| |
| if (isInstField) { |
| FieldCollector->Add(cast<FieldDecl>(Member)); |
| return DeclPtrTy(); |
| } |
| return DeclPtrTy::make(Member); |
| } |
| |
| /// ActOnMemInitializer - Handle a C++ member initializer. |
| Sema::MemInitResult |
| Sema::ActOnMemInitializer(DeclPtrTy ConstructorD, |
| Scope *S, |
| IdentifierInfo *MemberOrBase, |
| SourceLocation IdLoc, |
| SourceLocation LParenLoc, |
| ExprTy **Args, unsigned NumArgs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>()); |
| if (!Constructor) { |
| // The user wrote a constructor initializer on a function that is |
| // not a C++ constructor. Ignore the error for now, because we may |
| // have more member initializers coming; we'll diagnose it just |
| // once in ActOnMemInitializers. |
| return true; |
| } |
| |
| CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| |
| // C++ [class.base.init]p2: |
| // Names in a mem-initializer-id are looked up in the scope of the |
| // constructor’s class and, if not found in that scope, are looked |
| // up in the scope containing the constructor’s |
| // definition. [Note: if the constructor’s class contains a member |
| // with the same name as a direct or virtual base class of the |
| // class, a mem-initializer-id naming the member or base class and |
| // composed of a single identifier refers to the class member. A |
| // mem-initializer-id for the hidden base class may be specified |
| // using a qualified name. ] |
| // Look for a member, first. |
| FieldDecl *Member = 0; |
| DeclContext::lookup_result Result |
| = ClassDecl->lookup(Context, MemberOrBase); |
| if (Result.first != Result.second) |
| Member = dyn_cast<FieldDecl>(*Result.first); |
| |
| // FIXME: Handle members of an anonymous union. |
| |
| if (Member) { |
| // FIXME: Perform direct initialization of the member. |
| return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs); |
| } |
| |
| // It didn't name a member, so see if it names a class. |
| TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/); |
| if (!BaseTy) |
| return Diag(IdLoc, diag::err_mem_init_not_member_or_class) |
| << MemberOrBase << SourceRange(IdLoc, RParenLoc); |
| |
| QualType BaseType = QualType::getFromOpaquePtr(BaseTy); |
| if (!BaseType->isRecordType()) |
| return Diag(IdLoc, diag::err_base_init_does_not_name_class) |
| << BaseType << SourceRange(IdLoc, RParenLoc); |
| |
| // C++ [class.base.init]p2: |
| // [...] Unless the mem-initializer-id names a nonstatic data |
| // member of the constructor’s class or a direct or virtual base |
| // of that class, the mem-initializer is ill-formed. A |
| // mem-initializer-list can initialize a base class using any |
| // name that denotes that base class type. |
| |
| // First, check for a direct base class. |
| const CXXBaseSpecifier *DirectBaseSpec = 0; |
| for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); |
| Base != ClassDecl->bases_end(); ++Base) { |
| if (Context.getCanonicalType(BaseType).getUnqualifiedType() == |
| Context.getCanonicalType(Base->getType()).getUnqualifiedType()) { |
| // We found a direct base of this type. That's what we're |
| // initializing. |
| DirectBaseSpec = &*Base; |
| break; |
| } |
| } |
| |
| // Check for a virtual base class. |
| // FIXME: We might be able to short-circuit this if we know in |
| // advance that there are no virtual bases. |
| const CXXBaseSpecifier *VirtualBaseSpec = 0; |
| if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { |
| // We haven't found a base yet; search the class hierarchy for a |
| // virtual base class. |
| BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { |
| for (BasePaths::paths_iterator Path = Paths.begin(); |
| Path != Paths.end(); ++Path) { |
| if (Path->back().Base->isVirtual()) { |
| VirtualBaseSpec = Path->back().Base; |
| break; |
| } |
| } |
| } |
| } |
| |
| // C++ [base.class.init]p2: |
| // If a mem-initializer-id is ambiguous because it designates both |
| // a direct non-virtual base class and an inherited virtual base |
| // class, the mem-initializer is ill-formed. |
| if (DirectBaseSpec && VirtualBaseSpec) |
| return Diag(IdLoc, diag::err_base_init_direct_and_virtual) |
| << MemberOrBase << SourceRange(IdLoc, RParenLoc); |
| |
| return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs); |
| } |
| |
| void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl, |
| SourceLocation ColonLoc, |
| MemInitTy **MemInits, unsigned NumMemInits) { |
| CXXConstructorDecl *Constructor = |
| dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>()); |
| |
| if (!Constructor) { |
| Diag(ColonLoc, diag::err_only_constructors_take_base_inits); |
| return; |
| } |
| } |
| |
| namespace { |
| /// PureVirtualMethodCollector - traverses a class and its superclasses |
| /// and determines if it has any pure virtual methods. |
| class VISIBILITY_HIDDEN PureVirtualMethodCollector { |
| ASTContext &Context; |
| |
| public: |
| typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList; |
| |
| private: |
| MethodList Methods; |
| |
| void Collect(const CXXRecordDecl* RD, MethodList& Methods); |
| |
| public: |
| PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD) |
| : Context(Ctx) { |
| |
| MethodList List; |
| Collect(RD, List); |
| |
| // Copy the temporary list to methods, and make sure to ignore any |
| // null entries. |
| for (size_t i = 0, e = List.size(); i != e; ++i) { |
| if (List[i]) |
| Methods.push_back(List[i]); |
| } |
| } |
| |
| bool empty() const { return Methods.empty(); } |
| |
| MethodList::const_iterator methods_begin() { return Methods.begin(); } |
| MethodList::const_iterator methods_end() { return Methods.end(); } |
| }; |
| |
| void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD, |
| MethodList& Methods) { |
| // First, collect the pure virtual methods for the base classes. |
| for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), |
| BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) { |
| if (const RecordType *RT = Base->getType()->getAsRecordType()) { |
| const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (BaseDecl && BaseDecl->isAbstract()) |
| Collect(BaseDecl, Methods); |
| } |
| } |
| |
| // Next, zero out any pure virtual methods that this class overrides. |
| for (size_t i = 0, e = Methods.size(); i != e; ++i) { |
| const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]); |
| if (!VMD) |
| continue; |
| |
| DeclContext::lookup_const_iterator I, E; |
| for (llvm::tie(I, E) = RD->lookup(Context, VMD->getDeclName()); |
| I != E; ++I) { |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) { |
| if (Context.getCanonicalType(MD->getType()) == |
| Context.getCanonicalType(VMD->getType())) { |
| // We did find a matching method, which means that this is not a |
| // pure virtual method in the current class. Zero it out. |
| Methods[i] = 0; |
| } |
| } |
| } |
| } |
| |
| // Finally, add pure virtual methods from this class. |
| for (RecordDecl::decl_iterator i = RD->decls_begin(Context), |
| e = RD->decls_end(Context); |
| i != e; ++i) { |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) { |
| if (MD->isPure()) |
| Methods.push_back(MD); |
| } |
| } |
| } |
| } |
| |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
| unsigned DiagID, AbstractDiagSelID SelID, |
| const CXXRecordDecl *CurrentRD) { |
| |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| if (const ArrayType *AT = Context.getAsArrayType(T)) |
| return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID, |
| CurrentRD); |
| |
| if (const PointerType *PT = T->getAsPointerType()) { |
| // Find the innermost pointer type. |
| while (const PointerType *T = PT->getPointeeType()->getAsPointerType()) |
| PT = T; |
| |
| if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) |
| return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID, |
| CurrentRD); |
| } |
| |
| const RecordType *RT = T->getAsRecordType(); |
| if (!RT) |
| return false; |
| |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!RD) |
| return false; |
| |
| if (CurrentRD && CurrentRD != RD) |
| return false; |
| |
| if (!RD->isAbstract()) |
| return false; |
| |
| Diag(Loc, DiagID) << RD->getDeclName() << SelID; |
| |
| // Check if we've already emitted the list of pure virtual functions for this |
| // class. |
| if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) |
| return true; |
| |
| PureVirtualMethodCollector Collector(Context, RD); |
| |
| for (PureVirtualMethodCollector::MethodList::const_iterator I = |
| Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) { |
| const CXXMethodDecl *MD = *I; |
| |
| Diag(MD->getLocation(), diag::note_pure_virtual_function) << |
| MD->getDeclName(); |
| } |
| |
| if (!PureVirtualClassDiagSet) |
| PureVirtualClassDiagSet.reset(new RecordDeclSetTy); |
| PureVirtualClassDiagSet->insert(RD); |
| |
| return true; |
| } |
| |
| namespace { |
| class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser |
| : public DeclVisitor<AbstractClassUsageDiagnoser, bool> { |
| Sema &SemaRef; |
| CXXRecordDecl *AbstractClass; |
| |
| bool VisitDeclContext(const DeclContext *DC) { |
| bool Invalid = false; |
| |
| for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context), |
| E = DC->decls_end(SemaRef.Context); I != E; ++I) |
| Invalid |= Visit(*I); |
| |
| return Invalid; |
| } |
| |
| public: |
| AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac) |
| : SemaRef(SemaRef), AbstractClass(ac) { |
| Visit(SemaRef.Context.getTranslationUnitDecl()); |
| } |
| |
| bool VisitFunctionDecl(const FunctionDecl *FD) { |
| if (FD->isThisDeclarationADefinition()) { |
| // No need to do the check if we're in a definition, because it requires |
| // that the return/param types are complete. |
| // because that requires |
| return VisitDeclContext(FD); |
| } |
| |
| // Check the return type. |
| QualType RTy = FD->getType()->getAsFunctionType()->getResultType(); |
| bool Invalid = |
| SemaRef.RequireNonAbstractType(FD->getLocation(), RTy, |
| diag::err_abstract_type_in_decl, |
| Sema::AbstractReturnType, |
| AbstractClass); |
| |
| for (FunctionDecl::param_const_iterator I = FD->param_begin(), |
| E = FD->param_end(); I != E; ++I) { |
| const ParmVarDecl *VD = *I; |
| Invalid |= |
| SemaRef.RequireNonAbstractType(VD->getLocation(), |
| VD->getOriginalType(), |
| diag::err_abstract_type_in_decl, |
| Sema::AbstractParamType, |
| AbstractClass); |
| } |
| |
| return Invalid; |
| } |
| |
| bool VisitDecl(const Decl* D) { |
| if (const DeclContext *DC = dyn_cast<DeclContext>(D)) |
| return VisitDeclContext(DC); |
| |
| return false; |
| } |
| }; |
| } |
| |
| void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, |
| DeclPtrTy TagDecl, |
| SourceLocation LBrac, |
| SourceLocation RBrac) { |
| TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl); |
| ActOnFields(S, RLoc, TagDecl, |
| (DeclPtrTy*)FieldCollector->getCurFields(), |
| FieldCollector->getCurNumFields(), LBrac, RBrac, 0); |
| |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>()); |
| if (!RD->isAbstract()) { |
| // Collect all the pure virtual methods and see if this is an abstract |
| // class after all. |
| PureVirtualMethodCollector Collector(Context, RD); |
| if (!Collector.empty()) |
| RD->setAbstract(true); |
| } |
| |
| if (RD->isAbstract()) |
| AbstractClassUsageDiagnoser(*this, RD); |
| |
| if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) { |
| for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| e = RD->field_end(Context); i != e; ++i) { |
| // All the nonstatic data members must have trivial constructors. |
| QualType FTy = i->getType(); |
| while (const ArrayType *AT = Context.getAsArrayType(FTy)) |
| FTy = AT->getElementType(); |
| |
| if (const RecordType *RT = FTy->getAsRecordType()) { |
| CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| if (!FieldRD->hasTrivialConstructor()) |
| RD->setHasTrivialConstructor(false); |
| if (!FieldRD->hasTrivialDestructor()) |
| RD->setHasTrivialDestructor(false); |
| |
| // If RD has neither a trivial constructor nor a trivial destructor |
| // we don't need to continue checking. |
| if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor()) |
| break; |
| } |
| } |
| } |
| |
| if (!Template) |
| AddImplicitlyDeclaredMembersToClass(RD); |
| } |
| |
| /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared |
| /// special functions, such as the default constructor, copy |
| /// constructor, or destructor, to the given C++ class (C++ |
| /// [special]p1). This routine can only be executed just before the |
| /// definition of the class is complete. |
| void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { |
| QualType ClassType = Context.getTypeDeclType(ClassDecl); |
| ClassType = Context.getCanonicalType(ClassType); |
| |
| if (!ClassDecl->hasUserDeclaredConstructor()) { |
| // C++ [class.ctor]p5: |
| // A default constructor for a class X is a constructor of class X |
| // that can be called without an argument. If there is no |
| // user-declared constructor for class X, a default constructor is |
| // implicitly declared. An implicitly-declared default constructor |
| // is an inline public member of its class. |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXConstructorName(ClassType); |
| CXXConstructorDecl *DefaultCon = |
| CXXConstructorDecl::Create(Context, ClassDecl, |
| ClassDecl->getLocation(), Name, |
| Context.getFunctionType(Context.VoidTy, |
| 0, 0, false, 0), |
| /*isExplicit=*/false, |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| DefaultCon->setAccess(AS_public); |
| DefaultCon->setImplicit(); |
| ClassDecl->addDecl(Context, DefaultCon); |
| |
| // Notify the class that we've added a constructor. |
| ClassDecl->addedConstructor(Context, DefaultCon); |
| } |
| |
| if (!ClassDecl->hasUserDeclaredCopyConstructor()) { |
| // C++ [class.copy]p4: |
| // If the class definition does not explicitly declare a copy |
| // constructor, one is declared implicitly. |
| |
| // C++ [class.copy]p5: |
| // The implicitly-declared copy constructor for a class X will |
| // have the form |
| // |
| // X::X(const X&) |
| // |
| // if |
| bool HasConstCopyConstructor = true; |
| |
| // -- each direct or virtual base class B of X has a copy |
| // constructor whose first parameter is of type const B& or |
| // const volatile B&, and |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); |
| HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { |
| const CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); |
| HasConstCopyConstructor |
| = BaseClassDecl->hasConstCopyConstructor(Context); |
| } |
| |
| // -- for all the nonstatic data members of X that are of a |
| // class type M (or array thereof), each such class type |
| // has a copy constructor whose first parameter is of type |
| // const M& or const volatile M&. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context); |
| HasConstCopyConstructor && Field != ClassDecl->field_end(Context); |
| ++Field) { |
| QualType FieldType = (*Field)->getType(); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { |
| const CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| HasConstCopyConstructor |
| = FieldClassDecl->hasConstCopyConstructor(Context); |
| } |
| } |
| |
| // Otherwise, the implicitly declared copy constructor will have |
| // the form |
| // |
| // X::X(X&) |
| QualType ArgType = ClassType; |
| if (HasConstCopyConstructor) |
| ArgType = ArgType.withConst(); |
| ArgType = Context.getLValueReferenceType(ArgType); |
| |
| // An implicitly-declared copy constructor is an inline public |
| // member of its class. |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXConstructorName(ClassType); |
| CXXConstructorDecl *CopyConstructor |
| = CXXConstructorDecl::Create(Context, ClassDecl, |
| ClassDecl->getLocation(), Name, |
| Context.getFunctionType(Context.VoidTy, |
| &ArgType, 1, |
| false, 0), |
| /*isExplicit=*/false, |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| CopyConstructor->setAccess(AS_public); |
| CopyConstructor->setImplicit(); |
| |
| // Add the parameter to the constructor. |
| ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, |
| ClassDecl->getLocation(), |
| /*IdentifierInfo=*/0, |
| ArgType, VarDecl::None, 0); |
| CopyConstructor->setParams(Context, &FromParam, 1); |
| |
| ClassDecl->addedConstructor(Context, CopyConstructor); |
| ClassDecl->addDecl(Context, CopyConstructor); |
| } |
| |
| if (!ClassDecl->hasUserDeclaredCopyAssignment()) { |
| // Note: The following rules are largely analoguous to the copy |
| // constructor rules. Note that virtual bases are not taken into account |
| // for determining the argument type of the operator. Note also that |
| // operators taking an object instead of a reference are allowed. |
| // |
| // C++ [class.copy]p10: |
| // If the class definition does not explicitly declare a copy |
| // assignment operator, one is declared implicitly. |
| // The implicitly-defined copy assignment operator for a class X |
| // will have the form |
| // |
| // X& X::operator=(const X&) |
| // |
| // if |
| bool HasConstCopyAssignment = true; |
| |
| // -- each direct base class B of X has a copy assignment operator |
| // whose parameter is of type const B&, const volatile B& or B, |
| // and |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); |
| HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) { |
| const CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); |
| HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context); |
| } |
| |
| // -- for all the nonstatic data members of X that are of a class |
| // type M (or array thereof), each such class type has a copy |
| // assignment operator whose parameter is of type const M&, |
| // const volatile M& or M. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context); |
| HasConstCopyAssignment && Field != ClassDecl->field_end(Context); |
| ++Field) { |
| QualType FieldType = (*Field)->getType(); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { |
| const CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| HasConstCopyAssignment |
| = FieldClassDecl->hasConstCopyAssignment(Context); |
| } |
| } |
| |
| // Otherwise, the implicitly declared copy assignment operator will |
| // have the form |
| // |
| // X& X::operator=(X&) |
| QualType ArgType = ClassType; |
| QualType RetType = Context.getLValueReferenceType(ArgType); |
| if (HasConstCopyAssignment) |
| ArgType = ArgType.withConst(); |
| ArgType = Context.getLValueReferenceType(ArgType); |
| |
| // An implicitly-declared copy assignment operator is an inline public |
| // member of its class. |
| DeclarationName Name = |
| Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| CXXMethodDecl *CopyAssignment = |
| CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, |
| Context.getFunctionType(RetType, &ArgType, 1, |
| false, 0), |
| /*isStatic=*/false, /*isInline=*/true); |
| CopyAssignment->setAccess(AS_public); |
| CopyAssignment->setImplicit(); |
| |
| // Add the parameter to the operator. |
| ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, |
| ClassDecl->getLocation(), |
| /*IdentifierInfo=*/0, |
| ArgType, VarDecl::None, 0); |
| CopyAssignment->setParams(Context, &FromParam, 1); |
| |
| // Don't call addedAssignmentOperator. There is no way to distinguish an |
| // implicit from an explicit assignment operator. |
| ClassDecl->addDecl(Context, CopyAssignment); |
| } |
| |
| if (!ClassDecl->hasUserDeclaredDestructor()) { |
| // C++ [class.dtor]p2: |
| // If a class has no user-declared destructor, a destructor is |
| // declared implicitly. An implicitly-declared destructor is an |
| // inline public member of its class. |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXDestructorName(ClassType); |
| CXXDestructorDecl *Destructor |
| = CXXDestructorDecl::Create(Context, ClassDecl, |
| ClassDecl->getLocation(), Name, |
| Context.getFunctionType(Context.VoidTy, |
| 0, 0, false, 0), |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| Destructor->setAccess(AS_public); |
| Destructor->setImplicit(); |
| ClassDecl->addDecl(Context, Destructor); |
| } |
| } |
| |
| /// ActOnStartDelayedCXXMethodDeclaration - We have completed |
| /// parsing a top-level (non-nested) C++ class, and we are now |
| /// parsing those parts of the given Method declaration that could |
| /// not be parsed earlier (C++ [class.mem]p2), such as default |
| /// arguments. This action should enter the scope of the given |
| /// Method declaration as if we had just parsed the qualified method |
| /// name. However, it should not bring the parameters into scope; |
| /// that will be performed by ActOnDelayedCXXMethodParameter. |
| void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { |
| CXXScopeSpec SS; |
| FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>()); |
| QualType ClassTy |
| = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); |
| SS.setScopeRep( |
| NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr())); |
| ActOnCXXEnterDeclaratorScope(S, SS); |
| } |
| |
| /// ActOnDelayedCXXMethodParameter - We've already started a delayed |
| /// C++ method declaration. We're (re-)introducing the given |
| /// function parameter into scope for use in parsing later parts of |
| /// the method declaration. For example, we could see an |
| /// ActOnParamDefaultArgument event for this parameter. |
| void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) { |
| ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>()); |
| |
| // If this parameter has an unparsed default argument, clear it out |
| // to make way for the parsed default argument. |
| if (Param->hasUnparsedDefaultArg()) |
| Param->setDefaultArg(0); |
| |
| S->AddDecl(DeclPtrTy::make(Param)); |
| if (Param->getDeclName()) |
| IdResolver.AddDecl(Param); |
| } |
| |
| /// ActOnFinishDelayedCXXMethodDeclaration - We have finished |
| /// processing the delayed method declaration for Method. The method |
| /// declaration is now considered finished. There may be a separate |
| /// ActOnStartOfFunctionDef action later (not necessarily |
| /// immediately!) for this method, if it was also defined inside the |
| /// class body. |
| void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { |
| FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>()); |
| CXXScopeSpec SS; |
| QualType ClassTy |
| = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); |
| SS.setScopeRep( |
| NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr())); |
| ActOnCXXExitDeclaratorScope(S, SS); |
| |
| // Now that we have our default arguments, check the constructor |
| // again. It could produce additional diagnostics or affect whether |
| // the class has implicitly-declared destructors, among other |
| // things. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) |
| CheckConstructor(Constructor); |
| |
| // Check the default arguments, which we may have added. |
| if (!Method->isInvalidDecl()) |
| CheckCXXDefaultArguments(Method); |
| } |
| |
| /// CheckConstructorDeclarator - Called by ActOnDeclarator to check |
| /// the well-formedness of the constructor declarator @p D with type @p |
| /// R. If there are any errors in the declarator, this routine will |
| /// emit diagnostics and set the invalid bit to true. In any case, the type |
| /// will be updated to reflect a well-formed type for the constructor and |
| /// returned. |
| QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, |
| FunctionDecl::StorageClass &SC) { |
| bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| |
| // C++ [class.ctor]p3: |
| // A constructor shall not be virtual (10.3) or static (9.4). A |
| // constructor can be invoked for a const, volatile or const |
| // volatile object. A constructor shall not be declared const, |
| // volatile, or const volatile (9.3.2). |
| if (isVirtual) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| if (SC == FunctionDecl::Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| SC = FunctionDecl::None; |
| } |
| |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| if (FTI.TypeQuals != 0) { |
| if (FTI.TypeQuals & QualType::Const) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "const" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & QualType::Volatile) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "volatile" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & QualType::Restrict) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "restrict" << SourceRange(D.getIdentifierLoc()); |
| } |
| |
| // Rebuild the function type "R" without any type qualifiers (in |
| // case any of the errors above fired) and with "void" as the |
| // return type, since constructors don't have return types. We |
| // *always* have to do this, because GetTypeForDeclarator will |
| // put in a result type of "int" when none was specified. |
| const FunctionProtoType *Proto = R->getAsFunctionProtoType(); |
| return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), |
| Proto->getNumArgs(), |
| Proto->isVariadic(), 0); |
| } |
| |
| /// CheckConstructor - Checks a fully-formed constructor for |
| /// well-formedness, issuing any diagnostics required. Returns true if |
| /// the constructor declarator is invalid. |
| void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { |
| CXXRecordDecl *ClassDecl |
| = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); |
| if (!ClassDecl) |
| return Constructor->setInvalidDecl(); |
| |
| // C++ [class.copy]p3: |
| // A declaration of a constructor for a class X is ill-formed if |
| // its first parameter is of type (optionally cv-qualified) X and |
| // either there are no other parameters or else all other |
| // parameters have default arguments. |
| if (!Constructor->isInvalidDecl() && |
| ((Constructor->getNumParams() == 1) || |
| (Constructor->getNumParams() > 1 && |
| Constructor->getParamDecl(1)->getDefaultArg() != 0))) { |
| QualType ParamType = Constructor->getParamDecl(0)->getType(); |
| QualType ClassTy = Context.getTagDeclType(ClassDecl); |
| if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { |
| SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); |
| Diag(ParamLoc, diag::err_constructor_byvalue_arg) |
| << CodeModificationHint::CreateInsertion(ParamLoc, " const &"); |
| Constructor->setInvalidDecl(); |
| } |
| } |
| |
| // Notify the class that we've added a constructor. |
| ClassDecl->addedConstructor(Context, Constructor); |
| } |
| |
| static inline bool |
| FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { |
| return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].Param && |
| FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()); |
| } |
| |
| /// CheckDestructorDeclarator - Called by ActOnDeclarator to check |
| /// the well-formednes of the destructor declarator @p D with type @p |
| /// R. If there are any errors in the declarator, this routine will |
| /// emit diagnostics and set the declarator to invalid. Even if this happens, |
| /// will be updated to reflect a well-formed type for the destructor and |
| /// returned. |
| QualType Sema::CheckDestructorDeclarator(Declarator &D, |
| FunctionDecl::StorageClass& SC) { |
| // C++ [class.dtor]p1: |
| // [...] A typedef-name that names a class is a class-name |
| // (7.1.3); however, a typedef-name that names a class shall not |
| // be used as the identifier in the declarator for a destructor |
| // declaration. |
| QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); |
| if (isa<TypedefType>(DeclaratorType)) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) |
| << DeclaratorType; |
| D.setInvalidType(); |
| } |
| |
| // C++ [class.dtor]p2: |
| // A destructor is used to destroy objects of its class type. A |
| // destructor takes no parameters, and no return type can be |
| // specified for it (not even void). The address of a destructor |
| // shall not be taken. A destructor shall not be static. A |
| // destructor can be invoked for a const, volatile or const |
| // volatile object. A destructor shall not be declared const, |
| // volatile or const volatile (9.3.2). |
| if (SC == FunctionDecl::Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| SC = FunctionDecl::None; |
| D.setInvalidType(); |
| } |
| if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { |
| // Destructors don't have return types, but the parser will |
| // happily parse something like: |
| // |
| // class X { |
| // float ~X(); |
| // }; |
| // |
| // The return type will be eliminated later. |
| Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| } |
| |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| if (FTI.TypeQuals != 0 && !D.isInvalidType()) { |
| if (FTI.TypeQuals & QualType::Const) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "const" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & QualType::Volatile) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "volatile" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & QualType::Restrict) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "restrict" << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| |
| // Make sure we don't have any parameters. |
| if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); |
| |
| // Delete the parameters. |
| FTI.freeArgs(); |
| D.setInvalidType(); |
| } |
| |
| // Make sure the destructor isn't variadic. |
| if (FTI.isVariadic) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); |
| D.setInvalidType(); |
| } |
| |
| // Rebuild the function type "R" without any type qualifiers or |
| // parameters (in case any of the errors above fired) and with |
| // "void" as the return type, since destructors don't have return |
| // types. We *always* have to do this, because GetTypeForDeclarator |
| // will put in a result type of "int" when none was specified. |
| return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0); |
| } |
| |
| /// CheckConversionDeclarator - Called by ActOnDeclarator to check the |
| /// well-formednes of the conversion function declarator @p D with |
| /// type @p R. If there are any errors in the declarator, this routine |
| /// will emit diagnostics and return true. Otherwise, it will return |
| /// false. Either way, the type @p R will be updated to reflect a |
| /// well-formed type for the conversion operator. |
| void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, |
| FunctionDecl::StorageClass& SC) { |
| // C++ [class.conv.fct]p1: |
| // Neither parameter types nor return type can be specified. The |
| // type of a conversion function (8.3.5) is “function taking no |
| // parameter returning conversion-type-id.” |
| if (SC == FunctionDecl::Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| SC = FunctionDecl::None; |
| } |
| if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { |
| // Conversion functions don't have return types, but the parser will |
| // happily parse something like: |
| // |
| // class X { |
| // float operator bool(); |
| // }; |
| // |
| // The return type will be changed later anyway. |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| } |
| |
| // Make sure we don't have any parameters. |
| if (R->getAsFunctionProtoType()->getNumArgs() > 0) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); |
| |
| // Delete the parameters. |
| D.getTypeObject(0).Fun.freeArgs(); |
| D.setInvalidType(); |
| } |
| |
| // Make sure the conversion function isn't variadic. |
| if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); |
| D.setInvalidType(); |
| } |
| |
| // C++ [class.conv.fct]p4: |
| // The conversion-type-id shall not represent a function type nor |
| // an array type. |
| QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); |
| if (ConvType->isArrayType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); |
| ConvType = Context.getPointerType(ConvType); |
| D.setInvalidType(); |
| } else if (ConvType->isFunctionType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); |
| ConvType = Context.getPointerType(ConvType); |
| D.setInvalidType(); |
| } |
| |
| // Rebuild the function type "R" without any parameters (in case any |
| // of the errors above fired) and with the conversion type as the |
| // return type. |
| R = Context.getFunctionType(ConvType, 0, 0, false, |
| R->getAsFunctionProtoType()->getTypeQuals()); |
| |
| // C++0x explicit conversion operators. |
| if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::warn_explicit_conversion_functions) |
| << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); |
| } |
| |
| /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete |
| /// the declaration of the given C++ conversion function. This routine |
| /// is responsible for recording the conversion function in the C++ |
| /// class, if possible. |
| Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { |
| assert(Conversion && "Expected to receive a conversion function declaration"); |
| |
| // Set the lexical context of this conversion function |
| Conversion->setLexicalDeclContext(CurContext); |
| |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); |
| |
| // Make sure we aren't redeclaring the conversion function. |
| QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); |
| |
| // C++ [class.conv.fct]p1: |
| // [...] A conversion function is never used to convert a |
| // (possibly cv-qualified) object to the (possibly cv-qualified) |
| // same object type (or a reference to it), to a (possibly |
| // cv-qualified) base class of that type (or a reference to it), |
| // or to (possibly cv-qualified) void. |
| // FIXME: Suppress this warning if the conversion function ends up |
| // being a virtual function that overrides a virtual function in a |
| // base class. |
| QualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); |
| if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType()) |
| ConvType = ConvTypeRef->getPointeeType(); |
| if (ConvType->isRecordType()) { |
| ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); |
| if (ConvType == ClassType) |
| Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) |
| << ClassType; |
| else if (IsDerivedFrom(ClassType, ConvType)) |
| Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) |
| << ClassType << ConvType; |
| } else if (ConvType->isVoidType()) { |
| Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) |
| << ClassType << ConvType; |
| } |
| |
| if (Conversion->getPreviousDeclaration()) { |
| OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions(); |
| for (OverloadedFunctionDecl::function_iterator |
| Conv = Conversions->function_begin(), |
| ConvEnd = Conversions->function_end(); |
| Conv != ConvEnd; ++Conv) { |
| if (*Conv == Conversion->getPreviousDeclaration()) { |
| *Conv = Conversion; |
| return DeclPtrTy::make(Conversion); |
| } |
| } |
| assert(Conversion->isInvalidDecl() && "Conversion should not get here."); |
| } else |
| ClassDecl->addConversionFunction(Context, Conversion); |
| |
| return DeclPtrTy::make(Conversion); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Namespace Handling |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnStartNamespaceDef - This is called at the start of a namespace |
| /// definition. |
| Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope, |
| SourceLocation IdentLoc, |
| IdentifierInfo *II, |
| SourceLocation LBrace) { |
| NamespaceDecl *Namespc = |
| NamespaceDecl::Create(Context, CurContext, IdentLoc, II); |
| Namespc->setLBracLoc(LBrace); |
| |
| Scope *DeclRegionScope = NamespcScope->getParent(); |
| |
| if (II) { |
| // C++ [namespace.def]p2: |
| // The identifier in an original-namespace-definition shall not have been |
| // previously defined in the declarative region in which the |
| // original-namespace-definition appears. The identifier in an |
| // original-namespace-definition is the name of the namespace. Subsequently |
| // in that declarative region, it is treated as an original-namespace-name. |
| |
| NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName, |
| true); |
| |
| if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { |
| // This is an extended namespace definition. |
| // Attach this namespace decl to the chain of extended namespace |
| // definitions. |
| OrigNS->setNextNamespace(Namespc); |
| Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); |
| |
| // Remove the previous declaration from the scope. |
| if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) { |
| IdResolver.RemoveDecl(OrigNS); |
| DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS)); |
| } |
| } else if (PrevDecl) { |
| // This is an invalid name redefinition. |
| Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) |
| << Namespc->getDeclName(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| Namespc->setInvalidDecl(); |
| // Continue on to push Namespc as current DeclContext and return it. |
| } |
| |
| PushOnScopeChains(Namespc, DeclRegionScope); |
| } else { |
| // FIXME: Handle anonymous namespaces |
| } |
| |
| // Although we could have an invalid decl (i.e. the namespace name is a |
| // redefinition), push it as current DeclContext and try to continue parsing. |
| // FIXME: We should be able to push Namespc here, so that the |
| // each DeclContext for the namespace has the declarations |
| // that showed up in that particular namespace definition. |
| PushDeclContext(NamespcScope, Namespc); |
| return DeclPtrTy::make(Namespc); |
| } |
| |
| /// ActOnFinishNamespaceDef - This callback is called after a namespace is |
| /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. |
| void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) { |
| Decl *Dcl = D.getAs<Decl>(); |
| NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); |
| assert(Namespc && "Invalid parameter, expected NamespaceDecl"); |
| Namespc->setRBracLoc(RBrace); |
| PopDeclContext(); |
| } |
| |
| Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S, |
| SourceLocation UsingLoc, |
| SourceLocation NamespcLoc, |
| const CXXScopeSpec &SS, |
| SourceLocation IdentLoc, |
| IdentifierInfo *NamespcName, |
| AttributeList *AttrList) { |
| assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); |
| assert(NamespcName && "Invalid NamespcName."); |
| assert(IdentLoc.isValid() && "Invalid NamespceName location."); |
| assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); |
| |
| UsingDirectiveDecl *UDir = 0; |
| |
| // Lookup namespace name. |
| LookupResult R = LookupParsedName(S, &SS, NamespcName, |
| LookupNamespaceName, false); |
| if (R.isAmbiguous()) { |
| DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc); |
| return DeclPtrTy(); |
| } |
| if (NamedDecl *NS = R) { |
| assert(isa<NamespaceDecl>(NS) && "expected namespace decl"); |
| // C++ [namespace.udir]p1: |
| // A using-directive specifies that the names in the nominated |
| // namespace can be used in the scope in which the |
| // using-directive appears after the using-directive. During |
| // unqualified name lookup (3.4.1), the names appear as if they |
| // were declared in the nearest enclosing namespace which |
| // contains both the using-directive and the nominated |
| // namespace. [Note: in this context, “contains” means “contains |
| // directly or indirectly”. ] |
| |
| // Find enclosing context containing both using-directive and |
| // nominated namespace. |
| DeclContext *CommonAncestor = cast<DeclContext>(NS); |
| while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) |
| CommonAncestor = CommonAncestor->getParent(); |
| |
| UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, |
| NamespcLoc, IdentLoc, |
| cast<NamespaceDecl>(NS), |
| CommonAncestor); |
| PushUsingDirective(S, UDir); |
| } else { |
| Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| } |
| |
| // FIXME: We ignore attributes for now. |
| delete AttrList; |
| return DeclPtrTy::make(UDir); |
| } |
| |
| void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { |
| // If scope has associated entity, then using directive is at namespace |
| // or translation unit scope. We add UsingDirectiveDecls, into |
| // it's lookup structure. |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) |
| Ctx->addDecl(Context, UDir); |
| else |
| // Otherwise it is block-sope. using-directives will affect lookup |
| // only to the end of scope. |
| S->PushUsingDirective(DeclPtrTy::make(UDir)); |
| } |
| |
| /// getNamespaceDecl - Returns the namespace a decl represents. If the decl |
| /// is a namespace alias, returns the namespace it points to. |
| static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { |
| if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) |
| return AD->getNamespace(); |
| return dyn_cast_or_null<NamespaceDecl>(D); |
| } |
| |
| Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S, |
| SourceLocation NamespaceLoc, |
| SourceLocation AliasLoc, |
| IdentifierInfo *Alias, |
| const CXXScopeSpec &SS, |
| SourceLocation IdentLoc, |
| IdentifierInfo *Ident) { |
| |
| // Lookup the namespace name. |
| LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false); |
| |
| // Check if we have a previous declaration with the same name. |
| if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) { |
| if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { |
| // We already have an alias with the same name that points to the same |
| // namespace, so don't create a new one. |
| if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R)) |
| return DeclPtrTy(); |
| } |
| |
| unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : |
| diag::err_redefinition_different_kind; |
| Diag(AliasLoc, DiagID) << Alias; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| return DeclPtrTy(); |
| } |
| |
| if (R.isAmbiguous()) { |
| DiagnoseAmbiguousLookup(R, Ident, IdentLoc); |
| return DeclPtrTy(); |
| } |
| |
| if (!R) { |
| Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| return DeclPtrTy(); |
| } |
| |
| NamespaceAliasDecl *AliasDecl = |
| NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias, |
| IdentLoc, R); |
| |
| CurContext->addDecl(Context, AliasDecl); |
| return DeclPtrTy::make(AliasDecl); |
| } |
| |
| void Sema::InitializeVarWithConstructor(VarDecl *VD, |
| CXXConstructorDecl *Constructor, |
| QualType DeclInitType, |
| Expr **Exprs, unsigned NumExprs) { |
| Expr *Temp = CXXConstructExpr::Create(Context, VD, DeclInitType, Constructor, |
| false, Exprs, NumExprs); |
| VD->setInit(Temp); |
| } |
| |
| /// AddCXXDirectInitializerToDecl - This action is called immediately after |
| /// ActOnDeclarator, when a C++ direct initializer is present. |
| /// e.g: "int x(1);" |
| void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, |
| SourceLocation LParenLoc, |
| MultiExprArg Exprs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| unsigned NumExprs = Exprs.size(); |
| assert(NumExprs != 0 && Exprs.get() && "missing expressions"); |
| Decl *RealDecl = Dcl.getAs<Decl>(); |
| |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (RealDecl == 0) |
| return; |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // FIXME: Need to handle dependent types and expressions here. |
| |
| // We will treat direct-initialization as a copy-initialization: |
| // int x(1); -as-> int x = 1; |
| // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); |
| // |
| // Clients that want to distinguish between the two forms, can check for |
| // direct initializer using VarDecl::hasCXXDirectInitializer(). |
| // A major benefit is that clients that don't particularly care about which |
| // exactly form was it (like the CodeGen) can handle both cases without |
| // special case code. |
| |
| // C++ 8.5p11: |
| // The form of initialization (using parentheses or '=') is generally |
| // insignificant, but does matter when the entity being initialized has a |
| // class type. |
| QualType DeclInitType = VDecl->getType(); |
| if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) |
| DeclInitType = Array->getElementType(); |
| |
| // FIXME: This isn't the right place to complete the type. |
| if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(), |
| diag::err_typecheck_decl_incomplete_type)) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| if (VDecl->getType()->isRecordType()) { |
| CXXConstructorDecl *Constructor |
| = PerformInitializationByConstructor(DeclInitType, |
| (Expr **)Exprs.get(), NumExprs, |
| VDecl->getLocation(), |
| SourceRange(VDecl->getLocation(), |
| RParenLoc), |
| VDecl->getDeclName(), |
| IK_Direct); |
| if (!Constructor) |
| RealDecl->setInvalidDecl(); |
| else { |
| VDecl->setCXXDirectInitializer(true); |
| InitializeVarWithConstructor(VDecl, Constructor, DeclInitType, |
| (Expr**)Exprs.release(), NumExprs); |
| } |
| return; |
| } |
| |
| if (NumExprs > 1) { |
| Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg) |
| << SourceRange(VDecl->getLocation(), RParenLoc); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // Let clients know that initialization was done with a direct initializer. |
| VDecl->setCXXDirectInitializer(true); |
| |
| assert(NumExprs == 1 && "Expected 1 expression"); |
| // Set the init expression, handles conversions. |
| AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]), |
| /*DirectInit=*/true); |
| } |
| |
| /// PerformInitializationByConstructor - Perform initialization by |
| /// constructor (C++ [dcl.init]p14), which may occur as part of |
| /// direct-initialization or copy-initialization. We are initializing |
| /// an object of type @p ClassType with the given arguments @p |
| /// Args. @p Loc is the location in the source code where the |
| /// initializer occurs (e.g., a declaration, member initializer, |
| /// functional cast, etc.) while @p Range covers the whole |
| /// initialization. @p InitEntity is the entity being initialized, |
| /// which may by the name of a declaration or a type. @p Kind is the |
| /// kind of initialization we're performing, which affects whether |
| /// explicit constructors will be considered. When successful, returns |
| /// the constructor that will be used to perform the initialization; |
| /// when the initialization fails, emits a diagnostic and returns |
| /// null. |
| CXXConstructorDecl * |
| Sema::PerformInitializationByConstructor(QualType ClassType, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation Loc, SourceRange Range, |
| DeclarationName InitEntity, |
| InitializationKind Kind) { |
| const RecordType *ClassRec = ClassType->getAsRecordType(); |
| assert(ClassRec && "Can only initialize a class type here"); |
| |
| // C++ [dcl.init]p14: |
| // |
| // If the initialization is direct-initialization, or if it is |
| // copy-initialization where the cv-unqualified version of the |
| // source type is the same class as, or a derived class of, the |
| // class of the destination, constructors are considered. The |
| // applicable constructors are enumerated (13.3.1.3), and the |
| // best one is chosen through overload resolution (13.3). The |
| // constructor so selected is called to initialize the object, |
| // with the initializer expression(s) as its argument(s). If no |
| // constructor applies, or the overload resolution is ambiguous, |
| // the initialization is ill-formed. |
| const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl()); |
| OverloadCandidateSet CandidateSet; |
| |
| // Add constructors to the overload set. |
| DeclarationName ConstructorName |
| = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(ClassType.getUnqualifiedType())); |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName); |
| Con != ConEnd; ++Con) { |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); |
| if ((Kind == IK_Direct) || |
| (Kind == IK_Copy && Constructor->isConvertingConstructor()) || |
| (Kind == IK_Default && Constructor->isDefaultConstructor())) |
| AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet); |
| } |
| |
| // FIXME: When we decide not to synthesize the implicitly-declared |
| // constructors, we'll need to make them appear here. |
| |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Best)) { |
| case OR_Success: |
| // We found a constructor. Return it. |
| return cast<CXXConstructorDecl>(Best->Function); |
| |
| case OR_No_Viable_Function: |
| if (InitEntity) |
| Diag(Loc, diag::err_ovl_no_viable_function_in_init) |
| << InitEntity << Range; |
| else |
| Diag(Loc, diag::err_ovl_no_viable_function_in_init) |
| << ClassType << Range; |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); |
| return 0; |
| |
| case OR_Ambiguous: |
| if (InitEntity) |
| Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range; |
| else |
| Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range; |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return 0; |
| |
| case OR_Deleted: |
| if (InitEntity) |
| Diag(Loc, diag::err_ovl_deleted_init) |
| << Best->Function->isDeleted() |
| << InitEntity << Range; |
| else |
| Diag(Loc, diag::err_ovl_deleted_init) |
| << Best->Function->isDeleted() |
| << InitEntity << Range; |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| /// CompareReferenceRelationship - Compare the two types T1 and T2 to |
| /// determine whether they are reference-related, |
| /// reference-compatible, reference-compatible with added |
| /// qualification, or incompatible, for use in C++ initialization by |
| /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference |
| /// type, and the first type (T1) is the pointee type of the reference |
| /// type being initialized. |
| Sema::ReferenceCompareResult |
| Sema::CompareReferenceRelationship(QualType T1, QualType T2, |
| bool& DerivedToBase) { |
| assert(!T1->isReferenceType() && |
| "T1 must be the pointee type of the reference type"); |
| assert(!T2->isReferenceType() && "T2 cannot be a reference type"); |
| |
| T1 = Context.getCanonicalType(T1); |
| T2 = Context.getCanonicalType(T2); |
| QualType UnqualT1 = T1.getUnqualifiedType(); |
| QualType UnqualT2 = T2.getUnqualifiedType(); |
| |
| // C++ [dcl.init.ref]p4: |
| // Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is |
| // reference-related to “cv2 T2” if T1 is the same type as T2, or |
| // T1 is a base class of T2. |
| if (UnqualT1 == UnqualT2) |
| DerivedToBase = false; |
| else if (IsDerivedFrom(UnqualT2, UnqualT1)) |
| DerivedToBase = true; |
| else |
| return Ref_Incompatible; |
| |
| // At this point, we know that T1 and T2 are reference-related (at |
| // least). |
| |
| // C++ [dcl.init.ref]p4: |
| // "cv1 T1” is reference-compatible with “cv2 T2” if T1 is |
| // reference-related to T2 and cv1 is the same cv-qualification |
| // as, or greater cv-qualification than, cv2. For purposes of |
| // overload resolution, cases for which cv1 is greater |
| // cv-qualification than cv2 are identified as |
| // reference-compatible with added qualification (see 13.3.3.2). |
| if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) |
| return Ref_Compatible; |
| else if (T1.isMoreQualifiedThan(T2)) |
| return Ref_Compatible_With_Added_Qualification; |
| else |
| return Ref_Related; |
| } |
| |
| /// CheckReferenceInit - Check the initialization of a reference |
| /// variable with the given initializer (C++ [dcl.init.ref]). Init is |
| /// the initializer (either a simple initializer or an initializer |
| /// list), and DeclType is the type of the declaration. When ICS is |
| /// non-null, this routine will compute the implicit conversion |
| /// sequence according to C++ [over.ics.ref] and will not produce any |
| /// diagnostics; when ICS is null, it will emit diagnostics when any |
| /// errors are found. Either way, a return value of true indicates |
| /// that there was a failure, a return value of false indicates that |
| /// the reference initialization succeeded. |
| /// |
| /// When @p SuppressUserConversions, user-defined conversions are |
| /// suppressed. |
| /// When @p AllowExplicit, we also permit explicit user-defined |
| /// conversion functions. |
| /// When @p ForceRValue, we unconditionally treat the initializer as an rvalue. |
| bool |
| Sema::CheckReferenceInit(Expr *&Init, QualType DeclType, |
| ImplicitConversionSequence *ICS, |
| bool SuppressUserConversions, |
| bool AllowExplicit, bool ForceRValue) { |
| assert(DeclType->isReferenceType() && "Reference init needs a reference"); |
| |
| QualType T1 = DeclType->getAsReferenceType()->getPointeeType(); |
| QualType T2 = Init->getType(); |
| |
| // If the initializer is the address of an overloaded function, try |
| // to resolve the overloaded function. If all goes well, T2 is the |
| // type of the resulting function. |
| if (Context.getCanonicalType(T2) == Context.OverloadTy) { |
| FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType, |
| ICS != 0); |
| if (Fn) { |
| // Since we're performing this reference-initialization for |
| // real, update the initializer with the resulting function. |
| if (!ICS) { |
| if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin())) |
| return true; |
| |
| FixOverloadedFunctionReference(Init, Fn); |
| } |
| |
| T2 = Fn->getType(); |
| } |
| } |
| |
| // Compute some basic properties of the types and the initializer. |
| bool isRValRef = DeclType->isRValueReferenceType(); |
| bool DerivedToBase = false; |
| Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression : |
| Init->isLvalue(Context); |
| ReferenceCompareResult RefRelationship |
| = CompareReferenceRelationship(T1, T2, DerivedToBase); |
| |
| // Most paths end in a failed conversion. |
| if (ICS) |
| ICS->ConversionKind = ImplicitConversionSequence::BadConversion; |
| |
| // C++ [dcl.init.ref]p5: |
| // A reference to type “cv1 T1” is initialized by an expression |
| // of type “cv2 T2” as follows: |
| |
| // -- If the initializer expression |
| |
| // Rvalue references cannot bind to lvalues (N2812). |
| // There is absolutely no situation where they can. In particular, note that |
| // this is ill-formed, even if B has a user-defined conversion to A&&: |
| // B b; |
| // A&& r = b; |
| if (isRValRef && InitLvalue == Expr::LV_Valid) { |
| if (!ICS) |
| Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref) |
| << Init->getSourceRange(); |
| return true; |
| } |
| |
| bool BindsDirectly = false; |
| // -- is an lvalue (but is not a bit-field), and “cv1 T1” is |
| // reference-compatible with “cv2 T2,” or |
| // |
| // Note that the bit-field check is skipped if we are just computing |
| // the implicit conversion sequence (C++ [over.best.ics]p2). |
| if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) && |
| RefRelationship >= Ref_Compatible_With_Added_Qualification) { |
| BindsDirectly = true; |
| |
| if (ICS) { |
| // C++ [over.ics.ref]p1: |
| // When a parameter of reference type binds directly (8.5.3) |
| // to an argument expression, the implicit conversion sequence |
| // is the identity conversion, unless the argument expression |
| // has a type that is a derived class of the parameter type, |
| // in which case the implicit conversion sequence is a |
| // derived-to-base Conversion (13.3.3.1). |
| ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; |
| ICS->Standard.First = ICK_Identity; |
| ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; |
| ICS->Standard.Third = ICK_Identity; |
| ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); |
| ICS->Standard.ReferenceBinding = true; |
| ICS->Standard.DirectBinding = true; |
| ICS->Standard.RRefBinding = false; |
| ICS->Standard.CopyConstructor = 0; |
| |
| // Nothing more to do: the inaccessibility/ambiguity check for |
| // derived-to-base conversions is suppressed when we're |
| // computing the implicit conversion sequence (C++ |
| // [over.best.ics]p2). |
| return false; |
| } else { |
| // Perform the conversion. |
| // FIXME: Binding to a subobject of the lvalue is going to require |
| // more AST annotation than this. |
| ImpCastExprToType(Init, T1, /*isLvalue=*/true); |
| } |
| } |
| |
| // -- has a class type (i.e., T2 is a class type) and can be |
| // implicitly converted to an lvalue of type “cv3 T3,” |
| // where “cv1 T1” is reference-compatible with “cv3 T3” |
| // 92) (this conversion is selected by enumerating the |
| // applicable conversion functions (13.3.1.6) and choosing |
| // the best one through overload resolution (13.3)), |
| if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) { |
| // FIXME: Look for conversions in base classes! |
| CXXRecordDecl *T2RecordDecl |
| = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl()); |
| |
| OverloadCandidateSet CandidateSet; |
| OverloadedFunctionDecl *Conversions |
| = T2RecordDecl->getConversionFunctions(); |
| for (OverloadedFunctionDecl::function_iterator Func |
| = Conversions->function_begin(); |
| Func != Conversions->function_end(); ++Func) { |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); |
| |
| // If the conversion function doesn't return a reference type, |
| // it can't be considered for this conversion. |
| if (Conv->getConversionType()->isLValueReferenceType() && |
| (AllowExplicit || !Conv->isExplicit())) |
| AddConversionCandidate(Conv, Init, DeclType, CandidateSet); |
| } |
| |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Best)) { |
| case OR_Success: |
| // This is a direct binding. |
| BindsDirectly = true; |
| |
| if (ICS) { |
| // C++ [over.ics.ref]p1: |
| // |
| // [...] If the parameter binds directly to the result of |
| // applying a conversion function to the argument |
| // expression, the implicit conversion sequence is a |
| // user-defined conversion sequence (13.3.3.1.2), with the |
| // second standard conversion sequence either an identity |
| // conversion or, if the conversion function returns an |
| // entity of a type that is a derived class of the parameter |
| // type, a derived-to-base Conversion. |
| ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion; |
| ICS->UserDefined.Before = Best->Conversions[0].Standard; |
| ICS->UserDefined.After = Best->FinalConversion; |
| ICS->UserDefined.ConversionFunction = Best->Function; |
| assert(ICS->UserDefined.After.ReferenceBinding && |
| ICS->UserDefined.After.DirectBinding && |
| "Expected a direct reference binding!"); |
| return false; |
| } else { |
| // Perform the conversion. |
| // FIXME: Binding to a subobject of the lvalue is going to require |
| // more AST annotation than this. |
| ImpCastExprToType(Init, T1, /*isLvalue=*/true); |
| } |
| break; |
| |
| case OR_Ambiguous: |
| assert(false && "Ambiguous reference binding conversions not implemented."); |
| return true; |
| |
| case OR_No_Viable_Function: |
| case OR_Deleted: |
| // There was no suitable conversion, or we found a deleted |
| // conversion; continue with other checks. |
| break; |
| } |
| } |
| |
| if (BindsDirectly) { |
| // C++ [dcl.init.ref]p4: |
| // [...] In all cases where the reference-related or |
| // reference-compatible relationship of two types is used to |
| // establish the validity of a reference binding, and T1 is a |
| // base class of T2, a program that necessitates such a binding |
| // is ill-formed if T1 is an inaccessible (clause 11) or |
| // ambiguous (10.2) base class of T2. |
| // |
| // Note that we only check this condition when we're allowed to |
| // complain about errors, because we should not be checking for |
| // ambiguity (or inaccessibility) unless the reference binding |
| // actually happens. |
| if (DerivedToBase) |
| return CheckDerivedToBaseConversion(T2, T1, |
| Init->getSourceRange().getBegin(), |
| Init->getSourceRange()); |
| else |
| return false; |
| } |
| |
| // -- Otherwise, the reference shall be to a non-volatile const |
| // type (i.e., cv1 shall be const), or the reference shall be an |
| // rvalue reference and the initializer expression shall be an rvalue. |
| if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) { |
| if (!ICS) |
| Diag(Init->getSourceRange().getBegin(), |
| diag::err_not_reference_to_const_init) |
| << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") |
| << T2 << Init->getSourceRange(); |
| return true; |
| } |
| |
| // -- If the initializer expression is an rvalue, with T2 a |
| // class type, and “cv1 T1” is reference-compatible with |
| // “cv2 T2,” the reference is bound in one of the |
| // following ways (the choice is implementation-defined): |
| // |
| // -- The reference is bound to the object represented by |
| // the rvalue (see 3.10) or to a sub-object within that |
| // object. |
| // |
| // -- A temporary of type “cv1 T2” [sic] is created, and |
| // a constructor is called to copy the entire rvalue |
| // object into the temporary. The reference is bound to |
| // the temporary or to a sub-object within the |
| // temporary. |
| // |
| // The constructor that would be used to make the copy |
| // shall be callable whether or not the copy is actually |
| // done. |
| // |
| // Note that C++0x [dcl.init.ref]p5 takes away this implementation |
| // freedom, so we will always take the first option and never build |
| // a temporary in this case. FIXME: We will, however, have to check |
| // for the presence of a copy constructor in C++98/03 mode. |
| if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && |
| RefRelationship >= Ref_Compatible_With_Added_Qualification) { |
| if (ICS) { |
| ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; |
| ICS->Standard.First = ICK_Identity; |
| ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; |
| ICS->Standard.Third = ICK_Identity; |
| ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); |
| ICS->Standard.ReferenceBinding = true; |
| ICS->Standard.DirectBinding = false; |
| ICS->Standard.RRefBinding = isRValRef; |
| ICS->Standard.CopyConstructor = 0; |
| } else { |
| // FIXME: Binding to a subobject of the rvalue is going to require |
| // more AST annotation than this. |
| ImpCastExprToType(Init, T1, /*isLvalue=*/true); |
| } |
| return false; |
| } |
| |
| // -- Otherwise, a temporary of type “cv1 T1” is created and |
| // initialized from the initializer expression using the |
| // rules for a non-reference copy initialization (8.5). The |
| // reference is then bound to the temporary. If T1 is |
| // reference-related to T2, cv1 must be the same |
| // cv-qualification as, or greater cv-qualification than, |
| // cv2; otherwise, the program is ill-formed. |
| if (RefRelationship == Ref_Related) { |
| // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
| // we would be reference-compatible or reference-compatible with |
| // added qualification. But that wasn't the case, so the reference |
| // initialization fails. |
| if (!ICS) |
| Diag(Init->getSourceRange().getBegin(), |
| diag::err_reference_init_drops_quals) |
| << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") |
| << T2 << Init->getSourceRange(); |
| return true; |
| } |
| |
| // If at least one of the types is a class type, the types are not |
| // related, and we aren't allowed any user conversions, the |
| // reference binding fails. This case is important for breaking |
| // recursion, since TryImplicitConversion below will attempt to |
| // create a temporary through the use of a copy constructor. |
| if (SuppressUserConversions && RefRelationship == Ref_Incompatible && |
| (T1->isRecordType() || T2->isRecordType())) { |
| if (!ICS) |
| Diag(Init->getSourceRange().getBegin(), |
| diag::err_typecheck_convert_incompatible) |
| << DeclType << Init->getType() << "initializing" << Init->getSourceRange(); |
| return true; |
| } |
| |
| // Actually try to convert the initializer to T1. |
| if (ICS) { |
| // C++ [over.ics.ref]p2: |
| // |
| // When a parameter of reference type is not bound directly to |
| // an argument expression, the conversion sequence is the one |
| // required to convert the argument expression to the |
| // underlying type of the reference according to |
| // 13.3.3.1. Conceptually, this conversion sequence corresponds |
| // to copy-initializing a temporary of the underlying type with |
| // the argument expression. Any difference in top-level |
| // cv-qualification is subsumed by the initialization itself |
| // and does not constitute a conversion. |
| *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions); |
| // Of course, that's still a reference binding. |
| if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) { |
| ICS->Standard.ReferenceBinding = true; |
| ICS->Standard.RRefBinding = isRValRef; |
| } else if(ICS->ConversionKind == |
| ImplicitConversionSequence::UserDefinedConversion) { |
| ICS->UserDefined.After.ReferenceBinding = true; |
| ICS->UserDefined.After.RRefBinding = isRValRef; |
| } |
| return ICS->ConversionKind == ImplicitConversionSequence::BadConversion; |
| } else { |
| return PerformImplicitConversion(Init, T1, "initializing"); |
| } |
| } |
| |
| /// CheckOverloadedOperatorDeclaration - Check whether the declaration |
| /// of this overloaded operator is well-formed. If so, returns false; |
| /// otherwise, emits appropriate diagnostics and returns true. |
| bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { |
| assert(FnDecl && FnDecl->isOverloadedOperator() && |
| "Expected an overloaded operator declaration"); |
| |
| OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); |
| |
| // C++ [over.oper]p5: |
| // The allocation and deallocation functions, operator new, |
| // operator new[], operator delete and operator delete[], are |
| // described completely in 3.7.3. The attributes and restrictions |
| // found in the rest of this subclause do not apply to them unless |
| // explicitly stated in 3.7.3. |
| // FIXME: Write a separate routine for checking this. For now, just |
| // allow it. |
| if (Op == OO_New || Op == OO_Array_New || |
| Op == OO_Delete || Op == OO_Array_Delete) |
| return false; |
| |
| // C++ [over.oper]p6: |
| // An operator function shall either be a non-static member |
| // function or be a non-member function and have at least one |
| // parameter whose type is a class, a reference to a class, an |
| // enumeration, or a reference to an enumeration. |
| if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| if (MethodDecl->isStatic()) |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_static) << FnDecl->getDeclName(); |
| } else { |
| bool ClassOrEnumParam = false; |
| for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), |
| ParamEnd = FnDecl->param_end(); |
| Param != ParamEnd; ++Param) { |
| QualType ParamType = (*Param)->getType().getNonReferenceType(); |
| if (ParamType->isRecordType() || ParamType->isEnumeralType()) { |
| ClassOrEnumParam = true; |
| break; |
| } |
| } |
| |
| if (!ClassOrEnumParam) |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_needs_class_or_enum) |
| << FnDecl->getDeclName(); |
| } |
| |
| // C++ [over.oper]p8: |
| // An operator function cannot have default arguments (8.3.6), |
| // except where explicitly stated below. |
| // |
| // Only the function-call operator allows default arguments |
| // (C++ [over.call]p1). |
| if (Op != OO_Call) { |
| for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); |
| Param != FnDecl->param_end(); ++Param) { |
| if ((*Param)->hasUnparsedDefaultArg()) |
| return Diag((*Param)->getLocation(), |
| diag::err_operator_overload_default_arg) |
| << FnDecl->getDeclName(); |
| else if (Expr *DefArg = (*Param)->getDefaultArg()) |
| return Diag((*Param)->getLocation(), |
| diag::err_operator_overload_default_arg) |
| << FnDecl->getDeclName() << DefArg->getSourceRange(); |
| } |
| } |
| |
| static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { |
| { false, false, false } |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| , { Unary, Binary, MemberOnly } |
| #include "clang/Basic/OperatorKinds.def" |
| }; |
| |
| bool CanBeUnaryOperator = OperatorUses[Op][0]; |
| bool CanBeBinaryOperator = OperatorUses[Op][1]; |
| bool MustBeMemberOperator = OperatorUses[Op][2]; |
| |
| // C++ [over.oper]p8: |
| // [...] Operator functions cannot have more or fewer parameters |
| // than the number required for the corresponding operator, as |
| // described in the rest of this subclause. |
| unsigned NumParams = FnDecl->getNumParams() |
| + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); |
| if (Op != OO_Call && |
| ((NumParams == 1 && !CanBeUnaryOperator) || |
| (NumParams == 2 && !CanBeBinaryOperator) || |
| (NumParams < 1) || (NumParams > 2))) { |
| // We have the wrong number of parameters. |
| unsigned ErrorKind; |
| if (CanBeUnaryOperator && CanBeBinaryOperator) { |
| ErrorKind = 2; // 2 -> unary or binary. |
| } else if (CanBeUnaryOperator) { |
| ErrorKind = 0; // 0 -> unary |
| } else { |
| assert(CanBeBinaryOperator && |
| "All non-call overloaded operators are unary or binary!"); |
| ErrorKind = 1; // 1 -> binary |
| } |
| |
| return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) |
| << FnDecl->getDeclName() << NumParams << ErrorKind; |
| } |
| |
| // Overloaded operators other than operator() cannot be variadic. |
| if (Op != OO_Call && |
| FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) { |
| return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) |
| << FnDecl->getDeclName(); |
| } |
| |
| // Some operators must be non-static member functions. |
| if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_must_be_member) |
| << FnDecl->getDeclName(); |
| } |
| |
| // C++ [over.inc]p1: |
| // The user-defined function called operator++ implements the |
| // prefix and postfix ++ operator. If this function is a member |
| // function with no parameters, or a non-member function with one |
| // parameter of class or enumeration type, it defines the prefix |
| // increment operator ++ for objects of that type. If the function |
| // is a member function with one parameter (which shall be of type |
| // int) or a non-member function with two parameters (the second |
| // of which shall be of type int), it defines the postfix |
| // increment operator ++ for objects of that type. |
| if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { |
| ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); |
| bool ParamIsInt = false; |
| if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType()) |
| ParamIsInt = BT->getKind() == BuiltinType::Int; |
| |
| if (!ParamIsInt) |
| return Diag(LastParam->getLocation(), |
| diag::err_operator_overload_post_incdec_must_be_int) |
| << LastParam->getType() << (Op == OO_MinusMinus); |
| } |
| |
| // Notify the class if it got an assignment operator. |
| if (Op == OO_Equal) { |
| // Would have returned earlier otherwise. |
| assert(isa<CXXMethodDecl>(FnDecl) && |
| "Overloaded = not member, but not filtered."); |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); |
| Method->getParent()->addedAssignmentOperator(Context, Method); |
| } |
| |
| return false; |
| } |
| |
| /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ |
| /// linkage specification, including the language and (if present) |
| /// the '{'. ExternLoc is the location of the 'extern', LangLoc is |
| /// the location of the language string literal, which is provided |
| /// by Lang/StrSize. LBraceLoc, if valid, provides the location of |
| /// the '{' brace. Otherwise, this linkage specification does not |
| /// have any braces. |
| Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S, |
| SourceLocation ExternLoc, |
| SourceLocation LangLoc, |
| const char *Lang, |
| unsigned StrSize, |
| SourceLocation LBraceLoc) { |
| LinkageSpecDecl::LanguageIDs Language; |
| if (strncmp(Lang, "\"C\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_c; |
| else if (strncmp(Lang, "\"C++\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_cxx; |
| else { |
| Diag(LangLoc, diag::err_bad_language); |
| return DeclPtrTy(); |
| } |
| |
| // FIXME: Add all the various semantics of linkage specifications |
| |
| LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, |
| LangLoc, Language, |
| LBraceLoc.isValid()); |
| CurContext->addDecl(Context, D); |
| PushDeclContext(S, D); |
| return DeclPtrTy::make(D); |
| } |
| |
| /// ActOnFinishLinkageSpecification - Completely the definition of |
| /// the C++ linkage specification LinkageSpec. If RBraceLoc is |
| /// valid, it's the position of the closing '}' brace in a linkage |
| /// specification that uses braces. |
| Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S, |
| DeclPtrTy LinkageSpec, |
| SourceLocation RBraceLoc) { |
| if (LinkageSpec) |
| PopDeclContext(); |
| return LinkageSpec; |
| } |
| |
| /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch |
| /// handler. |
| Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { |
| QualType ExDeclType = GetTypeForDeclarator(D, S); |
| SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin(); |
| |
| bool Invalid = D.isInvalidType(); |
| |
| // Arrays and functions decay. |
| if (ExDeclType->isArrayType()) |
| ExDeclType = Context.getArrayDecayedType(ExDeclType); |
| else if (ExDeclType->isFunctionType()) |
| ExDeclType = Context.getPointerType(ExDeclType); |
| |
| // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. |
| // The exception-declaration shall not denote a pointer or reference to an |
| // incomplete type, other than [cv] void*. |
| // N2844 forbids rvalue references. |
| if(ExDeclType->isRValueReferenceType()) { |
| Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange(); |
| Invalid = true; |
| } |
| QualType BaseType = ExDeclType; |
| int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference |
| unsigned DK = diag::err_catch_incomplete; |
| if (const PointerType *Ptr = BaseType->getAsPointerType()) { |
| BaseType = Ptr->getPointeeType(); |
| Mode = 1; |
| DK = diag::err_catch_incomplete_ptr; |
| } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) { |
| // For the purpose of error recovery, we treat rvalue refs like lvalue refs. |
| BaseType = Ref->getPointeeType(); |
| Mode = 2; |
| DK = diag::err_catch_incomplete_ref; |
| } |
| if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && |
| RequireCompleteType(Begin, BaseType, DK)) |
| Invalid = true; |
| |
| if (!Invalid && RequireNonAbstractType(Begin, ExDeclType, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| Invalid = true; |
| |
| // FIXME: Need to test for ability to copy-construct and destroy the |
| // exception variable. |
| // FIXME: Need to check for abstract classes. |
| |
| IdentifierInfo *II = D.getIdentifier(); |
| if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) { |
| // The scope should be freshly made just for us. There is just no way |
| // it contains any previous declaration. |
| assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl))); |
| if (PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| } |
| } |
| |
| VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(), |
| II, ExDeclType, VarDecl::None, Begin); |
| if (D.getCXXScopeSpec().isSet() && !Invalid) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| Invalid = true; |
| } |
| |
| if (Invalid) |
| ExDecl->setInvalidDecl(); |
| |
| // Add the exception declaration into this scope. |
| S->AddDecl(DeclPtrTy::make(ExDecl)); |
| if (II) |
| IdResolver.AddDecl(ExDecl); |
| |
| ProcessDeclAttributes(ExDecl, D); |
| return DeclPtrTy::make(ExDecl); |
| } |
| |
| Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, |
| ExprArg assertexpr, |
| ExprArg assertmessageexpr) { |
| Expr *AssertExpr = (Expr *)assertexpr.get(); |
| StringLiteral *AssertMessage = |
| cast<StringLiteral>((Expr *)assertmessageexpr.get()); |
| |
| if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { |
| llvm::APSInt Value(32); |
| if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { |
| Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << |
| AssertExpr->getSourceRange(); |
| return DeclPtrTy(); |
| } |
| |
| if (Value == 0) { |
| std::string str(AssertMessage->getStrData(), |
| AssertMessage->getByteLength()); |
| Diag(AssertLoc, diag::err_static_assert_failed) |
| << str << AssertExpr->getSourceRange(); |
| } |
| } |
| |
| assertexpr.release(); |
| assertmessageexpr.release(); |
| Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, |
| AssertExpr, AssertMessage); |
| |
| CurContext->addDecl(Context, Decl); |
| return DeclPtrTy::make(Decl); |
| } |
| |
| void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) { |
| Decl *Dcl = dcl.getAs<Decl>(); |
| FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); |
| if (!Fn) { |
| Diag(DelLoc, diag::err_deleted_non_function); |
| return; |
| } |
| if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { |
| Diag(DelLoc, diag::err_deleted_decl_not_first); |
| Diag(Prev->getLocation(), diag::note_previous_declaration); |
| // If the declaration wasn't the first, we delete the function anyway for |
| // recovery. |
| } |
| Fn->setDeleted(); |
| } |
| |
| static void SearchForReturnInStmt(Sema &Self, Stmt *S) { |
| for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; |
| ++CI) { |
| Stmt *SubStmt = *CI; |
| if (!SubStmt) |
| continue; |
| if (isa<ReturnStmt>(SubStmt)) |
| Self.Diag(SubStmt->getSourceRange().getBegin(), |
| diag::err_return_in_constructor_handler); |
| if (!isa<Expr>(SubStmt)) |
| SearchForReturnInStmt(Self, SubStmt); |
| } |
| } |
| |
| void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { |
| for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { |
| CXXCatchStmt *Handler = TryBlock->getHandler(I); |
| SearchForReturnInStmt(*this, Handler); |
| } |
| } |