| //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for inline asm statements. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstPrinter.h" |
| #include "llvm/MC/MCInstrInfo.h" |
| #include "llvm/MC/MCObjectFileInfo.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCTargetAsmParser.h" |
| #include "llvm/MC/MCParser/MCAsmLexer.h" |
| #include "llvm/MC/MCParser/MCAsmParser.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/TargetSelect.h" |
| using namespace clang; |
| using namespace sema; |
| |
| /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently |
| /// ignore "noop" casts in places where an lvalue is required by an inline asm. |
| /// We emulate this behavior when -fheinous-gnu-extensions is specified, but |
| /// provide a strong guidance to not use it. |
| /// |
| /// This method checks to see if the argument is an acceptable l-value and |
| /// returns false if it is a case we can handle. |
| static bool CheckAsmLValue(const Expr *E, Sema &S) { |
| // Type dependent expressions will be checked during instantiation. |
| if (E->isTypeDependent()) |
| return false; |
| |
| if (E->isLValue()) |
| return false; // Cool, this is an lvalue. |
| |
| // Okay, this is not an lvalue, but perhaps it is the result of a cast that we |
| // are supposed to allow. |
| const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); |
| if (E != E2 && E2->isLValue()) { |
| if (!S.getLangOpts().HeinousExtensions) |
| S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) |
| << E->getSourceRange(); |
| else |
| S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) |
| << E->getSourceRange(); |
| // Accept, even if we emitted an error diagnostic. |
| return false; |
| } |
| |
| // None of the above, just randomly invalid non-lvalue. |
| return true; |
| } |
| |
| /// isOperandMentioned - Return true if the specified operand # is mentioned |
| /// anywhere in the decomposed asm string. |
| static bool isOperandMentioned(unsigned OpNo, |
| ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) { |
| for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { |
| const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; |
| if (!Piece.isOperand()) continue; |
| |
| // If this is a reference to the input and if the input was the smaller |
| // one, then we have to reject this asm. |
| if (Piece.getOperandNo() == OpNo) |
| return true; |
| } |
| return false; |
| } |
| |
| StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, |
| bool IsVolatile, unsigned NumOutputs, |
| unsigned NumInputs, IdentifierInfo **Names, |
| MultiExprArg constraints, MultiExprArg exprs, |
| Expr *asmString, MultiExprArg clobbers, |
| SourceLocation RParenLoc) { |
| unsigned NumClobbers = clobbers.size(); |
| StringLiteral **Constraints = |
| reinterpret_cast<StringLiteral**>(constraints.data()); |
| Expr **Exprs = exprs.data(); |
| StringLiteral *AsmString = cast<StringLiteral>(asmString); |
| StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); |
| |
| SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; |
| |
| // The parser verifies that there is a string literal here. |
| if (!AsmString->isAscii()) |
| return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) |
| << AsmString->getSourceRange()); |
| |
| for (unsigned i = 0; i != NumOutputs; i++) { |
| StringLiteral *Literal = Constraints[i]; |
| if (!Literal->isAscii()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| StringRef OutputName; |
| if (Names[i]) |
| OutputName = Names[i]->getName(); |
| |
| TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); |
| if (!Context.getTargetInfo().validateOutputConstraint(Info)) |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_invalid_output_constraint) |
| << Info.getConstraintStr()); |
| |
| // Check that the output exprs are valid lvalues. |
| Expr *OutputExpr = Exprs[i]; |
| if (CheckAsmLValue(OutputExpr, *this)) { |
| return StmtError(Diag(OutputExpr->getLocStart(), |
| diag::err_asm_invalid_lvalue_in_output) |
| << OutputExpr->getSourceRange()); |
| } |
| |
| OutputConstraintInfos.push_back(Info); |
| } |
| |
| SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; |
| |
| for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { |
| StringLiteral *Literal = Constraints[i]; |
| if (!Literal->isAscii()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| StringRef InputName; |
| if (Names[i]) |
| InputName = Names[i]->getName(); |
| |
| TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); |
| if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), |
| NumOutputs, Info)) { |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_invalid_input_constraint) |
| << Info.getConstraintStr()); |
| } |
| |
| Expr *InputExpr = Exprs[i]; |
| |
| // Only allow void types for memory constraints. |
| if (Info.allowsMemory() && !Info.allowsRegister()) { |
| if (CheckAsmLValue(InputExpr, *this)) |
| return StmtError(Diag(InputExpr->getLocStart(), |
| diag::err_asm_invalid_lvalue_in_input) |
| << Info.getConstraintStr() |
| << InputExpr->getSourceRange()); |
| } |
| |
| if (Info.allowsRegister()) { |
| if (InputExpr->getType()->isVoidType()) { |
| return StmtError(Diag(InputExpr->getLocStart(), |
| diag::err_asm_invalid_type_in_input) |
| << InputExpr->getType() << Info.getConstraintStr() |
| << InputExpr->getSourceRange()); |
| } |
| } |
| |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| Exprs[i] = Result.take(); |
| InputConstraintInfos.push_back(Info); |
| } |
| |
| // Check that the clobbers are valid. |
| for (unsigned i = 0; i != NumClobbers; i++) { |
| StringLiteral *Literal = Clobbers[i]; |
| if (!Literal->isAscii()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| StringRef Clobber = Literal->getString(); |
| |
| if (!Context.getTargetInfo().isValidClobber(Clobber)) |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_unknown_register_name) << Clobber); |
| } |
| |
| AsmStmt *NS = |
| new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, |
| NumInputs, Names, Constraints, Exprs, AsmString, |
| NumClobbers, Clobbers, RParenLoc); |
| // Validate the asm string, ensuring it makes sense given the operands we |
| // have. |
| SmallVector<AsmStmt::AsmStringPiece, 8> Pieces; |
| unsigned DiagOffs; |
| if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { |
| Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) |
| << AsmString->getSourceRange(); |
| return StmtError(); |
| } |
| |
| // Validate tied input operands for type mismatches. |
| for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { |
| TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; |
| |
| // If this is a tied constraint, verify that the output and input have |
| // either exactly the same type, or that they are int/ptr operands with the |
| // same size (int/long, int*/long, are ok etc). |
| if (!Info.hasTiedOperand()) continue; |
| |
| unsigned TiedTo = Info.getTiedOperand(); |
| unsigned InputOpNo = i+NumOutputs; |
| Expr *OutputExpr = Exprs[TiedTo]; |
| Expr *InputExpr = Exprs[InputOpNo]; |
| |
| if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) |
| continue; |
| |
| QualType InTy = InputExpr->getType(); |
| QualType OutTy = OutputExpr->getType(); |
| if (Context.hasSameType(InTy, OutTy)) |
| continue; // All types can be tied to themselves. |
| |
| // Decide if the input and output are in the same domain (integer/ptr or |
| // floating point. |
| enum AsmDomain { |
| AD_Int, AD_FP, AD_Other |
| } InputDomain, OutputDomain; |
| |
| if (InTy->isIntegerType() || InTy->isPointerType()) |
| InputDomain = AD_Int; |
| else if (InTy->isRealFloatingType()) |
| InputDomain = AD_FP; |
| else |
| InputDomain = AD_Other; |
| |
| if (OutTy->isIntegerType() || OutTy->isPointerType()) |
| OutputDomain = AD_Int; |
| else if (OutTy->isRealFloatingType()) |
| OutputDomain = AD_FP; |
| else |
| OutputDomain = AD_Other; |
| |
| // They are ok if they are the same size and in the same domain. This |
| // allows tying things like: |
| // void* to int* |
| // void* to int if they are the same size. |
| // double to long double if they are the same size. |
| // |
| uint64_t OutSize = Context.getTypeSize(OutTy); |
| uint64_t InSize = Context.getTypeSize(InTy); |
| if (OutSize == InSize && InputDomain == OutputDomain && |
| InputDomain != AD_Other) |
| continue; |
| |
| // If the smaller input/output operand is not mentioned in the asm string, |
| // then we can promote the smaller one to a larger input and the asm string |
| // won't notice. |
| bool SmallerValueMentioned = false; |
| |
| // If this is a reference to the input and if the input was the smaller |
| // one, then we have to reject this asm. |
| if (isOperandMentioned(InputOpNo, Pieces)) { |
| // This is a use in the asm string of the smaller operand. Since we |
| // codegen this by promoting to a wider value, the asm will get printed |
| // "wrong". |
| SmallerValueMentioned |= InSize < OutSize; |
| } |
| if (isOperandMentioned(TiedTo, Pieces)) { |
| // If this is a reference to the output, and if the output is the larger |
| // value, then it's ok because we'll promote the input to the larger type. |
| SmallerValueMentioned |= OutSize < InSize; |
| } |
| |
| // If the smaller value wasn't mentioned in the asm string, and if the |
| // output was a register, just extend the shorter one to the size of the |
| // larger one. |
| if (!SmallerValueMentioned && InputDomain != AD_Other && |
| OutputConstraintInfos[TiedTo].allowsRegister()) |
| continue; |
| |
| // Either both of the operands were mentioned or the smaller one was |
| // mentioned. One more special case that we'll allow: if the tied input is |
| // integer, unmentioned, and is a constant, then we'll allow truncating it |
| // down to the size of the destination. |
| if (InputDomain == AD_Int && OutputDomain == AD_Int && |
| !isOperandMentioned(InputOpNo, Pieces) && |
| InputExpr->isEvaluatable(Context)) { |
| CastKind castKind = |
| (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); |
| InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); |
| Exprs[InputOpNo] = InputExpr; |
| NS->setInputExpr(i, InputExpr); |
| continue; |
| } |
| |
| Diag(InputExpr->getLocStart(), |
| diag::err_asm_tying_incompatible_types) |
| << InTy << OutTy << OutputExpr->getSourceRange() |
| << InputExpr->getSourceRange(); |
| return StmtError(); |
| } |
| |
| return Owned(NS); |
| } |
| |
| // isMSAsmKeyword - Return true if this is an MS-style inline asm keyword. These |
| // require special handling. |
| static bool isMSAsmKeyword(StringRef Name) { |
| bool Ret = llvm::StringSwitch<bool>(Name) |
| .Cases("EVEN", "ALIGN", true) // Alignment directives. |
| .Cases("LENGTH", "SIZE", "TYPE", true) // Type and variable sizes. |
| .Case("_emit", true) // _emit Pseudoinstruction. |
| .Default(false); |
| return Ret; |
| } |
| |
| // getIdentifierInfo - Given a Name and a range of tokens, find the associated |
| // IdentifierInfo*. |
| static IdentifierInfo *getIdentifierInfo(StringRef Name, |
| ArrayRef<Token> AsmToks, |
| unsigned Begin, unsigned End) { |
| for (unsigned i = Begin; i <= End; ++i) { |
| IdentifierInfo *II = AsmToks[i].getIdentifierInfo(); |
| if (II && II->getName() == Name) |
| return II; |
| } |
| return 0; |
| } |
| |
| // getSpelling - Get the spelling of the AsmTok token. |
| static StringRef getSpelling(Sema &SemaRef, Token AsmTok) { |
| StringRef Asm; |
| SmallString<512> TokenBuf; |
| TokenBuf.resize(512); |
| bool StringInvalid = false; |
| Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid); |
| assert (!StringInvalid && "Expected valid string!"); |
| return Asm; |
| } |
| |
| // Determine if we should bail on this MSAsm instruction. |
| static bool bailOnMSAsm(std::vector<StringRef> Piece) { |
| for (unsigned i = 0, e = Piece.size(); i != e; ++i) |
| if (isMSAsmKeyword(Piece[i])) |
| return true; |
| return false; |
| } |
| |
| // Determine if we should bail on this MSAsm block. |
| static bool bailOnMSAsm(std::vector<std::vector<StringRef> > Pieces) { |
| for (unsigned i = 0, e = Pieces.size(); i != e; ++i) |
| if (bailOnMSAsm(Pieces[i])) |
| return true; |
| return false; |
| } |
| |
| // Determine if this is a simple MSAsm instruction. |
| static bool isSimpleMSAsm(std::vector<StringRef> &Pieces, |
| const TargetInfo &TI) { |
| if (isMSAsmKeyword(Pieces[0])) |
| return false; |
| |
| for (unsigned i = 1, e = Pieces.size(); i != e; ++i) |
| if (!TI.isValidGCCRegisterName(Pieces[i])) |
| return false; |
| return true; |
| } |
| |
| // Determine if this is a simple MSAsm block. |
| static bool isSimpleMSAsm(std::vector<std::vector<StringRef> > Pieces, |
| const TargetInfo &TI) { |
| for (unsigned i = 0, e = Pieces.size(); i != e; ++i) |
| if (!isSimpleMSAsm(Pieces[i], TI)) |
| return false; |
| return true; |
| } |
| |
| // Break the AsmSting into pieces (i.e., mnemonic and operands). |
| static void buildMSAsmPieces(StringRef Asm, std::vector<StringRef> &Pieces) { |
| std::pair<StringRef,StringRef> Split = Asm.split(' '); |
| |
| // Mnemonic |
| Pieces.push_back(Split.first); |
| Asm = Split.second; |
| |
| // Operands |
| while (!Asm.empty()) { |
| Split = Asm.split(", "); |
| Pieces.push_back(Split.first); |
| Asm = Split.second; |
| } |
| } |
| |
| static void buildMSAsmPieces(std::vector<std::string> &AsmStrings, |
| std::vector<std::vector<StringRef> > &Pieces) { |
| for (unsigned i = 0, e = AsmStrings.size(); i != e; ++i) |
| buildMSAsmPieces(AsmStrings[i], Pieces[i]); |
| } |
| |
| // Build the unmodified AsmString used by the IR. Also build the individual |
| // asm instruction(s) and place them in the AsmStrings vector; these are fed |
| // to the AsmParser. |
| static std::string buildMSAsmString(Sema &SemaRef, ArrayRef<Token> AsmToks, |
| std::vector<std::string> &AsmStrings, |
| std::vector<std::pair<unsigned,unsigned> > &AsmTokRanges) { |
| assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); |
| |
| SmallString<512> Res; |
| SmallString<512> Asm; |
| unsigned startTok = 0; |
| for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) { |
| bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() || |
| AsmToks[i].is(tok::kw_asm); |
| |
| if (isNewAsm) { |
| if (i) { |
| AsmStrings.push_back(Asm.c_str()); |
| AsmTokRanges.push_back(std::make_pair(startTok, i-1)); |
| startTok = i; |
| Res += Asm; |
| Asm.clear(); |
| Res += '\n'; |
| } |
| if (AsmToks[i].is(tok::kw_asm)) { |
| i++; // Skip __asm |
| assert (i != e && "Expected another token"); |
| } |
| } |
| |
| if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm) |
| Asm += ' '; |
| |
| Asm += getSpelling(SemaRef, AsmToks[i]); |
| } |
| AsmStrings.push_back(Asm.c_str()); |
| AsmTokRanges.push_back(std::make_pair(startTok, AsmToks.size()-1)); |
| Res += Asm; |
| return Res.c_str(); |
| } |
| |
| #define DEF_SIMPLE_MSASM \ |
| MSAsmStmt *NS = \ |
| new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, \ |
| /*IsVolatile*/ true, AsmToks, Inputs, Outputs, \ |
| InputExprs, OutputExprs, AsmString, Clobbers, \ |
| EndLoc); |
| |
| StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, |
| SourceLocation LBraceLoc, |
| ArrayRef<Token> AsmToks, |
| SourceLocation EndLoc) { |
| // MS-style inline assembly is not fully supported, so emit a warning. |
| Diag(AsmLoc, diag::warn_unsupported_msasm); |
| SmallVector<StringRef,4> Clobbers; |
| std::set<std::string> ClobberRegs; |
| SmallVector<IdentifierInfo*, 4> Inputs; |
| SmallVector<IdentifierInfo*, 4> Outputs; |
| SmallVector<Expr*, 4> InputExprs; |
| SmallVector<Expr*, 4> OutputExprs; |
| |
| // Empty asm statements don't need to instantiate the AsmParser, etc. |
| if (AsmToks.empty()) { |
| StringRef AsmString; |
| DEF_SIMPLE_MSASM; |
| return Owned(NS); |
| } |
| |
| std::vector<std::string> AsmStrings; |
| std::vector<std::pair<unsigned,unsigned> > AsmTokRanges; |
| std::string AsmString = buildMSAsmString(*this, AsmToks, AsmStrings, |
| AsmTokRanges); |
| |
| std::vector<std::vector<StringRef> > Pieces(AsmStrings.size()); |
| buildMSAsmPieces(AsmStrings, Pieces); |
| |
| bool IsSimple = isSimpleMSAsm(Pieces, Context.getTargetInfo()); |
| |
| // AsmParser doesn't fully support these asm statements. |
| if (bailOnMSAsm(Pieces)) { DEF_SIMPLE_MSASM; return Owned(NS); } |
| |
| // Initialize targets and assembly printers/parsers. |
| llvm::InitializeAllTargetInfos(); |
| llvm::InitializeAllTargetMCs(); |
| llvm::InitializeAllAsmParsers(); |
| |
| // Get the target specific parser. |
| std::string Error; |
| const std::string &TT = Context.getTargetInfo().getTriple().getTriple(); |
| const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error)); |
| |
| OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT)); |
| OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT)); |
| OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo()); |
| OwningPtr<llvm::MCSubtargetInfo> |
| STI(TheTarget->createMCSubtargetInfo(TT, "", "")); |
| |
| for (unsigned StrIdx = 0, e = AsmStrings.size(); StrIdx != e; ++StrIdx) { |
| llvm::SourceMgr SrcMgr; |
| llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr); |
| llvm::MemoryBuffer *Buffer = |
| llvm::MemoryBuffer::getMemBuffer(AsmStrings[StrIdx], "<inline asm>"); |
| |
| // Tell SrcMgr about this buffer, which is what the parser will pick up. |
| SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc()); |
| |
| OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx)); |
| OwningPtr<llvm::MCAsmParser> |
| Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI)); |
| OwningPtr<llvm::MCTargetAsmParser> |
| TargetParser(TheTarget->createMCAsmParser(*STI, *Parser)); |
| // Change to the Intel dialect. |
| Parser->setAssemblerDialect(1); |
| Parser->setTargetParser(*TargetParser.get()); |
| |
| // Prime the lexer. |
| Parser->Lex(); |
| |
| // Parse the opcode. |
| StringRef IDVal; |
| Parser->ParseIdentifier(IDVal); |
| |
| // Canonicalize the opcode to lower case. |
| SmallString<128> Opcode; |
| for (unsigned j = 0, e = IDVal.size(); j != e; ++j) |
| Opcode.push_back(tolower(IDVal[j])); |
| |
| // Parse the operands. |
| llvm::SMLoc IDLoc; |
| SmallVector<llvm::MCParsedAsmOperand*, 8> Operands; |
| bool HadError = TargetParser->ParseInstruction(Opcode.str(), IDLoc, |
| Operands); |
| // If we had an error parsing the operands, fail gracefully. |
| if (HadError) { DEF_SIMPLE_MSASM; return Owned(NS); } |
| |
| // Match the MCInstr. |
| unsigned ErrorInfo; |
| SmallVector<llvm::MCInst, 2> Instrs; |
| HadError = TargetParser->MatchInstruction(IDLoc, Operands, Instrs, |
| ErrorInfo, |
| /*matchingInlineAsm*/ true); |
| // If we had an error parsing the operands, fail gracefully. |
| if (HadError) { DEF_SIMPLE_MSASM; return Owned(NS); } |
| |
| // Get the instruction descriptor. |
| llvm::MCInst Inst = Instrs[0]; |
| const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo(); |
| const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode()); |
| llvm::MCInstPrinter *IP = |
| TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI); |
| |
| // Build the list of clobbers, outputs and inputs. |
| unsigned NumDefs = Desc.getNumDefs(); |
| for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { |
| const llvm::MCOperand &Op = Inst.getOperand(i); |
| |
| // Immediate. |
| if (Op.isImm() || Op.isFPImm()) |
| continue; |
| |
| bool isDef = NumDefs && (i < NumDefs); |
| |
| // Register/Clobber. |
| if (Op.isReg() && isDef) { |
| std::string Reg; |
| llvm::raw_string_ostream OS(Reg); |
| IP->printRegName(OS, Op.getReg()); |
| |
| StringRef Clobber(OS.str()); |
| if (!Context.getTargetInfo().isValidClobber(Clobber)) |
| return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) << |
| Clobber); |
| ClobberRegs.insert(Reg); |
| continue; |
| } |
| // Expr/Input or Output. |
| if (Op.isExpr()) { |
| const llvm::MCExpr *Expr = Op.getExpr(); |
| const llvm::MCSymbolRefExpr *SymRef; |
| if ((SymRef = dyn_cast<llvm::MCSymbolRefExpr>(Expr))) { |
| StringRef Name = SymRef->getSymbol().getName(); |
| IdentifierInfo *II = getIdentifierInfo(Name, AsmToks, |
| AsmTokRanges[StrIdx].first, |
| AsmTokRanges[StrIdx].second); |
| if (II) { |
| // FIXME: Compute the InputExpr/OutputExpr using ActOnIdExpression(). |
| if (isDef) { |
| Outputs.push_back(II); |
| OutputExprs.push_back(0); |
| } else { |
| Inputs.push_back(II); |
| InputExprs.push_back(0); |
| } |
| } |
| } |
| } |
| } |
| } |
| for (std::set<std::string>::iterator I = ClobberRegs.begin(), |
| E = ClobberRegs.end(); I != E; ++I) |
| Clobbers.push_back(*I); |
| |
| MSAsmStmt *NS = |
| new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, |
| /*IsVolatile*/ true, AsmToks, Inputs, Outputs, |
| InputExprs, OutputExprs, AsmString, Clobbers, |
| EndLoc); |
| return Owned(NS); |
| } |