| //===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the RewriteRope class, which is a powerful string. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Rewrite/RewriteRope.h" |
| #include "llvm/Support/Casting.h" |
| #include <algorithm> |
| using namespace clang; |
| using llvm::dyn_cast; |
| using llvm::cast; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // InsertResult Class |
| //===----------------------------------------------------------------------===// |
| |
| /// This is an adapted B+ Tree, ... erases don't keep the tree balanced. |
| |
| namespace { |
| class RopePieceBTreeNode; |
| struct InsertResult { |
| RopePieceBTreeNode *LHS, *RHS; |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // RopePieceBTreeNode Class |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class RopePieceBTreeNode { |
| protected: |
| /// WidthFactor - This controls the number of K/V slots held in the BTree: |
| /// how wide it is. Each level of the BTree is guaranteed to have at least |
| /// 'WidthFactor' elements in it (either ropepieces or children), (except |
| /// the root, which may have less) and may have at most 2*WidthFactor |
| /// elements. |
| enum { WidthFactor = 8 }; |
| |
| /// Size - This is the number of bytes of file this node (including any |
| /// potential children) covers. |
| unsigned Size; |
| |
| /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it |
| /// is an instance of RopePieceBTreeInterior. |
| bool IsLeaf; |
| |
| RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {} |
| ~RopePieceBTreeNode() {} |
| public: |
| |
| bool isLeaf() const { return IsLeaf; } |
| unsigned size() const { return Size; } |
| |
| void Destroy(); |
| |
| /// split - Split the range containing the specified offset so that we are |
| /// guaranteed that there is a place to do an insertion at the specified |
| /// offset. The offset is relative, so "0" is the start of the node. This |
| /// returns true if the insertion could not be done in place, and returns |
| /// information in 'Res' about the piece that is percolated up. |
| bool split(unsigned Offset, InsertResult *Res); |
| |
| /// insert - Insert the specified ropepiece into this tree node at the |
| /// specified offset. The offset is relative, so "0" is the start of the |
| /// node. This returns true if the insertion could not be done in place, |
| /// and returns information in 'Res' about the piece that is percolated up. |
| bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res); |
| |
| /// erase - Remove NumBytes from this node at the specified offset. We are |
| /// guaranteed that there is a split at Offset. |
| void erase(unsigned Offset, unsigned NumBytes); |
| |
| static inline bool classof(const RopePieceBTreeNode *) { return true; } |
| |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // RopePieceBTreeLeaf Class |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class RopePieceBTreeLeaf : public RopePieceBTreeNode { |
| /// NumPieces - This holds the number of rope pieces currently active in the |
| /// Pieces array. |
| unsigned char NumPieces; |
| |
| /// Pieces - This tracks the file chunks currently in this leaf. |
| /// |
| RopePiece Pieces[2*WidthFactor]; |
| |
| /// NextLeaf - This is a pointer to the next leaf in the tree, allowing |
| /// efficient in-order forward iteration of the tree without traversal. |
| const RopePieceBTreeLeaf *NextLeaf; |
| public: |
| RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0), NextLeaf(0){} |
| |
| bool isFull() const { return NumPieces == 2*WidthFactor; } |
| |
| /// clear - Remove all rope pieces from this leaf. |
| void clear() { |
| while (NumPieces) |
| Pieces[--NumPieces] = RopePiece(); |
| Size = 0; |
| } |
| |
| unsigned getNumPieces() const { return NumPieces; } |
| |
| const RopePiece &getPiece(unsigned i) const { |
| assert(i < getNumPieces() && "Invalid piece ID"); |
| return Pieces[i]; |
| } |
| |
| const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; } |
| void setNextLeafInOrder(const RopePieceBTreeLeaf *NL) { NextLeaf = NL; } |
| |
| void FullRecomputeSizeLocally() { |
| Size = 0; |
| for (unsigned i = 0, e = getNumPieces(); i != e; ++i) |
| Size += getPiece(i).size(); |
| } |
| |
| /// split - Split the range containing the specified offset so that we are |
| /// guaranteed that there is a place to do an insertion at the specified |
| /// offset. The offset is relative, so "0" is the start of the node. This |
| /// returns true if the insertion could not be done in place, and returns |
| /// information in 'Res' about the piece that is percolated up. |
| bool split(unsigned Offset, InsertResult *Res); |
| |
| /// insert - Insert the specified ropepiece into this tree node at the |
| /// specified offset. The offset is relative, so "0" is the start of the |
| /// node. This returns true if the insertion could not be done in place, |
| /// and returns information in 'Res' about the piece that is percolated up. |
| bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res); |
| |
| |
| /// erase - Remove NumBytes from this node at the specified offset. We are |
| /// guaranteed that there is a split at Offset. |
| void erase(unsigned Offset, unsigned NumBytes); |
| |
| static inline bool classof(const RopePieceBTreeLeaf *) { return true; } |
| static inline bool classof(const RopePieceBTreeNode *N) { |
| return N->isLeaf(); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// split - Split the range containing the specified offset so that we are |
| /// guaranteed that there is a place to do an insertion at the specified |
| /// offset. The offset is relative, so "0" is the start of the node. This |
| /// returns true if the insertion could not be done in place, and returns |
| /// information in 'Res' about the piece that is percolated up. |
| bool RopePieceBTreeLeaf::split(unsigned Offset, InsertResult *Res) { |
| // Find the insertion point. We are guaranteed that there is a split at the |
| // specified offset so find it. |
| if (Offset == 0 || Offset == size()) { |
| // Fastpath for a common case. There is already a splitpoint at the end. |
| return false; |
| } |
| |
| // Find the piece that this offset lands in. |
| unsigned PieceOffs = 0; |
| unsigned i = 0; |
| while (Offset >= PieceOffs+Pieces[i].size()) { |
| PieceOffs += Pieces[i].size(); |
| ++i; |
| } |
| |
| // If there is already a split point at the specified offset, just return |
| // success. |
| if (PieceOffs == Offset) |
| return false; |
| |
| // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset |
| // to being Piece relative. |
| unsigned IntraPieceOffset = Offset-PieceOffs; |
| |
| // We do this by shrinking the RopePiece and then doing an insert of the tail. |
| RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset, |
| Pieces[i].EndOffs); |
| Size -= Pieces[i].size(); |
| Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset; |
| Size += Pieces[i].size(); |
| |
| return insert(Offset, Tail, Res); |
| } |
| |
| |
| /// insert - Insert the specified RopePiece into this tree node at the |
| /// specified offset. The offset is relative, so "0" is the start of the |
| /// node. This returns true if the insertion could not be done in place, and |
| /// returns information in 'Res' about the piece that is percolated up. |
| bool RopePieceBTreeLeaf::insert(unsigned Offset, const RopePiece &R, |
| InsertResult *Res) { |
| // If this node is not full, insert the piece. |
| if (!isFull()) { |
| // Find the insertion point. We are guaranteed that there is a split at the |
| // specified offset so find it. |
| unsigned i = 0, e = getNumPieces(); |
| if (Offset == size()) { |
| // Fastpath for a common case. |
| i = e; |
| } else { |
| unsigned SlotOffs = 0; |
| for (; Offset > SlotOffs; ++i) |
| SlotOffs += getPiece(i).size(); |
| assert(SlotOffs == Offset && "Split didn't occur before insertion!"); |
| } |
| |
| // For an insertion into a non-full leaf node, just insert the value in |
| // its sorted position. This requires moving later values over. |
| for (; i != e; --e) |
| Pieces[e] = Pieces[e-1]; |
| Pieces[i] = R; |
| ++NumPieces; |
| Size += R.size(); |
| return false; |
| } |
| |
| // Otherwise, if this is leaf is full, split it in two halves. Since this |
| // node is full, it contains 2*WidthFactor values. We move the first |
| // 'WidthFactor' values to the LHS child (which we leave in this node) and |
| // move the last 'WidthFactor' values into the RHS child. |
| |
| // Create the new node. |
| RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf(); |
| |
| // Move over the last 'WidthFactor' values from here to NewNode. |
| std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor], |
| &NewNode->Pieces[0]); |
| // Replace old pieces with null RopePieces to drop refcounts. |
| std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece()); |
| |
| // Decrease the number of values in the two nodes. |
| NewNode->NumPieces = NumPieces = WidthFactor; |
| |
| // Recompute the two nodes' size. |
| NewNode->FullRecomputeSizeLocally(); |
| FullRecomputeSizeLocally(); |
| |
| // Update the list of leaves. |
| NewNode->setNextLeafInOrder(this->getNextLeafInOrder()); |
| this->setNextLeafInOrder(NewNode); |
| |
| assert(Res && "No result location specified"); |
| Res->LHS = this; |
| Res->RHS = NewNode; |
| |
| if (this->size() >= Offset) |
| this->insert(Offset, R, 0 /*can't fail*/); |
| else |
| NewNode->insert(Offset - this->size(), R, 0 /*can't fail*/); |
| return true; |
| } |
| |
| /// erase - Remove NumBytes from this node at the specified offset. We are |
| /// guaranteed that there is a split at Offset. |
| void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) { |
| // Since we are guaranteed that there is a split at Offset, we start by |
| // finding the Piece that starts there. |
| unsigned PieceOffs = 0; |
| unsigned i = 0; |
| for (; Offset > PieceOffs; ++i) |
| PieceOffs += getPiece(i).size(); |
| assert(PieceOffs == Offset && "Split didn't occur before erase!"); |
| |
| unsigned StartPiece = i; |
| |
| // Figure out how many pieces completely cover 'NumBytes'. We want to remove |
| // all of them. |
| for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i) |
| PieceOffs += getPiece(i).size(); |
| |
| // If we exactly include the last one, include it in the region to delete. |
| if (Offset+NumBytes == PieceOffs+getPiece(i).size()) |
| PieceOffs += getPiece(i).size(), ++i; |
| |
| // If we completely cover some RopePieces, erase them now. |
| if (i != StartPiece) { |
| unsigned NumDeleted = i-StartPiece; |
| for (; i != getNumPieces(); ++i) |
| Pieces[i-NumDeleted] = Pieces[i]; |
| |
| // Drop references to dead rope pieces. |
| std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()], |
| RopePiece()); |
| NumPieces -= NumDeleted; |
| |
| unsigned CoverBytes = PieceOffs-Offset; |
| NumBytes -= CoverBytes; |
| Size -= CoverBytes; |
| } |
| |
| // If we completely removed some stuff, we could be done. |
| if (NumBytes == 0) return; |
| |
| // Okay, now might be erasing part of some Piece. If this is the case, then |
| // move the start point of the piece. |
| assert(getPiece(StartPiece).size() > NumBytes); |
| Pieces[StartPiece].StartOffs += NumBytes; |
| |
| // The size of this node just shrunk by NumBytes. |
| Size -= NumBytes; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RopePieceBTreeInterior Class |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| // Holds up to 2*WidthFactor children. |
| class RopePieceBTreeInterior : public RopePieceBTreeNode { |
| /// NumChildren - This holds the number of children currently active in the |
| /// Children array. |
| unsigned char NumChildren; |
| RopePieceBTreeNode *Children[2*WidthFactor]; |
| public: |
| RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {} |
| |
| RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS) |
| : RopePieceBTreeNode(false) { |
| Children[0] = LHS; |
| Children[1] = RHS; |
| NumChildren = 2; |
| Size = LHS->size() + RHS->size(); |
| } |
| |
| bool isFull() const { return NumChildren == 2*WidthFactor; } |
| |
| unsigned getNumChildren() const { return NumChildren; } |
| const RopePieceBTreeNode *getChild(unsigned i) const { |
| assert(i < NumChildren && "invalid child #"); |
| return Children[i]; |
| } |
| RopePieceBTreeNode *getChild(unsigned i) { |
| assert(i < NumChildren && "invalid child #"); |
| return Children[i]; |
| } |
| |
| void FullRecomputeSizeLocally() { |
| Size = 0; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| Size += getChild(i)->size(); |
| } |
| |
| |
| /// split - Split the range containing the specified offset so that we are |
| /// guaranteed that there is a place to do an insertion at the specified |
| /// offset. The offset is relative, so "0" is the start of the node. This |
| /// returns true if the insertion could not be done in place, and returns |
| /// information in 'Res' about the piece that is percolated up. |
| bool split(unsigned Offset, InsertResult *Res); |
| |
| |
| /// insert - Insert the specified ropepiece into this tree node at the |
| /// specified offset. The offset is relative, so "0" is the start of the |
| /// node. This returns true if the insertion could not be done in place, |
| /// and returns information in 'Res' about the piece that is percolated up. |
| bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res); |
| |
| /// HandleChildPiece - A child propagated an insertion result up to us. |
| /// Insert the new child, and/or propagate the result further up the tree. |
| bool HandleChildPiece(unsigned i, InsertResult &Res); |
| |
| /// erase - Remove NumBytes from this node at the specified offset. We are |
| /// guaranteed that there is a split at Offset. |
| void erase(unsigned Offset, unsigned NumBytes); |
| |
| static inline bool classof(const RopePieceBTreeInterior *) { return true; } |
| static inline bool classof(const RopePieceBTreeNode *N) { |
| return !N->isLeaf(); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// split - Split the range containing the specified offset so that we are |
| /// guaranteed that there is a place to do an insertion at the specified |
| /// offset. The offset is relative, so "0" is the start of the node. This |
| /// returns true if the insertion could not be done in place, and returns |
| /// information in 'Res' about the piece that is percolated up. |
| bool RopePieceBTreeInterior::split(unsigned Offset, InsertResult *Res) { |
| // Figure out which child to split. |
| if (Offset == 0 || Offset == size()) |
| return false; // If we have an exact offset, we're already split. |
| |
| unsigned ChildOffset = 0; |
| unsigned i = 0; |
| for (; Offset >= ChildOffset+getChild(i)->size(); ++i) |
| ChildOffset += getChild(i)->size(); |
| |
| // If already split there, we're done. |
| if (ChildOffset == Offset) |
| return false; |
| |
| // Otherwise, recursively split the child. |
| if (getChild(i)->split(Offset-ChildOffset, Res)) |
| return HandleChildPiece(i, *Res); |
| return false; // Done! |
| } |
| |
| /// insert - Insert the specified ropepiece into this tree node at the |
| /// specified offset. The offset is relative, so "0" is the start of the |
| /// node. This returns true if the insertion could not be done in place, and |
| /// returns information in 'Res' about the piece that is percolated up. |
| bool RopePieceBTreeInterior::insert(unsigned Offset, const RopePiece &R, |
| InsertResult *Res) { |
| // Find the insertion point. We are guaranteed that there is a split at the |
| // specified offset so find it. |
| unsigned i = 0, e = getNumChildren(); |
| |
| unsigned ChildOffs = 0; |
| if (Offset == size()) { |
| // Fastpath for a common case. Insert at end of last child. |
| i = e-1; |
| ChildOffs = size()-getChild(i)->size(); |
| } else { |
| for (; Offset > ChildOffs+getChild(i)->size(); ++i) |
| ChildOffs += getChild(i)->size(); |
| } |
| |
| Size += R.size(); |
| |
| // Insert at the end of this child. |
| if (getChild(i)->insert(Offset-ChildOffs, R, Res)) |
| return HandleChildPiece(i, *Res); |
| |
| return false; |
| } |
| |
| /// HandleChildPiece - A child propagated an insertion result up to us. |
| /// Insert the new child, and/or propagate the result further up the tree. |
| bool RopePieceBTreeInterior::HandleChildPiece(unsigned i, InsertResult &Res) { |
| // Otherwise the child propagated a subtree up to us as a new child. See if |
| // we have space for it here. |
| if (!isFull()) { |
| // Replace child 'i' with the two children specified in Res. |
| if (i + 1 != getNumChildren()) |
| memmove(&Children[i+2], &Children[i+1], |
| (getNumChildren()-i-1)*sizeof(Children[0])); |
| Children[i] = Res.LHS; |
| Children[i+1] = Res.RHS; |
| ++NumChildren; |
| return false; |
| } |
| |
| // Okay, this node is full. Split it in half, moving WidthFactor children to |
| // a newly allocated interior node. |
| |
| // Create the new node. |
| RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior(); |
| |
| // Move over the last 'WidthFactor' values from here to NewNode. |
| memcpy(&NewNode->Children[0], &Children[WidthFactor], |
| WidthFactor*sizeof(Children[0])); |
| |
| // Decrease the number of values in the two nodes. |
| NewNode->NumChildren = NumChildren = WidthFactor; |
| |
| // Finally, insert the two new children in the side the can (now) hold them. |
| if (i < WidthFactor) |
| this->HandleChildPiece(i, Res); |
| else |
| NewNode->HandleChildPiece(i-WidthFactor, Res); |
| |
| // Recompute the two nodes' size. |
| NewNode->FullRecomputeSizeLocally(); |
| FullRecomputeSizeLocally(); |
| |
| Res.LHS = this; |
| Res.RHS = NewNode; |
| return true; |
| } |
| |
| /// erase - Remove NumBytes from this node at the specified offset. We are |
| /// guaranteed that there is a split at Offset. |
| void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) { |
| // This will shrink this node by NumBytes. |
| Size -= NumBytes; |
| |
| // Find the first child that overlaps with Offset. |
| unsigned i = 0; |
| for (; Offset >= getChild(i)->size(); ++i) |
| Offset -= getChild(i)->size(); |
| |
| // Propagate the delete request into overlapping children, or completely |
| // delete the children as appropriate. |
| while (NumBytes) { |
| RopePieceBTreeNode *CurChild = getChild(i); |
| |
| // If we are deleting something contained entirely in the child, pass on the |
| // request. |
| if (Offset+NumBytes < CurChild->size()) { |
| CurChild->erase(Offset, NumBytes); |
| return; |
| } |
| |
| // If this deletion request starts somewhere in the middle of the child, it |
| // must be deleting to the end of the child. |
| if (Offset) { |
| unsigned BytesFromChild = CurChild->size()-Offset; |
| CurChild->erase(Offset, BytesFromChild); |
| NumBytes -= BytesFromChild; |
| ++i; |
| continue; |
| } |
| |
| // If the deletion request completely covers the child, delete it and move |
| // the rest down. |
| NumBytes -= CurChild->size(); |
| CurChild->Destroy(); |
| --NumChildren; |
| if (i+1 != getNumChildren()) |
| memmove(&Children[i], &Children[i+1], |
| (getNumChildren()-i)*sizeof(Children[0])); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RopePieceBTreeNode Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void RopePieceBTreeNode::Destroy() { |
| if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| delete Leaf; |
| else |
| delete cast<RopePieceBTreeInterior>(this); |
| } |
| |
| /// split - Split the range containing the specified offset so that we are |
| /// guaranteed that there is a place to do an insertion at the specified |
| /// offset. The offset is relative, so "0" is the start of the node. This |
| /// returns true if the insertion could not be done in place, and returns |
| /// information in 'Res' about the piece that is percolated up. |
| bool RopePieceBTreeNode::split(unsigned Offset, InsertResult *Res) { |
| assert(Offset <= size() && "Invalid offset to split!"); |
| if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| return Leaf->split(Offset, Res); |
| return cast<RopePieceBTreeInterior>(this)->split(Offset, Res); |
| } |
| |
| /// insert - Insert the specified ropepiece into this tree node at the |
| /// specified offset. The offset is relative, so "0" is the start of the |
| /// node. |
| bool RopePieceBTreeNode::insert(unsigned Offset, const RopePiece &R, |
| InsertResult *Res) { |
| assert(Offset <= size() && "Invalid offset to insert!"); |
| if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| return Leaf->insert(Offset, R, Res); |
| return cast<RopePieceBTreeInterior>(this)->insert(Offset, R, Res); |
| } |
| |
| /// erase - Remove NumBytes from this node at the specified offset. We are |
| /// guaranteed that there is a split at Offset. |
| void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) { |
| assert(Offset+NumBytes <= size() && "Invalid offset to erase!"); |
| if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| return Leaf->erase(Offset, NumBytes); |
| return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // RopePieceBTreeIterator Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static const RopePieceBTreeLeaf *getCN(const void *P) { |
| return static_cast<const RopePieceBTreeLeaf*>(P); |
| } |
| |
| // begin iterator. |
| RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) { |
| const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n); |
| |
| // Walk down the left side of the tree until we get to a leaf. |
| while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N)) |
| N = IN->getChild(0); |
| |
| // We must have at least one leaf. |
| CurNode = cast<RopePieceBTreeLeaf>(N); |
| |
| // If we found a leaf that happens to be empty, skip over it until we get |
| // to something full. |
| while (CurNode && getCN(CurNode)->getNumPieces() == 0) |
| CurNode = getCN(CurNode)->getNextLeafInOrder(); |
| |
| if (CurNode != 0) |
| CurPiece = &getCN(CurNode)->getPiece(0); |
| else // Empty tree, this is an end() iterator. |
| CurPiece = 0; |
| CurChar = 0; |
| } |
| |
| void RopePieceBTreeIterator::MoveToNextPiece() { |
| if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) { |
| CurChar = 0; |
| ++CurPiece; |
| return; |
| } |
| |
| // Find the next non-empty leaf node. |
| do |
| CurNode = getCN(CurNode)->getNextLeafInOrder(); |
| while (CurNode && getCN(CurNode)->getNumPieces() == 0); |
| |
| if (CurNode != 0) |
| CurPiece = &getCN(CurNode)->getPiece(0); |
| else // Hit end(). |
| CurPiece = 0; |
| CurChar = 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RopePieceBTree Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RopePieceBTreeNode *getRoot(void *P) { |
| return static_cast<RopePieceBTreeNode*>(P); |
| } |
| |
| RopePieceBTree::RopePieceBTree() { |
| Root = new RopePieceBTreeLeaf(); |
| } |
| RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) { |
| assert(RHS.empty() && "Can't copy non-empty tree yet"); |
| Root = new RopePieceBTreeLeaf(); |
| } |
| RopePieceBTree::~RopePieceBTree() { |
| getRoot(Root)->Destroy(); |
| } |
| |
| unsigned RopePieceBTree::size() const { |
| return getRoot(Root)->size(); |
| } |
| |
| void RopePieceBTree::clear() { |
| if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root))) |
| Leaf->clear(); |
| else { |
| getRoot(Root)->Destroy(); |
| Root = new RopePieceBTreeLeaf(); |
| } |
| } |
| |
| void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) { |
| InsertResult Result; |
| // #1. Split at Offset. |
| if (getRoot(Root)->split(Offset, &Result)) |
| Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS); |
| |
| // #2. Do the insertion. |
| if (getRoot(Root)->insert(Offset, R, &Result)) |
| Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS); |
| } |
| |
| void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) { |
| InsertResult Result; |
| // #1. Split at Offset. |
| if (getRoot(Root)->split(Offset, &Result)) |
| Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS); |
| |
| // #2. Do the erasing. |
| getRoot(Root)->erase(Offset, NumBytes); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RewriteRope Implementation |
| //===----------------------------------------------------------------------===// |
| |
| RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) { |
| unsigned Len = End-Start; |
| |
| // If we have space for this string in the current alloc buffer, use it. |
| if (AllocOffs+Len <= AllocChunkSize) { |
| memcpy(AllocBuffer->Data+AllocOffs, Start, Len); |
| AllocOffs += Len; |
| return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs); |
| } |
| |
| // If we don't have enough room because this specific allocation is huge, |
| // just allocate a new rope piece for it alone. |
| if (Len > AllocChunkSize) { |
| unsigned Size = End-Start+sizeof(RopeRefCountString)-1; |
| RopeRefCountString *Res = |
| reinterpret_cast<RopeRefCountString *>(new char[Size]); |
| Res->RefCount = 0; |
| memcpy(Res->Data, Start, End-Start); |
| return RopePiece(Res, 0, End-Start); |
| } |
| |
| // Otherwise, this was a small request but we just don't have space for it |
| // Make a new chunk and share it with later allocations. |
| |
| // If we had an old allocation, drop our reference to it. |
| if (AllocBuffer && --AllocBuffer->RefCount == 0) |
| delete [] (char*)AllocBuffer; |
| |
| unsigned AllocSize = sizeof(RopeRefCountString)-1+AllocChunkSize; |
| AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]); |
| AllocBuffer->RefCount = 0; |
| memcpy(AllocBuffer->Data, Start, Len); |
| AllocOffs = Len; |
| |
| // Start out the new allocation with a refcount of 1, since we have an |
| // internal reference to it. |
| AllocBuffer->addRef(); |
| return RopePiece(AllocBuffer, 0, Len); |
| } |
| |
| |