blob: c34653ee425c4b8d2864ed8f0d1ced3ba0438d2d [file] [log] [blame]
//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements parsing for C++ class inline methods.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;
/// ParseCXXInlineMethodDef - We parsed and verified that the specified
/// Declarator is a well formed C++ inline method definition. Now lex its body
/// and store its tokens for parsing after the C++ class is complete.
Parser::DeclPtrTy
Parser::ParseCXXInlineMethodDef(AccessSpecifier AS, Declarator &D,
const ParsedTemplateInfo &TemplateInfo) {
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"This isn't a function declarator!");
assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) &&
"Current token not a '{', ':' or 'try'!");
Action::MultiTemplateParamsArg TemplateParams(Actions,
TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
DeclPtrTy FnD;
if (D.getDeclSpec().isFriendSpecified())
// FIXME: Friend templates
FnD = Actions.ActOnFriendFunctionDecl(CurScope, D, true, move(TemplateParams));
else // FIXME: pass template information through
FnD = Actions.ActOnCXXMemberDeclarator(CurScope, AS, D,
move(TemplateParams), 0, 0);
HandleMemberFunctionDefaultArgs(D, FnD);
// Consume the tokens and store them for later parsing.
getCurrentClass().MethodDefs.push_back(LexedMethod(FnD));
getCurrentClass().MethodDefs.back().TemplateScope
= CurScope->isTemplateParamScope();
CachedTokens &Toks = getCurrentClass().MethodDefs.back().Toks;
tok::TokenKind kind = Tok.getKind();
// We may have a constructor initializer or function-try-block here.
if (kind == tok::colon || kind == tok::kw_try) {
// Consume everything up to (and including) the left brace.
if (!ConsumeAndStoreUntil(tok::l_brace, tok::unknown, Toks, tok::semi)) {
// We didn't find the left-brace we expected after the
// constructor initializer.
if (Tok.is(tok::semi)) {
// We found a semicolon; complain, consume the semicolon, and
// don't try to parse this method later.
Diag(Tok.getLocation(), diag::err_expected_lbrace);
ConsumeAnyToken();
getCurrentClass().MethodDefs.pop_back();
return FnD;
}
}
} else {
// Begin by storing the '{' token.
Toks.push_back(Tok);
ConsumeBrace();
}
// Consume everything up to (and including) the matching right brace.
ConsumeAndStoreUntil(tok::r_brace, tok::unknown, Toks);
// If we're in a function-try-block, we need to store all the catch blocks.
if (kind == tok::kw_try) {
while (Tok.is(tok::kw_catch)) {
ConsumeAndStoreUntil(tok::l_brace, tok::unknown, Toks);
ConsumeAndStoreUntil(tok::r_brace, tok::unknown, Toks);
}
}
return FnD;
}
/// ParseLexedMethodDeclarations - We finished parsing the member
/// specification of a top (non-nested) C++ class. Now go over the
/// stack of method declarations with some parts for which parsing was
/// delayed (such as default arguments) and parse them.
void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) {
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope TemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(CurScope, Class.TagOrTemplate);
bool HasClassScope = !Class.TopLevelClass;
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
HasClassScope);
for (; !Class.MethodDecls.empty(); Class.MethodDecls.pop_front()) {
LateParsedMethodDeclaration &LM = Class.MethodDecls.front();
// If this is a member template, introduce the template parameter scope.
ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
if (LM.TemplateScope)
Actions.ActOnReenterTemplateScope(CurScope, LM.Method);
// Start the delayed C++ method declaration
Actions.ActOnStartDelayedCXXMethodDeclaration(CurScope, LM.Method);
// Introduce the parameters into scope and parse their default
// arguments.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope);
for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) {
// Introduce the parameter into scope.
Actions.ActOnDelayedCXXMethodParameter(CurScope, LM.DefaultArgs[I].Param);
if (CachedTokens *Toks = LM.DefaultArgs[I].Toks) {
// Parse the default argument from its saved token stream.
Toks->push_back(Tok); // So that the current token doesn't get lost
PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false);
// Consume the previously-pushed token.
ConsumeAnyToken();
// Consume the '='.
assert(Tok.is(tok::equal) && "Default argument not starting with '='");
SourceLocation EqualLoc = ConsumeToken();
OwningExprResult DefArgResult(ParseAssignmentExpression());
if (DefArgResult.isInvalid())
Actions.ActOnParamDefaultArgumentError(LM.DefaultArgs[I].Param);
else
Actions.ActOnParamDefaultArgument(LM.DefaultArgs[I].Param, EqualLoc,
move(DefArgResult));
delete Toks;
LM.DefaultArgs[I].Toks = 0;
}
}
PrototypeScope.Exit();
// Finish the delayed C++ method declaration.
Actions.ActOnFinishDelayedCXXMethodDeclaration(CurScope, LM.Method);
}
for (unsigned I = 0, N = Class.NestedClasses.size(); I != N; ++I)
ParseLexedMethodDeclarations(*Class.NestedClasses[I]);
}
/// ParseLexedMethodDefs - We finished parsing the member specification of a top
/// (non-nested) C++ class. Now go over the stack of lexed methods that were
/// collected during its parsing and parse them all.
void Parser::ParseLexedMethodDefs(ParsingClass &Class) {
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope TemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(CurScope, Class.TagOrTemplate);
bool HasClassScope = !Class.TopLevelClass;
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
HasClassScope);
for (; !Class.MethodDefs.empty(); Class.MethodDefs.pop_front()) {
LexedMethod &LM = Class.MethodDefs.front();
// If this is a member template, introduce the template parameter scope.
ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
if (LM.TemplateScope)
Actions.ActOnReenterTemplateScope(CurScope, LM.D);
assert(!LM.Toks.empty() && "Empty body!");
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
LM.Toks.push_back(Tok);
PP.EnterTokenStream(LM.Toks.data(), LM.Toks.size(), true, false);
// Consume the previously pushed token.
ConsumeAnyToken();
assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try))
&& "Inline method not starting with '{', ':' or 'try'");
// Parse the method body. Function body parsing code is similar enough
// to be re-used for method bodies as well.
ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope);
Actions.ActOnStartOfFunctionDef(CurScope, LM.D);
if (Tok.is(tok::kw_try)) {
ParseFunctionTryBlock(LM.D);
continue;
}
if (Tok.is(tok::colon))
ParseConstructorInitializer(LM.D);
else
Actions.ActOnDefaultCtorInitializers(LM.D);
// FIXME: What if ParseConstructorInitializer doesn't leave us with a '{'??
ParseFunctionStatementBody(LM.D);
}
for (unsigned I = 0, N = Class.NestedClasses.size(); I != N; ++I)
ParseLexedMethodDefs(*Class.NestedClasses[I]);
}
/// ConsumeAndStoreUntil - Consume and store the token at the passed token
/// container until the token 'T' is reached (which gets
/// consumed/stored too, if ConsumeFinalToken).
/// If EarlyAbortIf is specified, then we will stop early if we find that
/// token at the top level.
/// Returns true if token 'T1' or 'T2' was found.
/// NOTE: This is a specialized version of Parser::SkipUntil.
bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
CachedTokens &Toks,
tok::TokenKind EarlyAbortIf,
bool ConsumeFinalToken) {
// We always want this function to consume at least one token if the first
// token isn't T and if not at EOF.
bool isFirstTokenConsumed = true;
while (1) {
// If we found one of the tokens, stop and return true.
if (Tok.is(T1) || Tok.is(T2)) {
if (ConsumeFinalToken) {
Toks.push_back(Tok);
ConsumeAnyToken();
}
return true;
}
// If we found the early-abort token, return.
if (Tok.is(EarlyAbortIf))
return false;
switch (Tok.getKind()) {
case tok::eof:
// Ran out of tokens.
return false;
case tok::l_paren:
// Recursively consume properly-nested parens.
Toks.push_back(Tok);
ConsumeParen();
ConsumeAndStoreUntil(tok::r_paren, tok::unknown, Toks);
break;
case tok::l_square:
// Recursively consume properly-nested square brackets.
Toks.push_back(Tok);
ConsumeBracket();
ConsumeAndStoreUntil(tok::r_square, tok::unknown, Toks);
break;
case tok::l_brace:
// Recursively consume properly-nested braces.
Toks.push_back(Tok);
ConsumeBrace();
ConsumeAndStoreUntil(tok::r_brace, tok::unknown, Toks);
break;
// Okay, we found a ']' or '}' or ')', which we think should be balanced.
// Since the user wasn't looking for this token (if they were, it would
// already be handled), this isn't balanced. If there is a LHS token at a
// higher level, we will assume that this matches the unbalanced token
// and return it. Otherwise, this is a spurious RHS token, which we skip.
case tok::r_paren:
if (ParenCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeParen();
break;
case tok::r_square:
if (BracketCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBracket();
break;
case tok::r_brace:
if (BraceCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBrace();
break;
case tok::string_literal:
case tok::wide_string_literal:
Toks.push_back(Tok);
ConsumeStringToken();
break;
default:
// consume this token.
Toks.push_back(Tok);
ConsumeToken();
break;
}
isFirstTokenConsumed = false;
}
}