| //===--- DataflowSolver.h - Skeleton Dataflow Analysis Code -----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Ted Kremenek and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines skeleton code for implementing dataflow analyses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_ANALYSES_DATAFLOW_SOLVER |
| #define LLVM_CLANG_ANALYSES_DATAFLOW_SOLVER |
| |
| #include "clang/AST/CFG.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| |
| namespace clang { |
| |
| //===----------------------------------------------------------------------===// |
| /// DataflowWorkListTy - Data structure representing the worklist used for |
| /// dataflow algorithms. |
| |
| class DataflowWorkListTy { |
| typedef llvm::SmallPtrSet<const CFGBlock*,20> BlockSet; |
| BlockSet wlist; |
| public: |
| /// enqueue - Add a block to the worklist. Blocks already on the worklist |
| /// are not added a second time. |
| void enqueue(const CFGBlock* B) { wlist.insert(B); } |
| |
| /// dequeue - Remove a block from the worklist. |
| const CFGBlock* dequeue() { |
| assert (!wlist.empty()); |
| const CFGBlock* B = *wlist.begin(); |
| wlist.erase(B); |
| return B; |
| } |
| |
| /// isEmpty - Return true if the worklist is empty. |
| bool isEmpty() const { return wlist.empty(); } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// DataflowSolverTy - Generic dataflow solver. |
| template <typename _DFValuesTy, // Usually a subclass of DataflowValues |
| typename _TransferFuncsTy, |
| typename _MergeOperatorTy > |
| class DataflowSolver { |
| |
| //===--------------------------------------------------------------------===// |
| // Type declarations. |
| //===--------------------------------------------------------------------===// |
| |
| public: |
| typedef _DFValuesTy DFValuesTy; |
| typedef _TransferFuncsTy TransferFuncsTy; |
| typedef _MergeOperatorTy MergeOperatorTy; |
| |
| typedef typename _DFValuesTy::AnalysisDirTag AnalysisDirTag; |
| typedef typename _DFValuesTy::ValTy ValTy; |
| typedef typename _DFValuesTy::EdgeDataMapTy EdgeDataMapTy; |
| |
| //===--------------------------------------------------------------------===// |
| // External interface: constructing and running the solver. |
| //===--------------------------------------------------------------------===// |
| |
| public: |
| DataflowSolver(DFValuesTy& d) : D(d), TF(d.getAnalysisData()) {} |
| ~DataflowSolver() {} |
| |
| /// runOnCFG - Computes dataflow values for all blocks in a CFG. |
| void runOnCFG(const CFG& cfg) { |
| // Set initial dataflow values and boundary conditions. |
| D.InitializeValues(cfg); |
| // Solve the dataflow equations. This will populate D.EdgeDataMap |
| // with dataflow values. |
| SolveDataflowEquations(cfg); |
| } |
| |
| /// runOnBlock - Computes dataflow values for a given block. |
| /// This should usually be invoked only after previously computing |
| /// dataflow values using runOnCFG, as runOnBlock is intended to |
| /// only be used for querying the dataflow values within a block with |
| /// and Observer object. |
| void runOnBlock(const CFGBlock* B) { |
| if (hasData(B,AnalysisDirTag())) |
| ProcessBlock(B,AnalysisDirTag()); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Internal solver logic. |
| //===--------------------------------------------------------------------===// |
| |
| private: |
| |
| /// SolveDataflowEquations - Perform the actual |
| /// worklist algorithm to compute dataflow values. |
| void SolveDataflowEquations(const CFG& cfg) { |
| |
| EnqueueFirstBlock(cfg,AnalysisDirTag()); |
| |
| // Process the worklist until it is empty. |
| while (!WorkList.isEmpty()) { |
| const CFGBlock* B = WorkList.dequeue(); |
| // If the dataflow values at the block's entry have changed, |
| // enqueue all predecessor blocks onto the worklist to have |
| // their values updated. |
| ProcessBlock(B,AnalysisDirTag()); |
| UpdateEdges(B,TF.getVal(),AnalysisDirTag()); |
| } |
| } |
| |
| void EnqueueFirstBlock(const CFG& cfg, dataflow::forward_analysis_tag) { |
| WorkList.enqueue(&cfg.getEntry()); |
| } |
| |
| void EnqueueFirstBlock(const CFG& cfg, dataflow::backward_analysis_tag) { |
| WorkList.enqueue(&cfg.getExit()); |
| } |
| |
| /// ProcessBlock (FORWARD ANALYSIS) - Process the transfer functions |
| /// for a given block based on a forward analysis. |
| void ProcessBlock(const CFGBlock* B, dataflow::forward_analysis_tag) { |
| |
| // Merge dataflow values from all predecessors of this block. |
| ValTy& V = TF.getVal(); |
| V.resetValues(D.getAnalysisData()); |
| MergeOperatorTy Merge; |
| |
| EdgeDataMapTy& M = D.getEdgeDataMap(); |
| bool firstMerge = true; |
| |
| for (CFGBlock::const_pred_iterator I=B->pred_begin(), |
| E=B->pred_end(); I!=E; ++I) { |
| typename EdgeDataMapTy::iterator BI = M.find(CFG::Edge(*I,B)); |
| if (BI != M.end()) { |
| if (firstMerge) { |
| firstMerge = false; |
| V.copyValues(BI->second); |
| } |
| else |
| Merge(V,BI->second); |
| } |
| } |
| |
| // Process the statements in the block in the forward direction. |
| for (CFGBlock::const_iterator I=B->begin(), E=B->end(); I!=E; ++I) |
| TF.BlockStmt_Visit(const_cast<Stmt*>(*I)); |
| } |
| |
| /// ProcessBlock (BACKWARD ANALYSIS) - Process the transfer functions |
| /// for a given block based on a forward analysis. |
| void ProcessBlock(const CFGBlock* B, TransferFuncsTy& TF, |
| dataflow::backward_analysis_tag) { |
| |
| // Merge dataflow values from all predecessors of this block. |
| ValTy& V = TF.getVal(); |
| V.resetValues(D.getAnalysisData()); |
| MergeOperatorTy Merge; |
| |
| EdgeDataMapTy& M = D.getEdgeDataMap(); |
| bool firstMerge = true; |
| |
| for (CFGBlock::const_succ_iterator I=B->succ_begin(), |
| E=B->succ_end(); I!=E; ++I) { |
| typename EdgeDataMapTy::iterator BI = M.find(CFG::Edge(B,*I)); |
| if (BI != M.end()) { |
| if (firstMerge) { |
| firstMerge = false; |
| V.copyValues(BI->second); |
| } |
| else |
| Merge(V,BI->second); |
| } |
| } |
| |
| // Process the statements in the block in the forward direction. |
| for (CFGBlock::const_reverse_iterator I=B->begin(), E=B->end(); I!=E; ++I) |
| TF.BlockStmt_Visit(const_cast<Stmt*>(*I)); |
| } |
| |
| /// UpdateEdges (FORWARD ANALYSIS) - After processing the transfer |
| /// functions for a block, update the dataflow value associated with the |
| /// block's outgoing edges. Enqueue any successor blocks for an |
| /// outgoing edge whose value has changed. |
| void UpdateEdges(const CFGBlock* B, ValTy& V,dataflow::forward_analysis_tag) { |
| for (CFGBlock::const_succ_iterator I=B->succ_begin(), E=B->succ_end(); |
| I!=E; ++I) { |
| |
| CFG::Edge E(B,*I); |
| UpdateEdgeValue(E,V,*I); |
| } |
| } |
| |
| /// UpdateEdges (BACKWARD ANALYSIS) - After processing the transfer |
| /// functions for a block, update the dataflow value associated with the |
| /// block's incoming edges. Enqueue any predecessor blocks for an |
| /// outgoing edge whose value has changed. |
| void UpdateEdges(const CFGBlock* B, ValTy& V,dataflow::backward_analysis_tag){ |
| for (CFGBlock::const_pred_iterator I=B->succ_begin(), E=B->succ_end(); |
| I!=E; ++I) { |
| |
| CFG::Edge E(*I,B); |
| UpdateEdgeValue(E,V,*I); |
| } |
| } |
| |
| /// UpdateEdgeValue - Update the value associated with a given edge. |
| void UpdateEdgeValue(CFG::Edge& E, ValTy& V, const CFGBlock* TargetBlock) { |
| |
| EdgeDataMapTy& M = D.getEdgeDataMap(); |
| typename EdgeDataMapTy::iterator I = M.find(E); |
| |
| if (I == M.end()) { |
| // First value for this edge. |
| M[E].copyValues(V); |
| WorkList.enqueue(TargetBlock); |
| } |
| else if (!V.equal(I->second)) { |
| I->second.copyValues(V); |
| WorkList.enqueue(TargetBlock); |
| } |
| } |
| |
| /// hasData (FORWARD ANALYSIS) - Is there any dataflow values associated |
| /// with the incoming edges of a block? |
| bool hasData(const CFGBlock* B, dataflow::forward_analysis_tag) { |
| EdgeDataMapTy& M = D.getEdgeDataMap(); |
| |
| for (CFGBlock::const_pred_iterator I=B->pred_begin(), E=B->pred_end(); |
| I!=E; ++I) |
| if (M.find(CFG::Edge(*I,B)) != M.end()) |
| return true; |
| |
| return false; |
| } |
| |
| /// hasData (BACKWARD ANALYSIS) - Is there any dataflow values associated |
| /// with the outgoing edges of a block? |
| bool hasData(const CFGBlock* B, dataflow::backward_analysis_tag) { |
| EdgeDataMapTy& M = D.getEdgeDataMap(); |
| |
| for (CFGBlock::const_succ_iterator I=B->succ_begin(), E=B->succ_end(); |
| I!=E; ++I) |
| if (M.find(CFG::Edge(B,*I)) != M.end()) |
| return true; |
| |
| return false; |
| } |
| |
| private: |
| DFValuesTy& D; |
| DataflowWorkListTy WorkList; |
| TransferFuncsTy TF; |
| }; |
| |
| |
| } // end namespace clang |
| #endif |