| //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes wrap the information about a call or function |
| // definition used to handle ABI compliancy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TargetInfo.h" |
| #include "ABIInfo.h" |
| #include "CodeGenFunction.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "llvm/Type.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, |
| llvm::Value *Array, |
| llvm::Value *Value, |
| unsigned FirstIndex, |
| unsigned LastIndex) { |
| // Alternatively, we could emit this as a loop in the source. |
| for (unsigned I = FirstIndex; I <= LastIndex; ++I) { |
| llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); |
| Builder.CreateStore(Value, Cell); |
| } |
| } |
| |
| static bool isAggregateTypeForABI(QualType T) { |
| return CodeGenFunction::hasAggregateLLVMType(T) || |
| T->isMemberFunctionPointerType(); |
| } |
| |
| ABIInfo::~ABIInfo() {} |
| |
| ASTContext &ABIInfo::getContext() const { |
| return CGT.getContext(); |
| } |
| |
| llvm::LLVMContext &ABIInfo::getVMContext() const { |
| return CGT.getLLVMContext(); |
| } |
| |
| const llvm::TargetData &ABIInfo::getTargetData() const { |
| return CGT.getTargetData(); |
| } |
| |
| |
| void ABIArgInfo::dump() const { |
| llvm::raw_ostream &OS = llvm::errs(); |
| OS << "(ABIArgInfo Kind="; |
| switch (TheKind) { |
| case Direct: |
| OS << "Direct Type="; |
| if (const llvm::Type *Ty = getCoerceToType()) |
| Ty->print(OS); |
| else |
| OS << "null"; |
| break; |
| case Extend: |
| OS << "Extend"; |
| break; |
| case Ignore: |
| OS << "Ignore"; |
| break; |
| case Indirect: |
| OS << "Indirect Align=" << getIndirectAlign() |
| << " Byal=" << getIndirectByVal() |
| << " Realign=" << getIndirectRealign(); |
| break; |
| case Expand: |
| OS << "Expand"; |
| break; |
| } |
| OS << ")\n"; |
| } |
| |
| TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } |
| |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); |
| |
| /// isEmptyField - Return true iff a the field is "empty", that is it |
| /// is an unnamed bit-field or an (array of) empty record(s). |
| static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, |
| bool AllowArrays) { |
| if (FD->isUnnamedBitfield()) |
| return true; |
| |
| QualType FT = FD->getType(); |
| |
| // Constant arrays of empty records count as empty, strip them off. |
| if (AllowArrays) |
| while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) |
| FT = AT->getElementType(); |
| |
| const RecordType *RT = FT->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| // C++ record fields are never empty, at least in the Itanium ABI. |
| // |
| // FIXME: We should use a predicate for whether this behavior is true in the |
| // current ABI. |
| if (isa<CXXRecordDecl>(RT->getDecl())) |
| return false; |
| |
| return isEmptyRecord(Context, FT, AllowArrays); |
| } |
| |
| /// isEmptyRecord - Return true iff a structure contains only empty |
| /// fields. Note that a structure with a flexible array member is not |
| /// considered empty. |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return 0; |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
| for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), |
| e = CXXRD->bases_end(); i != e; ++i) |
| if (!isEmptyRecord(Context, i->getType(), true)) |
| return false; |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) |
| if (!isEmptyField(Context, *i, AllowArrays)) |
| return false; |
| return true; |
| } |
| |
| /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either |
| /// a non-trivial destructor or a non-trivial copy constructor. |
| static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) { |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!RD) |
| return false; |
| |
| return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor(); |
| } |
| |
| /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is |
| /// a record type with either a non-trivial destructor or a non-trivial copy |
| /// constructor. |
| static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) { |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| return hasNonTrivialDestructorOrCopyConstructor(RT); |
| } |
| |
| /// isSingleElementStruct - Determine if a structure is a "single |
| /// element struct", i.e. it has exactly one non-empty field or |
| /// exactly one field which is itself a single element |
| /// struct. Structures with flexible array members are never |
| /// considered single element structs. |
| /// |
| /// \return The field declaration for the single non-empty field, if |
| /// it exists. |
| static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { |
| const RecordType *RT = T->getAsStructureType(); |
| if (!RT) |
| return 0; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return 0; |
| |
| const Type *Found = 0; |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), |
| e = CXXRD->bases_end(); i != e; ++i) { |
| // Ignore empty records. |
| if (isEmptyRecord(Context, i->getType(), true)) |
| continue; |
| |
| // If we already found an element then this isn't a single-element struct. |
| if (Found) |
| return 0; |
| |
| // If this is non-empty and not a single element struct, the composite |
| // cannot be a single element struct. |
| Found = isSingleElementStruct(i->getType(), Context); |
| if (!Found) |
| return 0; |
| } |
| } |
| |
| // Check for single element. |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // Ignore empty fields. |
| if (isEmptyField(Context, FD, true)) |
| continue; |
| |
| // If we already found an element then this isn't a single-element |
| // struct. |
| if (Found) |
| return 0; |
| |
| // Treat single element arrays as the element. |
| while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { |
| if (AT->getSize().getZExtValue() != 1) |
| break; |
| FT = AT->getElementType(); |
| } |
| |
| if (!isAggregateTypeForABI(FT)) { |
| Found = FT.getTypePtr(); |
| } else { |
| Found = isSingleElementStruct(FT, Context); |
| if (!Found) |
| return 0; |
| } |
| } |
| |
| return Found; |
| } |
| |
| static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { |
| if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && |
| !Ty->isAnyComplexType() && !Ty->isEnumeralType() && |
| !Ty->isBlockPointerType()) |
| return false; |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| return Size == 32 || Size == 64; |
| } |
| |
| /// canExpandIndirectArgument - Test whether an argument type which is to be |
| /// passed indirectly (on the stack) would have the equivalent layout if it was |
| /// expanded into separate arguments. If so, we prefer to do the latter to avoid |
| /// inhibiting optimizations. |
| /// |
| // FIXME: This predicate is missing many cases, currently it just follows |
| // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We |
| // should probably make this smarter, or better yet make the LLVM backend |
| // capable of handling it. |
| static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { |
| // We can only expand structure types. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| // We can only expand (C) structures. |
| // |
| // FIXME: This needs to be generalized to handle classes as well. |
| const RecordDecl *RD = RT->getDecl(); |
| if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) |
| return false; |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| |
| if (!is32Or64BitBasicType(FD->getType(), Context)) |
| return false; |
| |
| // FIXME: Reject bit-fields wholesale; there are two problems, we don't know |
| // how to expand them yet, and the predicate for telling if a bitfield still |
| // counts as "basic" is more complicated than what we were doing previously. |
| if (FD->isBitField()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| /// DefaultABIInfo - The default implementation for ABI specific |
| /// details. This implementation provides information which results in |
| /// self-consistent and sensible LLVM IR generation, but does not |
| /// conform to any particular ABI. |
| class DefaultABIInfo : public ABIInfo { |
| public: |
| DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
| }; |
| |
| llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| return 0; |
| } |
| |
| ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { |
| if (isAggregateTypeForABI(Ty)) |
| return ABIArgInfo::getIndirect(0); |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| /// UseX86_MMXType - Return true if this is an MMX type that should use the special |
| /// x86_mmx type. |
| bool UseX86_MMXType(const llvm::Type *IRType) { |
| // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the |
| // special x86_mmx type. |
| return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && |
| cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && |
| IRType->getScalarSizeInBits() != 64; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86-32 ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// X86_32ABIInfo - The X86-32 ABI information. |
| class X86_32ABIInfo : public ABIInfo { |
| static const unsigned MinABIStackAlignInBytes = 4; |
| |
| bool IsDarwinVectorABI; |
| bool IsSmallStructInRegABI; |
| |
| static bool isRegisterSize(unsigned Size) { |
| return (Size == 8 || Size == 16 || Size == 32 || Size == 64); |
| } |
| |
| static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); |
| |
| /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| /// such that the argument will be passed in memory. |
| ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const; |
| |
| /// \brief Return the alignment to use for the given type on the stack. |
| unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; |
| |
| public: |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| |
| X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p) |
| : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {} |
| }; |
| |
| class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p) |
| :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {} |
| |
| void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const; |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { |
| // Darwin uses different dwarf register numbers for EH. |
| if (CGM.isTargetDarwin()) return 5; |
| |
| return 4; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const; |
| }; |
| |
| } |
| |
| /// shouldReturnTypeInRegister - Determine if the given type should be |
| /// passed in a register (for the Darwin ABI). |
| bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, |
| ASTContext &Context) { |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // Type must be register sized. |
| if (!isRegisterSize(Size)) |
| return false; |
| |
| if (Ty->isVectorType()) { |
| // 64- and 128- bit vectors inside structures are not returned in |
| // registers. |
| if (Size == 64 || Size == 128) |
| return false; |
| |
| return true; |
| } |
| |
| // If this is a builtin, pointer, enum, complex type, member pointer, or |
| // member function pointer it is ok. |
| if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || |
| Ty->isAnyComplexType() || Ty->isEnumeralType() || |
| Ty->isBlockPointerType() || Ty->isMemberPointerType()) |
| return true; |
| |
| // Arrays are treated like records. |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) |
| return shouldReturnTypeInRegister(AT->getElementType(), Context); |
| |
| // Otherwise, it must be a record type. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) return false; |
| |
| // FIXME: Traverse bases here too. |
| |
| // Structure types are passed in register if all fields would be |
| // passed in a register. |
| for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), |
| e = RT->getDecl()->field_end(); i != e; ++i) { |
| const FieldDecl *FD = *i; |
| |
| // Empty fields are ignored. |
| if (isEmptyField(Context, FD, true)) |
| continue; |
| |
| // Check fields recursively. |
| if (!shouldReturnTypeInRegister(FD->getType(), Context)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| if (const VectorType *VT = RetTy->getAs<VectorType>()) { |
| // On Darwin, some vectors are returned in registers. |
| if (IsDarwinVectorABI) { |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| |
| // 128-bit vectors are a special case; they are returned in |
| // registers and we need to make sure to pick a type the LLVM |
| // backend will like. |
| if (Size == 128) |
| return ABIArgInfo::getDirect(llvm::VectorType::get( |
| llvm::Type::getInt64Ty(getVMContext()), 2)); |
| |
| // Always return in register if it fits in a general purpose |
| // register, or if it is 64 bits and has a single element. |
| if ((Size == 8 || Size == 16 || Size == 32) || |
| (Size == 64 && VT->getNumElements() == 1)) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
| Size)); |
| |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| if (isAggregateTypeForABI(RetTy)) { |
| if (const RecordType *RT = RetTy->getAs<RecordType>()) { |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| if (hasNonTrivialDestructorOrCopyConstructor(RT)) |
| return ABIArgInfo::getIndirect(0, /*ByVal=*/false); |
| |
| // Structures with flexible arrays are always indirect. |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| // If specified, structs and unions are always indirect. |
| if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) |
| return ABIArgInfo::getIndirect(0); |
| |
| // Classify "single element" structs as their element type. |
| if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) { |
| if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) { |
| if (BT->isIntegerType()) { |
| // We need to use the size of the structure, padding |
| // bit-fields can adjust that to be larger than the single |
| // element type. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| return ABIArgInfo::getDirect( |
| llvm::IntegerType::get(getVMContext(), (unsigned)Size)); |
| } |
| |
| if (BT->getKind() == BuiltinType::Float) { |
| assert(getContext().getTypeSize(RetTy) == |
| getContext().getTypeSize(SeltTy) && |
| "Unexpect single element structure size!"); |
| return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext())); |
| } |
| |
| if (BT->getKind() == BuiltinType::Double) { |
| assert(getContext().getTypeSize(RetTy) == |
| getContext().getTypeSize(SeltTy) && |
| "Unexpect single element structure size!"); |
| return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext())); |
| } |
| } else if (SeltTy->isPointerType()) { |
| // FIXME: It would be really nice if this could come out as the proper |
| // pointer type. |
| const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext()); |
| return ABIArgInfo::getDirect(PtrTy); |
| } else if (SeltTy->isVectorType()) { |
| // 64- and 128-bit vectors are never returned in a |
| // register when inside a structure. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size == 64 || Size == 128) |
| return ABIArgInfo::getIndirect(0); |
| |
| return classifyReturnType(QualType(SeltTy, 0)); |
| } |
| } |
| |
| // Small structures which are register sized are generally returned |
| // in a register. |
| if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) { |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); |
| } |
| |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) |
| return 0; |
| const RecordDecl *RD = RT->getDecl(); |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
| for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), |
| e = CXXRD->bases_end(); i != e; ++i) |
| if (!isRecordWithSSEVectorType(Context, i->getType())) |
| return false; |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| QualType FT = i->getType(); |
| |
| if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128) |
| return true; |
| |
| if (isRecordWithSSEVectorType(Context, FT)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, |
| unsigned Align) const { |
| // Otherwise, if the alignment is less than or equal to the minimum ABI |
| // alignment, just use the default; the backend will handle this. |
| if (Align <= MinABIStackAlignInBytes) |
| return 0; // Use default alignment. |
| |
| // On non-Darwin, the stack type alignment is always 4. |
| if (!IsDarwinVectorABI) { |
| // Set explicit alignment, since we may need to realign the top. |
| return MinABIStackAlignInBytes; |
| } |
| |
| // Otherwise, if the type contains an SSE vector type, the alignment is 16. |
| if (isRecordWithSSEVectorType(getContext(), Ty)) |
| return 16; |
| |
| return MinABIStackAlignInBytes; |
| } |
| |
| ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const { |
| if (!ByVal) |
| return ABIArgInfo::getIndirect(0, false); |
| |
| // Compute the byval alignment. |
| unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; |
| unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); |
| if (StackAlign == 0) |
| return ABIArgInfo::getIndirect(0); |
| |
| // If the stack alignment is less than the type alignment, realign the |
| // argument. |
| if (StackAlign < TypeAlign) |
| return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, |
| /*Realign=*/true); |
| |
| return ABIArgInfo::getIndirect(StackAlign); |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const { |
| // FIXME: Set alignment on indirect arguments. |
| if (isAggregateTypeForABI(Ty)) { |
| // Structures with flexible arrays are always indirect. |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| if (hasNonTrivialDestructorOrCopyConstructor(RT)) |
| return getIndirectResult(Ty, /*ByVal=*/false); |
| |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return getIndirectResult(Ty); |
| } |
| |
| // Ignore empty structs. |
| if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0) |
| return ABIArgInfo::getIgnore(); |
| |
| // Expand small (<= 128-bit) record types when we know that the stack layout |
| // of those arguments will match the struct. This is important because the |
| // LLVM backend isn't smart enough to remove byval, which inhibits many |
| // optimizations. |
| if (getContext().getTypeSize(Ty) <= 4*32 && |
| canExpandIndirectArgument(Ty, getContext())) |
| return ABIArgInfo::getExpand(); |
| |
| return getIndirectResult(Ty); |
| } |
| |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| // On Darwin, some vectors are passed in memory, we handle this by passing |
| // it as an i8/i16/i32/i64. |
| if (IsDarwinVectorABI) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if ((Size == 8 || Size == 16 || Size == 32) || |
| (Size == 64 && VT->getNumElements() == 1)) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
| Size)); |
| } |
| |
| const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty); |
| if (UseX86_MMXType(IRType)) { |
| ABIArgInfo AAI = ABIArgInfo::getDirect(IRType); |
| AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext())); |
| return AAI; |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); |
| const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| "ap"); |
| llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| |
| uint64_t Offset = |
| llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| llvm::Value *NextAddr = |
| Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), |
| "ap.next"); |
| Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| |
| return AddrTyped; |
| } |
| |
| void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, |
| llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
| // Get the LLVM function. |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| |
| // Now add the 'alignstack' attribute with a value of 16. |
| Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16)); |
| } |
| } |
| } |
| |
| bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( |
| CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| llvm::LLVMContext &Context = CGF.getLLVMContext(); |
| |
| const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); |
| llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
| |
| // 0-7 are the eight integer registers; the order is different |
| // on Darwin (for EH), but the range is the same. |
| // 8 is %eip. |
| AssignToArrayRange(Builder, Address, Four8, 0, 8); |
| |
| if (CGF.CGM.isTargetDarwin()) { |
| // 12-16 are st(0..4). Not sure why we stop at 4. |
| // These have size 16, which is sizeof(long double) on |
| // platforms with 8-byte alignment for that type. |
| llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); |
| AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); |
| |
| } else { |
| // 9 is %eflags, which doesn't get a size on Darwin for some |
| // reason. |
| Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); |
| |
| // 11-16 are st(0..5). Not sure why we stop at 5. |
| // These have size 12, which is sizeof(long double) on |
| // platforms with 4-byte alignment for that type. |
| llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12); |
| AssignToArrayRange(Builder, Address, Twelve8, 11, 16); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86-64 ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| |
| namespace { |
| /// X86_64ABIInfo - The X86_64 ABI information. |
| class X86_64ABIInfo : public ABIInfo { |
| enum Class { |
| Integer = 0, |
| SSE, |
| SSEUp, |
| X87, |
| X87Up, |
| ComplexX87, |
| NoClass, |
| Memory |
| }; |
| |
| /// merge - Implement the X86_64 ABI merging algorithm. |
| /// |
| /// Merge an accumulating classification \arg Accum with a field |
| /// classification \arg Field. |
| /// |
| /// \param Accum - The accumulating classification. This should |
| /// always be either NoClass or the result of a previous merge |
| /// call. In addition, this should never be Memory (the caller |
| /// should just return Memory for the aggregate). |
| static Class merge(Class Accum, Class Field); |
| |
| /// classify - Determine the x86_64 register classes in which the |
| /// given type T should be passed. |
| /// |
| /// \param Lo - The classification for the parts of the type |
| /// residing in the low word of the containing object. |
| /// |
| /// \param Hi - The classification for the parts of the type |
| /// residing in the high word of the containing object. |
| /// |
| /// \param OffsetBase - The bit offset of this type in the |
| /// containing object. Some parameters are classified different |
| /// depending on whether they straddle an eightbyte boundary. |
| /// |
| /// If a word is unused its result will be NoClass; if a type should |
| /// be passed in Memory then at least the classification of \arg Lo |
| /// will be Memory. |
| /// |
| /// The \arg Lo class will be NoClass iff the argument is ignored. |
| /// |
| /// If the \arg Lo class is ComplexX87, then the \arg Hi class will |
| /// also be ComplexX87. |
| void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const; |
| |
| const llvm::Type *Get16ByteVectorType(QualType Ty) const; |
| const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType, |
| unsigned IROffset, QualType SourceTy, |
| unsigned SourceOffset) const; |
| const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType, |
| unsigned IROffset, QualType SourceTy, |
| unsigned SourceOffset) const; |
| |
| /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| /// such that the argument will be returned in memory. |
| ABIArgInfo getIndirectReturnResult(QualType Ty) const; |
| |
| /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| /// such that the argument will be passed in memory. |
| ABIArgInfo getIndirectResult(QualType Ty) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| |
| ABIArgInfo classifyArgumentType(QualType Ty, |
| unsigned &neededInt, |
| unsigned &neededSSE) const; |
| |
| public: |
| X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| virtual void computeInfo(CGFunctionInfo &FI) const; |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| /// WinX86_64ABIInfo - The Windows X86_64 ABI information. |
| class WinX86_64ABIInfo : public X86_64ABIInfo { |
| public: |
| WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : X86_64ABIInfo(CGT) {} |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { |
| return 7; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| llvm::LLVMContext &Context = CGF.getLLVMContext(); |
| |
| const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); |
| llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
| |
| // 0-15 are the 16 integer registers. |
| // 16 is %rip. |
| AssignToArrayRange(Builder, Address, Eight8, 0, 16); |
| |
| return false; |
| } |
| }; |
| |
| class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { |
| return 7; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| llvm::LLVMContext &Context = CGF.getLLVMContext(); |
| |
| const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); |
| llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
| |
| // 0-15 are the 16 integer registers. |
| // 16 is %rip. |
| AssignToArrayRange(Builder, Address, Eight8, 0, 16); |
| |
| return false; |
| } |
| }; |
| |
| } |
| |
| X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { |
| // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is |
| // classified recursively so that always two fields are |
| // considered. The resulting class is calculated according to |
| // the classes of the fields in the eightbyte: |
| // |
| // (a) If both classes are equal, this is the resulting class. |
| // |
| // (b) If one of the classes is NO_CLASS, the resulting class is |
| // the other class. |
| // |
| // (c) If one of the classes is MEMORY, the result is the MEMORY |
| // class. |
| // |
| // (d) If one of the classes is INTEGER, the result is the |
| // INTEGER. |
| // |
| // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, |
| // MEMORY is used as class. |
| // |
| // (f) Otherwise class SSE is used. |
| |
| // Accum should never be memory (we should have returned) or |
| // ComplexX87 (because this cannot be passed in a structure). |
| assert((Accum != Memory && Accum != ComplexX87) && |
| "Invalid accumulated classification during merge."); |
| if (Accum == Field || Field == NoClass) |
| return Accum; |
| if (Field == Memory) |
| return Memory; |
| if (Accum == NoClass) |
| return Field; |
| if (Accum == Integer || Field == Integer) |
| return Integer; |
| if (Field == X87 || Field == X87Up || Field == ComplexX87 || |
| Accum == X87 || Accum == X87Up) |
| return Memory; |
| return SSE; |
| } |
| |
| void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, |
| Class &Lo, Class &Hi) const { |
| // FIXME: This code can be simplified by introducing a simple value class for |
| // Class pairs with appropriate constructor methods for the various |
| // situations. |
| |
| // FIXME: Some of the split computations are wrong; unaligned vectors |
| // shouldn't be passed in registers for example, so there is no chance they |
| // can straddle an eightbyte. Verify & simplify. |
| |
| Lo = Hi = NoClass; |
| |
| Class &Current = OffsetBase < 64 ? Lo : Hi; |
| Current = Memory; |
| |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
| BuiltinType::Kind k = BT->getKind(); |
| |
| if (k == BuiltinType::Void) { |
| Current = NoClass; |
| } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { |
| Lo = Integer; |
| Hi = Integer; |
| } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { |
| Current = Integer; |
| } else if (k == BuiltinType::Float || k == BuiltinType::Double) { |
| Current = SSE; |
| } else if (k == BuiltinType::LongDouble) { |
| Lo = X87; |
| Hi = X87Up; |
| } |
| // FIXME: _Decimal32 and _Decimal64 are SSE. |
| // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). |
| return; |
| } |
| |
| if (const EnumType *ET = Ty->getAs<EnumType>()) { |
| // Classify the underlying integer type. |
| classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi); |
| return; |
| } |
| |
| if (Ty->hasPointerRepresentation()) { |
| Current = Integer; |
| return; |
| } |
| |
| if (Ty->isMemberPointerType()) { |
| if (Ty->isMemberFunctionPointerType()) |
| Lo = Hi = Integer; |
| else |
| Current = Integer; |
| return; |
| } |
| |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| uint64_t Size = getContext().getTypeSize(VT); |
| if (Size == 32) { |
| // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x |
| // float> as integer. |
| Current = Integer; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| uint64_t EB_Real = (OffsetBase) / 64; |
| uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; |
| if (EB_Real != EB_Imag) |
| Hi = Lo; |
| } else if (Size == 64) { |
| // gcc passes <1 x double> in memory. :( |
| if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) |
| return; |
| |
| // gcc passes <1 x long long> as INTEGER. |
| if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || |
| VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || |
| VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || |
| VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) |
| Current = Integer; |
| else |
| Current = SSE; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| if (OffsetBase && OffsetBase != 64) |
| Hi = Lo; |
| } else if (Size == 128) { |
| Lo = SSE; |
| Hi = SSEUp; |
| } |
| return; |
| } |
| |
| if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
| QualType ET = getContext().getCanonicalType(CT->getElementType()); |
| |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if (ET->isIntegralOrEnumerationType()) { |
| if (Size <= 64) |
| Current = Integer; |
| else if (Size <= 128) |
| Lo = Hi = Integer; |
| } else if (ET == getContext().FloatTy) |
| Current = SSE; |
| else if (ET == getContext().DoubleTy) |
| Lo = Hi = SSE; |
| else if (ET == getContext().LongDoubleTy) |
| Current = ComplexX87; |
| |
| // If this complex type crosses an eightbyte boundary then it |
| // should be split. |
| uint64_t EB_Real = (OffsetBase) / 64; |
| uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; |
| if (Hi == NoClass && EB_Real != EB_Imag) |
| Hi = Lo; |
| |
| return; |
| } |
| |
| if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
| // Arrays are treated like structures. |
| |
| uint64_t Size = getContext().getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than two eightbytes, ..., it has class MEMORY. |
| if (Size > 128) |
| return; |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| // fields, it has class MEMORY. |
| // |
| // Only need to check alignment of array base. |
| if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) |
| return; |
| |
| // Otherwise implement simplified merge. We could be smarter about |
| // this, but it isn't worth it and would be harder to verify. |
| Current = NoClass; |
| uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); |
| uint64_t ArraySize = AT->getSize().getZExtValue(); |
| for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { |
| Class FieldLo, FieldHi; |
| classify(AT->getElementType(), Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| // Do post merger cleanup (see below). Only case we worry about is Memory. |
| if (Hi == Memory) |
| Lo = Memory; |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); |
| return; |
| } |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than two eightbytes, ..., it has class MEMORY. |
| if (Size > 128) |
| return; |
| |
| // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial |
| // copy constructor or a non-trivial destructor, it is passed by invisible |
| // reference. |
| if (hasNonTrivialDestructorOrCopyConstructor(RT)) |
| return; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| |
| // Assume variable sized types are passed in memory. |
| if (RD->hasFlexibleArrayMember()) |
| return; |
| |
| const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
| |
| // Reset Lo class, this will be recomputed. |
| Current = NoClass; |
| |
| // If this is a C++ record, classify the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), |
| e = CXXRD->bases_end(); i != e; ++i) { |
| assert(!i->isVirtual() && !i->getType()->isDependentType() && |
| "Unexpected base class!"); |
| const CXXRecordDecl *Base = |
| cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); |
| |
| // Classify this field. |
| // |
| // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a |
| // single eightbyte, each is classified separately. Each eightbyte gets |
| // initialized to class NO_CLASS. |
| Class FieldLo, FieldHi; |
| uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base); |
| classify(i->getType(), Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| } |
| |
| // Classify the fields one at a time, merging the results. |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| bool BitField = i->isBitField(); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| // fields, it has class MEMORY. |
| // |
| // Note, skip this test for bit-fields, see below. |
| if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { |
| Lo = Memory; |
| return; |
| } |
| |
| // Classify this field. |
| // |
| // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate |
| // exceeds a single eightbyte, each is classified |
| // separately. Each eightbyte gets initialized to class |
| // NO_CLASS. |
| Class FieldLo, FieldHi; |
| |
| // Bit-fields require special handling, they do not force the |
| // structure to be passed in memory even if unaligned, and |
| // therefore they can straddle an eightbyte. |
| if (BitField) { |
| // Ignore padding bit-fields. |
| if (i->isUnnamedBitfield()) |
| continue; |
| |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| uint64_t Size = |
| i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue(); |
| |
| uint64_t EB_Lo = Offset / 64; |
| uint64_t EB_Hi = (Offset + Size - 1) / 64; |
| FieldLo = FieldHi = NoClass; |
| if (EB_Lo) { |
| assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); |
| FieldLo = NoClass; |
| FieldHi = Integer; |
| } else { |
| FieldLo = Integer; |
| FieldHi = EB_Hi ? Integer : NoClass; |
| } |
| } else |
| classify(i->getType(), Offset, FieldLo, FieldHi); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: |
| // |
| // (a) If one of the classes is MEMORY, the whole argument is |
| // passed in memory. |
| // |
| // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. |
| |
| // The first of these conditions is guaranteed by how we implement |
| // the merge (just bail). |
| // |
| // The second condition occurs in the case of unions; for example |
| // union { _Complex double; unsigned; }. |
| if (Hi == Memory) |
| Lo = Memory; |
| if (Hi == SSEUp && Lo != SSE) |
| Hi = SSE; |
| } |
| } |
| |
| ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { |
| // If this is a scalar LLVM value then assume LLVM will pass it in the right |
| // place naturally. |
| if (!isAggregateTypeForABI(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const { |
| // If this is a scalar LLVM value then assume LLVM will pass it in the right |
| // place naturally. |
| if (!isAggregateTypeForABI(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) |
| return ABIArgInfo::getIndirect(0, /*ByVal=*/false); |
| |
| // Compute the byval alignment. We trust the back-end to honor the |
| // minimum ABI alignment for byval, to make cleaner IR. |
| const unsigned MinABIAlign = 8; |
| unsigned Align = getContext().getTypeAlign(Ty) / 8; |
| if (Align > MinABIAlign) |
| return ABIArgInfo::getIndirect(Align); |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| /// Get16ByteVectorType - The ABI specifies that a value should be passed in an |
| /// full vector XMM register. Pick an LLVM IR type that will be passed as a |
| /// vector register. |
| const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const { |
| const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty); |
| |
| // Wrapper structs that just contain vectors are passed just like vectors, |
| // strip them off if present. |
| const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); |
| while (STy && STy->getNumElements() == 1) { |
| IRType = STy->getElementType(0); |
| STy = dyn_cast<llvm::StructType>(IRType); |
| } |
| |
| // If the preferred type is a 16-byte vector, prefer to pass it. |
| if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ |
| const llvm::Type *EltTy = VT->getElementType(); |
| if (VT->getBitWidth() == 128 && |
| (EltTy->isFloatTy() || EltTy->isDoubleTy() || |
| EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || |
| EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || |
| EltTy->isIntegerTy(128))) |
| return VT; |
| } |
| |
| return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); |
| } |
| |
| /// BitsContainNoUserData - Return true if the specified [start,end) bit range |
| /// is known to either be off the end of the specified type or being in |
| /// alignment padding. The user type specified is known to be at most 128 bits |
| /// in size, and have passed through X86_64ABIInfo::classify with a successful |
| /// classification that put one of the two halves in the INTEGER class. |
| /// |
| /// It is conservatively correct to return false. |
| static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, |
| unsigned EndBit, ASTContext &Context) { |
| // If the bytes being queried are off the end of the type, there is no user |
| // data hiding here. This handles analysis of builtins, vectors and other |
| // types that don't contain interesting padding. |
| unsigned TySize = (unsigned)Context.getTypeSize(Ty); |
| if (TySize <= StartBit) |
| return true; |
| |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
| unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); |
| unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); |
| |
| // Check each element to see if the element overlaps with the queried range. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // If the element is after the span we care about, then we're done.. |
| unsigned EltOffset = i*EltSize; |
| if (EltOffset >= EndBit) break; |
| |
| unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; |
| if (!BitsContainNoUserData(AT->getElementType(), EltStart, |
| EndBit-EltOffset, Context)) |
| return false; |
| } |
| // If it overlaps no elements, then it is safe to process as padding. |
| return true; |
| } |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), |
| e = CXXRD->bases_end(); i != e; ++i) { |
| assert(!i->isVirtual() && !i->getType()->isDependentType() && |
| "Unexpected base class!"); |
| const CXXRecordDecl *Base = |
| cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); |
| |
| // If the base is after the span we care about, ignore it. |
| unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base); |
| if (BaseOffset >= EndBit) continue; |
| |
| unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; |
| if (!BitsContainNoUserData(i->getType(), BaseStart, |
| EndBit-BaseOffset, Context)) |
| return false; |
| } |
| } |
| |
| // Verify that no field has data that overlaps the region of interest. Yes |
| // this could be sped up a lot by being smarter about queried fields, |
| // however we're only looking at structs up to 16 bytes, so we don't care |
| // much. |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); |
| |
| // If we found a field after the region we care about, then we're done. |
| if (FieldOffset >= EndBit) break; |
| |
| unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; |
| if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, |
| Context)) |
| return false; |
| } |
| |
| // If nothing in this record overlapped the area of interest, then we're |
| // clean. |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a |
| /// float member at the specified offset. For example, {int,{float}} has a |
| /// float at offset 4. It is conservatively correct for this routine to return |
| /// false. |
| static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset, |
| const llvm::TargetData &TD) { |
| // Base case if we find a float. |
| if (IROffset == 0 && IRType->isFloatTy()) |
| return true; |
| |
| // If this is a struct, recurse into the field at the specified offset. |
| if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
| const llvm::StructLayout *SL = TD.getStructLayout(STy); |
| unsigned Elt = SL->getElementContainingOffset(IROffset); |
| IROffset -= SL->getElementOffset(Elt); |
| return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); |
| } |
| |
| // If this is an array, recurse into the field at the specified offset. |
| if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
| const llvm::Type *EltTy = ATy->getElementType(); |
| unsigned EltSize = TD.getTypeAllocSize(EltTy); |
| IROffset -= IROffset/EltSize*EltSize; |
| return ContainsFloatAtOffset(EltTy, IROffset, TD); |
| } |
| |
| return false; |
| } |
| |
| |
| /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the |
| /// low 8 bytes of an XMM register, corresponding to the SSE class. |
| const llvm::Type *X86_64ABIInfo:: |
| GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset, |
| QualType SourceTy, unsigned SourceOffset) const { |
| // The only three choices we have are either double, <2 x float>, or float. We |
| // pass as float if the last 4 bytes is just padding. This happens for |
| // structs that contain 3 floats. |
| if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, |
| SourceOffset*8+64, getContext())) |
| return llvm::Type::getFloatTy(getVMContext()); |
| |
| // We want to pass as <2 x float> if the LLVM IR type contains a float at |
| // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the |
| // case. |
| if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) && |
| ContainsFloatAtOffset(IRType, IROffset+4, getTargetData())) |
| return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); |
| |
| return llvm::Type::getDoubleTy(getVMContext()); |
| } |
| |
| |
| /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in |
| /// an 8-byte GPR. This means that we either have a scalar or we are talking |
| /// about the high or low part of an up-to-16-byte struct. This routine picks |
| /// the best LLVM IR type to represent this, which may be i64 or may be anything |
| /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, |
| /// etc). |
| /// |
| /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for |
| /// the source type. IROffset is an offset in bytes into the LLVM IR type that |
| /// the 8-byte value references. PrefType may be null. |
| /// |
| /// SourceTy is the source level type for the entire argument. SourceOffset is |
| /// an offset into this that we're processing (which is always either 0 or 8). |
| /// |
| const llvm::Type *X86_64ABIInfo:: |
| GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset, |
| QualType SourceTy, unsigned SourceOffset) const { |
| // If we're dealing with an un-offset LLVM IR type, then it means that we're |
| // returning an 8-byte unit starting with it. See if we can safely use it. |
| if (IROffset == 0) { |
| // Pointers and int64's always fill the 8-byte unit. |
| if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64)) |
| return IRType; |
| |
| // If we have a 1/2/4-byte integer, we can use it only if the rest of the |
| // goodness in the source type is just tail padding. This is allowed to |
| // kick in for struct {double,int} on the int, but not on |
| // struct{double,int,int} because we wouldn't return the second int. We |
| // have to do this analysis on the source type because we can't depend on |
| // unions being lowered a specific way etc. |
| if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || |
| IRType->isIntegerTy(32)) { |
| unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth(); |
| |
| if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, |
| SourceOffset*8+64, getContext())) |
| return IRType; |
| } |
| } |
| |
| if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
| // If this is a struct, recurse into the field at the specified offset. |
| const llvm::StructLayout *SL = getTargetData().getStructLayout(STy); |
| if (IROffset < SL->getSizeInBytes()) { |
| unsigned FieldIdx = SL->getElementContainingOffset(IROffset); |
| IROffset -= SL->getElementOffset(FieldIdx); |
| |
| return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, |
| SourceTy, SourceOffset); |
| } |
| } |
| |
| if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
| const llvm::Type *EltTy = ATy->getElementType(); |
| unsigned EltSize = getTargetData().getTypeAllocSize(EltTy); |
| unsigned EltOffset = IROffset/EltSize*EltSize; |
| return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, |
| SourceOffset); |
| } |
| |
| // Okay, we don't have any better idea of what to pass, so we pass this in an |
| // integer register that isn't too big to fit the rest of the struct. |
| unsigned TySizeInBytes = |
| (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); |
| |
| assert(TySizeInBytes != SourceOffset && "Empty field?"); |
| |
| // It is always safe to classify this as an integer type up to i64 that |
| // isn't larger than the structure. |
| return llvm::IntegerType::get(getVMContext(), |
| std::min(TySizeInBytes-SourceOffset, 8U)*8); |
| } |
| |
| |
| /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally |
| /// be used as elements of a two register pair to pass or return, return a |
| /// first class aggregate to represent them. For example, if the low part of |
| /// a by-value argument should be passed as i32* and the high part as float, |
| /// return {i32*, float}. |
| static const llvm::Type * |
| GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi, |
| const llvm::TargetData &TD) { |
| // In order to correctly satisfy the ABI, we need to the high part to start |
| // at offset 8. If the high and low parts we inferred are both 4-byte types |
| // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have |
| // the second element at offset 8. Check for this: |
| unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); |
| unsigned HiAlign = TD.getABITypeAlignment(Hi); |
| unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign); |
| assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); |
| |
| // To handle this, we have to increase the size of the low part so that the |
| // second element will start at an 8 byte offset. We can't increase the size |
| // of the second element because it might make us access off the end of the |
| // struct. |
| if (HiStart != 8) { |
| // There are only two sorts of types the ABI generation code can produce for |
| // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. |
| // Promote these to a larger type. |
| if (Lo->isFloatTy()) |
| Lo = llvm::Type::getDoubleTy(Lo->getContext()); |
| else { |
| assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); |
| Lo = llvm::Type::getInt64Ty(Lo->getContext()); |
| } |
| } |
| |
| const llvm::StructType *Result = |
| llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL); |
| |
| |
| // Verify that the second element is at an 8-byte offset. |
| assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && |
| "Invalid x86-64 argument pair!"); |
| return Result; |
| } |
| |
| ABIArgInfo X86_64ABIInfo:: |
| classifyReturnType(QualType RetTy) const { |
| // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the |
| // classification algorithm. |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(RetTy, 0, Lo, Hi); |
| |
| // Check some invariants. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| const llvm::Type *ResType = 0; |
| switch (Lo) { |
| case NoClass: |
| if (Hi == NoClass) |
| return ABIArgInfo::getIgnore(); |
| // If the low part is just padding, it takes no register, leave ResType |
| // null. |
| assert((Hi == SSE || Hi == Integer || Hi == X87Up) && |
| "Unknown missing lo part"); |
| break; |
| |
| case SSEUp: |
| case X87Up: |
| assert(0 && "Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via |
| // hidden argument. |
| case Memory: |
| return getIndirectReturnResult(RetTy); |
| |
| // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next |
| // available register of the sequence %rax, %rdx is used. |
| case Integer: |
| ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, |
| RetTy, 0); |
| |
| // If we have a sign or zero extended integer, make sure to return Extend |
| // so that the parameter gets the right LLVM IR attributes. |
| if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| if (RetTy->isIntegralOrEnumerationType() && |
| RetTy->isPromotableIntegerType()) |
| return ABIArgInfo::getExtend(); |
| } |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next |
| // available SSE register of the sequence %xmm0, %xmm1 is used. |
| case SSE: |
| ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is |
| // returned on the X87 stack in %st0 as 80-bit x87 number. |
| case X87: |
| ResType = llvm::Type::getX86_FP80Ty(getVMContext()); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real |
| // part of the value is returned in %st0 and the imaginary part in |
| // %st1. |
| case ComplexX87: |
| assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); |
| ResType = llvm::StructType::get(getVMContext(), |
| llvm::Type::getX86_FP80Ty(getVMContext()), |
| llvm::Type::getX86_FP80Ty(getVMContext()), |
| NULL); |
| break; |
| } |
| |
| const llvm::Type *HighPart = 0; |
| switch (Hi) { |
| // Memory was handled previously and X87 should |
| // never occur as a hi class. |
| case Memory: |
| case X87: |
| assert(0 && "Invalid classification for hi word."); |
| |
| case ComplexX87: // Previously handled. |
| case NoClass: |
| break; |
| |
| case Integer: |
| HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), |
| 8, RetTy, 8); |
| if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| break; |
| case SSE: |
| HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8); |
| if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte |
| // is passed in the upper half of the last used SSE register. |
| // |
| // SSEUP should always be preceeded by SSE, just widen. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification."); |
| ResType = Get16ByteVectorType(RetTy); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is |
| // returned together with the previous X87 value in %st0. |
| case X87Up: |
| // If X87Up is preceeded by X87, we don't need to do |
| // anything. However, in some cases with unions it may not be |
| // preceeded by X87. In such situations we follow gcc and pass the |
| // extra bits in an SSE reg. |
| if (Lo != X87) { |
| HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), |
| 8, RetTy, 8); |
| if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| } |
| break; |
| } |
| |
| // If a high part was specified, merge it together with the low part. It is |
| // known to pass in the high eightbyte of the result. We do this by forming a |
| // first class struct aggregate with the high and low part: {low, high} |
| if (HighPart) |
| ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); |
| |
| return ABIArgInfo::getDirect(ResType); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt, |
| unsigned &neededSSE) const { |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(Ty, 0, Lo, Hi); |
| |
| // Check some invariants. |
| // FIXME: Enforce these by construction. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| neededInt = 0; |
| neededSSE = 0; |
| const llvm::Type *ResType = 0; |
| switch (Lo) { |
| case NoClass: |
| if (Hi == NoClass) |
| return ABIArgInfo::getIgnore(); |
| // If the low part is just padding, it takes no register, leave ResType |
| // null. |
| assert((Hi == SSE || Hi == Integer || Hi == X87Up) && |
| "Unknown missing lo part"); |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument |
| // on the stack. |
| case Memory: |
| |
| // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or |
| // COMPLEX_X87, it is passed in memory. |
| case X87: |
| case ComplexX87: |
| return getIndirectResult(Ty); |
| |
| case SSEUp: |
| case X87Up: |
| assert(0 && "Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next |
| // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 |
| // and %r9 is used. |
| case Integer: |
| ++neededInt; |
| |
| // Pick an 8-byte type based on the preferred type. |
| ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0); |
| |
| // If we have a sign or zero extended integer, make sure to return Extend |
| // so that the parameter gets the right LLVM IR attributes. |
| if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| if (Ty->isIntegralOrEnumerationType() && |
| Ty->isPromotableIntegerType()) |
| return ABIArgInfo::getExtend(); |
| } |
| |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next |
| // available SSE register is used, the registers are taken in the |
| // order from %xmm0 to %xmm7. |
| case SSE: { |
| const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty); |
| if (Hi != NoClass || !UseX86_MMXType(IRType)) |
| ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); |
| else |
| // This is an MMX type. Treat it as such. |
| ResType = llvm::Type::getX86_MMXTy(getVMContext()); |
| |
| ++neededSSE; |
| break; |
| } |
| } |
| |
| const llvm::Type *HighPart = 0; |
| switch (Hi) { |
| // Memory was handled previously, ComplexX87 and X87 should |
| // never occur as hi classes, and X87Up must be preceed by X87, |
| // which is passed in memory. |
| case Memory: |
| case X87: |
| case ComplexX87: |
| assert(0 && "Invalid classification for hi word."); |
| break; |
| |
| case NoClass: break; |
| |
| case Integer: |
| ++neededInt; |
| // Pick an 8-byte type based on the preferred type. |
| HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8); |
| |
| if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| break; |
| |
| // X87Up generally doesn't occur here (long double is passed in |
| // memory), except in situations involving unions. |
| case X87Up: |
| case SSE: |
| HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8); |
| |
| if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| |
| ++neededSSE; |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the |
| // eightbyte is passed in the upper half of the last used SSE |
| // register. This only happens when 128-bit vectors are passed. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification"); |
| ResType = Get16ByteVectorType(Ty); |
| break; |
| } |
| |
| // If a high part was specified, merge it together with the low part. It is |
| // known to pass in the high eightbyte of the result. We do this by forming a |
| // first class struct aggregate with the high and low part: {low, high} |
| if (HighPart) |
| ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); |
| |
| return ABIArgInfo::getDirect(ResType); |
| } |
| |
| void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| |
| // Keep track of the number of assigned registers. |
| unsigned freeIntRegs = 6, freeSSERegs = 8; |
| |
| // If the return value is indirect, then the hidden argument is consuming one |
| // integer register. |
| if (FI.getReturnInfo().isIndirect()) |
| --freeIntRegs; |
| |
| // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers |
| // get assigned (in left-to-right order) for passing as follows... |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) { |
| unsigned neededInt, neededSSE; |
| it->info = classifyArgumentType(it->type, neededInt, neededSSE); |
| |
| // AMD64-ABI 3.2.3p3: If there are no registers available for any |
| // eightbyte of an argument, the whole argument is passed on the |
| // stack. If registers have already been assigned for some |
| // eightbytes of such an argument, the assignments get reverted. |
| if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { |
| freeIntRegs -= neededInt; |
| freeSSERegs -= neededSSE; |
| } else { |
| it->info = getIndirectResult(it->type); |
| } |
| } |
| } |
| |
| static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, |
| QualType Ty, |
| CodeGenFunction &CGF) { |
| llvm::Value *overflow_arg_area_p = |
| CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); |
| llvm::Value *overflow_arg_area = |
| CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); |
| |
| // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 |
| // byte boundary if alignment needed by type exceeds 8 byte boundary. |
| uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; |
| if (Align > 8) { |
| // Note that we follow the ABI & gcc here, even though the type |
| // could in theory have an alignment greater than 16. This case |
| // shouldn't ever matter in practice. |
| |
| // overflow_arg_area = (overflow_arg_area + 15) & ~15; |
| llvm::Value *Offset = |
| llvm::ConstantInt::get(CGF.Int32Ty, 15); |
| overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); |
| llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, |
| CGF.Int64Ty); |
| llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL); |
| overflow_arg_area = |
| CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), |
| overflow_arg_area->getType(), |
| "overflow_arg_area.align"); |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. |
| const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *Res = |
| CGF.Builder.CreateBitCast(overflow_arg_area, |
| llvm::PointerType::getUnqual(LTy)); |
| |
| // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: |
| // l->overflow_arg_area + sizeof(type). |
| // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to |
| // an 8 byte boundary. |
| |
| uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; |
| llvm::Value *Offset = |
| llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); |
| overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, |
| "overflow_arg_area.next"); |
| CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); |
| |
| // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. |
| return Res; |
| } |
| |
| llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| llvm::LLVMContext &VMContext = CGF.getLLVMContext(); |
| |
| // Assume that va_list type is correct; should be pointer to LLVM type: |
| // struct { |
| // i32 gp_offset; |
| // i32 fp_offset; |
| // i8* overflow_arg_area; |
| // i8* reg_save_area; |
| // }; |
| unsigned neededInt, neededSSE; |
| |
| Ty = CGF.getContext().getCanonicalType(Ty); |
| ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE); |
| |
| // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed |
| // in the registers. If not go to step 7. |
| if (!neededInt && !neededSSE) |
| return EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| |
| // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of |
| // general purpose registers needed to pass type and num_fp to hold |
| // the number of floating point registers needed. |
| |
| // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into |
| // registers. In the case: l->gp_offset > 48 - num_gp * 8 or |
| // l->fp_offset > 304 - num_fp * 16 go to step 7. |
| // |
| // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of |
| // register save space). |
| |
| llvm::Value *InRegs = 0; |
| llvm::Value *gp_offset_p = 0, *gp_offset = 0; |
| llvm::Value *fp_offset_p = 0, *fp_offset = 0; |
| if (neededInt) { |
| gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); |
| gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); |
| InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); |
| InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); |
| } |
| |
| if (neededSSE) { |
| fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); |
| fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); |
| llvm::Value *FitsInFP = |
| llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); |
| FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); |
| InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; |
| } |
| |
| llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
| llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
| CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
| |
| // Emit code to load the value if it was passed in registers. |
| |
| CGF.EmitBlock(InRegBlock); |
| |
| // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with |
| // an offset of l->gp_offset and/or l->fp_offset. This may require |
| // copying to a temporary location in case the parameter is passed |
| // in different register classes or requires an alignment greater |
| // than 8 for general purpose registers and 16 for XMM registers. |
| // |
| // FIXME: This really results in shameful code when we end up needing to |
| // collect arguments from different places; often what should result in a |
| // simple assembling of a structure from scattered addresses has many more |
| // loads than necessary. Can we clean this up? |
| const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *RegAddr = |
| CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), |
| "reg_save_area"); |
| if (neededInt && neededSSE) { |
| // FIXME: Cleanup. |
| assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); |
| const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); |
| llvm::Value *Tmp = CGF.CreateTempAlloca(ST); |
| assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); |
| const llvm::Type *TyLo = ST->getElementType(0); |
| const llvm::Type *TyHi = ST->getElementType(1); |
| assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && |
| "Unexpected ABI info for mixed regs"); |
| const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); |
| const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); |
| llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; |
| llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; |
| llvm::Value *V = |
| CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| |
| RegAddr = CGF.Builder.CreateBitCast(Tmp, |
| llvm::PointerType::getUnqual(LTy)); |
| } else if (neededInt) { |
| RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| llvm::PointerType::getUnqual(LTy)); |
| } else if (neededSSE == 1) { |
| RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| llvm::PointerType::getUnqual(LTy)); |
| } else { |
| assert(neededSSE == 2 && "Invalid number of needed registers!"); |
| // SSE registers are spaced 16 bytes apart in the register save |
| // area, we need to collect the two eightbytes together. |
| llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); |
| const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext); |
| const llvm::Type *DblPtrTy = |
| llvm::PointerType::getUnqual(DoubleTy); |
| const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy, |
| DoubleTy, NULL); |
| llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, |
| DblPtrTy)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, |
| DblPtrTy)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| RegAddr = CGF.Builder.CreateBitCast(Tmp, |
| llvm::PointerType::getUnqual(LTy)); |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 5. Set: |
| // l->gp_offset = l->gp_offset + num_gp * 8 |
| // l->fp_offset = l->fp_offset + num_fp * 16. |
| if (neededInt) { |
| llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), |
| gp_offset_p); |
| } |
| if (neededSSE) { |
| llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), |
| fp_offset_p); |
| } |
| CGF.EmitBranch(ContBlock); |
| |
| // Emit code to load the value if it was passed in memory. |
| |
| CGF.EmitBlock(InMemBlock); |
| llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| |
| // Return the appropriate result. |
| |
| CGF.EmitBlock(ContBlock); |
| llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), |
| "vaarg.addr"); |
| ResAddr->reserveOperandSpace(2); |
| ResAddr->addIncoming(RegAddr, InRegBlock); |
| ResAddr->addIncoming(MemAddr, InMemBlock); |
| return ResAddr; |
| } |
| |
| llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); |
| const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| "ap"); |
| llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| |
| uint64_t Offset = |
| llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); |
| llvm::Value *NextAddr = |
| Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), |
| "ap.next"); |
| Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| |
| return AddrTyped; |
| } |
| |
| // PowerPC-32 |
| |
| namespace { |
| class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { |
| public: |
| PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { |
| // This is recovered from gcc output. |
| return 1; // r1 is the dedicated stack pointer |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const; |
| }; |
| |
| } |
| |
| bool |
| PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| // This is calculated from the LLVM and GCC tables and verified |
| // against gcc output. AFAIK all ABIs use the same encoding. |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| llvm::LLVMContext &Context = CGF.getLLVMContext(); |
| |
| const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); |
| llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
| llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
| llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); |
| |
| // 0-31: r0-31, the 4-byte general-purpose registers |
| AssignToArrayRange(Builder, Address, Four8, 0, 31); |
| |
| // 32-63: fp0-31, the 8-byte floating-point registers |
| AssignToArrayRange(Builder, Address, Eight8, 32, 63); |
| |
| // 64-76 are various 4-byte special-purpose registers: |
| // 64: mq |
| // 65: lr |
| // 66: ctr |
| // 67: ap |
| // 68-75 cr0-7 |
| // 76: xer |
| AssignToArrayRange(Builder, Address, Four8, 64, 76); |
| |
| // 77-108: v0-31, the 16-byte vector registers |
| AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); |
| |
| // 109: vrsave |
| // 110: vscr |
| // 111: spe_acc |
| // 112: spefscr |
| // 113: sfp |
| AssignToArrayRange(Builder, Address, Four8, 109, 113); |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ARM ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class ARMABIInfo : public ABIInfo { |
| public: |
| enum ABIKind { |
| APCS = 0, |
| AAPCS = 1, |
| AAPCS_VFP |
| }; |
| |
| private: |
| ABIKind Kind; |
| |
| public: |
| ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {} |
| |
| private: |
| ABIKind getABIKind() const { return Kind; } |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI) const; |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class ARMTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) |
| :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { |
| return 13; |
| } |
| }; |
| |
| } |
| |
| void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type); |
| |
| const llvm::Triple &Triple(getContext().Target.getTriple()); |
| llvm::CallingConv::ID DefaultCC; |
| if (Triple.getEnvironmentName() == "gnueabi" || |
| Triple.getEnvironmentName() == "eabi") |
| DefaultCC = llvm::CallingConv::ARM_AAPCS; |
| else |
| DefaultCC = llvm::CallingConv::ARM_APCS; |
| |
| switch (getABIKind()) { |
| case APCS: |
| if (DefaultCC != llvm::CallingConv::ARM_APCS) |
| FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS); |
| break; |
| |
| case AAPCS: |
| if (DefaultCC != llvm::CallingConv::ARM_AAPCS) |
| FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS); |
| break; |
| |
| case AAPCS_VFP: |
| FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP); |
| break; |
| } |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const { |
| if (!isAggregateTypeForABI(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| // Ignore empty records. |
| if (isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) |
| return ABIArgInfo::getIndirect(0, /*ByVal=*/false); |
| |
| // NEON vectors are implemented as (theoretically) opaque structures wrapping |
| // the underlying vector type. We trust the backend to pass the underlying |
| // vectors appropriately, so we can unwrap the structs which generally will |
| // lead to much cleaner IR. |
| if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) { |
| if (SeltTy->isVectorType()) |
| return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
| } |
| |
| // Otherwise, pass by coercing to a structure of the appropriate size. |
| // |
| // FIXME: This is kind of nasty... but there isn't much choice because the ARM |
| // backend doesn't support byval. |
| // FIXME: This doesn't handle alignment > 64 bits. |
| const llvm::Type* ElemTy; |
| unsigned SizeRegs; |
| if (getContext().getTypeAlign(Ty) > 32) { |
| ElemTy = llvm::Type::getInt64Ty(getVMContext()); |
| SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; |
| } else { |
| ElemTy = llvm::Type::getInt32Ty(getVMContext()); |
| SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; |
| } |
| std::vector<const llvm::Type*> LLVMFields; |
| LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); |
| const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields, |
| true); |
| return ABIArgInfo::getDirect(STy); |
| } |
| |
| static bool isIntegerLikeType(QualType Ty, ASTContext &Context, |
| llvm::LLVMContext &VMContext) { |
| // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure |
| // is called integer-like if its size is less than or equal to one word, and |
| // the offset of each of its addressable sub-fields is zero. |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // Check that the type fits in a word. |
| if (Size > 32) |
| return false; |
| |
| // FIXME: Handle vector types! |
| if (Ty->isVectorType()) |
| return false; |
| |
| // Float types are never treated as "integer like". |
| if (Ty->isRealFloatingType()) |
| return false; |
| |
| // If this is a builtin or pointer type then it is ok. |
| if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) |
| return true; |
| |
| // Small complex integer types are "integer like". |
| if (const ComplexType *CT = Ty->getAs<ComplexType>()) |
| return isIntegerLikeType(CT->getElementType(), Context, VMContext); |
| |
| // Single element and zero sized arrays should be allowed, by the definition |
| // above, but they are not. |
| |
| // Otherwise, it must be a record type. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) return false; |
| |
| // Ignore records with flexible arrays. |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| |
| // Check that all sub-fields are at offset 0, and are themselves "integer |
| // like". |
| const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| |
| bool HadField = false; |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| const FieldDecl *FD = *i; |
| |
| // Bit-fields are not addressable, we only need to verify they are "integer |
| // like". We still have to disallow a subsequent non-bitfield, for example: |
| // struct { int : 0; int x } |
| // is non-integer like according to gcc. |
| if (FD->isBitField()) { |
| if (!RD->isUnion()) |
| HadField = true; |
| |
| if (!isIntegerLikeType(FD->getType(), Context, VMContext)) |
| return false; |
| |
| continue; |
| } |
| |
| // Check if this field is at offset 0. |
| if (Layout.getFieldOffset(idx) != 0) |
| return false; |
| |
| if (!isIntegerLikeType(FD->getType(), Context, VMContext)) |
| return false; |
| |
| // Only allow at most one field in a structure. This doesn't match the |
| // wording above, but follows gcc in situations with a field following an |
| // empty structure. |
| if (!RD->isUnion()) { |
| if (HadField) |
| return false; |
| |
| HadField = true; |
| } |
| } |
| |
| return true; |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| // Large vector types should be returned via memory. |
| if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) |
| return ABIArgInfo::getIndirect(0); |
| |
| if (!isAggregateTypeForABI(RetTy)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy)) |
| return ABIArgInfo::getIndirect(0, /*ByVal=*/false); |
| |
| // Are we following APCS? |
| if (getABIKind() == APCS) { |
| if (isEmptyRecord(getContext(), RetTy, false)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Complex types are all returned as packed integers. |
| // |
| // FIXME: Consider using 2 x vector types if the back end handles them |
| // correctly. |
| if (RetTy->isAnyComplexType()) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
| getContext().getTypeSize(RetTy))); |
| |
| // Integer like structures are returned in r0. |
| if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { |
| // Return in the smallest viable integer type. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size <= 8) |
| return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
| if (Size <= 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| } |
| |
| // Otherwise return in memory. |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| // Otherwise this is an AAPCS variant. |
| |
| if (isEmptyRecord(getContext(), RetTy, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Aggregates <= 4 bytes are returned in r0; other aggregates |
| // are returned indirectly. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size <= 32) { |
| // Return in the smallest viable integer type. |
| if (Size <= 8) |
| return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
| if (Size <= 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| } |
| |
| return ABIArgInfo::getIndirect(0); |
| } |
| |
| llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| // FIXME: Need to handle alignment |
| const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); |
| const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| "ap"); |
| llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| |
| uint64_t Offset = |
| llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| llvm::Value *NextAddr = |
| Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), |
| "ap.next"); |
| Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| |
| return AddrTyped; |
| } |
| |
| ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| if (isAggregateTypeForABI(RetTy)) |
| return ABIArgInfo::getIndirect(0); |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SystemZ ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class SystemZABIInfo : public ABIInfo { |
| public: |
| SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| bool isPromotableIntegerType(QualType Ty) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| |
| virtual void computeInfo(CGFunctionInfo &FI) const { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it) |
| it->info = classifyArgumentType(it->type); |
| } |
| |
| virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| }; |
| |
| class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| SystemZTargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} |
| }; |
| |
| } |
| |
| bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { |
| // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended. |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
| switch (BT->getKind()) { |
| case BuiltinType::Bool: |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return true; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| // FIXME: Implement |
| return 0; |
| } |
| |
| |
| ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| if (isAggregateTypeForABI(RetTy)) |
| return ABIArgInfo::getIndirect(0); |
| |
| return (isPromotableIntegerType(RetTy) ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { |
| if (isAggregateTypeForABI(Ty)) |
| return ABIArgInfo::getIndirect(0); |
| |
| return (isPromotableIntegerType(Ty) ? |
| ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MSP430 ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| MSP430TargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
| void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const; |
| }; |
| |
| } |
| |
| void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, |
| llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { |
| // Handle 'interrupt' attribute: |
| llvm::Function *F = cast<llvm::Function>(GV); |
| |
| // Step 1: Set ISR calling convention. |
| F->setCallingConv(llvm::CallingConv::MSP430_INTR); |
| |
| // Step 2: Add attributes goodness. |
| F->addFnAttr(llvm::Attribute::NoInline); |
| |
| // Step 3: Emit ISR vector alias. |
| unsigned Num = attr->getNumber() + 0xffe0; |
| new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, |
| "vector_" + llvm::Twine::utohexstr(Num), |
| GV, &M.getModule()); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MIPS ABI Implementation. This works for both little-endian and |
| // big-endian variants. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| MIPSTargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { |
| return 29; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const; |
| }; |
| } |
| |
| bool |
| MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| // This information comes from gcc's implementation, which seems to |
| // as canonical as it gets. |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| llvm::LLVMContext &Context = CGF.getLLVMContext(); |
| |
| // Everything on MIPS is 4 bytes. Double-precision FP registers |
| // are aliased to pairs of single-precision FP registers. |
| const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); |
| llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
| |
| // 0-31 are the general purpose registers, $0 - $31. |
| // 32-63 are the floating-point registers, $f0 - $f31. |
| // 64 and 65 are the multiply/divide registers, $hi and $lo. |
| // 66 is the (notional, I think) register for signal-handler return. |
| AssignToArrayRange(Builder, Address, Four8, 0, 65); |
| |
| // 67-74 are the floating-point status registers, $fcc0 - $fcc7. |
| // They are one bit wide and ignored here. |
| |
| // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. |
| // (coprocessor 1 is the FP unit) |
| // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. |
| // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. |
| // 176-181 are the DSP accumulator registers. |
| AssignToArrayRange(Builder, Address, Four8, 80, 181); |
| |
| return false; |
| } |
| |
| |
| const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { |
| if (TheTargetCodeGenInfo) |
| return *TheTargetCodeGenInfo; |
| |
| // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't |
| // free it. |
| |
| const llvm::Triple &Triple = getContext().Target.getTriple(); |
| switch (Triple.getArch()) { |
| default: |
| return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::mips: |
| case llvm::Triple::mipsel: |
| return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::arm: |
| case llvm::Triple::thumb: |
| // FIXME: We want to know the float calling convention as well. |
| if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0) |
| return *(TheTargetCodeGenInfo = |
| new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS)); |
| |
| return *(TheTargetCodeGenInfo = |
| new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS)); |
| |
| case llvm::Triple::ppc: |
| return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::systemz: |
| return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::msp430: |
| return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::x86: |
| switch (Triple.getOS()) { |
| case llvm::Triple::Darwin: |
| return *(TheTargetCodeGenInfo = |
| new X86_32TargetCodeGenInfo(Types, true, true)); |
| case llvm::Triple::Cygwin: |
| case llvm::Triple::MinGW32: |
| case llvm::Triple::AuroraUX: |
| case llvm::Triple::DragonFly: |
| case llvm::Triple::FreeBSD: |
| case llvm::Triple::OpenBSD: |
| return *(TheTargetCodeGenInfo = |
| new X86_32TargetCodeGenInfo(Types, false, true)); |
| |
| default: |
| return *(TheTargetCodeGenInfo = |
| new X86_32TargetCodeGenInfo(Types, false, false)); |
| } |
| |
| case llvm::Triple::x86_64: |
| switch (Triple.getOS()) { |
| case llvm::Triple::Win32: |
| case llvm::Triple::MinGW64: |
| case llvm::Triple::Cygwin: |
| return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); |
| default: |
| return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types)); |
| } |
| } |
| } |