blob: 00af4cb08a15507118389291c6073281f93a8d39 [file] [log] [blame]
//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the clang::ASTContext interface.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
#define LLVM_CLANG_AST_ASTCONTEXT_H
#include "clang/AST/CanonicalType.h"
#include "clang/AST/CommentCommandTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/LambdaMangleContext.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/VersionTuple.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Allocator.h"
#include <vector>
namespace llvm {
struct fltSemantics;
}
namespace clang {
class FileManager;
class ASTRecordLayout;
class BlockExpr;
class CharUnits;
class DiagnosticsEngine;
class Expr;
class ExternalASTSource;
class ASTMutationListener;
class IdentifierTable;
class SelectorTable;
class TargetInfo;
class CXXABI;
// Decls
class DeclContext;
class CXXConversionDecl;
class CXXMethodDecl;
class CXXRecordDecl;
class Decl;
class FieldDecl;
class MangleContext;
class ObjCIvarDecl;
class ObjCIvarRefExpr;
class ObjCPropertyDecl;
class ParmVarDecl;
class RecordDecl;
class StoredDeclsMap;
class TagDecl;
class TemplateTemplateParmDecl;
class TemplateTypeParmDecl;
class TranslationUnitDecl;
class TypeDecl;
class TypedefNameDecl;
class UsingDecl;
class UsingShadowDecl;
class UnresolvedSetIterator;
namespace Builtin { class Context; }
namespace comments {
class FullComment;
}
/// \brief Holds long-lived AST nodes (such as types and decls) that can be
/// referred to throughout the semantic analysis of a file.
class ASTContext : public RefCountedBase<ASTContext> {
ASTContext &this_() { return *this; }
mutable std::vector<Type*> Types;
mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
mutable llvm::FoldingSet<ComplexType> ComplexTypes;
mutable llvm::FoldingSet<PointerType> PointerTypes;
mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
mutable std::vector<VariableArrayType*> VariableArrayTypes;
mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
mutable llvm::FoldingSet<DependentSizedExtVectorType>
DependentSizedExtVectorTypes;
mutable llvm::FoldingSet<VectorType> VectorTypes;
mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
FunctionProtoTypes;
mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
mutable llvm::FoldingSet<SubstTemplateTypeParmType>
SubstTemplateTypeParmTypes;
mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
SubstTemplateTypeParmPackTypes;
mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
TemplateSpecializationTypes;
mutable llvm::FoldingSet<ParenType> ParenTypes;
mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
ASTContext&>
DependentTemplateSpecializationTypes;
llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
mutable llvm::FoldingSet<AutoType> AutoTypes;
mutable llvm::FoldingSet<AtomicType> AtomicTypes;
llvm::FoldingSet<AttributedType> AttributedTypes;
mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
SubstTemplateTemplateParms;
mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
ASTContext&>
SubstTemplateTemplateParmPacks;
/// \brief The set of nested name specifiers.
///
/// This set is managed by the NestedNameSpecifier class.
mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
friend class NestedNameSpecifier;
/// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
///
/// This is lazily created. This is intentionally not serialized.
mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
ASTRecordLayouts;
mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
ObjCLayouts;
/// \brief A cache from types to size and alignment information.
typedef llvm::DenseMap<const Type*,
std::pair<uint64_t, unsigned> > TypeInfoMap;
mutable TypeInfoMap MemoizedTypeInfo;
/// \brief A cache mapping from CXXRecordDecls to key functions.
llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
/// \brief Mapping from ObjCContainers to their ObjCImplementations.
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
/// \brief Mapping from ObjCMethod to its duplicate declaration in the same
/// interface.
llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
/// \brief Mapping from __block VarDecls to their copy initialization expr.
llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
/// \brief Mapping from class scope functions specialization to their
/// template patterns.
llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
ClassScopeSpecializationPattern;
/// \brief Representation of a "canonical" template template parameter that
/// is used in canonical template names.
class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
TemplateTemplateParmDecl *Parm;
public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
: Parm(Parm) { }
TemplateTemplateParmDecl *getParam() const { return Parm; }
void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
static void Profile(llvm::FoldingSetNodeID &ID,
TemplateTemplateParmDecl *Parm);
};
mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
CanonTemplateTemplateParms;
TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
/// \brief The typedef for the __int128_t type.
mutable TypedefDecl *Int128Decl;
/// \brief The typedef for the __uint128_t type.
mutable TypedefDecl *UInt128Decl;
/// \brief The typedef for the target specific predefined
/// __builtin_va_list type.
mutable TypedefDecl *BuiltinVaListDecl;
/// \brief The typedef for the predefined \c id type.
mutable TypedefDecl *ObjCIdDecl;
/// \brief The typedef for the predefined \c SEL type.
mutable TypedefDecl *ObjCSelDecl;
/// \brief The typedef for the predefined \c Class type.
mutable TypedefDecl *ObjCClassDecl;
/// \brief The typedef for the predefined \c Protocol class in Objective-C.
mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
/// \brief The typedef for the predefined 'BOOL' type.
mutable TypedefDecl *BOOLDecl;
// Typedefs which may be provided defining the structure of Objective-C
// pseudo-builtins
QualType ObjCIdRedefinitionType;
QualType ObjCClassRedefinitionType;
QualType ObjCSelRedefinitionType;
QualType ObjCConstantStringType;
mutable RecordDecl *CFConstantStringTypeDecl;
mutable QualType ObjCSuperType;
QualType ObjCNSStringType;
/// \brief The typedef declaration for the Objective-C "instancetype" type.
TypedefDecl *ObjCInstanceTypeDecl;
/// \brief The type for the C FILE type.
TypeDecl *FILEDecl;
/// \brief The type for the C jmp_buf type.
TypeDecl *jmp_bufDecl;
/// \brief The type for the C sigjmp_buf type.
TypeDecl *sigjmp_bufDecl;
/// \brief The type for the C ucontext_t type.
TypeDecl *ucontext_tDecl;
/// \brief Type for the Block descriptor for Blocks CodeGen.
///
/// Since this is only used for generation of debug info, it is not
/// serialized.
mutable RecordDecl *BlockDescriptorType;
/// \brief Type for the Block descriptor for Blocks CodeGen.
///
/// Since this is only used for generation of debug info, it is not
/// serialized.
mutable RecordDecl *BlockDescriptorExtendedType;
/// \brief Declaration for the CUDA cudaConfigureCall function.
FunctionDecl *cudaConfigureCallDecl;
TypeSourceInfo NullTypeSourceInfo;
/// \brief Keeps track of all declaration attributes.
///
/// Since so few decls have attrs, we keep them in a hash map instead of
/// wasting space in the Decl class.
llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
/// \brief Keeps track of the static data member templates from which
/// static data members of class template specializations were instantiated.
///
/// This data structure stores the mapping from instantiations of static
/// data members to the static data member representations within the
/// class template from which they were instantiated along with the kind
/// of instantiation or specialization (a TemplateSpecializationKind - 1).
///
/// Given the following example:
///
/// \code
/// template<typename T>
/// struct X {
/// static T value;
/// };
///
/// template<typename T>
/// T X<T>::value = T(17);
///
/// int *x = &X<int>::value;
/// \endcode
///
/// This mapping will contain an entry that maps from the VarDecl for
/// X<int>::value to the corresponding VarDecl for X<T>::value (within the
/// class template X) and will be marked TSK_ImplicitInstantiation.
llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
InstantiatedFromStaticDataMember;
/// \brief Keeps track of the declaration from which a UsingDecl was
/// created during instantiation.
///
/// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
/// or an UnresolvedUsingTypenameDecl.
///
/// For example:
/// \code
/// template<typename T>
/// struct A {
/// void f();
/// };
///
/// template<typename T>
/// struct B : A<T> {
/// using A<T>::f;
/// };
///
/// template struct B<int>;
/// \endcode
///
/// This mapping will contain an entry that maps from the UsingDecl in
/// B<int> to the UnresolvedUsingDecl in B<T>.
llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
InstantiatedFromUsingShadowDecl;
llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
/// \brief Mapping that stores the methods overridden by a given C++
/// member function.
///
/// Since most C++ member functions aren't virtual and therefore
/// don't override anything, we store the overridden functions in
/// this map on the side rather than within the CXXMethodDecl structure.
typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
/// \brief Mapping from each declaration context to its corresponding lambda
/// mangling context.
llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
/// \brief Mapping that stores parameterIndex values for ParmVarDecls when
/// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
ParameterIndexTable ParamIndices;
ImportDecl *FirstLocalImport;
ImportDecl *LastLocalImport;
TranslationUnitDecl *TUDecl;
/// \brief The associated SourceManager object.a
SourceManager &SourceMgr;
/// \brief The language options used to create the AST associated with
/// this ASTContext object.
LangOptions &LangOpts;
/// \brief The allocator used to create AST objects.
///
/// AST objects are never destructed; rather, all memory associated with the
/// AST objects will be released when the ASTContext itself is destroyed.
mutable llvm::BumpPtrAllocator BumpAlloc;
/// \brief Allocator for partial diagnostics.
PartialDiagnostic::StorageAllocator DiagAllocator;
/// \brief The current C++ ABI.
OwningPtr<CXXABI> ABI;
CXXABI *createCXXABI(const TargetInfo &T);
/// \brief The logical -> physical address space map.
const LangAS::Map *AddrSpaceMap;
friend class ASTDeclReader;
friend class ASTReader;
friend class ASTWriter;
friend class CXXRecordDecl;
const TargetInfo *Target;
clang::PrintingPolicy PrintingPolicy;
public:
IdentifierTable &Idents;
SelectorTable &Selectors;
Builtin::Context &BuiltinInfo;
mutable DeclarationNameTable DeclarationNames;
OwningPtr<ExternalASTSource> ExternalSource;
ASTMutationListener *Listener;
const clang::PrintingPolicy &getPrintingPolicy() const {
return PrintingPolicy;
}
void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
PrintingPolicy = Policy;
}
SourceManager& getSourceManager() { return SourceMgr; }
const SourceManager& getSourceManager() const { return SourceMgr; }
llvm::BumpPtrAllocator &getAllocator() const {
return BumpAlloc;
}
void *Allocate(unsigned Size, unsigned Align = 8) const {
return BumpAlloc.Allocate(Size, Align);
}
void Deallocate(void *Ptr) const { }
/// Return the total amount of physical memory allocated for representing
/// AST nodes and type information.
size_t getASTAllocatedMemory() const {
return BumpAlloc.getTotalMemory();
}
/// Return the total memory used for various side tables.
size_t getSideTableAllocatedMemory() const;
PartialDiagnostic::StorageAllocator &getDiagAllocator() {
return DiagAllocator;
}
const TargetInfo &getTargetInfo() const { return *Target; }
const LangOptions& getLangOpts() const { return LangOpts; }
DiagnosticsEngine &getDiagnostics() const;
FullSourceLoc getFullLoc(SourceLocation Loc) const {
return FullSourceLoc(Loc,SourceMgr);
}
/// \brief All comments in this translation unit.
RawCommentList Comments;
/// \brief True if comments are already loaded from ExternalASTSource.
mutable bool CommentsLoaded;
class RawCommentAndCacheFlags {
public:
enum Kind {
/// We searched for a comment attached to the particular declaration, but
/// didn't find any.
///
/// getRaw() == 0.
NoCommentInDecl = 0,
/// We have found a comment attached to this particular declaration.
///
/// getRaw() != 0.
FromDecl,
/// This declaration does not have an attached comment, and we have
/// searched the redeclaration chain.
///
/// If getRaw() == 0, the whole redeclaration chain does not have any
/// comments.
///
/// If getRaw() != 0, it is a comment propagated from other
/// redeclaration.
FromRedecl
};
Kind getKind() const LLVM_READONLY {
return Data.getInt();
}
void setKind(Kind K) {
Data.setInt(K);
}
const RawComment *getRaw() const LLVM_READONLY {
return Data.getPointer();
}
void setRaw(const RawComment *RC) {
Data.setPointer(RC);
}
const Decl *getOriginalDecl() const LLVM_READONLY {
return OriginalDecl;
}
void setOriginalDecl(const Decl *Orig) {
OriginalDecl = Orig;
}
private:
llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
const Decl *OriginalDecl;
};
/// \brief Mapping from declarations to comments attached to any
/// redeclaration.
///
/// Raw comments are owned by Comments list. This mapping is populated
/// lazily.
mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
/// \brief Mapping from declarations to parsed comments attached to any
/// redeclaration.
mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
/// \brief Return the documentation comment attached to a given declaration,
/// without looking into cache.
RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
public:
RawCommentList &getRawCommentList() {
return Comments;
}
void addComment(const RawComment &RC) {
assert(LangOpts.RetainCommentsFromSystemHeaders ||
!SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
Comments.addComment(RC, BumpAlloc);
}
/// \brief Return the documentation comment attached to a given declaration.
/// Returns NULL if no comment is attached.
///
/// \param OriginalDecl if not NULL, is set to declaration AST node that had
/// the comment, if the comment we found comes from a redeclaration.
const RawComment *getRawCommentForAnyRedecl(
const Decl *D,
const Decl **OriginalDecl = NULL) const;
/// Return parsed documentation comment attached to a given declaration.
/// Returns NULL if no comment is attached.
///
/// \param PP the Preprocessor used with this TU. Could be NULL if
/// preprocessor is not available.
comments::FullComment *getCommentForDecl(const Decl *D,
const Preprocessor *PP) const;
comments::FullComment *cloneFullComment(comments::FullComment *FC,
const Decl *D) const;
private:
mutable comments::CommandTraits CommentCommandTraits;
public:
comments::CommandTraits &getCommentCommandTraits() const {
return CommentCommandTraits;
}
/// \brief Retrieve the attributes for the given declaration.
AttrVec& getDeclAttrs(const Decl *D);
/// \brief Erase the attributes corresponding to the given declaration.
void eraseDeclAttrs(const Decl *D);
/// \brief If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
const VarDecl *Var);
FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
void setClassScopeSpecializationPattern(FunctionDecl *FD,
FunctionDecl *Pattern);
/// \brief Note that the static data member \p Inst is an instantiation of
/// the static data member template \p Tmpl of a class template.
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief If the given using decl \p Inst is an instantiation of a
/// (possibly unresolved) using decl from a template instantiation,
/// return it.
NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
/// \brief Remember that the using decl \p Inst is an instantiation
/// of the using decl \p Pattern of a class template.
void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
UsingShadowDecl *Pattern);
UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
/// \brief Return \c true if \p FD is a zero-length bitfield which follows
/// the non-bitfield \p LastFD.
bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
const FieldDecl *LastFD) const;
/// \brief Return \c true if \p FD is a zero-length bitfield which follows
/// the bitfield \p LastFD.
bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
const FieldDecl *LastFD) const;
/// \brief Return \c true if \p FD is a bitfield which follows the bitfield
/// \p LastFD.
bool BitfieldFollowsBitfield(const FieldDecl *FD,
const FieldDecl *LastFD) const;
/// \brief Return \c true if \p FD is not a bitfield which follows the
/// bitfield \p LastFD.
bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
const FieldDecl *LastFD) const;
/// \brief Return \c true if \p FD is a bitfield which follows the
/// non-bitfield \p LastFD.
bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
const FieldDecl *LastFD) const;
// Access to the set of methods overridden by the given C++ method.
typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl *Method) const;
overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl *Method) const;
unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
/// \brief Note that the given C++ \p Method overrides the given \p
/// Overridden method.
void addOverriddenMethod(const CXXMethodDecl *Method,
const CXXMethodDecl *Overridden);
/// \brief Return C++ or ObjC overridden methods for the given \p Method.
///
/// An ObjC method is considered to override any method in the class's
/// base classes, its protocols, or its categories' protocols, that has
/// the same selector and is of the same kind (class or instance).
/// A method in an implementation is not considered as overriding the same
/// method in the interface or its categories.
void getOverriddenMethods(
const NamedDecl *Method,
SmallVectorImpl<const NamedDecl *> &Overridden) const;
/// \brief Notify the AST context that a new import declaration has been
/// parsed or implicitly created within this translation unit.
void addedLocalImportDecl(ImportDecl *Import);
static ImportDecl *getNextLocalImport(ImportDecl *Import) {
return Import->NextLocalImport;
}
/// \brief Iterator that visits import declarations.
class import_iterator {
ImportDecl *Import;
public:
typedef ImportDecl *value_type;
typedef ImportDecl *reference;
typedef ImportDecl *pointer;
typedef int difference_type;
typedef std::forward_iterator_tag iterator_category;
import_iterator() : Import() { }
explicit import_iterator(ImportDecl *Import) : Import(Import) { }
reference operator*() const { return Import; }
pointer operator->() const { return Import; }
import_iterator &operator++() {
Import = ASTContext::getNextLocalImport(Import);
return *this;
}
import_iterator operator++(int) {
import_iterator Other(*this);
++(*this);
return Other;
}
friend bool operator==(import_iterator X, import_iterator Y) {
return X.Import == Y.Import;
}
friend bool operator!=(import_iterator X, import_iterator Y) {
return X.Import != Y.Import;
}
};
import_iterator local_import_begin() const {
return import_iterator(FirstLocalImport);
}
import_iterator local_import_end() const { return import_iterator(); }
TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
// Builtin Types.
CanQualType VoidTy;
CanQualType BoolTy;
CanQualType CharTy;
CanQualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
CanQualType FloatTy, DoubleTy, LongDoubleTy;
CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
CanQualType VoidPtrTy, NullPtrTy;
CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
CanQualType BuiltinFnTy;
CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
CanQualType ObjCBuiltinBoolTy;
CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
CanQualType OCLImage2dTy, OCLImage2dArrayTy;
CanQualType OCLImage3dTy;
CanQualType OCLEventTy;
// Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
mutable QualType AutoDeductTy; // Deduction against 'auto'.
mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
// Type used to help define __builtin_va_list for some targets.
// The type is built when constructing 'BuiltinVaListDecl'.
mutable QualType VaListTagTy;
ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
IdentifierTable &idents, SelectorTable &sels,
Builtin::Context &builtins,
unsigned size_reserve,
bool DelayInitialization = false);
~ASTContext();
/// \brief Attach an external AST source to the AST context.
///
/// The external AST source provides the ability to load parts of
/// the abstract syntax tree as needed from some external storage,
/// e.g., a precompiled header.
void setExternalSource(OwningPtr<ExternalASTSource> &Source);
/// \brief Retrieve a pointer to the external AST source associated
/// with this AST context, if any.
ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
/// \brief Attach an AST mutation listener to the AST context.
///
/// The AST mutation listener provides the ability to track modifications to
/// the abstract syntax tree entities committed after they were initially
/// created.
void setASTMutationListener(ASTMutationListener *Listener) {
this->Listener = Listener;
}
/// \brief Retrieve a pointer to the AST mutation listener associated
/// with this AST context, if any.
ASTMutationListener *getASTMutationListener() const { return Listener; }
void PrintStats() const;
const std::vector<Type*>& getTypes() const { return Types; }
/// \brief Retrieve the declaration for the 128-bit signed integer type.
TypedefDecl *getInt128Decl() const;
/// \brief Retrieve the declaration for the 128-bit unsigned integer type.
TypedefDecl *getUInt128Decl() const;
//===--------------------------------------------------------------------===//
// Type Constructors
//===--------------------------------------------------------------------===//
private:
/// \brief Return a type with extended qualifiers.
QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
public:
/// \brief Return the uniqued reference to the type for an address space
/// qualified type with the specified type and address space.
///
/// The resulting type has a union of the qualifiers from T and the address
/// space. If T already has an address space specifier, it is silently
/// replaced.
QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
/// \brief Return the uniqued reference to the type for an Objective-C
/// gc-qualified type.
///
/// The retulting type has a union of the qualifiers from T and the gc
/// attribute.
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
/// \brief Return the uniqued reference to the type for a \c restrict
/// qualified type.
///
/// The resulting type has a union of the qualifiers from \p T and
/// \c restrict.
QualType getRestrictType(QualType T) const {
return T.withFastQualifiers(Qualifiers::Restrict);
}
/// \brief Return the uniqued reference to the type for a \c volatile
/// qualified type.
///
/// The resulting type has a union of the qualifiers from \p T and
/// \c volatile.
QualType getVolatileType(QualType T) const {
return T.withFastQualifiers(Qualifiers::Volatile);
}
/// \brief Return the uniqued reference to the type for a \c const
/// qualified type.
///
/// The resulting type has a union of the qualifiers from \p T and \c const.
///
/// It can be reasonably expected that this will always be equivalent to
/// calling T.withConst().
QualType getConstType(QualType T) const { return T.withConst(); }
/// \brief Change the ExtInfo on a function type.
const FunctionType *adjustFunctionType(const FunctionType *Fn,
FunctionType::ExtInfo EInfo);
/// \brief Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType getComplexType(QualType T) const;
CanQualType getComplexType(CanQualType T) const {
return CanQualType::CreateUnsafe(getComplexType((QualType) T));
}
/// \brief Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType getPointerType(QualType T) const;
CanQualType getPointerType(CanQualType T) const {
return CanQualType::CreateUnsafe(getPointerType((QualType) T));
}
/// \brief Return the uniqued reference to the atomic type for the specified
/// type.
QualType getAtomicType(QualType T) const;
/// \brief Return the uniqued reference to the type for a block of the
/// specified type.
QualType getBlockPointerType(QualType T) const;
/// Gets the struct used to keep track of the descriptor for pointer to
/// blocks.
QualType getBlockDescriptorType() const;
/// Gets the struct used to keep track of the extended descriptor for
/// pointer to blocks.
QualType getBlockDescriptorExtendedType() const;
void setcudaConfigureCallDecl(FunctionDecl *FD) {
cudaConfigureCallDecl = FD;
}
FunctionDecl *getcudaConfigureCallDecl() {
return cudaConfigureCallDecl;
}
/// Returns true iff we need copy/dispose helpers for the given type.
bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
/// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
/// to false in this case. If HasByrefExtendedLayout returns true, byref variable
/// has extended lifetime.
bool getByrefLifetime(QualType Ty,
Qualifiers::ObjCLifetime &Lifetime,
bool &HasByrefExtendedLayout) const;
/// \brief Return the uniqued reference to the type for an lvalue reference
/// to the specified type.
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
const;
/// \brief Return the uniqued reference to the type for an rvalue reference
/// to the specified type.
QualType getRValueReferenceType(QualType T) const;
/// \brief Return the uniqued reference to the type for a member pointer to
/// the specified type in the specified class.
///
/// The class \p Cls is a \c Type because it could be a dependent name.
QualType getMemberPointerType(QualType T, const Type *Cls) const;
/// \brief Return a non-unique reference to the type for a variable array of
/// the specified element type.
QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals,
SourceRange Brackets) const;
/// \brief Return a non-unique reference to the type for a dependently-sized
/// array of the specified element type.
///
/// FIXME: We will need these to be uniqued, or at least comparable, at some
/// point.
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals,
SourceRange Brackets) const;
/// \brief Return a unique reference to the type for an incomplete array of
/// the specified element type.
QualType getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals) const;
/// \brief Return the unique reference to the type for a constant array of
/// the specified element type.
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals) const;
/// \brief Returns a vla type where known sizes are replaced with [*].
QualType getVariableArrayDecayedType(QualType Ty) const;
/// \brief Return the unique reference to a vector type of the specified
/// element type and size.
///
/// \pre \p VectorType must be a built-in type.
QualType getVectorType(QualType VectorType, unsigned NumElts,
VectorType::VectorKind VecKind) const;
/// \brief Return the unique reference to an extended vector type
/// of the specified element type and size.
///
/// \pre \p VectorType must be a built-in type.
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
/// \pre Return a non-unique reference to the type for a dependently-sized
/// vector of the specified element type.
///
/// FIXME: We will need these to be uniqued, or at least comparable, at some
/// point.
QualType getDependentSizedExtVectorType(QualType VectorType,
Expr *SizeExpr,
SourceLocation AttrLoc) const;
/// \brief Return a K&R style C function type like 'int()'.
QualType getFunctionNoProtoType(QualType ResultTy,
const FunctionType::ExtInfo &Info) const;
QualType getFunctionNoProtoType(QualType ResultTy) const {
return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
}
/// \brief Return a normal function type with a typed argument list.
QualType getFunctionType(QualType ResultTy,
const QualType *Args, unsigned NumArgs,
const FunctionProtoType::ExtProtoInfo &EPI) const;
/// \brief Return the unique reference to the type for the specified type
/// declaration.
QualType getTypeDeclType(const TypeDecl *Decl,
const TypeDecl *PrevDecl = 0) const {
assert(Decl && "Passed null for Decl param");
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (PrevDecl) {
assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
Decl->TypeForDecl = PrevDecl->TypeForDecl;
return QualType(PrevDecl->TypeForDecl, 0);
}
return getTypeDeclTypeSlow(Decl);
}
/// \brief Return the unique reference to the type for the specified
/// typedef-name decl.
QualType getTypedefType(const TypedefNameDecl *Decl,
QualType Canon = QualType()) const;
QualType getRecordType(const RecordDecl *Decl) const;
QualType getEnumType(const EnumDecl *Decl) const;
QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
QualType getAttributedType(AttributedType::Kind attrKind,
QualType modifiedType,
QualType equivalentType);
QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
QualType Replacement) const;
QualType getSubstTemplateTypeParmPackType(
const TemplateTypeParmType *Replaced,
const TemplateArgument &ArgPack);
QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
bool ParameterPack,
TemplateTypeParmDecl *ParmDecl = 0) const;
QualType getTemplateSpecializationType(TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
QualType Canon = QualType()) const;
QualType getCanonicalTemplateSpecializationType(TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs) const;
QualType getTemplateSpecializationType(TemplateName T,
const TemplateArgumentListInfo &Args,
QualType Canon = QualType()) const;
TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
const TemplateArgumentListInfo &Args,
QualType Canon = QualType()) const;
QualType getParenType(QualType NamedType) const;
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
QualType NamedType) const;
QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
QualType Canon = QualType()) const;
QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
const TemplateArgumentListInfo &Args) const;
QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args) const;
QualType getPackExpansionType(QualType Pattern,
llvm::Optional<unsigned> NumExpansions);
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
ObjCInterfaceDecl *PrevDecl = 0) const;
QualType getObjCObjectType(QualType Base,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) const;
/// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
QualType getObjCObjectPointerType(QualType OIT) const;
/// \brief GCC extension.
QualType getTypeOfExprType(Expr *e) const;
QualType getTypeOfType(QualType t) const;
/// \brief C++11 decltype.
QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
/// \brief Unary type transforms
QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
UnaryTransformType::UTTKind UKind) const;
/// \brief C++11 deduced auto type.
QualType getAutoType(QualType DeducedType) const;
/// \brief C++11 deduction pattern for 'auto' type.
QualType getAutoDeductType() const;
/// \brief C++11 deduction pattern for 'auto &&' type.
QualType getAutoRRefDeductType() const;
/// \brief Return the unique reference to the type for the specified TagDecl
/// (struct/union/class/enum) decl.
QualType getTagDeclType(const TagDecl *Decl) const;
/// \brief Return the unique type for "size_t" (C99 7.17), defined in
/// <stddef.h>.
///
/// The sizeof operator requires this (C99 6.5.3.4p4).
CanQualType getSizeType() const;
/// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
/// <stdint.h>.
CanQualType getIntMaxType() const;
/// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
/// <stdint.h>.
CanQualType getUIntMaxType() const;
/// \brief In C++, this returns the unique wchar_t type. In C99, this
/// returns a type compatible with the type defined in <stddef.h> as defined
/// by the target.
QualType getWCharType() const { return WCharTy; }
/// \brief Return the type of "signed wchar_t".
///
/// Used when in C++, as a GCC extension.
QualType getSignedWCharType() const;
/// \brief Return the type of "unsigned wchar_t".
///
/// Used when in C++, as a GCC extension.
QualType getUnsignedWCharType() const;
/// \brief In C99, this returns a type compatible with the type
/// defined in <stddef.h> as defined by the target.
QualType getWIntType() const { return WIntTy; }
/// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
/// as defined by the target.
QualType getIntPtrType() const;
/// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
/// as defined by the target.
QualType getUIntPtrType() const;
/// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
/// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType getPointerDiffType() const;
/// \brief Return the unique type for "pid_t" defined in
/// <sys/types.h>. We need this to compute the correct type for vfork().
QualType getProcessIDType() const;
/// \brief Return the C structure type used to represent constant CFStrings.
QualType getCFConstantStringType() const;
/// \brief Returns the C struct type for objc_super
QualType getObjCSuperType() const;
void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
/// Get the structure type used to representation CFStrings, or NULL
/// if it hasn't yet been built.
QualType getRawCFConstantStringType() const {
if (CFConstantStringTypeDecl)
return getTagDeclType(CFConstantStringTypeDecl);
return QualType();
}
void setCFConstantStringType(QualType T);
// This setter/getter represents the ObjC type for an NSConstantString.
void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
QualType getObjCConstantStringInterface() const {
return ObjCConstantStringType;
}
QualType getObjCNSStringType() const {
return ObjCNSStringType;
}
void setObjCNSStringType(QualType T) {
ObjCNSStringType = T;
}
/// \brief Retrieve the type that \c id has been defined to, which may be
/// different from the built-in \c id if \c id has been typedef'd.
QualType getObjCIdRedefinitionType() const {
if (ObjCIdRedefinitionType.isNull())
return getObjCIdType();
return ObjCIdRedefinitionType;
}
/// \brief Set the user-written type that redefines \c id.
void setObjCIdRedefinitionType(QualType RedefType) {
ObjCIdRedefinitionType = RedefType;
}
/// \brief Retrieve the type that \c Class has been defined to, which may be
/// different from the built-in \c Class if \c Class has been typedef'd.
QualType getObjCClassRedefinitionType() const {
if (ObjCClassRedefinitionType.isNull())
return getObjCClassType();
return ObjCClassRedefinitionType;
}
/// \brief Set the user-written type that redefines 'SEL'.
void setObjCClassRedefinitionType(QualType RedefType) {
ObjCClassRedefinitionType = RedefType;
}
/// \brief Retrieve the type that 'SEL' has been defined to, which may be
/// different from the built-in 'SEL' if 'SEL' has been typedef'd.
QualType getObjCSelRedefinitionType() const {
if (ObjCSelRedefinitionType.isNull())
return getObjCSelType();
return ObjCSelRedefinitionType;
}
/// \brief Set the user-written type that redefines 'SEL'.
void setObjCSelRedefinitionType(QualType RedefType) {
ObjCSelRedefinitionType = RedefType;
}
/// \brief Retrieve the Objective-C "instancetype" type, if already known;
/// otherwise, returns a NULL type;
QualType getObjCInstanceType() {
return getTypeDeclType(getObjCInstanceTypeDecl());
}
/// \brief Retrieve the typedef declaration corresponding to the Objective-C
/// "instancetype" type.
TypedefDecl *getObjCInstanceTypeDecl();
/// \brief Set the type for the C FILE type.
void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
/// \brief Retrieve the C FILE type.
QualType getFILEType() const {
if (FILEDecl)
return getTypeDeclType(FILEDecl);
return QualType();
}
/// \brief Set the type for the C jmp_buf type.
void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
this->jmp_bufDecl = jmp_bufDecl;
}
/// \brief Retrieve the C jmp_buf type.
QualType getjmp_bufType() const {
if (jmp_bufDecl)
return getTypeDeclType(jmp_bufDecl);
return QualType();
}
/// \brief Set the type for the C sigjmp_buf type.
void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
this->sigjmp_bufDecl = sigjmp_bufDecl;
}
/// \brief Retrieve the C sigjmp_buf type.
QualType getsigjmp_bufType() const {
if (sigjmp_bufDecl)
return getTypeDeclType(sigjmp_bufDecl);
return QualType();
}
/// \brief Set the type for the C ucontext_t type.
void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
this->ucontext_tDecl = ucontext_tDecl;
}
/// \brief Retrieve the C ucontext_t type.
QualType getucontext_tType() const {
if (ucontext_tDecl)
return getTypeDeclType(ucontext_tDecl);
return QualType();
}
/// \brief The result type of logical operations, '<', '>', '!=', etc.
QualType getLogicalOperationType() const {
return getLangOpts().CPlusPlus ? BoolTy : IntTy;
}
/// \brief Emit the Objective-CC type encoding for the given type \p T into
/// \p S.
///
/// If \p Field is specified then record field names are also encoded.
void getObjCEncodingForType(QualType T, std::string &S,
const FieldDecl *Field=0) const;
void getLegacyIntegralTypeEncoding(QualType &t) const;
/// \brief Put the string version of the type qualifiers \p QT into \p S.
void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string &S) const;
/// \brief Emit the encoded type for the function \p Decl into \p S.
///
/// This is in the same format as Objective-C method encodings.
///
/// \returns true if an error occurred (e.g., because one of the parameter
/// types is incomplete), false otherwise.
bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
/// \brief Emit the encoded type for the method declaration \p Decl into
/// \p S.
///
/// \returns true if an error occurred (e.g., because one of the parameter
/// types is incomplete), false otherwise.
bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
bool Extended = false)
const;
/// \brief Return the encoded type for this block declaration.
std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
/// getObjCEncodingForPropertyDecl - Return the encoded type for
/// this method declaration. If non-NULL, Container must be either
/// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
/// only be NULL when getting encodings for protocol properties.
void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container,
std::string &S) const;
bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto) const;
/// \brief Return the size of type \p T for Objective-C encoding purpose,
/// in characters.
CharUnits getObjCEncodingTypeSize(QualType T) const;
/// \brief Retrieve the typedef corresponding to the predefined \c id type
/// in Objective-C.
TypedefDecl *getObjCIdDecl() const;
/// \brief Represents the Objective-CC \c id type.
///
/// This is set up lazily, by Sema. \c id is always a (typedef for a)
/// pointer type, a pointer to a struct.
QualType getObjCIdType() const {
return getTypeDeclType(getObjCIdDecl());
}
/// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
/// in Objective-C.
TypedefDecl *getObjCSelDecl() const;
/// \brief Retrieve the type that corresponds to the predefined Objective-C
/// 'SEL' type.
QualType getObjCSelType() const {
return getTypeDeclType(getObjCSelDecl());
}
/// \brief Retrieve the typedef declaration corresponding to the predefined
/// Objective-C 'Class' type.
TypedefDecl *getObjCClassDecl() const;
/// \brief Represents the Objective-C \c Class type.
///
/// This is set up lazily, by Sema. \c Class is always a (typedef for a)
/// pointer type, a pointer to a struct.
QualType getObjCClassType() const {
return getTypeDeclType(getObjCClassDecl());
}
/// \brief Retrieve the Objective-C class declaration corresponding to
/// the predefined \c Protocol class.
ObjCInterfaceDecl *getObjCProtocolDecl() const;
/// \brief Retrieve declaration of 'BOOL' typedef
TypedefDecl *getBOOLDecl() const {
return BOOLDecl;
}
/// \brief Save declaration of 'BOOL' typedef
void setBOOLDecl(TypedefDecl *TD) {
BOOLDecl = TD;
}
/// \brief type of 'BOOL' type.
QualType getBOOLType() const {
return getTypeDeclType(getBOOLDecl());
}
/// \brief Retrieve the type of the Objective-C \c Protocol class.
QualType getObjCProtoType() const {
return getObjCInterfaceType(getObjCProtocolDecl());
}
/// \brief Retrieve the C type declaration corresponding to the predefined
/// \c __builtin_va_list type.
TypedefDecl *getBuiltinVaListDecl() const;
/// \brief Retrieve the type of the \c __builtin_va_list type.
QualType getBuiltinVaListType() const {
return getTypeDeclType(getBuiltinVaListDecl());
}
/// \brief Retrieve the C type declaration corresponding to the predefined
/// \c __va_list_tag type used to help define the \c __builtin_va_list type
/// for some targets.
QualType getVaListTagType() const;
/// \brief Return a type with additional \c const, \c volatile, or
/// \c restrict qualifiers.
QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
}
/// \brief Un-split a SplitQualType.
QualType getQualifiedType(SplitQualType split) const {
return getQualifiedType(split.Ty, split.Quals);
}
/// \brief Return a type with additional qualifiers.
QualType getQualifiedType(QualType T, Qualifiers Qs) const {
if (!Qs.hasNonFastQualifiers())
return T.withFastQualifiers(Qs.getFastQualifiers());
QualifierCollector Qc(Qs);
const Type *Ptr = Qc.strip(T);
return getExtQualType(Ptr, Qc);
}
/// \brief Return a type with additional qualifiers.
QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
if (!Qs.hasNonFastQualifiers())
return QualType(T, Qs.getFastQualifiers());
return getExtQualType(T, Qs);
}
/// \brief Return a type with the given lifetime qualifier.
///
/// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
QualType getLifetimeQualifiedType(QualType type,
Qualifiers::ObjCLifetime lifetime) {
assert(type.getObjCLifetime() == Qualifiers::OCL_None);
assert(lifetime != Qualifiers::OCL_None);
Qualifiers qs;
qs.addObjCLifetime(lifetime);
return getQualifiedType(type, qs);
}
DeclarationNameInfo getNameForTemplate(TemplateName Name,
SourceLocation NameLoc) const;
TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
UnresolvedSetIterator End) const;
TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
bool TemplateKeyword,
TemplateDecl *Template) const;
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
const IdentifierInfo *Name) const;
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
OverloadedOperatorKind Operator) const;
TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
TemplateName replacement) const;
TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
const TemplateArgument &ArgPack) const;
enum GetBuiltinTypeError {
GE_None, ///< No error
GE_Missing_stdio, ///< Missing a type from <stdio.h>
GE_Missing_setjmp, ///< Missing a type from <setjmp.h>
GE_Missing_ucontext ///< Missing a type from <ucontext.h>
};
/// \brief Return the type for the specified builtin.
///
/// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
/// arguments to the builtin that are required to be integer constant
/// expressions.
QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
unsigned *IntegerConstantArgs = 0) const;
private:
CanQualType getFromTargetType(unsigned Type) const;
std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
//===--------------------------------------------------------------------===//
// Type Predicates.
//===--------------------------------------------------------------------===//
public:
/// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
/// collection attributes.
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
/// \brief Return true if the given vector types are of the same unqualified
/// type or if they are equivalent to the same GCC vector type.
///
/// \note This ignores whether they are target-specific (AltiVec or Neon)
/// types.
bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
/// \brief Return true if this is an \c NSObject object with its \c NSObject
/// attribute set.
static bool isObjCNSObjectType(QualType Ty) {
return Ty->isObjCNSObjectType();
}
//===--------------------------------------------------------------------===//
// Type Sizing and Analysis
//===--------------------------------------------------------------------===//
/// \brief Return the APFloat 'semantics' for the specified scalar floating
/// point type.
const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
/// \brief Get the size and alignment of the specified complete type in bits.
std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
return getTypeInfo(T.getTypePtr());
}
/// \brief Return the size of the specified (complete) type \p T, in bits.
uint64_t getTypeSize(QualType T) const {
return getTypeInfo(T).first;
}
uint64_t getTypeSize(const Type *T) const {
return getTypeInfo(T).first;
}
/// \brief Return the size of the character type, in bits.
uint64_t getCharWidth() const {
return getTypeSize(CharTy);
}
/// \brief Convert a size in bits to a size in characters.
CharUnits toCharUnitsFromBits(int64_t BitSize) const;
/// \brief Convert a size in characters to a size in bits.
int64_t toBits(CharUnits CharSize) const;
/// \brief Return the size of the specified (complete) type \p T, in
/// characters.
CharUnits getTypeSizeInChars(QualType T) const;
CharUnits getTypeSizeInChars(const Type *T) const;
/// \brief Return the ABI-specified alignment of a (complete) type \p T, in
/// bits.
unsigned getTypeAlign(QualType T) const {
return getTypeInfo(T).second;
}
unsigned getTypeAlign(const Type *T) const {
return getTypeInfo(T).second;
}
/// \brief Return the ABI-specified alignment of a (complete) type \p T, in
/// characters.
CharUnits getTypeAlignInChars(QualType T) const;
CharUnits getTypeAlignInChars(const Type *T) const;
// getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
// type is a record, its data size is returned.
std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
/// \brief Return the "preferred" alignment of the specified type \p T for
/// the current target, in bits.
///
/// This can be different than the ABI alignment in cases where it is
/// beneficial for performance to overalign a data type.
unsigned getPreferredTypeAlign(const Type *T) const;
/// \brief Return a conservative estimate of the alignment of the specified
/// decl \p D.
///
/// \pre \p D must not be a bitfield type, as bitfields do not have a valid
/// alignment.
///
/// If \p RefAsPointee, references are treated like their underlying type
/// (for alignof), else they're treated like pointers (for CodeGen).
CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
/// \brief Get or compute information about the layout of the specified
/// record (struct/union/class) \p D, which indicates its size and field
/// position information.
const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
/// \brief Get or compute information about the layout of the specified
/// Objective-C interface.
const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
const;
void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
bool Simple = false) const;
/// \brief Get or compute information about the layout of the specified
/// Objective-C implementation.
///
/// This may differ from the interface if synthesized ivars are present.
const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
/// \brief Get our current best idea for the key function of the
/// given record decl, or NULL if there isn't one.
///
/// The key function is, according to the Itanium C++ ABI section 5.2.3:
/// ...the first non-pure virtual function that is not inline at the
/// point of class definition.
///
/// Other ABIs use the same idea. However, the ARM C++ ABI ignores
/// virtual functions that are defined 'inline', which means that
/// the result of this computation can change.
const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
/// \brief Observe that the given method cannot be a key function.
/// Checks the key-function cache for the method's class and clears it
/// if matches the given declaration.
///
/// This is used in ABIs where out-of-line definitions marked
/// inline are not considered to be key functions.
///
/// \param method should be the declaration from the class definition
void setNonKeyFunction(const CXXMethodDecl *method);
/// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
uint64_t getFieldOffset(const ValueDecl *FD) const;
bool isNearlyEmpty(const CXXRecordDecl *RD) const;
MangleContext *createMangleContext();
void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
void CollectInheritedProtocols(const Decl *CDecl,
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
//===--------------------------------------------------------------------===//
// Type Operators
//===--------------------------------------------------------------------===//
/// \brief Return the canonical (structural) type corresponding to the
/// specified potentially non-canonical type \p T.
///
/// The non-canonical version of a type may have many "decorated" versions of
/// types. Decorators can include typedefs, 'typeof' operators, etc. The
/// returned type is guaranteed to be free of any of these, allowing two
/// canonical types to be compared for exact equality with a simple pointer
/// comparison.
CanQualType getCanonicalType(QualType T) const {
return CanQualType::CreateUnsafe(T.getCanonicalType());
}
const Type *getCanonicalType(const Type *T) const {
return T->getCanonicalTypeInternal().getTypePtr();
}
/// \brief Return the canonical parameter type corresponding to the specific
/// potentially non-canonical one.
///
/// Qualifiers are stripped off, functions are turned into function
/// pointers, and arrays decay one level into pointers.
CanQualType getCanonicalParamType(QualType T) const;
/// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
bool hasSameType(QualType T1, QualType T2) const {
return getCanonicalType(T1) == getCanonicalType(T2);
}
/// \brief Return this type as a completely-unqualified array type,
/// capturing the qualifiers in \p Quals.
///
/// This will remove the minimal amount of sugaring from the types, similar
/// to the behavior of QualType::getUnqualifiedType().
///
/// \param T is the qualified type, which may be an ArrayType
///
/// \param Quals will receive the full set of qualifiers that were
/// applied to the array.
///
/// \returns if this is an array type, the completely unqualified array type
/// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
/// \brief Determine whether the given types are equivalent after
/// cvr-qualifiers have been removed.
bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
return getCanonicalType(T1).getTypePtr() ==
getCanonicalType(T2).getTypePtr();
}
bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
/// \brief Retrieves the "canonical" nested name specifier for a
/// given nested name specifier.
///
/// The canonical nested name specifier is a nested name specifier
/// that uniquely identifies a type or namespace within the type
/// system. For example, given:
///
/// \code
/// namespace N {
/// struct S {
/// template<typename T> struct X { typename T* type; };
/// };
/// }
///
/// template<typename T> struct Y {
/// typename N::S::X<T>::type member;
/// };
/// \endcode
///
/// Here, the nested-name-specifier for N::S::X<T>:: will be
/// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
/// by declarations in the type system and the canonical type for
/// the template type parameter 'T' is template-param-0-0.
NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
/// \brief Retrieves the default calling convention to use for
/// C++ instance methods.
CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
/// \brief Retrieves the canonical representation of the given
/// calling convention.
CallingConv getCanonicalCallConv(CallingConv CC) const;
/// \brief Determines whether two calling conventions name the same
/// calling convention.
bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
}
/// \brief Retrieves the "canonical" template name that refers to a
/// given template.
///
/// The canonical template name is the simplest expression that can
/// be used to refer to a given template. For most templates, this
/// expression is just the template declaration itself. For example,
/// the template std::vector can be referred to via a variety of
/// names---std::vector, \::std::vector, vector (if vector is in
/// scope), etc.---but all of these names map down to the same
/// TemplateDecl, which is used to form the canonical template name.
///
/// Dependent template names are more interesting. Here, the
/// template name could be something like T::template apply or
/// std::allocator<T>::template rebind, where the nested name
/// specifier itself is dependent. In this case, the canonical
/// template name uses the shortest form of the dependent
/// nested-name-specifier, which itself contains all canonical
/// types, values, and templates.
TemplateName getCanonicalTemplateName(TemplateName Name) const;
/// \brief Determine whether the given template names refer to the same
/// template.
bool hasSameTemplateName(TemplateName X, TemplateName Y);
/// \brief Retrieve the "canonical" template argument.
///
/// The canonical template argument is the simplest template argument
/// (which may be a type, value, expression, or declaration) that
/// expresses the value of the argument.
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
const;
/// Type Query functions. If the type is an instance of the specified class,
/// return the Type pointer for the underlying maximally pretty type. This
/// is a member of ASTContext because this may need to do some amount of
/// canonicalization, e.g. to move type qualifiers into the element type.
const ArrayType *getAsArrayType(QualType T) const;
const ConstantArrayType *getAsConstantArrayType(QualType T) const {
return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
}
const VariableArrayType *getAsVariableArrayType(QualType T) const {
return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
}
const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
}
const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
const {
return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
}
/// \brief Return the innermost element type of an array type.
///
/// For example, will return "int" for int[m][n]
QualType getBaseElementType(const ArrayType *VAT) const;
/// \brief Return the innermost element type of a type (which needn't
/// actually be an array type).
QualType getBaseElementType(QualType QT) const;
/// \brief Return number of constant array elements.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
/// \brief Perform adjustment on the parameter type of a function.
///
/// This routine adjusts the given parameter type @p T to the actual
/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
QualType getAdjustedParameterType(QualType T) const;
/// \brief Retrieve the parameter type as adjusted for use in the signature
/// of a function, decaying array and function types and removing top-level
/// cv-qualifiers.
QualType getSignatureParameterType(QualType T) const;
/// \brief Return the properly qualified result of decaying the specified
/// array type to a pointer.
///
/// This operation is non-trivial when handling typedefs etc. The canonical
/// type of \p T must be an array type, this returns a pointer to a properly
/// qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType getArrayDecayedType(QualType T) const;
/// \brief Return the type that \p PromotableType will promote to: C99
/// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
QualType getPromotedIntegerType(QualType PromotableType) const;
/// \brief Recurses in pointer/array types until it finds an Objective-C
/// retainable type and returns its ownership.
Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
/// \brief Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
QualType isPromotableBitField(Expr *E) const;
/// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
///
/// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
/// \p LHS < \p RHS, return -1.
int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
/// \brief Compare the rank of the two specified floating point types,
/// ignoring the domain of the type (i.e. 'double' == '_Complex double').
///
/// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
/// \p LHS < \p RHS, return -1.
int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
/// \brief Return a real floating point or a complex type (based on
/// \p typeDomain/\p typeSize).
///
/// \param typeDomain a real floating point or complex type.
/// \param typeSize a real floating point or complex type.
QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
QualType typeDomain) const;
unsigned getTargetAddressSpace(QualType T) const {
return getTargetAddressSpace(T.getQualifiers());
}
unsigned getTargetAddressSpace(Qualifiers Q) const {
return getTargetAddressSpace(Q.getAddressSpace());
}
unsigned getTargetAddressSpace(unsigned AS) const {
if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
return AS;
else
return (*AddrSpaceMap)[AS - LangAS::Offset];
}
private:
// Helper for integer ordering
unsigned getIntegerRank(const Type *T) const;
public:
//===--------------------------------------------------------------------===//
// Type Compatibility Predicates
//===--------------------------------------------------------------------===//
/// Compatibility predicates used to check assignment expressions.
bool typesAreCompatible(QualType T1, QualType T2,
bool CompareUnqualified = false); // C99 6.2.7p1
bool propertyTypesAreCompatible(QualType, QualType);
bool typesAreBlockPointerCompatible(QualType, QualType);
bool isObjCIdType(QualType T) const {
return T == getObjCIdType();
}
bool isObjCClassType(QualType T) const {
return T == getObjCClassType();
}
bool isObjCSelType(QualType T) const {
return T == getObjCSelType();
}
bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
bool ForCompare);
bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
// Check the safety of assignment from LHS to RHS
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
const ObjCObjectType *RHS);
bool canAssignObjCInterfacesInBlockPointer(
const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT,
bool BlockReturnType);
bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
bool canBindObjCObjectType(QualType To, QualType From);
// Functions for calculating composite types
QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
bool Unqualified = false, bool BlockReturnType = false);
QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
bool Unqualified = false);
QualType mergeFunctionArgumentTypes(QualType, QualType,
bool OfBlockPointer=false,
bool Unqualified = false);
QualType mergeTransparentUnionType(QualType, QualType,
bool OfBlockPointer=false,
bool Unqualified = false);
QualType mergeObjCGCQualifiers(QualType, QualType);
bool FunctionTypesMatchOnNSConsumedAttrs(
const FunctionProtoType *FromFunctionType,
const FunctionProtoType *ToFunctionType);
void ResetObjCLayout(const ObjCContainerDecl *CD) {
ObjCLayouts[CD] = 0;
}
//===--------------------------------------------------------------------===//
// Integer Predicates
//===--------------------------------------------------------------------===//
// The width of an integer, as defined in C99 6.2.6.2. This is the number
// of bits in an integer type excluding any padding bits.
unsigned getIntWidth(QualType T) const;
// Per C99 6.2.5p6, for every signed integer type, there is a corresponding
// unsigned integer type. This method takes a signed type, and returns the
// corresponding unsigned integer type.
QualType getCorrespondingUnsignedType(QualType T) const;
//===--------------------------------------------------------------------===//
// Type Iterators.
//===--------------------------------------------------------------------===//
typedef std::vector<Type*>::iterator type_iterator;
typedef std::vector<Type*>::const_iterator const_type_iterator;
type_iterator types_begin() { return Types.begin(); }
type_iterator types_end() { return Types.end(); }
const_type_iterator types_begin() const { return Types.begin(); }
const_type_iterator types_end() const { return Types.end(); }
//===--------------------------------------------------------------------===//
// Integer Values
//===--------------------------------------------------------------------===//
/// \brief Make an APSInt of the appropriate width and signedness for the
/// given \p Value and integer \p Type.
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
llvm::APSInt Res(getIntWidth(Type),
!Type->isSignedIntegerOrEnumerationType());
Res = Value;
return Res;
}
bool isSentinelNullExpr(const Expr *E);
/// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
/// none exists.
ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
/// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
/// none exists.
ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
/// \brief Return true if there is at least one \@implementation in the TU.
bool AnyObjCImplementation() {
return !ObjCImpls.empty();
}
/// \brief Set the implementation of ObjCInterfaceDecl.
void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
ObjCImplementationDecl *ImplD);
/// \brief Set the implementation of ObjCCategoryDecl.
void setObjCImplementation(ObjCCategoryDecl *CatD,
ObjCCategoryImplDecl *ImplD);
/// \brief Get the duplicate declaration of a ObjCMethod in the same
/// interface, or null if none exists.
const ObjCMethodDecl *getObjCMethodRedeclaration(
const ObjCMethodDecl *MD) const {
return ObjCMethodRedecls.lookup(MD);
}
void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
const ObjCMethodDecl *Redecl) {
assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
ObjCMethodRedecls[MD] = Redecl;
}
/// \brief Returns the Objective-C interface that \p ND belongs to if it is
/// an Objective-C method/property/ivar etc. that is part of an interface,
/// otherwise returns null.
ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
/// \brief Set the copy inialization expression of a block var decl.
void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
/// \brief Get the copy initialization expression of the VarDecl \p VD, or
/// NULL if none exists.
Expr *getBlockVarCopyInits(const VarDecl* VD);
/// \brief Allocate an uninitialized TypeSourceInfo.
///
/// The caller should initialize the memory held by TypeSourceInfo using
/// the TypeLoc wrappers.
///
/// \param T the type that will be the basis for type source info. This type
/// should refer to how the declarator was written in source code, not to
/// what type semantic analysis resolved the declarator to.
///
/// \param Size the size of the type info to create, or 0 if the size
/// should be calculated based on the type.
TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
/// \brief Allocate a TypeSourceInfo where all locations have been
/// initialized to a given location, which defaults to the empty
/// location.
TypeSourceInfo *
getTrivialTypeSourceInfo(QualType T,
SourceLocation Loc = SourceLocation()) const;
TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
/// \brief Add a deallocation callback that will be invoked when the
/// ASTContext is destroyed.
///
/// \param Callback A callback function that will be invoked on destruction.
///
/// \param Data Pointer data that will be provided to the callback function
/// when it is called.
void AddDeallocation(void (*Callback)(void*), void *Data);
GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
/// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
/// lazily, only when used; this is only relevant for function or file scoped
/// var definitions.
///
/// \returns true if the function/var must be CodeGen'ed/deserialized even if
/// it is not used.
bool DeclMustBeEmitted(const Decl *D);
void addUnnamedTag(const TagDecl *Tag);
int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
/// \brief Retrieve the lambda mangling number for a lambda expression.
unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
/// \brief Used by ParmVarDecl to store on the side the
/// index of the parameter when it exceeds the size of the normal bitfield.
void setParameterIndex(const ParmVarDecl *D, unsigned index);
/// \brief Used by ParmVarDecl to retrieve on the side the
/// index of the parameter when it exceeds the size of the normal bitfield.
unsigned getParameterIndex(const ParmVarDecl *D) const;
//===--------------------------------------------------------------------===//
// Statistics
//===--------------------------------------------------------------------===//
/// \brief The number of implicitly-declared default constructors.
static unsigned NumImplicitDefaultConstructors;
/// \brief The number of implicitly-declared default constructors for
/// which declarations were built.
static unsigned NumImplicitDefaultConstructorsDeclared;
/// \brief The number of implicitly-declared copy constructors.
static unsigned NumImplicitCopyConstructors;
/// \brief The number of implicitly-declared copy constructors for
/// which declarations were built.
static unsigned NumImplicitCopyConstructorsDeclared;
/// \brief The number of implicitly-declared move constructors.
static unsigned NumImplicitMoveConstructors;
/// \brief The number of implicitly-declared move constructors for
/// which declarations were built.
static unsigned NumImplicitMoveConstructorsDeclared;
/// \brief The number of implicitly-declared copy assignment operators.
static unsigned NumImplicitCopyAssignmentOperators;
/// \brief The number of implicitly-declared copy assignment operators for
/// which declarations were built.
static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
/// \brief The number of implicitly-declared move assignment operators.
static unsigned NumImplicitMoveAssignmentOperators;
/// \brief The number of implicitly-declared move assignment operators for
/// which declarations were built.
static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
/// \brief The number of implicitly-declared destructors.
static unsigned NumImplicitDestructors;
/// \brief The number of implicitly-declared destructors for which
/// declarations were built.
static unsigned NumImplicitDestructorsDeclared;
private:
ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
public:
/// \brief Initialize built-in types.
///
/// This routine may only be invoked once for a given ASTContext object.
/// It is normally invoked by the ASTContext constructor. However, the
/// constructor can be asked to delay initialization, which places the burden
/// of calling this function on the user of that object.
///
/// \param Target The target
void InitBuiltinTypes(const TargetInfo &Target);
private:
void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
// Return the Objective-C type encoding for a given type.
void getObjCEncodingForTypeImpl(QualType t, std::string &S,
bool ExpandPointedToStructures,
bool ExpandStructures,
const FieldDecl *Field,
bool OutermostType = false,
bool EncodingProperty = false,
bool StructField = false,
bool EncodeBlockParameters = false,
bool EncodeClassNames = false) const;
// Adds the encoding of the structure's members.
void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
const FieldDecl *Field,
bool includeVBases = true) const;
// Adds the encoding of a method parameter or return type.
void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
QualType T, std::string& S,
bool Extended) const;
const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) const;
private:
/// \brief A set of deallocations that should be performed when the
/// ASTContext is destroyed.
SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
// FIXME: This currently contains the set of StoredDeclMaps used
// by DeclContext objects. This probably should not be in ASTContext,
// but we include it here so that ASTContext can quickly deallocate them.
llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
/// \brief A counter used to uniquely identify "blocks".
mutable unsigned int UniqueBlockByRefTypeID;
friend class DeclContext;
friend class DeclarationNameTable;
void ReleaseDeclContextMaps();
};
/// \brief Utility function for constructing a nullary selector.
static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(0, &II);
}
/// \brief Utility function for constructing an unary selector.
static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(1, &II);
}
} // end namespace clang
// operator new and delete aren't allowed inside namespaces.
/// @brief Placement new for using the ASTContext's allocator.
///
/// This placement form of operator new uses the ASTContext's allocator for
/// obtaining memory.
///
/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
/// here need to also be made there.
///
/// We intentionally avoid using a nothrow specification here so that the calls
/// to this operator will not perform a null check on the result -- the
/// underlying allocator never returns null pointers.
///
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
/// // Specific alignment
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
/// @endcode
/// Please note that you cannot use delete on the pointer; it must be
/// deallocated using an explicit destructor call followed by
/// @c Context.Deallocate(Ptr).
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new(size_t Bytes, const clang::ASTContext &C,
size_t Alignment) {
return C.Allocate(Bytes, Alignment);
}
/// @brief Placement delete companion to the new above.
///
/// This operator is just a companion to the new above. There is no way of
/// invoking it directly; see the new operator for more details. This operator
/// is called implicitly by the compiler if a placement new expression using
/// the ASTContext throws in the object constructor.
inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
C.Deallocate(Ptr);
}
/// This placement form of operator new[] uses the ASTContext's allocator for
/// obtaining memory.
///
/// We intentionally avoid using a nothrow specification here so that the calls
/// to this operator will not perform a null check on the result -- the
/// underlying allocator never returns null pointers.
///
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// char *data = new (Context) char[10];
/// // Specific alignment
/// char *data = new (Context, 4) char[10];
/// @endcode
/// Please note that you cannot use delete on the pointer; it must be
/// deallocated using an explicit destructor call followed by
/// @c Context.Deallocate(Ptr).
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
size_t Alignment = 8) {
return C.Allocate(Bytes, Alignment);
}
/// @brief Placement delete[] companion to the new[] above.
///
/// This operator is just a companion to the new[] above. There is no way of
/// invoking it directly; see the new[] operator for more details. This operator
/// is called implicitly by the compiler if a placement new[] expression using
/// the ASTContext throws in the object constructor.
inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
C.Deallocate(Ptr);
}
#endif