| //===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the code-completion semantic actions. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "Sema.h" |
| #include "clang/Sema/CodeCompleteConsumer.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <list> |
| #include <map> |
| #include <vector> |
| |
| using namespace clang; |
| |
| /// \brief Set the code-completion consumer for semantic analysis. |
| void Sema::setCodeCompleteConsumer(CodeCompleteConsumer *CCC) { |
| assert(((CodeCompleter != 0) != (CCC != 0)) && |
| "Already set or cleared a code-completion consumer?"); |
| CodeCompleter = CCC; |
| } |
| |
| namespace { |
| /// \brief A container of code-completion results. |
| class ResultBuilder { |
| public: |
| /// \brief The type of a name-lookup filter, which can be provided to the |
| /// name-lookup routines to specify which declarations should be included in |
| /// the result set (when it returns true) and which declarations should be |
| /// filtered out (returns false). |
| typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const; |
| |
| typedef CodeCompleteConsumer::Result Result; |
| |
| private: |
| /// \brief The actual results we have found. |
| std::vector<Result> Results; |
| |
| /// \brief A record of all of the declarations we have found and placed |
| /// into the result set, used to ensure that no declaration ever gets into |
| /// the result set twice. |
| llvm::SmallPtrSet<Decl*, 16> AllDeclsFound; |
| |
| /// \brief A mapping from declaration names to the declarations that have |
| /// this name within a particular scope and their index within the list of |
| /// results. |
| typedef std::multimap<DeclarationName, |
| std::pair<NamedDecl *, unsigned> > ShadowMap; |
| |
| /// \brief The semantic analysis object for which results are being |
| /// produced. |
| Sema &SemaRef; |
| |
| /// \brief If non-NULL, a filter function used to remove any code-completion |
| /// results that are not desirable. |
| LookupFilter Filter; |
| |
| /// \brief A list of shadow maps, which is used to model name hiding at |
| /// different levels of, e.g., the inheritance hierarchy. |
| std::list<ShadowMap> ShadowMaps; |
| |
| public: |
| explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0) |
| : SemaRef(SemaRef), Filter(Filter) { } |
| |
| /// \brief Set the filter used for code-completion results. |
| void setFilter(LookupFilter Filter) { |
| this->Filter = Filter; |
| } |
| |
| typedef std::vector<Result>::iterator iterator; |
| iterator begin() { return Results.begin(); } |
| iterator end() { return Results.end(); } |
| |
| Result *data() { return Results.empty()? 0 : &Results.front(); } |
| unsigned size() const { return Results.size(); } |
| bool empty() const { return Results.empty(); } |
| |
| /// \brief Add a new result to this result set (if it isn't already in one |
| /// of the shadow maps), or replace an existing result (for, e.g., a |
| /// redeclaration). |
| /// |
| /// \param R the result to add (if it is unique). |
| /// |
| /// \param R the context in which this result will be named. |
| void MaybeAddResult(Result R, DeclContext *CurContext = 0); |
| |
| /// \brief Enter into a new scope. |
| void EnterNewScope(); |
| |
| /// \brief Exit from the current scope. |
| void ExitScope(); |
| |
| /// \name Name lookup predicates |
| /// |
| /// These predicates can be passed to the name lookup functions to filter the |
| /// results of name lookup. All of the predicates have the same type, so that |
| /// |
| //@{ |
| bool IsOrdinaryName(NamedDecl *ND) const; |
| bool IsNestedNameSpecifier(NamedDecl *ND) const; |
| bool IsEnum(NamedDecl *ND) const; |
| bool IsClassOrStruct(NamedDecl *ND) const; |
| bool IsUnion(NamedDecl *ND) const; |
| bool IsNamespace(NamedDecl *ND) const; |
| bool IsNamespaceOrAlias(NamedDecl *ND) const; |
| bool IsType(NamedDecl *ND) const; |
| bool IsMember(NamedDecl *ND) const; |
| //@} |
| }; |
| } |
| |
| /// \brief Determines whether the given hidden result could be found with |
| /// some extra work, e.g., by qualifying the name. |
| /// |
| /// \param Hidden the declaration that is hidden by the currenly \p Visible |
| /// declaration. |
| /// |
| /// \param Visible the declaration with the same name that is already visible. |
| /// |
| /// \returns true if the hidden result can be found by some mechanism, |
| /// false otherwise. |
| static bool canHiddenResultBeFound(const LangOptions &LangOpts, |
| NamedDecl *Hidden, NamedDecl *Visible) { |
| // In C, there is no way to refer to a hidden name. |
| if (!LangOpts.CPlusPlus) |
| return false; |
| |
| DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext(); |
| |
| // There is no way to qualify a name declared in a function or method. |
| if (HiddenCtx->isFunctionOrMethod()) |
| return false; |
| |
| return HiddenCtx != Visible->getDeclContext()->getLookupContext(); |
| } |
| |
| /// \brief Compute the qualification required to get from the current context |
| /// (\p CurContext) to the target context (\p TargetContext). |
| /// |
| /// \param Context the AST context in which the qualification will be used. |
| /// |
| /// \param CurContext the context where an entity is being named, which is |
| /// typically based on the current scope. |
| /// |
| /// \param TargetContext the context in which the named entity actually |
| /// resides. |
| /// |
| /// \returns a nested name specifier that refers into the target context, or |
| /// NULL if no qualification is needed. |
| static NestedNameSpecifier * |
| getRequiredQualification(ASTContext &Context, |
| DeclContext *CurContext, |
| DeclContext *TargetContext) { |
| llvm::SmallVector<DeclContext *, 4> TargetParents; |
| |
| for (DeclContext *CommonAncestor = TargetContext; |
| CommonAncestor && !CommonAncestor->Encloses(CurContext); |
| CommonAncestor = CommonAncestor->getLookupParent()) { |
| if (CommonAncestor->isTransparentContext() || |
| CommonAncestor->isFunctionOrMethod()) |
| continue; |
| |
| TargetParents.push_back(CommonAncestor); |
| } |
| |
| NestedNameSpecifier *Result = 0; |
| while (!TargetParents.empty()) { |
| DeclContext *Parent = TargetParents.back(); |
| TargetParents.pop_back(); |
| |
| if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent)) |
| Result = NestedNameSpecifier::Create(Context, Result, Namespace); |
| else if (TagDecl *TD = dyn_cast<TagDecl>(Parent)) |
| Result = NestedNameSpecifier::Create(Context, Result, |
| false, |
| Context.getTypeDeclType(TD).getTypePtr()); |
| else |
| assert(Parent->isTranslationUnit()); |
| } |
| |
| return Result; |
| } |
| |
| void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) { |
| assert(!ShadowMaps.empty() && "Must enter into a results scope"); |
| |
| if (R.Kind != Result::RK_Declaration) { |
| // For non-declaration results, just add the result. |
| Results.push_back(R); |
| return; |
| } |
| |
| // Skip unnamed entities. |
| if (!R.Declaration->getDeclName()) |
| return; |
| |
| // Look through using declarations. |
| if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration)) |
| MaybeAddResult(Result(Using->getTargetDecl(), R.Rank, R.Qualifier), |
| CurContext); |
| |
| // Handle each declaration in an overload set separately. |
| if (OverloadedFunctionDecl *Ovl |
| = dyn_cast<OverloadedFunctionDecl>(R.Declaration)) { |
| for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), |
| FEnd = Ovl->function_end(); |
| F != FEnd; ++F) |
| MaybeAddResult(Result(*F, R.Rank, R.Qualifier), CurContext); |
| |
| return; |
| } |
| |
| Decl *CanonDecl = R.Declaration->getCanonicalDecl(); |
| unsigned IDNS = CanonDecl->getIdentifierNamespace(); |
| |
| // Friend declarations and declarations introduced due to friends are never |
| // added as results. |
| if (isa<FriendDecl>(CanonDecl) || |
| (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend))) |
| return; |
| |
| if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) { |
| // __va_list_tag is a freak of nature. Find it and skip it. |
| if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list")) |
| return; |
| |
| // Filter out names reserved for the implementation (C99 7.1.3, |
| // C++ [lib.global.names]). Users don't need to see those. |
| // |
| // FIXME: Add predicate for this. |
| if (Id->getLength() >= 2) { |
| const char *Name = Id->getNameStart(); |
| if (Name[0] == '_' && |
| (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z'))) |
| return; |
| } |
| } |
| |
| // C++ constructors are never found by name lookup. |
| if (isa<CXXConstructorDecl>(CanonDecl)) |
| return; |
| |
| // Filter out any unwanted results. |
| if (Filter && !(this->*Filter)(R.Declaration)) |
| return; |
| |
| ShadowMap &SMap = ShadowMaps.back(); |
| ShadowMap::iterator I, IEnd; |
| for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName()); |
| I != IEnd; ++I) { |
| NamedDecl *ND = I->second.first; |
| unsigned Index = I->second.second; |
| if (ND->getCanonicalDecl() == CanonDecl) { |
| // This is a redeclaration. Always pick the newer declaration. |
| I->second.first = R.Declaration; |
| Results[Index].Declaration = R.Declaration; |
| |
| // Pick the best rank of the two. |
| Results[Index].Rank = std::min(Results[Index].Rank, R.Rank); |
| |
| // We're done. |
| return; |
| } |
| } |
| |
| // This is a new declaration in this scope. However, check whether this |
| // declaration name is hidden by a similarly-named declaration in an outer |
| // scope. |
| std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end(); |
| --SMEnd; |
| for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) { |
| for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName()); |
| I != IEnd; ++I) { |
| // A tag declaration does not hide a non-tag declaration. |
| if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag && |
| (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | |
| Decl::IDNS_ObjCProtocol))) |
| continue; |
| |
| // Protocols are in distinct namespaces from everything else. |
| if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) |
| || (IDNS & Decl::IDNS_ObjCProtocol)) && |
| I->second.first->getIdentifierNamespace() != IDNS) |
| continue; |
| |
| // The newly-added result is hidden by an entry in the shadow map. |
| if (canHiddenResultBeFound(SemaRef.getLangOptions(), R.Declaration, |
| I->second.first)) { |
| // Note that this result was hidden. |
| R.Hidden = true; |
| R.QualifierIsInformative = false; |
| |
| if (!R.Qualifier) |
| R.Qualifier = getRequiredQualification(SemaRef.Context, |
| CurContext, |
| R.Declaration->getDeclContext()); |
| } else { |
| // This result was hidden and cannot be found; don't bother adding |
| // it. |
| return; |
| } |
| |
| break; |
| } |
| } |
| |
| // Make sure that any given declaration only shows up in the result set once. |
| if (!AllDeclsFound.insert(CanonDecl)) |
| return; |
| |
| // If the filter is for nested-name-specifiers, then this result starts a |
| // nested-name-specifier. |
| if ((Filter == &ResultBuilder::IsNestedNameSpecifier) || |
| (Filter == &ResultBuilder::IsMember && |
| isa<CXXRecordDecl>(R.Declaration) && |
| cast<CXXRecordDecl>(R.Declaration)->isInjectedClassName())) |
| R.StartsNestedNameSpecifier = true; |
| |
| // If this result is supposed to have an informative qualifier, add one. |
| if (R.QualifierIsInformative && !R.Qualifier && |
| !R.StartsNestedNameSpecifier) { |
| DeclContext *Ctx = R.Declaration->getDeclContext(); |
| if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx)) |
| R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace); |
| else if (TagDecl *Tag = dyn_cast<TagDecl>(Ctx)) |
| R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false, |
| SemaRef.Context.getTypeDeclType(Tag).getTypePtr()); |
| else |
| R.QualifierIsInformative = false; |
| } |
| |
| // Insert this result into the set of results and into the current shadow |
| // map. |
| SMap.insert(std::make_pair(R.Declaration->getDeclName(), |
| std::make_pair(R.Declaration, Results.size()))); |
| Results.push_back(R); |
| } |
| |
| /// \brief Enter into a new scope. |
| void ResultBuilder::EnterNewScope() { |
| ShadowMaps.push_back(ShadowMap()); |
| } |
| |
| /// \brief Exit from the current scope. |
| void ResultBuilder::ExitScope() { |
| ShadowMaps.pop_back(); |
| } |
| |
| /// \brief Determines whether this given declaration will be found by |
| /// ordinary name lookup. |
| bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const { |
| unsigned IDNS = Decl::IDNS_Ordinary; |
| if (SemaRef.getLangOptions().CPlusPlus) |
| IDNS |= Decl::IDNS_Tag; |
| |
| return ND->getIdentifierNamespace() & IDNS; |
| } |
| |
| /// \brief Determines whether the given declaration is suitable as the |
| /// start of a C++ nested-name-specifier, e.g., a class or namespace. |
| bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const { |
| // Allow us to find class templates, too. |
| if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND)) |
| ND = ClassTemplate->getTemplatedDecl(); |
| |
| return SemaRef.isAcceptableNestedNameSpecifier(ND); |
| } |
| |
| /// \brief Determines whether the given declaration is an enumeration. |
| bool ResultBuilder::IsEnum(NamedDecl *ND) const { |
| return isa<EnumDecl>(ND); |
| } |
| |
| /// \brief Determines whether the given declaration is a class or struct. |
| bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const { |
| // Allow us to find class templates, too. |
| if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND)) |
| ND = ClassTemplate->getTemplatedDecl(); |
| |
| if (RecordDecl *RD = dyn_cast<RecordDecl>(ND)) |
| return RD->getTagKind() == TagDecl::TK_class || |
| RD->getTagKind() == TagDecl::TK_struct; |
| |
| return false; |
| } |
| |
| /// \brief Determines whether the given declaration is a union. |
| bool ResultBuilder::IsUnion(NamedDecl *ND) const { |
| // Allow us to find class templates, too. |
| if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND)) |
| ND = ClassTemplate->getTemplatedDecl(); |
| |
| if (RecordDecl *RD = dyn_cast<RecordDecl>(ND)) |
| return RD->getTagKind() == TagDecl::TK_union; |
| |
| return false; |
| } |
| |
| /// \brief Determines whether the given declaration is a namespace. |
| bool ResultBuilder::IsNamespace(NamedDecl *ND) const { |
| return isa<NamespaceDecl>(ND); |
| } |
| |
| /// \brief Determines whether the given declaration is a namespace or |
| /// namespace alias. |
| bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const { |
| return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); |
| } |
| |
| /// \brief Brief determines whether the given declaration is a namespace or |
| /// namespace alias. |
| bool ResultBuilder::IsType(NamedDecl *ND) const { |
| return isa<TypeDecl>(ND); |
| } |
| |
| /// \brief Since every declaration found within a class is a member that we |
| /// care about, always returns true. This predicate exists mostly to |
| /// communicate to the result builder that we are performing a lookup for |
| /// member access. |
| bool ResultBuilder::IsMember(NamedDecl *ND) const { |
| return true; |
| } |
| |
| // Find the next outer declaration context corresponding to this scope. |
| static DeclContext *findOuterContext(Scope *S) { |
| for (S = S->getParent(); S; S = S->getParent()) |
| if (S->getEntity()) |
| return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext(); |
| |
| return 0; |
| } |
| |
| /// \brief Collect the results of searching for members within the given |
| /// declaration context. |
| /// |
| /// \param Ctx the declaration context from which we will gather results. |
| /// |
| /// \param Rank the rank given to results in this declaration context. |
| /// |
| /// \param Visited the set of declaration contexts that have already been |
| /// visited. Declaration contexts will only be visited once. |
| /// |
| /// \param Results the result set that will be extended with any results |
| /// found within this declaration context (and, for a C++ class, its bases). |
| /// |
| /// \param InBaseClass whether we are in a base class. |
| /// |
| /// \returns the next higher rank value, after considering all of the |
| /// names within this declaration context. |
| static unsigned CollectMemberLookupResults(DeclContext *Ctx, |
| unsigned Rank, |
| DeclContext *CurContext, |
| llvm::SmallPtrSet<DeclContext *, 16> &Visited, |
| ResultBuilder &Results, |
| bool InBaseClass = false) { |
| // Make sure we don't visit the same context twice. |
| if (!Visited.insert(Ctx->getPrimaryContext())) |
| return Rank; |
| |
| // Enumerate all of the results in this context. |
| typedef CodeCompleteConsumer::Result Result; |
| Results.EnterNewScope(); |
| for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx; |
| CurCtx = CurCtx->getNextContext()) { |
| for (DeclContext::decl_iterator D = CurCtx->decls_begin(), |
| DEnd = CurCtx->decls_end(); |
| D != DEnd; ++D) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) |
| Results.MaybeAddResult(Result(ND, Rank, 0, InBaseClass), CurContext); |
| } |
| } |
| |
| // Traverse the contexts of inherited classes. |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { |
| for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), |
| BEnd = Record->bases_end(); |
| B != BEnd; ++B) { |
| QualType BaseType = B->getType(); |
| |
| // Don't look into dependent bases, because name lookup can't look |
| // there anyway. |
| if (BaseType->isDependentType()) |
| continue; |
| |
| const RecordType *Record = BaseType->getAs<RecordType>(); |
| if (!Record) |
| continue; |
| |
| // FIXME: It would be nice to be able to determine whether referencing |
| // a particular member would be ambiguous. For example, given |
| // |
| // struct A { int member; }; |
| // struct B { int member; }; |
| // struct C : A, B { }; |
| // |
| // void f(C *c) { c->### } |
| // accessing 'member' would result in an ambiguity. However, code |
| // completion could be smart enough to qualify the member with the |
| // base class, e.g., |
| // |
| // c->B::member |
| // |
| // or |
| // |
| // c->A::member |
| |
| // Collect results from this base class (and its bases). |
| CollectMemberLookupResults(Record->getDecl(), Rank, CurContext, Visited, |
| Results, /*InBaseClass=*/true); |
| } |
| } |
| |
| // FIXME: Look into base classes in Objective-C! |
| |
| Results.ExitScope(); |
| return Rank + 1; |
| } |
| |
| /// \brief Collect the results of searching for members within the given |
| /// declaration context. |
| /// |
| /// \param Ctx the declaration context from which we will gather results. |
| /// |
| /// \param InitialRank the initial rank given to results in this declaration |
| /// context. Larger rank values will be used for, e.g., members found in |
| /// base classes. |
| /// |
| /// \param Results the result set that will be extended with any results |
| /// found within this declaration context (and, for a C++ class, its bases). |
| /// |
| /// \returns the next higher rank value, after considering all of the |
| /// names within this declaration context. |
| static unsigned CollectMemberLookupResults(DeclContext *Ctx, |
| unsigned InitialRank, |
| DeclContext *CurContext, |
| ResultBuilder &Results) { |
| llvm::SmallPtrSet<DeclContext *, 16> Visited; |
| return CollectMemberLookupResults(Ctx, InitialRank, CurContext, Visited, |
| Results); |
| } |
| |
| /// \brief Collect the results of searching for declarations within the given |
| /// scope and its parent scopes. |
| /// |
| /// \param S the scope in which we will start looking for declarations. |
| /// |
| /// \param InitialRank the initial rank given to results in this scope. |
| /// Larger rank values will be used for results found in parent scopes. |
| /// |
| /// \param CurContext the context from which lookup results will be found. |
| /// |
| /// \param Results the builder object that will receive each result. |
| static unsigned CollectLookupResults(Scope *S, |
| TranslationUnitDecl *TranslationUnit, |
| unsigned InitialRank, |
| DeclContext *CurContext, |
| ResultBuilder &Results) { |
| if (!S) |
| return InitialRank; |
| |
| // FIXME: Using directives! |
| |
| unsigned NextRank = InitialRank; |
| Results.EnterNewScope(); |
| if (S->getEntity() && |
| !((DeclContext *)S->getEntity())->isFunctionOrMethod()) { |
| // Look into this scope's declaration context, along with any of its |
| // parent lookup contexts (e.g., enclosing classes), up to the point |
| // where we hit the context stored in the next outer scope. |
| DeclContext *Ctx = (DeclContext *)S->getEntity(); |
| DeclContext *OuterCtx = findOuterContext(S); |
| |
| for (; Ctx && Ctx->getPrimaryContext() != OuterCtx; |
| Ctx = Ctx->getLookupParent()) { |
| if (Ctx->isFunctionOrMethod()) |
| continue; |
| |
| NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, CurContext, |
| Results); |
| } |
| } else if (!S->getParent()) { |
| // Look into the translation unit scope. We walk through the translation |
| // unit's declaration context, because the Scope itself won't have all of |
| // the declarations if we loaded a precompiled header. |
| // FIXME: We would like the translation unit's Scope object to point to the |
| // translation unit, so we don't need this special "if" branch. However, |
| // doing so would force the normal C++ name-lookup code to look into the |
| // translation unit decl when the IdentifierInfo chains would suffice. |
| // Once we fix that problem (which is part of a more general "don't look |
| // in DeclContexts unless we have to" optimization), we can eliminate the |
| // TranslationUnit parameter entirely. |
| NextRank = CollectMemberLookupResults(TranslationUnit, NextRank + 1, |
| CurContext, Results); |
| } else { |
| // Walk through the declarations in this Scope. |
| for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); |
| D != DEnd; ++D) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get()))) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, NextRank), |
| CurContext); |
| } |
| |
| NextRank = NextRank + 1; |
| } |
| |
| // Lookup names in the parent scope. |
| NextRank = CollectLookupResults(S->getParent(), TranslationUnit, NextRank, |
| CurContext, Results); |
| Results.ExitScope(); |
| |
| return NextRank; |
| } |
| |
| /// \brief Add type specifiers for the current language as keyword results. |
| static void AddTypeSpecifierResults(const LangOptions &LangOpts, unsigned Rank, |
| ResultBuilder &Results) { |
| typedef CodeCompleteConsumer::Result Result; |
| Results.MaybeAddResult(Result("short", Rank)); |
| Results.MaybeAddResult(Result("long", Rank)); |
| Results.MaybeAddResult(Result("signed", Rank)); |
| Results.MaybeAddResult(Result("unsigned", Rank)); |
| Results.MaybeAddResult(Result("void", Rank)); |
| Results.MaybeAddResult(Result("char", Rank)); |
| Results.MaybeAddResult(Result("int", Rank)); |
| Results.MaybeAddResult(Result("float", Rank)); |
| Results.MaybeAddResult(Result("double", Rank)); |
| Results.MaybeAddResult(Result("enum", Rank)); |
| Results.MaybeAddResult(Result("struct", Rank)); |
| Results.MaybeAddResult(Result("union", Rank)); |
| |
| if (LangOpts.C99) { |
| // C99-specific |
| Results.MaybeAddResult(Result("_Complex", Rank)); |
| Results.MaybeAddResult(Result("_Imaginary", Rank)); |
| Results.MaybeAddResult(Result("_Bool", Rank)); |
| } |
| |
| if (LangOpts.CPlusPlus) { |
| // C++-specific |
| Results.MaybeAddResult(Result("bool", Rank)); |
| Results.MaybeAddResult(Result("class", Rank)); |
| Results.MaybeAddResult(Result("typename", Rank)); |
| Results.MaybeAddResult(Result("wchar_t", Rank)); |
| |
| if (LangOpts.CPlusPlus0x) { |
| Results.MaybeAddResult(Result("char16_t", Rank)); |
| Results.MaybeAddResult(Result("char32_t", Rank)); |
| Results.MaybeAddResult(Result("decltype", Rank)); |
| } |
| } |
| |
| // GNU extensions |
| if (LangOpts.GNUMode) { |
| // FIXME: Enable when we actually support decimal floating point. |
| // Results.MaybeAddResult(Result("_Decimal32", Rank)); |
| // Results.MaybeAddResult(Result("_Decimal64", Rank)); |
| // Results.MaybeAddResult(Result("_Decimal128", Rank)); |
| Results.MaybeAddResult(Result("typeof", Rank)); |
| } |
| } |
| |
| /// \brief Add function parameter chunks to the given code completion string. |
| static void AddFunctionParameterChunks(ASTContext &Context, |
| FunctionDecl *Function, |
| CodeCompletionString *Result) { |
| CodeCompletionString *CCStr = Result; |
| |
| for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) { |
| ParmVarDecl *Param = Function->getParamDecl(P); |
| |
| if (Param->hasDefaultArg()) { |
| // When we see an optional default argument, put that argument and |
| // the remaining default arguments into a new, optional string. |
| CodeCompletionString *Opt = new CodeCompletionString; |
| CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt)); |
| CCStr = Opt; |
| } |
| |
| if (P != 0) |
| CCStr->AddTextChunk(", "); |
| |
| // Format the placeholder string. |
| std::string PlaceholderStr; |
| if (Param->getIdentifier()) |
| PlaceholderStr = Param->getIdentifier()->getName(); |
| |
| Param->getType().getAsStringInternal(PlaceholderStr, |
| Context.PrintingPolicy); |
| |
| // Add the placeholder string. |
| CCStr->AddPlaceholderChunk(PlaceholderStr.c_str()); |
| } |
| |
| if (const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>()) |
| if (Proto->isVariadic()) |
| CCStr->AddPlaceholderChunk(", ..."); |
| } |
| |
| /// \brief Add template parameter chunks to the given code completion string. |
| static void AddTemplateParameterChunks(ASTContext &Context, |
| TemplateDecl *Template, |
| CodeCompletionString *Result, |
| unsigned MaxParameters = 0) { |
| CodeCompletionString *CCStr = Result; |
| bool FirstParameter = true; |
| |
| TemplateParameterList *Params = Template->getTemplateParameters(); |
| TemplateParameterList::iterator PEnd = Params->end(); |
| if (MaxParameters) |
| PEnd = Params->begin() + MaxParameters; |
| for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) { |
| bool HasDefaultArg = false; |
| std::string PlaceholderStr; |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
| if (TTP->wasDeclaredWithTypename()) |
| PlaceholderStr = "typename"; |
| else |
| PlaceholderStr = "class"; |
| |
| if (TTP->getIdentifier()) { |
| PlaceholderStr += ' '; |
| PlaceholderStr += TTP->getIdentifier()->getName(); |
| } |
| |
| HasDefaultArg = TTP->hasDefaultArgument(); |
| } else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| if (NTTP->getIdentifier()) |
| PlaceholderStr = NTTP->getIdentifier()->getName(); |
| NTTP->getType().getAsStringInternal(PlaceholderStr, |
| Context.PrintingPolicy); |
| HasDefaultArg = NTTP->hasDefaultArgument(); |
| } else { |
| assert(isa<TemplateTemplateParmDecl>(*P)); |
| TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); |
| |
| // Since putting the template argument list into the placeholder would |
| // be very, very long, we just use an abbreviation. |
| PlaceholderStr = "template<...> class"; |
| if (TTP->getIdentifier()) { |
| PlaceholderStr += ' '; |
| PlaceholderStr += TTP->getIdentifier()->getName(); |
| } |
| |
| HasDefaultArg = TTP->hasDefaultArgument(); |
| } |
| |
| if (HasDefaultArg) { |
| // When we see an optional default argument, put that argument and |
| // the remaining default arguments into a new, optional string. |
| CodeCompletionString *Opt = new CodeCompletionString; |
| CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt)); |
| CCStr = Opt; |
| } |
| |
| if (FirstParameter) |
| FirstParameter = false; |
| else |
| CCStr->AddTextChunk(", "); |
| |
| // Add the placeholder string. |
| CCStr->AddPlaceholderChunk(PlaceholderStr.c_str()); |
| } |
| } |
| |
| /// \brief Add a qualifier to the given code-completion string, if the |
| /// provided nested-name-specifier is non-NULL. |
| void AddQualifierToCompletionString(CodeCompletionString *Result, |
| NestedNameSpecifier *Qualifier, |
| bool QualifierIsInformative, |
| ASTContext &Context) { |
| if (!Qualifier) |
| return; |
| |
| std::string PrintedNNS; |
| { |
| llvm::raw_string_ostream OS(PrintedNNS); |
| Qualifier->print(OS, Context.PrintingPolicy); |
| } |
| if (QualifierIsInformative) |
| Result->AddInformativeChunk(PrintedNNS.c_str()); |
| else |
| Result->AddTextChunk(PrintedNNS.c_str()); |
| } |
| |
| /// \brief If possible, create a new code completion string for the given |
| /// result. |
| /// |
| /// \returns Either a new, heap-allocated code completion string describing |
| /// how to use this result, or NULL to indicate that the string or name of the |
| /// result is all that is needed. |
| CodeCompletionString * |
| CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) { |
| if (Kind != RK_Declaration) |
| return 0; |
| |
| NamedDecl *ND = Declaration; |
| |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) { |
| CodeCompletionString *Result = new CodeCompletionString; |
| AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, |
| S.Context); |
| Result->AddTextChunk(Function->getNameAsString().c_str()); |
| Result->AddTextChunk("("); |
| AddFunctionParameterChunks(S.Context, Function, Result); |
| Result->AddTextChunk(")"); |
| return Result; |
| } |
| |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) { |
| CodeCompletionString *Result = new CodeCompletionString; |
| AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, |
| S.Context); |
| FunctionDecl *Function = FunTmpl->getTemplatedDecl(); |
| Result->AddTextChunk(Function->getNameAsString().c_str()); |
| |
| // Figure out which template parameters are deduced (or have default |
| // arguments). |
| llvm::SmallVector<bool, 16> Deduced; |
| S.MarkDeducedTemplateParameters(FunTmpl, Deduced); |
| unsigned LastDeducibleArgument; |
| for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0; |
| --LastDeducibleArgument) { |
| if (!Deduced[LastDeducibleArgument - 1]) { |
| // C++0x: Figure out if the template argument has a default. If so, |
| // the user doesn't need to type this argument. |
| // FIXME: We need to abstract template parameters better! |
| bool HasDefaultArg = false; |
| NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam( |
| LastDeducibleArgument - 1); |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) |
| HasDefaultArg = TTP->hasDefaultArgument(); |
| else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) |
| HasDefaultArg = NTTP->hasDefaultArgument(); |
| else { |
| assert(isa<TemplateTemplateParmDecl>(Param)); |
| HasDefaultArg |
| = cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument(); |
| } |
| |
| if (!HasDefaultArg) |
| break; |
| } |
| } |
| |
| if (LastDeducibleArgument) { |
| // Some of the function template arguments cannot be deduced from a |
| // function call, so we introduce an explicit template argument list |
| // containing all of the arguments up to the first deducible argument. |
| Result->AddTextChunk("<"); |
| AddTemplateParameterChunks(S.Context, FunTmpl, Result, |
| LastDeducibleArgument); |
| Result->AddTextChunk(">"); |
| } |
| |
| // Add the function parameters |
| Result->AddTextChunk("("); |
| AddFunctionParameterChunks(S.Context, Function, Result); |
| Result->AddTextChunk(")"); |
| return Result; |
| } |
| |
| if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) { |
| CodeCompletionString *Result = new CodeCompletionString; |
| AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, |
| S.Context); |
| Result->AddTextChunk(Template->getNameAsString().c_str()); |
| Result->AddTextChunk("<"); |
| AddTemplateParameterChunks(S.Context, Template, Result); |
| Result->AddTextChunk(">"); |
| return Result; |
| } |
| |
| if (Qualifier || StartsNestedNameSpecifier) { |
| CodeCompletionString *Result = new CodeCompletionString; |
| AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, |
| S.Context); |
| Result->AddTextChunk(ND->getNameAsString().c_str()); |
| if (StartsNestedNameSpecifier) |
| Result->AddTextChunk("::"); |
| return Result; |
| } |
| |
| return 0; |
| } |
| |
| CodeCompletionString * |
| CodeCompleteConsumer::OverloadCandidate::CreateSignatureString( |
| unsigned CurrentArg, |
| Sema &S) const { |
| CodeCompletionString *Result = new CodeCompletionString; |
| FunctionDecl *FDecl = getFunction(); |
| const FunctionProtoType *Proto |
| = dyn_cast<FunctionProtoType>(getFunctionType()); |
| if (!FDecl && !Proto) { |
| // Function without a prototype. Just give the return type and a |
| // highlighted ellipsis. |
| const FunctionType *FT = getFunctionType(); |
| Result->AddTextChunk( |
| FT->getResultType().getAsString(S.Context.PrintingPolicy).c_str()); |
| Result->AddTextChunk("("); |
| Result->AddPlaceholderChunk("..."); |
| Result->AddTextChunk("("); |
| return Result; |
| } |
| |
| if (FDecl) |
| Result->AddTextChunk(FDecl->getNameAsString().c_str()); |
| else |
| Result->AddTextChunk( |
| Proto->getResultType().getAsString(S.Context.PrintingPolicy).c_str()); |
| |
| Result->AddTextChunk("("); |
| unsigned NumParams = FDecl? FDecl->getNumParams() : Proto->getNumArgs(); |
| for (unsigned I = 0; I != NumParams; ++I) { |
| if (I) |
| Result->AddTextChunk(", "); |
| |
| std::string ArgString; |
| QualType ArgType; |
| |
| if (FDecl) { |
| ArgString = FDecl->getParamDecl(I)->getNameAsString(); |
| ArgType = FDecl->getParamDecl(I)->getOriginalType(); |
| } else { |
| ArgType = Proto->getArgType(I); |
| } |
| |
| ArgType.getAsStringInternal(ArgString, S.Context.PrintingPolicy); |
| |
| if (I == CurrentArg) |
| Result->AddPlaceholderChunk(ArgString.c_str()); |
| else |
| Result->AddTextChunk(ArgString.c_str()); |
| } |
| |
| if (Proto && Proto->isVariadic()) { |
| Result->AddTextChunk(", "); |
| if (CurrentArg < NumParams) |
| Result->AddTextChunk("..."); |
| else |
| Result->AddPlaceholderChunk("..."); |
| } |
| Result->AddTextChunk(")"); |
| |
| return Result; |
| } |
| |
| namespace { |
| struct SortCodeCompleteResult { |
| typedef CodeCompleteConsumer::Result Result; |
| |
| bool isEarlierDeclarationName(DeclarationName X, DeclarationName Y) const { |
| if (X.getNameKind() != Y.getNameKind()) |
| return X.getNameKind() < Y.getNameKind(); |
| |
| return llvm::LowercaseString(X.getAsString()) |
| < llvm::LowercaseString(Y.getAsString()); |
| } |
| |
| bool operator()(const Result &X, const Result &Y) const { |
| // Sort first by rank. |
| if (X.Rank < Y.Rank) |
| return true; |
| else if (X.Rank > Y.Rank) |
| return false; |
| |
| // Result kinds are ordered by decreasing importance. |
| if (X.Kind < Y.Kind) |
| return true; |
| else if (X.Kind > Y.Kind) |
| return false; |
| |
| // Non-hidden names precede hidden names. |
| if (X.Hidden != Y.Hidden) |
| return !X.Hidden; |
| |
| // Non-nested-name-specifiers precede nested-name-specifiers. |
| if (X.StartsNestedNameSpecifier != Y.StartsNestedNameSpecifier) |
| return !X.StartsNestedNameSpecifier; |
| |
| // Ordering depends on the kind of result. |
| switch (X.Kind) { |
| case Result::RK_Declaration: |
| // Order based on the declaration names. |
| return isEarlierDeclarationName(X.Declaration->getDeclName(), |
| Y.Declaration->getDeclName()); |
| |
| case Result::RK_Keyword: |
| return strcmp(X.Keyword, Y.Keyword) < 0; |
| } |
| |
| // Silence GCC warning. |
| return false; |
| } |
| }; |
| } |
| |
| static void HandleCodeCompleteResults(CodeCompleteConsumer *CodeCompleter, |
| CodeCompleteConsumer::Result *Results, |
| unsigned NumResults) { |
| // Sort the results by rank/kind/etc. |
| std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult()); |
| |
| if (CodeCompleter) |
| CodeCompleter->ProcessCodeCompleteResults(Results, NumResults); |
| } |
| |
| void Sema::CodeCompleteOrdinaryName(Scope *S) { |
| ResultBuilder Results(*this, &ResultBuilder::IsOrdinaryName); |
| CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, |
| Results); |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE, |
| SourceLocation OpLoc, |
| bool IsArrow) { |
| if (!BaseE || !CodeCompleter) |
| return; |
| |
| typedef CodeCompleteConsumer::Result Result; |
| |
| Expr *Base = static_cast<Expr *>(BaseE); |
| QualType BaseType = Base->getType(); |
| |
| if (IsArrow) { |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| else if (BaseType->isObjCObjectPointerType()) |
| /*Do nothing*/ ; |
| else |
| return; |
| } |
| |
| ResultBuilder Results(*this, &ResultBuilder::IsMember); |
| unsigned NextRank = 0; |
| |
| if (const RecordType *Record = BaseType->getAs<RecordType>()) { |
| NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank, |
| Record->getDecl(), Results); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (!Results.empty()) { |
| // The "template" keyword can follow "->" or "." in the grammar. |
| // However, we only want to suggest the template keyword if something |
| // is dependent. |
| bool IsDependent = BaseType->isDependentType(); |
| if (!IsDependent) { |
| for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent()) |
| if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) { |
| IsDependent = Ctx->isDependentContext(); |
| break; |
| } |
| } |
| |
| if (IsDependent) |
| Results.MaybeAddResult(Result("template", NextRank++)); |
| } |
| |
| // We could have the start of a nested-name-specifier. Add those |
| // results as well. |
| Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); |
| CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank, |
| CurContext, Results); |
| } |
| |
| // Hand off the results found for code completion. |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| |
| // We're done! |
| return; |
| } |
| } |
| |
| void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) { |
| if (!CodeCompleter) |
| return; |
| |
| typedef CodeCompleteConsumer::Result Result; |
| ResultBuilder::LookupFilter Filter = 0; |
| switch ((DeclSpec::TST)TagSpec) { |
| case DeclSpec::TST_enum: |
| Filter = &ResultBuilder::IsEnum; |
| break; |
| |
| case DeclSpec::TST_union: |
| Filter = &ResultBuilder::IsUnion; |
| break; |
| |
| case DeclSpec::TST_struct: |
| case DeclSpec::TST_class: |
| Filter = &ResultBuilder::IsClassOrStruct; |
| break; |
| |
| default: |
| assert(false && "Unknown type specifier kind in CodeCompleteTag"); |
| return; |
| } |
| |
| ResultBuilder Results(*this, Filter); |
| unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), |
| 0, CurContext, Results); |
| |
| if (getLangOptions().CPlusPlus) { |
| // We could have the start of a nested-name-specifier. Add those |
| // results as well. |
| Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); |
| CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank, |
| CurContext, Results); |
| } |
| |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteCase(Scope *S) { |
| if (getSwitchStack().empty() || !CodeCompleter) |
| return; |
| |
| SwitchStmt *Switch = getSwitchStack().back(); |
| if (!Switch->getCond()->getType()->isEnumeralType()) |
| return; |
| |
| // Code-complete the cases of a switch statement over an enumeration type |
| // by providing the list of |
| EnumDecl *Enum = Switch->getCond()->getType()->getAs<EnumType>()->getDecl(); |
| |
| // Determine which enumerators we have already seen in the switch statement. |
| // FIXME: Ideally, we would also be able to look *past* the code-completion |
| // token, in case we are code-completing in the middle of the switch and not |
| // at the end. However, we aren't able to do so at the moment. |
| llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen; |
| NestedNameSpecifier *Qualifier = 0; |
| for (SwitchCase *SC = Switch->getSwitchCaseList(); SC; |
| SC = SC->getNextSwitchCase()) { |
| CaseStmt *Case = dyn_cast<CaseStmt>(SC); |
| if (!Case) |
| continue; |
| |
| Expr *CaseVal = Case->getLHS()->IgnoreParenCasts(); |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal)) |
| if (EnumConstantDecl *Enumerator |
| = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { |
| // We look into the AST of the case statement to determine which |
| // enumerator was named. Alternatively, we could compute the value of |
| // the integral constant expression, then compare it against the |
| // values of each enumerator. However, value-based approach would not |
| // work as well with C++ templates where enumerators declared within a |
| // template are type- and value-dependent. |
| EnumeratorsSeen.insert(Enumerator); |
| |
| // If this is a qualified-id, keep track of the nested-name-specifier |
| // so that we can reproduce it as part of code completion, e.g., |
| // |
| // switch (TagD.getKind()) { |
| // case TagDecl::TK_enum: |
| // break; |
| // case XXX |
| // |
| // At the XXX, our completions are TagDecl::TK_union, |
| // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union, |
| // TK_struct, and TK_class. |
| Qualifier = DRE->getQualifier(); |
| } |
| } |
| |
| if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) { |
| // If there are no prior enumerators in C++, check whether we have to |
| // qualify the names of the enumerators that we suggest, because they |
| // may not be visible in this scope. |
| Qualifier = getRequiredQualification(Context, CurContext, |
| Enum->getDeclContext()); |
| |
| // FIXME: Scoped enums need to start with "EnumDecl" as the context! |
| } |
| |
| // Add any enumerators that have not yet been mentioned. |
| ResultBuilder Results(*this); |
| Results.EnterNewScope(); |
| for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(), |
| EEnd = Enum->enumerator_end(); |
| E != EEnd; ++E) { |
| if (EnumeratorsSeen.count(*E)) |
| continue; |
| |
| Results.MaybeAddResult(CodeCompleteConsumer::Result(*E, 0, Qualifier)); |
| } |
| Results.ExitScope(); |
| |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| namespace { |
| struct IsBetterOverloadCandidate { |
| Sema &S; |
| |
| public: |
| explicit IsBetterOverloadCandidate(Sema &S) : S(S) { } |
| |
| bool |
| operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const { |
| return S.isBetterOverloadCandidate(X, Y); |
| } |
| }; |
| } |
| |
| void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn, |
| ExprTy **ArgsIn, unsigned NumArgs) { |
| if (!CodeCompleter) |
| return; |
| |
| Expr *Fn = (Expr *)FnIn; |
| Expr **Args = (Expr **)ArgsIn; |
| |
| // Ignore type-dependent call expressions entirely. |
| if (Fn->isTypeDependent() || |
| Expr::hasAnyTypeDependentArguments(Args, NumArgs)) |
| return; |
| |
| NamedDecl *Function; |
| DeclarationName UnqualifiedName; |
| NestedNameSpecifier *Qualifier; |
| SourceRange QualifierRange; |
| bool ArgumentDependentLookup; |
| bool HasExplicitTemplateArgs; |
| const TemplateArgument *ExplicitTemplateArgs; |
| unsigned NumExplicitTemplateArgs; |
| |
| DeconstructCallFunction(Fn, |
| Function, UnqualifiedName, Qualifier, QualifierRange, |
| ArgumentDependentLookup, HasExplicitTemplateArgs, |
| ExplicitTemplateArgs, NumExplicitTemplateArgs); |
| |
| |
| // FIXME: What if we're calling something that isn't a function declaration? |
| // FIXME: What if we're calling a pseudo-destructor? |
| // FIXME: What if we're calling a member function? |
| |
| // Build an overload candidate set based on the functions we find. |
| OverloadCandidateSet CandidateSet; |
| AddOverloadedCallCandidates(Function, UnqualifiedName, |
| ArgumentDependentLookup, HasExplicitTemplateArgs, |
| ExplicitTemplateArgs, NumExplicitTemplateArgs, |
| Args, NumArgs, |
| CandidateSet, |
| /*PartialOverloading=*/true); |
| |
| // Sort the overload candidate set by placing the best overloads first. |
| std::stable_sort(CandidateSet.begin(), CandidateSet.end(), |
| IsBetterOverloadCandidate(*this)); |
| |
| // Add the remaining viable overload candidates as code-completion reslults. |
| typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate; |
| llvm::SmallVector<ResultCandidate, 8> Results; |
| |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), |
| CandEnd = CandidateSet.end(); |
| Cand != CandEnd; ++Cand) { |
| if (Cand->Viable) |
| Results.push_back(ResultCandidate(Cand->Function)); |
| } |
| CodeCompleter->ProcessOverloadCandidates(NumArgs, Results.data(), |
| Results.size()); |
| } |
| |
| void Sema::CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS, |
| bool EnteringContext) { |
| if (!SS.getScopeRep() || !CodeCompleter) |
| return; |
| |
| DeclContext *Ctx = computeDeclContext(SS, EnteringContext); |
| if (!Ctx) |
| return; |
| |
| ResultBuilder Results(*this); |
| unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Ctx, Results); |
| |
| // The "template" keyword can follow "::" in the grammar, but only |
| // put it into the grammar if the nested-name-specifier is dependent. |
| NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); |
| if (!Results.empty() && NNS->isDependent()) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("template", NextRank)); |
| |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteUsing(Scope *S) { |
| if (!CodeCompleter) |
| return; |
| |
| ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier); |
| Results.EnterNewScope(); |
| |
| // If we aren't in class scope, we could see the "namespace" keyword. |
| if (!S->isClassScope()) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("namespace", 0)); |
| |
| // After "using", we can see anything that would start a |
| // nested-name-specifier. |
| CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, |
| CurContext, Results); |
| Results.ExitScope(); |
| |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteUsingDirective(Scope *S) { |
| if (!CodeCompleter) |
| return; |
| |
| // After "using namespace", we expect to see a namespace name or namespace |
| // alias. |
| ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias); |
| Results.EnterNewScope(); |
| CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, |
| Results); |
| Results.ExitScope(); |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteNamespaceDecl(Scope *S) { |
| if (!CodeCompleter) |
| return; |
| |
| ResultBuilder Results(*this, &ResultBuilder::IsNamespace); |
| DeclContext *Ctx = (DeclContext *)S->getEntity(); |
| if (!S->getParent()) |
| Ctx = Context.getTranslationUnitDecl(); |
| |
| if (Ctx && Ctx->isFileContext()) { |
| // We only want to see those namespaces that have already been defined |
| // within this scope, because its likely that the user is creating an |
| // extended namespace declaration. Keep track of the most recent |
| // definition of each namespace. |
| std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest; |
| for (DeclContext::specific_decl_iterator<NamespaceDecl> |
| NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end()); |
| NS != NSEnd; ++NS) |
| OrigToLatest[NS->getOriginalNamespace()] = *NS; |
| |
| // Add the most recent definition (or extended definition) of each |
| // namespace to the list of results. |
| Results.EnterNewScope(); |
| for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator |
| NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end(); |
| NS != NSEnd; ++NS) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result(NS->second, 0), |
| CurContext); |
| Results.ExitScope(); |
| } |
| |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) { |
| if (!CodeCompleter) |
| return; |
| |
| // After "namespace", we expect to see a namespace or alias. |
| ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias); |
| CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, |
| Results); |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteOperatorName(Scope *S) { |
| if (!CodeCompleter) |
| return; |
| |
| typedef CodeCompleteConsumer::Result Result; |
| ResultBuilder Results(*this, &ResultBuilder::IsType); |
| Results.EnterNewScope(); |
| |
| // Add the names of overloadable operators. |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| if (std::strcmp(Spelling, "?")) \ |
| Results.MaybeAddResult(Result(Spelling, 0)); |
| #include "clang/Basic/OperatorKinds.def" |
| |
| // Add any type names visible from the current scope |
| unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), |
| 0, CurContext, Results); |
| |
| // Add any type specifiers |
| AddTypeSpecifierResults(getLangOptions(), 0, Results); |
| |
| // Add any nested-name-specifiers |
| Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); |
| CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank + 1, |
| CurContext, Results); |
| Results.ExitScope(); |
| |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |
| |
| void Sema::CodeCompleteObjCProperty(Scope *S, ObjCDeclSpec &ODS) { |
| if (!CodeCompleter) |
| return; |
| unsigned Attributes = ODS.getPropertyAttributes(); |
| |
| typedef CodeCompleteConsumer::Result Result; |
| ResultBuilder Results(*this); |
| Results.EnterNewScope(); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_readonly)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("readonly", 0)); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_assign)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("assign", 0)); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_readwrite)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("readwrite", 0)); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_retain)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("retain", 0)); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_copy)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("copy", 0)); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_nonatomic)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("nonatomic", 0)); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_setter)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("setter", 0)); |
| if (!(Attributes & ObjCDeclSpec::DQ_PR_getter)) |
| Results.MaybeAddResult(CodeCompleteConsumer::Result("getter", 0)); |
| Results.ExitScope(); |
| HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); |
| } |