blob: b0b50bab962aab8632cc73702624c6db11b264f6 [file] [log] [blame]
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Builtins.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/AST/ExprCXX.h"
// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/DenseSet.h"
using namespace clang;
Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
isa<ObjCInterfaceDecl>(IIDecl) ||
isa<TagDecl>(IIDecl)))
return IIDecl;
return 0;
}
void Sema::PushDeclContext(DeclContext *DC) {
assert( ( (isa<ObjCMethodDecl>(DC) && isa<TranslationUnitDecl>(CurContext))
|| DC->getParent() == CurContext ) &&
"The next DeclContext should be directly contained in the current one.");
CurContext = DC;
}
void Sema::PopDeclContext() {
assert(CurContext && "DeclContext imbalance!");
// If CurContext is a ObjC method, getParent() will return NULL.
CurContext = isa<ObjCMethodDecl>(CurContext)
? Context.getTranslationUnitDecl()
: CurContext->getParent();
}
/// Add this decl to the scope shadowed decl chains.
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
S->AddDecl(D);
// C++ [basic.scope]p4:
// -- exactly one declaration shall declare a class name or
// enumeration name that is not a typedef name and the other
// declarations shall all refer to the same object or
// enumerator, or all refer to functions and function templates;
// in this case the class name or enumeration name is hidden.
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
// We are pushing the name of a tag (enum or class).
IdentifierResolver::ctx_iterator
CIT = IdResolver.ctx_begin(TD->getIdentifier(), TD->getDeclContext());
if (CIT != IdResolver.ctx_end(TD->getIdentifier()) &&
IdResolver.isDeclInScope(*CIT, TD->getDeclContext(), S)) {
// There is already a declaration with the same name in the same
// scope. It must be found before we find the new declaration,
// so swap the order on the shadowed declaration chain.
IdResolver.AddShadowedDecl(TD, *CIT);
return;
}
}
IdResolver.AddDecl(D);
}
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
if (S->decl_empty()) return;
assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
// We only want to remove the decls from the identifier decl chains for local
// scopes, when inside a function/method.
if (S->getFnParent() == 0)
return;
for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
I != E; ++I) {
Decl *TmpD = static_cast<Decl*>(*I);
assert(TmpD && "This decl didn't get pushed??");
ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
assert(D && "This decl isn't a ScopedDecl?");
IdentifierInfo *II = D->getIdentifier();
if (!II) continue;
// Unlink this decl from the identifier.
IdResolver.RemoveDecl(D);
// This will have to be revisited for C++: there we want to nest stuff in
// namespace decls etc. Even for C, we might want a top-level translation
// unit decl or something.
if (!CurFunctionDecl)
continue;
// Chain this decl to the containing function, it now owns the memory for
// the decl.
D->setNext(CurFunctionDecl->getDeclChain());
CurFunctionDecl->setDeclChain(D);
}
}
/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
/// return 0 if one not found.
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
// The third "scope" argument is 0 since we aren't enabling lazy built-in
// creation from this context.
Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
}
/// LookupDecl - Look up the inner-most declaration in the specified
/// namespace.
Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
Scope *S, bool enableLazyBuiltinCreation) {
if (II == 0) return 0;
unsigned NS = NSI;
if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
NS |= Decl::IDNS_Tag;
// Scan up the scope chain looking for a decl that matches this identifier
// that is in the appropriate namespace. This search should not take long, as
// shadowing of names is uncommon, and deep shadowing is extremely uncommon.
for (IdentifierResolver::iterator
I = IdResolver.begin(II, CurContext), E = IdResolver.end(II); I != E; ++I)
if ((*I)->getIdentifierNamespace() & NS)
return *I;
// If we didn't find a use of this identifier, and if the identifier
// corresponds to a compiler builtin, create the decl object for the builtin
// now, injecting it into translation unit scope, and return it.
if (NS & Decl::IDNS_Ordinary) {
if (enableLazyBuiltinCreation) {
// If this is a builtin on this (or all) targets, create the decl.
if (unsigned BuiltinID = II->getBuiltinID())
return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
}
if (getLangOptions().ObjC1) {
// @interface and @compatibility_alias introduce typedef-like names.
// Unlike typedef's, they can only be introduced at file-scope (and are
// therefore not scoped decls). They can, however, be shadowed by
// other names in IDNS_Ordinary.
ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
if (IDI != ObjCInterfaceDecls.end())
return IDI->second;
ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
if (I != ObjCAliasDecls.end())
return I->second->getClassInterface();
}
}
return 0;
}
void Sema::InitBuiltinVaListType() {
if (!Context.getBuiltinVaListType().isNull())
return;
IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
}
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
/// lazily create a decl for it.
ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
Scope *S) {
Builtin::ID BID = (Builtin::ID)bid;
if (BID == Builtin::BI__builtin_va_start ||
BID == Builtin::BI__builtin_va_copy ||
BID == Builtin::BI__builtin_va_end)
InitBuiltinVaListType();
QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
FunctionDecl *New = FunctionDecl::Create(Context,
Context.getTranslationUnitDecl(),
SourceLocation(), II, R,
FunctionDecl::Extern, false, 0);
// Create Decl objects for each parameter, adding them to the
// FunctionDecl.
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
llvm::SmallVector<ParmVarDecl*, 16> Params;
for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
FT->getArgType(i), VarDecl::None, 0,
0));
New->setParams(&Params[0], Params.size());
}
// TUScope is the translation-unit scope to insert this function into.
PushOnScopeChains(New, TUScope);
return New;
}
/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
/// situation, merging decls or emitting diagnostics as appropriate.
///
TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
// Verify the old decl was also a typedef.
TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
if (!Old) {
Diag(New->getLocation(), diag::err_redefinition_different_kind,
New->getName());
Diag(OldD->getLocation(), diag::err_previous_definition);
return New;
}
// Allow multiple definitions for ObjC built-in typedefs.
// FIXME: Verify the underlying types are equivalent!
if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
return Old;
// Redeclaration of a type is a constraint violation (6.7.2.3p1).
// Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
// *either* declaration is in a system header. The code below implements
// this adhoc compatibility rule. FIXME: The following code will not
// work properly when compiling ".i" files (containing preprocessed output).
SourceManager &SrcMgr = Context.getSourceManager();
const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
// Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
NewDirType != DirectoryLookup::NormalHeaderDir) ||
getLangOptions().Microsoft)
return New;
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
// TODO: This is totally simplistic. It should handle merging functions
// together etc, merging extern int X; int X; ...
Diag(New->getLocation(), diag::err_redefinition, New->getName());
Diag(Old->getLocation(), diag::err_previous_definition);
return New;
}
/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
static bool DeclHasAttr(const Decl *decl, const Attr *target) {
for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
if (attr->getKind() == target->getKind())
return true;
return false;
}
/// MergeAttributes - append attributes from the Old decl to the New one.
static void MergeAttributes(Decl *New, Decl *Old) {
Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
// FIXME: fix this code to cleanup the Old attrs correctly
while (attr) {
tmp = attr;
attr = attr->getNext();
if (!DeclHasAttr(New, tmp)) {
New->addAttr(tmp);
} else {
tmp->setNext(0);
delete(tmp);
}
}
}
/// MergeFunctionDecl - We just parsed a function 'New' from
/// declarator D which has the same name and scope as a previous
/// declaration 'Old'. Figure out how to resolve this situation,
/// merging decls or emitting diagnostics as appropriate.
/// Redeclaration will be set true if thisNew is a redeclaration OldD.
FunctionDecl *
Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
Redeclaration = false;
// Verify the old decl was also a function.
FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
if (!Old) {
Diag(New->getLocation(), diag::err_redefinition_different_kind,
New->getName());
Diag(OldD->getLocation(), diag::err_previous_definition);
return New;
}
QualType OldQType = Context.getCanonicalType(Old->getType());
QualType NewQType = Context.getCanonicalType(New->getType());
// C++ [dcl.fct]p3:
// All declarations for a function shall agree exactly in both the
// return type and the parameter-type-list.
if (getLangOptions().CPlusPlus && OldQType == NewQType) {
MergeAttributes(New, Old);
Redeclaration = true;
return MergeCXXFunctionDecl(New, Old);
}
// C: Function types need to be compatible, not identical. This handles
// duplicate function decls like "void f(int); void f(enum X);" properly.
if (!getLangOptions().CPlusPlus &&
Context.functionTypesAreCompatible(OldQType, NewQType)) {
MergeAttributes(New, Old);
Redeclaration = true;
return New;
}
// A function that has already been declared has been redeclared or defined
// with a different type- show appropriate diagnostic
diag::kind PrevDiag;
if (Old->isThisDeclarationADefinition())
PrevDiag = diag::err_previous_definition;
else if (Old->isImplicit())
PrevDiag = diag::err_previous_implicit_declaration;
else
PrevDiag = diag::err_previous_declaration;
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
// TODO: This is totally simplistic. It should handle merging functions
// together etc, merging extern int X; int X; ...
Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
Diag(Old->getLocation(), PrevDiag);
return New;
}
/// equivalentArrayTypes - Used to determine whether two array types are
/// equivalent.
/// We need to check this explicitly as an incomplete array definition is
/// considered a VariableArrayType, so will not match a complete array
/// definition that would be otherwise equivalent.
static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
const ArrayType *NewAT = NewQType->getAsArrayType();
const ArrayType *OldAT = OldQType->getAsArrayType();
if (!NewAT || !OldAT)
return false;
// If either (or both) array types in incomplete we need to strip off the
// outer VariableArrayType. Once the outer VAT is removed the remaining
// types must be identical if the array types are to be considered
// equivalent.
// eg. int[][1] and int[1][1] become
// VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
// removing the outermost VAT gives
// CAT(1, int) and CAT(1, int)
// which are equal, therefore the array types are equivalent.
if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
return false;
NewQType = NewAT->getElementType().getCanonicalType();
OldQType = OldAT->getElementType().getCanonicalType();
}
return NewQType == OldQType;
}
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
/// situation, merging decls or emitting diagnostics as appropriate.
///
/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
///
VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
// Verify the old decl was also a variable.
VarDecl *Old = dyn_cast<VarDecl>(OldD);
if (!Old) {
Diag(New->getLocation(), diag::err_redefinition_different_kind,
New->getName());
Diag(OldD->getLocation(), diag::err_previous_definition);
return New;
}
MergeAttributes(New, Old);
// Verify the types match.
QualType OldCType = Context.getCanonicalType(Old->getType());
QualType NewCType = Context.getCanonicalType(New->getType());
if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
Diag(New->getLocation(), diag::err_redefinition, New->getName());
Diag(Old->getLocation(), diag::err_previous_definition);
return New;
}
// C99 6.2.2p4: Check if we have a static decl followed by a non-static.
if (New->getStorageClass() == VarDecl::Static &&
(Old->getStorageClass() == VarDecl::None ||
Old->getStorageClass() == VarDecl::Extern)) {
Diag(New->getLocation(), diag::err_static_non_static, New->getName());
Diag(Old->getLocation(), diag::err_previous_definition);
return New;
}
// C99 6.2.2p4: Check if we have a non-static decl followed by a static.
if (New->getStorageClass() != VarDecl::Static &&
Old->getStorageClass() == VarDecl::Static) {
Diag(New->getLocation(), diag::err_non_static_static, New->getName());
Diag(Old->getLocation(), diag::err_previous_definition);
return New;
}
// We've verified the types match, now handle "tentative" definitions.
if (Old->isFileVarDecl() && New->isFileVarDecl()) {
// Handle C "tentative" external object definitions (C99 6.9.2).
bool OldIsTentative = false;
bool NewIsTentative = false;
if (!Old->getInit() &&
(Old->getStorageClass() == VarDecl::None ||
Old->getStorageClass() == VarDecl::Static))
OldIsTentative = true;
// FIXME: this check doesn't work (since the initializer hasn't been
// attached yet). This check should be moved to FinalizeDeclaratorGroup.
// Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
// thrown out the old decl.
if (!New->getInit() &&
(New->getStorageClass() == VarDecl::None ||
New->getStorageClass() == VarDecl::Static))
; // change to NewIsTentative = true; once the code is moved.
if (NewIsTentative || OldIsTentative)
return New;
}
// Handle __private_extern__ just like extern.
if (Old->getStorageClass() != VarDecl::Extern &&
Old->getStorageClass() != VarDecl::PrivateExtern &&
New->getStorageClass() != VarDecl::Extern &&
New->getStorageClass() != VarDecl::PrivateExtern) {
Diag(New->getLocation(), diag::err_redefinition, New->getName());
Diag(Old->getLocation(), diag::err_previous_definition);
}
return New;
}
/// CheckParmsForFunctionDef - Check that the parameters of the given
/// function are appropriate for the definition of a function. This
/// takes care of any checks that cannot be performed on the
/// declaration itself, e.g., that the types of each of the function
/// parameters are complete.
bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
bool HasInvalidParm = false;
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
// C99 6.7.5.3p4: the parameters in a parameter type list in a
// function declarator that is part of a function definition of
// that function shall not have incomplete type.
if (Param->getType()->isIncompleteType() &&
!Param->isInvalidDecl()) {
Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
Param->getType().getAsString());
Param->setInvalidDecl();
HasInvalidParm = true;
}
}
return HasInvalidParm;
}
/// CreateImplicitParameter - Creates an implicit function parameter
/// in the scope S and with the given type. This routine is used, for
/// example, to create the implicit "self" parameter in an Objective-C
/// method.
ParmVarDecl *
Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
SourceLocation IdLoc, QualType Type) {
ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
VarDecl::None, 0, 0);
if (Id)
PushOnScopeChains(New, S);
return New;
}
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
// TODO: emit error on 'int;' or 'const enum foo;'.
// TODO: emit error on 'typedef int;'
// if (!DS.isMissingDeclaratorOk()) Diag(...);
return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
}
bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
// Get the type before calling CheckSingleAssignmentConstraints(), since
// it can promote the expression.
QualType InitType = Init->getType();
AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
InitType, Init, "initializing");
}
bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
QualType ElementType) {
Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
if (CheckSingleInitializer(expr, ElementType))
return true; // types weren't compatible.
if (savExpr != expr) // The type was promoted, update initializer list.
IList->setInit(slot, expr);
return false;
}
bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
// C99 6.7.8p14. We have an array of character type with unknown size
// being initialized to a string literal.
llvm::APSInt ConstVal(32);
ConstVal = strLiteral->getByteLength() + 1;
// Return a new array type (C99 6.7.8p22).
DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
ArrayType::Normal, 0);
} else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
// C99 6.7.8p14. We have an array of character type with known size.
if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
Diag(strLiteral->getSourceRange().getBegin(),
diag::warn_initializer_string_for_char_array_too_long,
strLiteral->getSourceRange());
} else {
assert(0 && "HandleStringLiteralInit(): Invalid array type");
}
// Set type from "char *" to "constant array of char".
strLiteral->setType(DeclT);
// For now, we always return false (meaning success).
return false;
}
StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
const ArrayType *AT = DeclType->getAsArrayType();
if (AT && AT->getElementType()->isCharType()) {
return dyn_cast<StringLiteral>(Init);
}
return 0;
}
// CheckInitializerListTypes - Checks the types of elements of an initializer
// list. This function is recursive: it calls itself to initialize subelements
// of aggregate types. Note that the topLevel parameter essentially refers to
// whether this expression "owns" the initializer list passed in, or if this
// initialization is taking elements out of a parent initializer. Each
// call to this function adds zero or more to startIndex, reports any errors,
// and returns true if it found any inconsistent types.
bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
bool topLevel, unsigned& startIndex) {
bool hadError = false;
if (DeclType->isScalarType()) {
// The simplest case: initializing a single scalar
if (topLevel) {
Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
IList->getSourceRange());
}
if (startIndex < IList->getNumInits()) {
Expr* expr = IList->getInit(startIndex);
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
// FIXME: Should an error be reported here instead?
unsigned newIndex = 0;
CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
} else {
hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
}
++startIndex;
}
// FIXME: Should an error be reported for empty initializer list + scalar?
} else if (DeclType->isVectorType()) {
if (startIndex < IList->getNumInits()) {
const VectorType *VT = DeclType->getAsVectorType();
int maxElements = VT->getNumElements();
QualType elementType = VT->getElementType();
for (int i = 0; i < maxElements; ++i) {
// Don't attempt to go past the end of the init list
if (startIndex >= IList->getNumInits())
break;
Expr* expr = IList->getInit(startIndex);
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
unsigned newIndex = 0;
hadError |= CheckInitializerListTypes(SubInitList, elementType,
true, newIndex);
++startIndex;
} else {
hadError |= CheckInitializerListTypes(IList, elementType,
false, startIndex);
}
}
}
} else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
if (DeclType->isStructureType() || DeclType->isUnionType()) {
if (startIndex < IList->getNumInits() && !topLevel &&
Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
DeclType)) {
// We found a compatible struct; per the standard, this initializes the
// struct. (The C standard technically says that this only applies for
// initializers for declarations with automatic scope; however, this
// construct is unambiguous anyway because a struct cannot contain
// a type compatible with itself. We'll output an error when we check
// if the initializer is constant.)
// FIXME: Is a call to CheckSingleInitializer required here?
++startIndex;
} else {
RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
// If the record is invalid, some of it's members are invalid. To avoid
// confusion, we forgo checking the intializer for the entire record.
if (structDecl->isInvalidDecl())
return true;
// If structDecl is a forward declaration, this loop won't do anything;
// That's okay, because an error should get printed out elsewhere. It
// might be worthwhile to skip over the rest of the initializer, though.
int numMembers = structDecl->getNumMembers() -
structDecl->hasFlexibleArrayMember();
for (int i = 0; i < numMembers; i++) {
// Don't attempt to go past the end of the init list
if (startIndex >= IList->getNumInits())
break;
FieldDecl * curField = structDecl->getMember(i);
if (!curField->getIdentifier()) {
// Don't initialize unnamed fields, e.g. "int : 20;"
continue;
}
QualType fieldType = curField->getType();
Expr* expr = IList->getInit(startIndex);
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
unsigned newStart = 0;
hadError |= CheckInitializerListTypes(SubInitList, fieldType,
true, newStart);
++startIndex;
} else {
hadError |= CheckInitializerListTypes(IList, fieldType,
false, startIndex);
}
if (DeclType->isUnionType())
break;
}
// FIXME: Implement flexible array initialization GCC extension (it's a
// really messy extension to implement, unfortunately...the necessary
// information isn't actually even here!)
}
} else if (DeclType->isArrayType()) {
// Check for the special-case of initializing an array with a string.
if (startIndex < IList->getNumInits()) {
if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
DeclType)) {
CheckStringLiteralInit(lit, DeclType);
++startIndex;
if (topLevel && startIndex < IList->getNumInits()) {
// We have leftover initializers; warn
Diag(IList->getInit(startIndex)->getLocStart(),
diag::err_excess_initializers_in_char_array_initializer,
IList->getInit(startIndex)->getSourceRange());
}
return false;
}
}
int maxElements;
if (DeclType->isIncompleteArrayType()) {
// FIXME: use a proper constant
maxElements = 0x7FFFFFFF;
} else if (const VariableArrayType *VAT =
DeclType->getAsVariableArrayType()) {
// Check for VLAs; in standard C it would be possible to check this
// earlier, but I don't know where clang accepts VLAs (gcc accepts
// them in all sorts of strange places).
Diag(VAT->getSizeExpr()->getLocStart(),
diag::err_variable_object_no_init,
VAT->getSizeExpr()->getSourceRange());
hadError = true;
maxElements = 0x7FFFFFFF;
} else {
const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
maxElements = static_cast<int>(CAT->getSize().getZExtValue());
}
QualType elementType = DeclType->getAsArrayType()->getElementType();
int numElements = 0;
for (int i = 0; i < maxElements; ++i, ++numElements) {
// Don't attempt to go past the end of the init list
if (startIndex >= IList->getNumInits())
break;
Expr* expr = IList->getInit(startIndex);
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
unsigned newIndex = 0;
hadError |= CheckInitializerListTypes(SubInitList, elementType,
true, newIndex);
++startIndex;
} else {
hadError |= CheckInitializerListTypes(IList, elementType,
false, startIndex);
}
}
if (DeclType->isIncompleteArrayType()) {
// If this is an incomplete array type, the actual type needs to
// be calculated here
if (numElements == 0) {
// Sizing an array implicitly to zero is not allowed
// (It could in theory be allowed, but it doesn't really matter.)
Diag(IList->getLocStart(),
diag::err_at_least_one_initializer_needed_to_size_array);
hadError = true;
} else {
llvm::APSInt ConstVal(32);
ConstVal = numElements;
DeclType = Context.getConstantArrayType(elementType, ConstVal,
ArrayType::Normal, 0);
}
}
} else {
assert(0 && "Aggregate that isn't a function or array?!");
}
} else {
// In C, all types are either scalars or aggregates, but
// additional handling is needed here for C++ (and possibly others?).
assert(0 && "Unsupported initializer type");
}
// If this init list is a base list, we set the type; an initializer doesn't
// fundamentally have a type, but this makes the ASTs a bit easier to read
if (topLevel)
IList->setType(DeclType);
if (topLevel && startIndex < IList->getNumInits()) {
// We have leftover initializers; warn
Diag(IList->getInit(startIndex)->getLocStart(),
diag::warn_excess_initializers,
IList->getInit(startIndex)->getSourceRange());
}
return hadError;
}
bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
// C99 6.7.8p3: The type of the entity to be initialized shall be an array
// of unknown size ("[]") or an object type that is not a variable array type.
if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
return Diag(VAT->getSizeExpr()->getLocStart(),
diag::err_variable_object_no_init,
VAT->getSizeExpr()->getSourceRange());
InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
if (!InitList) {
// FIXME: Handle wide strings
if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
return CheckStringLiteralInit(strLiteral, DeclType);
if (DeclType->isArrayType())
return Diag(Init->getLocStart(),
diag::err_array_init_list_required,
Init->getSourceRange());
return CheckSingleInitializer(Init, DeclType);
}
#if 0
unsigned newIndex = 0;
return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
#else
InitListChecker CheckInitList(this, InitList, DeclType);
return CheckInitList.HadError();
#endif
}
Sema::DeclTy *
Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
IdentifierInfo *II = D.getIdentifier();
// All of these full declarators require an identifier. If it doesn't have
// one, the ParsedFreeStandingDeclSpec action should be used.
if (II == 0) {
Diag(D.getDeclSpec().getSourceRange().getBegin(),
diag::err_declarator_need_ident,
D.getDeclSpec().getSourceRange(), D.getSourceRange());
return 0;
}
// The scope passed in may not be a decl scope. Zip up the scope tree until
// we find one that is.
while ((S->getFlags() & Scope::DeclScope) == 0)
S = S->getParent();
// See if this is a redefinition of a variable in the same scope.
Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
ScopedDecl *New;
bool InvalidDecl = false;
// In C++, the previous declaration we find might be a tag type
// (class or enum). In this case, the new declaration will hide the
// tag type.
if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
PrevDecl = 0;
QualType R = GetTypeForDeclarator(D, S);
assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
// Check that there are no default arguments (C++ only).
if (getLangOptions().CPlusPlus)
CheckExtraCXXDefaultArguments(D);
TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
if (!NewTD) return 0;
// Handle attributes prior to checking for duplicates in MergeVarDecl
HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
D.getAttributes());
// Merge the decl with the existing one if appropriate. If the decl is
// in an outer scope, it isn't the same thing.
if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
if (NewTD == 0) return 0;
}
New = NewTD;
if (S->getFnParent() == 0) {
// C99 6.7.7p2: If a typedef name specifies a variably modified type
// then it shall have block scope.
if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
// FIXME: Diagnostic needs to be fixed.
Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
InvalidDecl = true;
}
}
} else if (R.getTypePtr()->isFunctionType()) {
FunctionDecl::StorageClass SC = FunctionDecl::None;
switch (D.getDeclSpec().getStorageClassSpec()) {
default: assert(0 && "Unknown storage class!");
case DeclSpec::SCS_auto:
case DeclSpec::SCS_register:
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
R.getAsString());
InvalidDecl = true;
break;
case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
case DeclSpec::SCS_static: SC = FunctionDecl::Static; break;
case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
}
bool isInline = D.getDeclSpec().isInlineSpecified();
FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
D.getIdentifierLoc(),
II, R, SC, isInline,
LastDeclarator);
// Handle attributes.
HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
D.getAttributes());
// Copy the parameter declarations from the declarator D to
// the function declaration NewFD, if they are available.
if (D.getNumTypeObjects() > 0 &&
D.getTypeObject(0).Fun.hasPrototype) {
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
// Create Decl objects for each parameter, adding them to the
// FunctionDecl.
llvm::SmallVector<ParmVarDecl*, 16> Params;
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
// function that takes no arguments, not a function that takes a
// single void argument.
if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
FTI.ArgInfo[0].Param &&
!((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
// empty arg list, don't push any params.
ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
// In C++, the empty parameter-type-list must be spelled "void"; a
// typedef of void is not permitted.
if (getLangOptions().CPlusPlus &&
Param->getType() != Context.VoidTy) {
Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
}
} else {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
}
NewFD->setParams(&Params[0], Params.size());
}
// Merge the decl with the existing one if appropriate. Since C functions
// are in a flat namespace, make sure we consider decls in outer scopes.
if (PrevDecl &&
(!getLangOptions().CPlusPlus ||
IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
bool Redeclaration = false;
NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
if (NewFD == 0) return 0;
if (Redeclaration) {
// Note that the new declaration is a redeclaration of the
// older declaration. Then return the older declaration: the
// new one is only kept within the set of previous
// declarations for this function.
FunctionDecl *OldFD = (FunctionDecl *)PrevDecl;
OldFD->AddRedeclaration(NewFD);
return OldFD;
}
}
New = NewFD;
// In C++, check default arguments now that we have merged decls.
if (getLangOptions().CPlusPlus)
CheckCXXDefaultArguments(NewFD);
} else {
// Check that there are no default arguments (C++ only).
if (getLangOptions().CPlusPlus)
CheckExtraCXXDefaultArguments(D);
if (R.getTypePtr()->isObjCInterfaceType()) {
Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
D.getIdentifier()->getName());
InvalidDecl = true;
}
VarDecl *NewVD;
VarDecl::StorageClass SC;
switch (D.getDeclSpec().getStorageClassSpec()) {
default: assert(0 && "Unknown storage class!");
case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
case DeclSpec::SCS_static: SC = VarDecl::Static; break;
case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
case DeclSpec::SCS_register: SC = VarDecl::Register; break;
case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
}
if (S->getFnParent() == 0) {
// C99 6.9p2: The storage-class specifiers auto and register shall not
// appear in the declaration specifiers in an external declaration.
if (SC == VarDecl::Auto || SC == VarDecl::Register) {
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
R.getAsString());
InvalidDecl = true;
}
NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
II, R, SC, LastDeclarator);
} else {
NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
II, R, SC, LastDeclarator);
}
// Handle attributes prior to checking for duplicates in MergeVarDecl
HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
D.getAttributes());
// Emit an error if an address space was applied to decl with local storage.
// This includes arrays of objects with address space qualifiers, but not
// automatic variables that point to other address spaces.
// ISO/IEC TR 18037 S5.1.2
if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
InvalidDecl = true;
}
// Merge the decl with the existing one if appropriate. If the decl is
// in an outer scope, it isn't the same thing.
if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
NewVD = MergeVarDecl(NewVD, PrevDecl);
if (NewVD == 0) return 0;
}
New = NewVD;
}
// If this has an identifier, add it to the scope stack.
if (II)
PushOnScopeChains(New, S);
// If any semantic error occurred, mark the decl as invalid.
if (D.getInvalidType() || InvalidDecl)
New->setInvalidDecl();
return New;
}
bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
switch (Init->getStmtClass()) {
default:
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
case Expr::ParenExprClass: {
const ParenExpr* PE = cast<ParenExpr>(Init);
return CheckAddressConstantExpressionLValue(PE->getSubExpr());
}
case Expr::CompoundLiteralExprClass:
return cast<CompoundLiteralExpr>(Init)->isFileScope();
case Expr::DeclRefExprClass: {
const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasGlobalStorage())
return false;
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
if (isa<FunctionDecl>(D))
return false;
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::MemberExprClass: {
const MemberExpr *M = cast<MemberExpr>(Init);
if (M->isArrow())
return CheckAddressConstantExpression(M->getBase());
return CheckAddressConstantExpressionLValue(M->getBase());
}
case Expr::ArraySubscriptExprClass: {
// FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
return CheckAddressConstantExpression(ASE->getBase()) ||
CheckArithmeticConstantExpression(ASE->getIdx());
}
case Expr::StringLiteralClass:
case Expr::PreDefinedExprClass:
return false;
case Expr::UnaryOperatorClass: {
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
// C99 6.6p9
if (Exp->getOpcode() == UnaryOperator::Deref)
return CheckAddressConstantExpression(Exp->getSubExpr());
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
}
}
bool Sema::CheckAddressConstantExpression(const Expr* Init) {
switch (Init->getStmtClass()) {
default:
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
case Expr::ParenExprClass: {
const ParenExpr* PE = cast<ParenExpr>(Init);
return CheckAddressConstantExpression(PE->getSubExpr());
}
case Expr::StringLiteralClass:
case Expr::ObjCStringLiteralClass:
return false;
case Expr::CallExprClass: {
const CallExpr *CE = cast<CallExpr>(Init);
if (CE->isBuiltinConstantExpr())
return false;
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::UnaryOperatorClass: {
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
// C99 6.6p9
if (Exp->getOpcode() == UnaryOperator::AddrOf)
return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
if (Exp->getOpcode() == UnaryOperator::Extension)
return CheckAddressConstantExpression(Exp->getSubExpr());
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::BinaryOperatorClass: {
// FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
const BinaryOperator *Exp = cast<BinaryOperator>(Init);
Expr *PExp = Exp->getLHS();
Expr *IExp = Exp->getRHS();
if (IExp->getType()->isPointerType())
std::swap(PExp, IExp);
// FIXME: Should we pedwarn if IExp isn't an integer constant expression?
return CheckAddressConstantExpression(PExp) ||
CheckArithmeticConstantExpression(IExp);
}
case Expr::ImplicitCastExprClass: {
const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
// Check for implicit promotion
if (SubExpr->getType()->isFunctionType() ||
SubExpr->getType()->isArrayType())
return CheckAddressConstantExpressionLValue(SubExpr);
// Check for pointer->pointer cast
if (SubExpr->getType()->isPointerType())
return CheckAddressConstantExpression(SubExpr);
if (SubExpr->getType()->isArithmeticType())
return CheckArithmeticConstantExpression(SubExpr);
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::CastExprClass: {
const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
// Check for pointer->pointer cast
if (SubExpr->getType()->isPointerType())
return CheckAddressConstantExpression(SubExpr);
// FIXME: Should we pedwarn for (int*)(0+0)?
if (SubExpr->getType()->isArithmeticType())
return CheckArithmeticConstantExpression(SubExpr);
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::ConditionalOperatorClass: {
// FIXME: Should we pedwarn here?
const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
if (!Exp->getCond()->getType()->isArithmeticType()) {
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
if (CheckArithmeticConstantExpression(Exp->getCond()))
return true;
if (Exp->getLHS() &&
CheckAddressConstantExpression(Exp->getLHS()))
return true;
return CheckAddressConstantExpression(Exp->getRHS());
}
case Expr::AddrLabelExprClass:
return false;
}
}
bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
switch (Init->getStmtClass()) {
default:
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
case Expr::ParenExprClass: {
const ParenExpr* PE = cast<ParenExpr>(Init);
return CheckArithmeticConstantExpression(PE->getSubExpr());
}
case Expr::FloatingLiteralClass:
case Expr::IntegerLiteralClass:
case Expr::CharacterLiteralClass:
case Expr::ImaginaryLiteralClass:
case Expr::TypesCompatibleExprClass:
case Expr::CXXBoolLiteralExprClass:
return false;
case Expr::CallExprClass: {
const CallExpr *CE = cast<CallExpr>(Init);
if (CE->isBuiltinConstantExpr())
return false;
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::DeclRefExprClass: {
const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
if (isa<EnumConstantDecl>(D))
return false;
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::CompoundLiteralExprClass:
// Allow "(vector type){2,4}"; normal C constraints don't allow this,
// but vectors are allowed to be magic.
if (Init->getType()->isVectorType())
return false;
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
case Expr::UnaryOperatorClass: {
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
switch (Exp->getOpcode()) {
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
// See C99 6.6p3.
default:
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
case UnaryOperator::SizeOf:
case UnaryOperator::AlignOf:
case UnaryOperator::OffsetOf:
// sizeof(E) is a constantexpr if and only if E is not evaluted.
// See C99 6.5.3.4p2 and 6.6p3.
if (Exp->getSubExpr()->getType()->isConstantSizeType())
return false;
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
case UnaryOperator::Extension:
case UnaryOperator::LNot:
case UnaryOperator::Plus:
case UnaryOperator::Minus:
case UnaryOperator::Not:
return CheckArithmeticConstantExpression(Exp->getSubExpr());
}
}
case Expr::SizeOfAlignOfTypeExprClass: {
const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
// Special check for void types, which are allowed as an extension
if (Exp->getArgumentType()->isVoidType())
return false;
// alignof always evaluates to a constant.
// FIXME: is sizeof(int[3.0]) a constant expression?
if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
return false;
}
case Expr::BinaryOperatorClass: {
const BinaryOperator *Exp = cast<BinaryOperator>(Init);
if (Exp->getLHS()->getType()->isArithmeticType() &&
Exp->getRHS()->getType()->isArithmeticType()) {
return CheckArithmeticConstantExpression(Exp->getLHS()) ||
CheckArithmeticConstantExpression(Exp->getRHS());
}
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::ImplicitCastExprClass:
case Expr::CastExprClass: {
const Expr *SubExpr;
if (const CastExpr *C = dyn_cast<CastExpr>(Init)) {
SubExpr = C->getSubExpr();
} else {
SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
}
if (SubExpr->getType()->isArithmeticType())
return CheckArithmeticConstantExpression(SubExpr);
Diag(Init->getExprLoc(),
diag::err_init_element_not_constant, Init->getSourceRange());
return true;
}
case Expr::ConditionalOperatorClass: {
const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
if (CheckArithmeticConstantExpression(Exp->getCond()))
return true;
if (Exp->getLHS() &&
CheckArithmeticConstantExpression(Exp->getLHS()))
return true;
return CheckArithmeticConstantExpression(Exp->getRHS());
}
}
}
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
// Look through CXXDefaultArgExprs; they have no meaning in this context.
if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
return CheckForConstantInitializer(DAE->getExpr(), DclT);
if (Init->getType()->isReferenceType()) {
// FIXME: Work out how the heck reference types work
return false;
#if 0
// A reference is constant if the address of the expression
// is constant
// We look through initlists here to simplify
// CheckAddressConstantExpressionLValue.
if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
assert(Exp->getNumInits() > 0 &&
"Refernce initializer cannot be empty");
Init = Exp->getInit(0);
}
return CheckAddressConstantExpressionLValue(Init);
#endif
}
if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
unsigned numInits = Exp->getNumInits();
for (unsigned i = 0; i < numInits; i++) {
// FIXME: Need to get the type of the declaration for C++,
// because it could be a reference?
if (CheckForConstantInitializer(Exp->getInit(i),
Exp->getInit(i)->getType()))
return true;
}
return false;
}
if (Init->isNullPointerConstant(Context))
return false;
if (Init->getType()->isArithmeticType()) {
// Special check for pointer cast to int; we allow
// an address constant cast to an integer if the integer
// is of an appropriate width (this sort of code is apparently used
// in some places).
// FIXME: Add pedwarn?
Expr* SubE = 0;
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init))
SubE = ICE->getSubExpr();
else if (CastExpr* CE = dyn_cast<CastExpr>(Init))
SubE = CE->getSubExpr();
if (SubE && (SubE->getType()->isPointerType() ||
SubE->getType()->isArrayType() ||
SubE->getType()->isFunctionType())) {
unsigned IntWidth = Context.getTypeSize(Init->getType());
unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
if (IntWidth >= PointerWidth)
return CheckAddressConstantExpression(Init);
}
return CheckArithmeticConstantExpression(Init);
}
if (Init->getType()->isPointerType())
return CheckAddressConstantExpression(Init);
if (Init->getType()->isArrayType())
return false;
Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
Init->getSourceRange());
return true;
}
void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
Decl *RealDecl = static_cast<Decl *>(dcl);
Expr *Init = static_cast<Expr *>(init);
assert(Init && "missing initializer");
// If there is no declaration, there was an error parsing it. Just ignore
// the initializer.
if (RealDecl == 0) {
delete Init;
return;
}
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
if (!VDecl) {
Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
diag::err_illegal_initializer);
RealDecl->setInvalidDecl();
return;
}
// Get the decls type and save a reference for later, since
// CheckInitializerTypes may change it.
QualType DclT = VDecl->getType(), SavT = DclT;
if (VDecl->isBlockVarDecl()) {
VarDecl::StorageClass SC = VDecl->getStorageClass();
if (SC == VarDecl::Extern) { // C99 6.7.8p5
Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
VDecl->setInvalidDecl();
} else if (!VDecl->isInvalidDecl()) {
if (CheckInitializerTypes(Init, DclT))
VDecl->setInvalidDecl();
if (SC == VarDecl::Static) // C99 6.7.8p4.
CheckForConstantInitializer(Init, DclT);
}
} else if (VDecl->isFileVarDecl()) {
if (VDecl->getStorageClass() == VarDecl::Extern)
Diag(VDecl->getLocation(), diag::warn_extern_init);
if (!VDecl->isInvalidDecl())
if (CheckInitializerTypes(Init, DclT))
VDecl->setInvalidDecl();
// C99 6.7.8p4. All file scoped initializers need to be constant.
CheckForConstantInitializer(Init, DclT);
}
// If the type changed, it means we had an incomplete type that was
// completed by the initializer. For example:
// int ary[] = { 1, 3, 5 };
// "ary" transitions from a VariableArrayType to a ConstantArrayType.
if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
VDecl->setType(DclT);
Init->setType(DclT);
}
// Attach the initializer to the decl.
VDecl->setInit(Init);
return;
}
/// The declarators are chained together backwards, reverse the list.
Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
// Often we have single declarators, handle them quickly.
Decl *GroupDecl = static_cast<Decl*>(group);
if (GroupDecl == 0)
return 0;
ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
ScopedDecl *NewGroup = 0;
if (Group->getNextDeclarator() == 0)
NewGroup = Group;
else { // reverse the list.
while (Group) {
ScopedDecl *Next = Group->getNextDeclarator();
Group->setNextDeclarator(NewGroup);
NewGroup = Group;
Group = Next;
}
}
// Perform semantic analysis that depends on having fully processed both
// the declarator and initializer.
for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
VarDecl *IDecl = dyn_cast<VarDecl>(ID);
if (!IDecl)
continue;
QualType T = IDecl->getType();
// C99 6.7.5.2p2: If an identifier is declared to be an object with
// static storage duration, it shall not have a variable length array.
if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
IDecl->getStorageClass() == VarDecl::Static) {
if (T->getAsVariableArrayType()) {
Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
IDecl->setInvalidDecl();
}
}
// Block scope. C99 6.7p7: If an identifier for an object is declared with
// no linkage (C99 6.2.2p6), the type for the object shall be complete...
if (IDecl->isBlockVarDecl() &&
IDecl->getStorageClass() != VarDecl::Extern) {
if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
T.getAsString());
IDecl->setInvalidDecl();
}
}
// File scope. C99 6.9.2p2: A declaration of an identifier for and
// object that has file scope without an initializer, and without a
// storage-class specifier or with the storage-class specifier "static",
// constitutes a tentative definition. Note: A tentative definition with
// external linkage is valid (C99 6.2.2p5).
if (IDecl && !IDecl->getInit() &&
(IDecl->getStorageClass() == VarDecl::Static ||
IDecl->getStorageClass() == VarDecl::None)) {
if (T->isIncompleteArrayType()) {
// C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
// array to be completed. Don't issue a diagnostic.
} else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
// C99 6.9.2p3: If the declaration of an identifier for an object is
// a tentative definition and has internal linkage (C99 6.2.2p3), the
// declared type shall not be an incomplete type.
Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
T.getAsString());
IDecl->setInvalidDecl();
}
}
}
return NewGroup;
}
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
/// to introduce parameters into function prototype scope.
Sema::DeclTy *
Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
DeclSpec &DS = D.getDeclSpec();
// Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
DS.getStorageClassSpec() != DeclSpec::SCS_register) {
Diag(DS.getStorageClassSpecLoc(),
diag::err_invalid_storage_class_in_func_decl);
DS.ClearStorageClassSpecs();
}
if (DS.isThreadSpecified()) {
Diag(DS.getThreadSpecLoc(),
diag::err_invalid_storage_class_in_func_decl);
DS.ClearStorageClassSpecs();
}
// Check that there are no default arguments inside the type of this
// parameter (C++ only).
if (getLangOptions().CPlusPlus)
CheckExtraCXXDefaultArguments(D);
// In this context, we *do not* check D.getInvalidType(). If the declarator
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
// though it will not reflect the user specified type.
QualType parmDeclType = GetTypeForDeclarator(D, S);
assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
// Can this happen for params? We already checked that they don't conflict
// among each other. Here they can only shadow globals, which is ok.
IdentifierInfo *II = D.getIdentifier();
if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
if (S->isDeclScope(PrevDecl)) {
Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
dyn_cast<NamedDecl>(PrevDecl)->getName());
// Recover by removing the name
II = 0;
D.SetIdentifier(0, D.getIdentifierLoc());
}
}
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
// Doing the promotion here has a win and a loss. The win is the type for
// both Decl's and DeclRefExpr's will match (a convenient invariant for the
// code generator). The loss is the orginal type isn't preserved. For example:
//
// void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
// int blockvardecl[5];
// sizeof(parmvardecl); // size == 4
// sizeof(blockvardecl); // size == 20
// }
//
// For expressions, all implicit conversions are captured using the
// ImplicitCastExpr AST node (we have no such mechanism for Decl's).
//
// FIXME: If a source translation tool needs to see the original type, then
// we need to consider storing both types (in ParmVarDecl)...
//
if (parmDeclType->isArrayType()) {
// int x[restrict 4] -> int *restrict
parmDeclType = Context.getArrayDecayedType(parmDeclType);
} else if (parmDeclType->isFunctionType())
parmDeclType = Context.getPointerType(parmDeclType);
ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
D.getIdentifierLoc(), II,
parmDeclType, VarDecl::None,
0, 0);
if (D.getInvalidType())
New->setInvalidDecl();
if (II)
PushOnScopeChains(New, S);
HandleDeclAttributes(New, D.getDeclSpec().getAttributes(),
D.getAttributes());
return New;
}
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
assert(CurFunctionDecl == 0 && "Function parsing confused");
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
// for a K&R function.
if (!FTI.hasPrototype) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
if (FTI.ArgInfo[i].Param == 0) {
Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
FTI.ArgInfo[i].Ident->getName());
// Implicitly declare the argument as type 'int' for lack of a better
// type.
DeclSpec DS;
const char* PrevSpec; // unused
DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
PrevSpec);
Declarator ParamD(DS, Declarator::KNRTypeListContext);
ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
}
}
// Since this is a function definition, act as though we have information
// about the arguments.
if (FTI.NumArgs)
FTI.hasPrototype = true;
} else {
// FIXME: Diagnose arguments without names in C.
}
Scope *GlobalScope = FnBodyScope->getParent();
// See if this is a redefinition.
Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
GlobalScope);
if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
const FunctionDecl *Definition;
if (FD->getBody(Definition)) {
Diag(D.getIdentifierLoc(), diag::err_redefinition,
D.getIdentifier()->getName());
Diag(Definition->getLocation(), diag::err_previous_definition);
}
}
}
Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
FunctionDecl *FD = cast<FunctionDecl>(decl);
CurFunctionDecl = FD;
PushDeclContext(FD);
// Check the validity of our function parameters
CheckParmsForFunctionDef(FD);
// Introduce our parameters into the function scope
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
// If this has an identifier, add it to the scope stack.
if (Param->getIdentifier())
PushOnScopeChains(Param, FnBodyScope);
}
return FD;
}
Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
Decl *dcl = static_cast<Decl *>(D);
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
FD->setBody((Stmt*)Body);
assert(FD == CurFunctionDecl && "Function parsing confused");
CurFunctionDecl = 0;
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
MD->setBody((Stmt*)Body);
CurMethodDecl = 0;
}
PopDeclContext();
// Verify and clean out per-function state.
// Check goto/label use.
for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
// Verify that we have no forward references left. If so, there was a goto
// or address of a label taken, but no definition of it. Label fwd
// definitions are indicated with a null substmt.
if (I->second->getSubStmt() == 0) {
LabelStmt *L = I->second;
// Emit error.
Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
// At this point, we have gotos that use the bogus label. Stitch it into
// the function body so that they aren't leaked and that the AST is well
// formed.
if (Body) {
L->setSubStmt(new NullStmt(L->getIdentLoc()));
cast<CompoundStmt>((Stmt*)Body)->push_back(L);
} else {
// The whole function wasn't parsed correctly, just delete this.
delete L;
}
}
}
LabelMap.clear();
return D;
}
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
IdentifierInfo &II, Scope *S) {
// Extension in C99. Legal in C90, but warn about it.
if (getLangOptions().C99)
Diag(Loc, diag::ext_implicit_function_decl, II.getName());
else
Diag(Loc, diag::warn_implicit_function_decl, II.getName());
// FIXME: handle stuff like:
// void foo() { extern float X(); }
// void bar() { X(); } <-- implicit decl for X in another scope.
// Set a Declarator for the implicit definition: int foo();
const char *Dummy;
DeclSpec DS;
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
Error = Error; // Silence warning.
assert(!Error && "Error setting up implicit decl!");
Declarator D(DS, Declarator::BlockContext);
D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
D.SetIdentifier(&II, Loc);
// Insert this function into translation-unit scope.
DeclContext *PrevDC = CurContext;
CurContext = Context.getTranslationUnitDecl();
FunctionDecl *FD =
dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
FD->setImplicit();
CurContext = PrevDC;
return FD;
}
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
ScopedDecl *LastDeclarator) {
assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
// Scope manipulation handled by caller.
TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
D.getIdentifierLoc(),
D.getIdentifier(),
T, LastDeclarator);
if (D.getInvalidType())
NewTD->setInvalidDecl();
return NewTD;
}
/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
/// former case, Name will be non-null. In the later case, Name will be null.
/// TagType indicates what kind of tag this is. TK indicates whether this is a
/// reference/declaration/definition of a tag.
Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
SourceLocation KWLoc, IdentifierInfo *Name,
SourceLocation NameLoc, AttributeList *Attr) {
// If this is a use of an existing tag, it must have a name.
assert((Name != 0 || TK == TK_Definition) &&
"Nameless record must be a definition!");
Decl::Kind Kind;
switch (TagType) {
default: assert(0 && "Unknown tag type!");
case DeclSpec::TST_struct: Kind = Decl::Struct; break;
case DeclSpec::TST_union: Kind = Decl::Union; break;
case DeclSpec::TST_class: Kind = Decl::Class; break;
case DeclSpec::TST_enum: Kind = Decl::Enum; break;
}
// If this is a named struct, check to see if there was a previous forward
// declaration or definition.
// Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
if (ScopedDecl *PrevDecl =
dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
"unexpected Decl type");
if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
// If this is a use of a previous tag, or if the tag is already declared in
// the same scope (so that the definition/declaration completes or
// rementions the tag), reuse the decl.
if (TK == TK_Reference ||
IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
// Make sure that this wasn't declared as an enum and now used as a struct
// or something similar.
if (PrevDecl->getKind() != Kind) {
Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_use);
}
// If this is a use or a forward declaration, we're good.
if (TK != TK_Definition)
return PrevDecl;
// Diagnose attempts to redefine a tag.
if (PrevTagDecl->isDefinition()) {
Diag(NameLoc, diag::err_redefinition, Name->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
// If this is a redefinition, recover by making this struct be
// anonymous, which will make any later references get the previous
// definition.
Name = 0;
} else {
// Okay, this is definition of a previously declared or referenced tag.
// Move the location of the decl to be the definition site.
PrevDecl->setLocation(NameLoc);
return PrevDecl;
}
}
// If we get here, this is a definition of a new struct type in a nested
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
// type.
} else {
// The tag name clashes with a namespace name, issue an error and recover
// by making this tag be anonymous.
Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
Name = 0;
}
}
// If there is an identifier, use the location of the identifier as the
// location of the decl, otherwise use the location of the struct/union
// keyword.
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
// Otherwise, if this is the first time we've seen this tag, create the decl.
TagDecl *New;
switch (Kind) {
default: assert(0 && "Unknown tag kind!");
case Decl::Enum:
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
// enum X { A, B, C } D; D should chain to X.
New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
// If this is an undefined enum, warn.
if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
break;
case Decl::Union:
case Decl::Struct:
case Decl::Class:
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
// struct X { int A; } D; D should chain to X.
New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
break;
}
// If this has an identifier, add it to the scope stack.
if (Name) {
// The scope passed in may not be a decl scope. Zip up the scope tree until
// we find one that is.
while ((S->getFlags() & Scope::DeclScope) == 0)
S = S->getParent();
// Add it to the decl chain.
PushOnScopeChains(New, S);
}
HandleDeclAttributes(New, Attr, 0);
return New;
}
/// ActOnField - Each field of a struct/union/class is passed into this in order
/// to create a FieldDecl object for it.
Sema::DeclTy *Sema::ActOnField(Scope *S,
SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth) {
IdentifierInfo *II = D.getIdentifier();
Expr *BitWidth = (Expr*)BitfieldWidth;
SourceLocation Loc = DeclStart;
if (II) Loc = D.getIdentifierLoc();
// FIXME: Unnamed fields can be handled in various different ways, for
// example, unnamed unions inject all members into the struct namespace!
if (BitWidth) {
// TODO: Validate.
//printf("WARNING: BITFIELDS IGNORED!\n");
// 6.7.2.1p3
// 6.7.2.1p4
} else {
// Not a bitfield.
// validate II.
}
QualType T = GetTypeForDeclarator(D, S);
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
bool InvalidDecl = false;
// C99 6.7.2.1p8: A member of a structure or union may have any type other
// than a variably modified type.
if (T->isVariablyModifiedType()) {
// FIXME: This diagnostic needs work
Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
InvalidDecl = true;
}
// FIXME: Chain fielddecls together.
FieldDecl *NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
D.getAttributes());
if (D.getInvalidType() || InvalidDecl)
NewFD->setInvalidDecl();
return NewFD;
}
/// TranslateIvarVisibility - Translate visibility from a token ID to an
/// AST enum value.
static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
switch (ivarVisibility) {
case tok::objc_private: return ObjCIvarDecl::Private;
case tok::objc_public: return ObjCIvarDecl::Public;
case tok::objc_protected: return ObjCIvarDecl::Protected;
case tok::objc_package: return ObjCIvarDecl::Package;
default: assert(false && "Unknown visitibility kind");
}
}
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
/// in order to create an IvarDecl object for it.
Sema::DeclTy *Sema::ActOnIvar(Scope *S,
SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth,
tok::ObjCKeywordKind Visibility) {
IdentifierInfo *II = D.getIdentifier();
Expr *BitWidth = (Expr*)BitfieldWidth;
SourceLocation Loc = DeclStart;
if (II) Loc = D.getIdentifierLoc();
// FIXME: Unnamed fields can be handled in various different ways, for
// example, unnamed unions inject all members into the struct namespace!
if (BitWidth) {
// TODO: Validate.
//printf("WARNING: BITFIELDS IGNORED!\n");
// 6.7.2.1p3
// 6.7.2.1p4
} else {
// Not a bitfield.
// validate II.
}
QualType T = GetTypeForDeclarator(D, S);
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
bool InvalidDecl = false;
// C99 6.7.2.1p8: A member of a structure or union may have any type other
// than a variably modified type.
if (T->isVariablyModifiedType()) {
// FIXME: This diagnostic needs work
Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
InvalidDecl = true;
}
ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
D.getAttributes());
if (D.getInvalidType() || InvalidDecl)
NewID->setInvalidDecl();
// If we have visibility info, make sure the AST is set accordingly.
if (Visibility != tok::objc_not_keyword)
NewID->setAccessControl(TranslateIvarVisibility(Visibility));
return NewID;
}
void Sema::ActOnFields(Scope* S,
SourceLocation RecLoc, DeclTy *RecDecl,
DeclTy **Fields, unsigned NumFields,
SourceLocation LBrac, SourceLocation RBrac) {
Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
assert(EnclosingDecl && "missing record or interface decl");
RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
if (Record && Record->isDefinition()) {
// Diagnose code like:
// struct S { struct S {} X; };
// We discover this when we complete the outer S. Reject and ignore the
// outer S.
Diag(Record->getLocation(), diag::err_nested_redefinition,
Record->getKindName());
Diag(RecLoc, diag::err_previous_definition);
Record->setInvalidDecl();
return;
}
// Verify that all the fields are okay.
unsigned NumNamedMembers = 0;
llvm::SmallVector<FieldDecl*, 32> RecFields;
llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
for (unsigned i = 0; i != NumFields; ++i) {
FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
assert(FD && "missing field decl");
// Remember all fields.
RecFields.push_back(FD);
// Get the type for the field.
Type *FDTy = FD->getType().getTypePtr();
// C99 6.7.2.1p2 - A field may not be a function type.
if (FDTy->isFunctionType()) {
Diag(FD->getLocation(), diag::err_field_declared_as_function,
FD->getName());
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
// C99 6.7.2.1p2 - A field may not be an incomplete type except...
if (FDTy->isIncompleteType()) {
if (!Record) { // Incomplete ivar type is always an error.
Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
if (i != NumFields-1 || // ... that the last member ...
Record->getKind() != Decl::Struct || // ... of a structure ...
!FDTy->isArrayType()) { //... may have incomplete array type.
Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
if (NumNamedMembers < 1) { //... must have more than named member ...
Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
FD->getName());
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
// Okay, we have a legal flexible array member at the end of the struct.
if (Record)
Record->setHasFlexibleArrayMember(true);
}
/// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
/// field of another structure or the element of an array.
if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
// If this is a member of a union, then entire union becomes "flexible".
if (Record && Record->getKind() == Decl::Union) {
Record->setHasFlexibleArrayMember(true);
} else {
// If this is a struct/class and this is not the last element, reject
// it. Note that GCC supports variable sized arrays in the middle of
// structures.
if (i != NumFields-1) {
Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
FD->getName());
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
// We support flexible arrays at the end of structs in other structs
// as an extension.
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
FD->getName());
if (Record)
Record->setHasFlexibleArrayMember(true);
}
}
}
/// A field cannot be an Objective-c object
if (FDTy->isObjCInterfaceType()) {
Diag(FD->getLocation(), diag::err_statically_allocated_object,
FD->getName());
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
// Keep track of the number of named members.
if (IdentifierInfo *II = FD->getIdentifier()) {
// Detect duplicate member names.
if (!FieldIDs.insert(II)) {
Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
// Find the previous decl.
SourceLocation PrevLoc;
for (unsigned i = 0, e = RecFields.size(); ; ++i) {
assert(i != e && "Didn't find previous def!");
if (RecFields[i]->getIdentifier() == II) {
PrevLoc = RecFields[i]->getLocation();
break;
}
}
Diag(PrevLoc, diag::err_previous_definition);
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
++NumNamedMembers;
}
}
// Okay, we successfully defined 'Record'.
if (Record) {
Record->defineBody(&RecFields[0], RecFields.size());
Consumer.HandleTagDeclDefinition(Record);
} else {
ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
else if (ObjCImplementationDecl *IMPDecl =
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
}
}
}
Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
DeclTy *lastEnumConst,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *val) {
EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
EnumConstantDecl *LastEnumConst =
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
Expr *Val = static_cast<Expr*>(val);
// The scope passed in may not be a decl scope. Zip up the scope tree until
// we find one that is.
while ((S->getFlags() & Scope::DeclScope) == 0)
S = S->getParent();
// Verify that there isn't already something declared with this name in this
// scope.
if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
if (isa<EnumConstantDecl>(PrevDecl))
Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
else
Diag(IdLoc, diag::err_redefinition, Id->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
delete Val;
return 0;
}
}
llvm::APSInt EnumVal(32);
QualType EltTy;
if (Val) {
// Make sure to promote the operand type to int.
UsualUnaryConversions(Val);
// C99 6.7.2.2p2: Make sure we have an integer constant expression.
SourceLocation ExpLoc;
if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
Id->getName());
delete Val;
Val = 0; // Just forget about it.
} else {
EltTy = Val->getType();
}
}
if (!Val) {
if (LastEnumConst) {
// Assign the last value + 1.
EnumVal = LastEnumConst->getInitVal();
++EnumVal;
// Check for overflow on increment.
if (EnumVal < LastEnumConst->getInitVal())
Diag(IdLoc, diag::warn_enum_value_overflow);
EltTy = LastEnumConst->getType();
} else {
// First value, set to zero.
EltTy = Context.IntTy;
EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
}
}
EnumConstantDecl *New =
EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
Val, EnumVal,
LastEnumConst);
// Register this decl in the current scope stack.
PushOnScopeChains(New, S);
return New;
}
void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
DeclTy **Elements, unsigned NumElements) {
EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
// TODO: If the result value doesn't fit in an int, it must be a long or long
// long value. ISO C does not support this, but GCC does as an extension,
// emit a warning.
unsigned IntWidth = Context.Target.getIntWidth();
// Verify that all the values are okay, compute the size of the values, and
// reverse the list.
unsigned NumNegativeBits = 0;
unsigned NumPositiveBits = 0;
// Keep track of whether all elements have type int.
bool AllElementsInt = true;
EnumConstantDecl *EltList = 0;
for (unsigned i = 0; i != NumElements; ++i) {
EnumConstantDecl *ECD =
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
if (!ECD) continue; // Already issued a diagnostic.
// If the enum value doesn't fit in an int, emit an extension warning.
const llvm::APSInt &InitVal = ECD->getInitVal();
assert(InitVal.getBitWidth() >= IntWidth &&
"Should have promoted value to int");
if (InitVal.getBitWidth() > IntWidth) {
llvm::APSInt V(InitVal);
V.trunc(IntWidth);
V.extend(InitVal.getBitWidth());
if (V != InitVal)
Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
InitVal.toString());
}
// Keep track of the size of positive and negative values.
if (InitVal.isUnsigned() || InitVal.isNonNegative())
NumPositiveBits = std::max(NumPositiveBits,
(unsigned)InitVal.getActiveBits());
else
NumNegativeBits = std::max(NumNegativeBits,
(unsigned)InitVal.getMinSignedBits());
// Keep track of whether every enum element has type int (very commmon).
if (AllElementsInt)
AllElementsInt = ECD->getType() == Context.IntTy;
ECD->setNextDeclarator(EltList);
EltList = ECD;
}
// Figure out the type that should be used for this enum.
// FIXME: Support attribute(packed) on enums and -fshort-enums.
QualType BestType;
unsigned BestWidth;
if (NumNegativeBits) {
// If there is a negative value, figure out the smallest integer type (of
// int/long/longlong) that fits.
if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
BestType = Context.IntTy;
BestWidth = IntWidth;
} else {
BestWidth = Context.Target.getLongWidth();
if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
BestType = Context.LongTy;
else {
BestWidth = Context.Target.getLongLongWidth();
if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
Diag(Enum->getLocation(), diag::warn_enum_too_large);
BestType = Context.LongLongTy;
}
}
} else {
// If there is no negative value, figure out which of uint, ulong, ulonglong
// fits.
if (NumPositiveBits <= IntWidth) {
BestType = Context.UnsignedIntTy;
BestWidth = IntWidth;
} else if (NumPositiveBits <=
(BestWidth = Context.Target.getLongWidth())) {
BestType = Context.UnsignedLongTy;
} else {
BestWidth = Context.Target.getLongLongWidth();
assert(NumPositiveBits <= BestWidth &&
"How could an initializer get larger than ULL?");
BestType = Context.UnsignedLongLongTy;
}
}
// Loop over all of the enumerator constants, changing their types to match
// the type of the enum if needed.
for (unsigned i = 0; i != NumElements; ++i) {
EnumConstantDecl *ECD =
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
if (!ECD) continue; // Already issued a diagnostic.
// Standard C says the enumerators have int type, but we allow, as an
// extension, the enumerators to be larger than int size. If each
// enumerator value fits in an int, type it as an int, otherwise type it the
// same as the enumerator decl itself. This means that in "enum { X = 1U }"
// that X has type 'int', not 'unsigned'.
if (ECD->getType() == Context.IntTy) {
// Make sure the init value is signed.
llvm::APSInt IV = ECD->getInitVal();
IV.setIsSigned(true);
ECD->setInitVal(IV);
continue; // Already int type.
}
// Determine whether the value fits into an int.
llvm::APSInt InitVal = ECD->getInitVal();
bool FitsInInt;
if (InitVal.isUnsigned() || !InitVal.isNegative())
FitsInInt = InitVal.getActiveBits() < IntWidth;
else
FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
// If it fits into an integer type, force it. Otherwise force it to match
// the enum decl type.
QualType NewTy;
unsigned NewWidth;
bool NewSign;
if (FitsInInt) {
NewTy = Context.IntTy;
NewWidth = IntWidth;
NewSign = true;
} else if (ECD->getType() == BestType) {
// Already the right type!
continue;
} else {
NewTy = BestType;
NewWidth = BestWidth;
NewSign = BestType->isSignedIntegerType();
}
// Adjust the APSInt value.
InitVal.extOrTrunc(NewWidth);
InitVal.setIsSigned(NewSign);
ECD->setInitVal(InitVal);
// Adjust the Expr initializer and type.
ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
ECD->setType(NewTy);
}
Enum->defineElements(EltList, BestType);
Consumer.HandleTagDeclDefinition(Enum);
}
Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
ExprTy *expr) {
StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
return FileScopeAsmDecl::Create(Context, Loc, AsmString);
}
Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
SourceLocation LBrace,
SourceLocation RBrace,
const char *Lang,
unsigned StrSize,
DeclTy *D) {
LinkageSpecDecl::LanguageIDs Language;
Decl *dcl = static_cast<Decl *>(D);
if (strncmp(Lang, "\"C\"", StrSize) == 0)
Language = LinkageSpecDecl::lang_c;
else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
Language = LinkageSpecDecl::lang_cxx;
else {
Diag(Loc, diag::err_bad_language);
return 0;
}
// FIXME: Add all the various semantics of linkage specifications
return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
}
void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
switch (Attr->getKind()) {
case AttributeList::AT_vector_size:
if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
if (!newType.isNull()) // install the new vector type into the decl
vDecl->setType(newType);
}
if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
Attr);
if (!newType.isNull()) // install the new vector type into the decl
tDecl->setUnderlyingType(newType);
}
break;
case AttributeList::AT_ext_vector_type:
if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
HandleExtVectorTypeAttribute(tDecl, Attr);
else
Diag(Attr->getLoc(),
diag::err_typecheck_ext_vector_not_typedef);
break;
case AttributeList::AT_address_space:
if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
QualType newType = HandleAddressSpaceTypeAttribute(
tDecl->getUnderlyingType(),
Attr);
tDecl->setUnderlyingType(newType);
} else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
Attr);
// install the new addr spaced type into the decl
vDecl->setType(newType);
}
break;
case AttributeList::AT_deprecated:
HandleDeprecatedAttribute(New, Attr);
break;
case AttributeList::AT_visibility:
HandleVisibilityAttribute(New, Attr);
break;
case AttributeList::AT_weak:
HandleWeakAttribute(New, Attr);
break;
case AttributeList::AT_dllimport:
HandleDLLImportAttribute(New, Attr);
break;
case AttributeList::AT_dllexport:
HandleDLLExportAttribute(New, Attr);
break;
case AttributeList::AT_nothrow:
HandleNothrowAttribute(New, Attr);
break;
case AttributeList::AT_stdcall:
HandleStdCallAttribute(New, Attr);
break;
case AttributeList::AT_fastcall:
HandleFastCallAttribute(New, Attr);
break;
case AttributeList::AT_aligned:
HandleAlignedAttribute(New, Attr);
break;
case AttributeList::AT_packed:
HandlePackedAttribute(New, Attr);
break;
case AttributeList::AT_annotate:
HandleAnnotateAttribute(New, Attr);
break;
case AttributeList::AT_noreturn:
HandleNoReturnAttribute(New, Attr);
break;
case AttributeList::AT_format:
HandleFormatAttribute(New, Attr);
break;
case AttributeList::AT_transparent_union:
HandleTransparentUnionAttribute(New, Attr);
break;
default:
#if 0
// TODO: when we have the full set of attributes, warn about unknown ones.
Diag(Attr->getLoc(), diag::warn_attribute_ignored,
Attr->getName()->getName());
#endif
break;
}
}
void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
AttributeList *declarator_postfix) {
while (declspec_prefix) {
HandleDeclAttribute(New, declspec_prefix);
declspec_prefix = declspec_prefix->getNext();
}
while (declarator_postfix) {
HandleDeclAttribute(New, declarator_postfix);
declarator_postfix = declarator_postfix->getNext();
}
}
void Sema::HandleExtVectorTypeAttribute(TypedefDecl *tDecl,
AttributeList *rawAttr) {
QualType curType = tDecl->getUnderlyingType();
// check the attribute arguments.
if (rawAttr->getNumArgs() != 1) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
llvm::APSInt vecSize(32);
if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
"ext_vector_type", sizeExpr->getSourceRange());
return;
}
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
Type *canonType = curType.getCanonicalType().getTypePtr();
if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
curType.getCanonicalType().getAsString());
return;
}
// unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
sizeExpr->getSourceRange());
return;
}
// Instantiate/Install the vector type, the number of elements is > 0.
tDecl->setUnderlyingType(Context.getExtVectorType(curType, vectorSize));
// Remember this typedef decl, we will need it later for diagnostics.
ExtVectorDecls.push_back(tDecl);
}
QualType Sema::HandleVectorTypeAttribute(QualType curType,
AttributeList *rawAttr) {
// check the attribute arugments.
if (rawAttr->getNumArgs() != 1) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return QualType();
}
Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
llvm::APSInt vecSize(32);
if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
"vector_size", sizeExpr->getSourceRange());
return QualType();
}
// navigate to the base type - we need to provide for vector pointers,
// vector arrays, and functions returning vectors.
Type *canonType = curType.getCanonicalType().getTypePtr();
if (canonType->isPointerType() || canonType->isArrayType() ||
canonType->isFunctionType()) {
assert(0 && "HandleVector(): Complex type construction unimplemented");
/* FIXME: rebuild the type from the inside out, vectorizing the inner type.
do {
if (PointerType *PT = dyn_cast<PointerType>(canonType))
canonType = PT->getPointeeType().getTypePtr();
else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
canonType = AT->getElementType().getTypePtr();
else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
canonType = FT->getResultType().getTypePtr();
} while (canonType->isPointerType() || canonType->isArrayType() ||
canonType->isFunctionType());
*/
}
// the base type must be integer or float.
if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
curType.getCanonicalType().getAsString());
return QualType();
}
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
// vecSize is specified in bytes - convert to bits.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
// the vector size needs to be an integral multiple of the type size.
if (vectorSize % typeSize) {
Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
sizeExpr->getSourceRange());
return QualType();
}
if (vectorSize == 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
sizeExpr->getSourceRange());
return QualType();
}
// Instantiate the vector type, the number of elements is > 0, and not
// required to be a power of 2, unlike GCC.
return Context.getVectorType(curType, vectorSize/typeSize);
}
void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() > 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
if (TagDecl *TD = dyn_cast<TagDecl>(d))
TD->addAttr(new PackedAttr);
else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
// If the alignment is less than or equal to 8 bits, the packed attribute
// has no effect.
if (!FD->getType()->isIncompleteType() &&
Context.getTypeAlign(FD->getType()) <= 8)
Diag(rawAttr->getLoc(),
diag::warn_attribute_ignored_for_field_of_type,
rawAttr->getName()->getName(), FD->getType().getAsString());
else
FD->addAttr(new PackedAttr);
} else
Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
rawAttr->getName()->getName());
}
void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
if (!Fn) {
Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
"noreturn", "function");
return;
}
d->addAttr(new NoReturnAttr());
}
void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new DeprecatedAttr());
}
void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 1) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (Str == 0 || Str->isWide()) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
"visibility", std::string("1"));
return;
}
const char *TypeStr = Str->getStrData();
unsigned TypeLen = Str->getByteLength();
llvm::GlobalValue::VisibilityTypes type;
if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
type = llvm::GlobalValue::DefaultVisibility;
else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
type = llvm::GlobalValue::HiddenVisibility;
else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
type = llvm::GlobalValue::HiddenVisibility; // FIXME
else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
type = llvm::GlobalValue::ProtectedVisibility;
else {
Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
"visibility", TypeStr);
return;
}
d->addAttr(new VisibilityAttr(type));
}
void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new WeakAttr());
}
void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new DLLImportAttr());
}
void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new DLLExportAttr());
}
void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new StdCallAttr());
}
void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new FastCallAttr());
}
void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new NoThrowAttr());
}
static const FunctionTypeProto *getFunctionProto(Decl *d) {
QualType Ty;
if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
Ty = decl->getType();
else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
Ty = decl->getType();
else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
Ty = decl->getUnderlyingType();
else
return 0;
if (Ty->isFunctionPointerType()) {
const PointerType *PtrTy = Ty->getAsPointerType();
Ty = PtrTy->getPointeeType();
}
if (const FunctionType *FnTy = Ty->getAsFunctionType())
return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
return 0;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
if (!T->isPointerType())
return false;
T = T->getAsPointerType()->getPointeeType().getCanonicalType();
ObjCInterfaceType* ClsT = dyn_cast<ObjCInterfaceType>(T.getTypePtr());
if (!ClsT)
return false;
IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes
/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
if (!rawAttr->getParameterName()) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
"format", std::string("1"));
return;
}
if (rawAttr->getNumArgs() != 2) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("3"));
return;
}
// GCC ignores the format attribute on K&R style function
// prototypes, so we ignore it as well
const FunctionTypeProto *proto = getFunctionProto(d);
if (!proto) {
Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
"format", "function");
return;
}
// FIXME: in C++ the implicit 'this' function parameter also counts.
// this is needed in order to be compatible with GCC
// the index must start in 1 and the limit is numargs+1
unsigned NumArgs = proto->getNumArgs();
unsigned FirstIdx = 1;
const char *Format = rawAttr->getParameterName()->getName();
unsigned FormatLen = rawAttr->getParameterName()->getLength();
// Normalize the argument, __foo__ becomes foo.
if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
Format += 2;
FormatLen -= 4;
}
bool Supported = false;
bool is_NSString = false;
bool is_strftime = false;
switch (FormatLen) {
default: break;
case 5:
Supported = !memcmp(Format, "scanf", 5);
break;
case 6:
Supported = !memcmp(Format, "printf", 6);
break;
case 7:
Supported = !memcmp(Format, "strfmon", 7);
break;
case 8:
Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
(is_NSString = !memcmp(Format, "NSString", 8));
break;
}
if (!Supported) {
Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
"format", rawAttr->getParameterName()->getName());
return;
}
// checks for the 2nd argument
Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
"format", std::string("2"), IdxExpr->getSourceRange());
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
"format", std::string("2"), IdxExpr->getSourceRange());
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx.getZExtValue() - 1;
// make sure the format string is really a string
QualType Ty = proto->getArgType(ArgIdx);
if (is_NSString) {
// FIXME: do we need to check if the type is NSString*? What are
// the semantics?
if (!isNSStringType(Ty, Context)) {
// FIXME: Should highlight the actual expression that has the
// wrong type.
Diag(rawAttr->getLoc(), diag::err_format_attribute_not_NSString,
IdxExpr->getSourceRange());
return;
}
}
else if (!Ty->isPointerType() ||
!Ty->getAsPointerType()->getPointeeType()->isCharType()) {
// FIXME: Should highlight the actual expression that has the
// wrong type.
Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
IdxExpr->getSourceRange());
return;
}
// check the 3rd argument
Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
"format", std::string("3"), FirstArgExpr->getSourceRange());
return;
}
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (proto->isVariadic()) {
++NumArgs; // +1 for ...
} else {
Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any variable
// the input is just the current time + the format string
if (is_strftime) {
if (FirstArg != 0) {
Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
FirstArgExpr->getSourceRange());
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
"format", std::string("3"), FirstArgExpr->getSourceRange());
return;
}
d->addAttr(new FormatAttr(std::string(Format, FormatLen),
Idx.getZExtValue(), FirstArg.getZExtValue()));
}
void Sema::HandleTransparentUnionAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 0) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
TypeDecl *decl = dyn_cast<TypeDecl>(d);
if (!decl || !Context.getTypeDeclType(decl)->isUnionType()) {
Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
"transparent_union", "union");
return;
}
//QualType QTy = Context.getTypeDeclType(decl);
//const RecordType *Ty = QTy->getAsUnionType();
// FIXME
// Ty->addAttr(new TransparentUnionAttr());
}
void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
// check the attribute arguments.
if (rawAttr->getNumArgs() != 1) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
// Make sure that there is a string literal as the annotation's single
// argument.
if (!SE) {
Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
return;
}
d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
SE->getByteLength())));
}
void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
{
// check the attribute arguments.
if (rawAttr->getNumArgs() > 1) {
Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
unsigned Align = 0;
if (rawAttr->getNumArgs() == 0) {
// FIXME: This should be the target specific maximum alignment.
// (For now we just use 128 bits which is the maximum on X86.
Align = 128;
return;
} else {
Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
llvm::APSInt alignment(32);
if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
"aligned", alignmentExpr->getSourceRange());
return;
}
Align = alignment.getZExtValue() * 8;
}
d->addAttr(new AlignedAttr(Align));
}