blob: 0e4159db8db8c7a45518233df343ecaa92f75324 [file] [log] [blame]
//===--- Diagnostic.cpp - C Language Family Diagnostic Handling -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Diagnostic-related interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CrashRecoveryContext.h"
using namespace clang;
static void DummyArgToStringFn(Diagnostic::ArgumentKind AK, intptr_t QT,
const char *Modifier, unsigned ML,
const char *Argument, unsigned ArgLen,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
SmallVectorImpl<char> &Output,
void *Cookie,
SmallVectorImpl<intptr_t> &QualTypeVals) {
const char *Str = "<can't format argument>";
Output.append(Str, Str+strlen(Str));
}
Diagnostic::Diagnostic(const llvm::IntrusiveRefCntPtr<DiagnosticIDs> &diags,
DiagnosticClient *client, bool ShouldOwnClient)
: Diags(diags), Client(client), OwnsDiagClient(ShouldOwnClient),
SourceMgr(0) {
ArgToStringFn = DummyArgToStringFn;
ArgToStringCookie = 0;
AllExtensionsSilenced = 0;
IgnoreAllWarnings = false;
WarningsAsErrors = false;
EnableAllWarnings = false;
ErrorsAsFatal = false;
SuppressSystemWarnings = false;
SuppressAllDiagnostics = false;
ShowOverloads = Ovl_All;
ExtBehavior = Ext_Ignore;
ErrorLimit = 0;
TemplateBacktraceLimit = 0;
Reset();
}
Diagnostic::~Diagnostic() {
if (OwnsDiagClient)
delete Client;
}
void Diagnostic::setClient(DiagnosticClient *client, bool ShouldOwnClient) {
if (OwnsDiagClient && Client)
delete Client;
Client = client;
OwnsDiagClient = ShouldOwnClient;
}
void Diagnostic::pushMappings(SourceLocation Loc) {
DiagStateOnPushStack.push_back(GetCurDiagState());
}
bool Diagnostic::popMappings(SourceLocation Loc) {
if (DiagStateOnPushStack.empty())
return false;
if (DiagStateOnPushStack.back() != GetCurDiagState()) {
// State changed at some point between push/pop.
PushDiagStatePoint(DiagStateOnPushStack.back(), Loc);
}
DiagStateOnPushStack.pop_back();
return true;
}
void Diagnostic::Reset() {
ErrorOccurred = false;
FatalErrorOccurred = false;
UnrecoverableErrorOccurred = false;
NumWarnings = 0;
NumErrors = 0;
NumErrorsSuppressed = 0;
TrapNumErrorsOccurred = 0;
TrapNumUnrecoverableErrorsOccurred = 0;
CurDiagID = ~0U;
// Set LastDiagLevel to an "unset" state. If we set it to 'Ignored', notes
// using a Diagnostic associated to a translation unit that follow
// diagnostics from a Diagnostic associated to anoter t.u. will not be
// displayed.
LastDiagLevel = (DiagnosticIDs::Level)-1;
DelayedDiagID = 0;
// Clear state related to #pragma diagnostic.
DiagStates.clear();
DiagStatePoints.clear();
DiagStateOnPushStack.clear();
// Create a DiagState and DiagStatePoint representing diagnostic changes
// through command-line.
DiagStates.push_back(DiagState());
PushDiagStatePoint(&DiagStates.back(), SourceLocation());
}
void Diagnostic::SetDelayedDiagnostic(unsigned DiagID, StringRef Arg1,
StringRef Arg2) {
if (DelayedDiagID)
return;
DelayedDiagID = DiagID;
DelayedDiagArg1 = Arg1.str();
DelayedDiagArg2 = Arg2.str();
}
void Diagnostic::ReportDelayed() {
Report(DelayedDiagID) << DelayedDiagArg1 << DelayedDiagArg2;
DelayedDiagID = 0;
DelayedDiagArg1.clear();
DelayedDiagArg2.clear();
}
Diagnostic::DiagStatePointsTy::iterator
Diagnostic::GetDiagStatePointForLoc(SourceLocation L) const {
assert(!DiagStatePoints.empty());
assert(DiagStatePoints.front().Loc.isInvalid() &&
"Should have created a DiagStatePoint for command-line");
FullSourceLoc Loc(L, *SourceMgr);
if (Loc.isInvalid())
return DiagStatePoints.end() - 1;
DiagStatePointsTy::iterator Pos = DiagStatePoints.end();
FullSourceLoc LastStateChangePos = DiagStatePoints.back().Loc;
if (LastStateChangePos.isValid() &&
Loc.isBeforeInTranslationUnitThan(LastStateChangePos))
Pos = std::upper_bound(DiagStatePoints.begin(), DiagStatePoints.end(),
DiagStatePoint(0, Loc));
--Pos;
return Pos;
}
/// \brief This allows the client to specify that certain
/// warnings are ignored. Notes can never be mapped, errors can only be
/// mapped to fatal, and WARNINGs and EXTENSIONs can be mapped arbitrarily.
///
/// \param The source location that this change of diagnostic state should
/// take affect. It can be null if we are setting the latest state.
void Diagnostic::setDiagnosticMapping(diag::kind Diag, diag::Mapping Map,
SourceLocation L) {
assert(Diag < diag::DIAG_UPPER_LIMIT &&
"Can only map builtin diagnostics");
assert((Diags->isBuiltinWarningOrExtension(Diag) ||
(Map == diag::MAP_FATAL || Map == diag::MAP_ERROR)) &&
"Cannot map errors into warnings!");
assert(!DiagStatePoints.empty());
bool isPragma = L.isValid();
FullSourceLoc Loc(L, *SourceMgr);
FullSourceLoc LastStateChangePos = DiagStatePoints.back().Loc;
// Common case; setting all the diagnostics of a group in one place.
if (Loc.isInvalid() || Loc == LastStateChangePos) {
setDiagnosticMappingInternal(Diag, Map, GetCurDiagState(), true, isPragma);
return;
}
// Another common case; modifying diagnostic state in a source location
// after the previous one.
if ((Loc.isValid() && LastStateChangePos.isInvalid()) ||
LastStateChangePos.isBeforeInTranslationUnitThan(Loc)) {
// A diagnostic pragma occurred, create a new DiagState initialized with
// the current one and a new DiagStatePoint to record at which location
// the new state became active.
DiagStates.push_back(*GetCurDiagState());
PushDiagStatePoint(&DiagStates.back(), Loc);
setDiagnosticMappingInternal(Diag, Map, GetCurDiagState(), true, isPragma);
return;
}
// We allow setting the diagnostic state in random source order for
// completeness but it should not be actually happening in normal practice.
DiagStatePointsTy::iterator Pos = GetDiagStatePointForLoc(Loc);
assert(Pos != DiagStatePoints.end());
// Update all diagnostic states that are active after the given location.
for (DiagStatePointsTy::iterator
I = Pos+1, E = DiagStatePoints.end(); I != E; ++I) {
setDiagnosticMappingInternal(Diag, Map, I->State, true, isPragma);
}
// If the location corresponds to an existing point, just update its state.
if (Pos->Loc == Loc) {
setDiagnosticMappingInternal(Diag, Map, Pos->State, true, isPragma);
return;
}
// Create a new state/point and fit it into the vector of DiagStatePoints
// so that the vector is always ordered according to location.
Pos->Loc.isBeforeInTranslationUnitThan(Loc);
DiagStates.push_back(*Pos->State);
DiagState *NewState = &DiagStates.back();
setDiagnosticMappingInternal(Diag, Map, NewState, true, isPragma);
DiagStatePoints.insert(Pos+1, DiagStatePoint(NewState,
FullSourceLoc(Loc, *SourceMgr)));
}
void Diagnostic::Report(const StoredDiagnostic &storedDiag) {
assert(CurDiagID == ~0U && "Multiple diagnostics in flight at once!");
CurDiagLoc = storedDiag.getLocation();
CurDiagID = storedDiag.getID();
NumDiagArgs = 0;
NumDiagRanges = storedDiag.range_size();
assert(NumDiagRanges < sizeof(DiagRanges)/sizeof(DiagRanges[0]) &&
"Too many arguments to diagnostic!");
unsigned i = 0;
for (StoredDiagnostic::range_iterator
RI = storedDiag.range_begin(),
RE = storedDiag.range_end(); RI != RE; ++RI)
DiagRanges[i++] = *RI;
NumFixItHints = storedDiag.fixit_size();
assert(NumFixItHints < Diagnostic::MaxFixItHints && "Too many fix-it hints!");
i = 0;
for (StoredDiagnostic::fixit_iterator
FI = storedDiag.fixit_begin(),
FE = storedDiag.fixit_end(); FI != FE; ++FI)
FixItHints[i++] = *FI;
assert(Client && "DiagnosticClient not set!");
Level DiagLevel = storedDiag.getLevel();
DiagnosticInfo Info(this, storedDiag.getMessage());
Client->HandleDiagnostic(DiagLevel, Info);
if (Client->IncludeInDiagnosticCounts()) {
if (DiagLevel == Diagnostic::Warning)
++NumWarnings;
}
CurDiagID = ~0U;
}
void DiagnosticBuilder::FlushCounts() {
DiagObj->NumDiagArgs = NumArgs;
DiagObj->NumDiagRanges = NumRanges;
DiagObj->NumFixItHints = NumFixItHints;
}
bool DiagnosticBuilder::Emit() {
// If DiagObj is null, then its soul was stolen by the copy ctor
// or the user called Emit().
if (DiagObj == 0) return false;
// When emitting diagnostics, we set the final argument count into
// the Diagnostic object.
FlushCounts();
// Process the diagnostic, sending the accumulated information to the
// DiagnosticClient.
bool Emitted = DiagObj->ProcessDiag();
// Clear out the current diagnostic object.
unsigned DiagID = DiagObj->CurDiagID;
DiagObj->Clear();
// If there was a delayed diagnostic, emit it now.
if (DiagObj->DelayedDiagID && DiagObj->DelayedDiagID != DiagID)
DiagObj->ReportDelayed();
// This diagnostic is dead.
DiagObj = 0;
return Emitted;
}
DiagnosticClient::~DiagnosticClient() {}
void DiagnosticClient::HandleDiagnostic(Diagnostic::Level DiagLevel,
const DiagnosticInfo &Info) {
if (!IncludeInDiagnosticCounts())
return;
if (DiagLevel == Diagnostic::Warning)
++NumWarnings;
else if (DiagLevel >= Diagnostic::Error)
++NumErrors;
}
/// ModifierIs - Return true if the specified modifier matches specified string.
template <std::size_t StrLen>
static bool ModifierIs(const char *Modifier, unsigned ModifierLen,
const char (&Str)[StrLen]) {
return StrLen-1 == ModifierLen && !memcmp(Modifier, Str, StrLen-1);
}
/// ScanForward - Scans forward, looking for the given character, skipping
/// nested clauses and escaped characters.
static const char *ScanFormat(const char *I, const char *E, char Target) {
unsigned Depth = 0;
for ( ; I != E; ++I) {
if (Depth == 0 && *I == Target) return I;
if (Depth != 0 && *I == '}') Depth--;
if (*I == '%') {
I++;
if (I == E) break;
// Escaped characters get implicitly skipped here.
// Format specifier.
if (!isdigit(*I) && !ispunct(*I)) {
for (I++; I != E && !isdigit(*I) && *I != '{'; I++) ;
if (I == E) break;
if (*I == '{')
Depth++;
}
}
}
return E;
}
/// HandleSelectModifier - Handle the integer 'select' modifier. This is used
/// like this: %select{foo|bar|baz}2. This means that the integer argument
/// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'.
/// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'.
/// This is very useful for certain classes of variant diagnostics.
static void HandleSelectModifier(const DiagnosticInfo &DInfo, unsigned ValNo,
const char *Argument, unsigned ArgumentLen,
SmallVectorImpl<char> &OutStr) {
const char *ArgumentEnd = Argument+ArgumentLen;
// Skip over 'ValNo' |'s.
while (ValNo) {
const char *NextVal = ScanFormat(Argument, ArgumentEnd, '|');
assert(NextVal != ArgumentEnd && "Value for integer select modifier was"
" larger than the number of options in the diagnostic string!");
Argument = NextVal+1; // Skip this string.
--ValNo;
}
// Get the end of the value. This is either the } or the |.
const char *EndPtr = ScanFormat(Argument, ArgumentEnd, '|');
// Recursively format the result of the select clause into the output string.
DInfo.FormatDiagnostic(Argument, EndPtr, OutStr);
}
/// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the
/// letter 's' to the string if the value is not 1. This is used in cases like
/// this: "you idiot, you have %4 parameter%s4!".
static void HandleIntegerSModifier(unsigned ValNo,
SmallVectorImpl<char> &OutStr) {
if (ValNo != 1)
OutStr.push_back('s');
}
/// HandleOrdinalModifier - Handle the integer 'ord' modifier. This
/// prints the ordinal form of the given integer, with 1 corresponding
/// to the first ordinal. Currently this is hard-coded to use the
/// English form.
static void HandleOrdinalModifier(unsigned ValNo,
SmallVectorImpl<char> &OutStr) {
assert(ValNo != 0 && "ValNo must be strictly positive!");
llvm::raw_svector_ostream Out(OutStr);
// We could use text forms for the first N ordinals, but the numeric
// forms are actually nicer in diagnostics because they stand out.
Out << ValNo;
// It is critically important that we do this perfectly for
// user-written sequences with over 100 elements.
switch (ValNo % 100) {
case 11:
case 12:
case 13:
Out << "th"; return;
default:
switch (ValNo % 10) {
case 1: Out << "st"; return;
case 2: Out << "nd"; return;
case 3: Out << "rd"; return;
default: Out << "th"; return;
}
}
}
/// PluralNumber - Parse an unsigned integer and advance Start.
static unsigned PluralNumber(const char *&Start, const char *End) {
// Programming 101: Parse a decimal number :-)
unsigned Val = 0;
while (Start != End && *Start >= '0' && *Start <= '9') {
Val *= 10;
Val += *Start - '0';
++Start;
}
return Val;
}
/// TestPluralRange - Test if Val is in the parsed range. Modifies Start.
static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) {
if (*Start != '[') {
unsigned Ref = PluralNumber(Start, End);
return Ref == Val;
}
++Start;
unsigned Low = PluralNumber(Start, End);
assert(*Start == ',' && "Bad plural expression syntax: expected ,");
++Start;
unsigned High = PluralNumber(Start, End);
assert(*Start == ']' && "Bad plural expression syntax: expected )");
++Start;
return Low <= Val && Val <= High;
}
/// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier.
static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) {
// Empty condition?
if (*Start == ':')
return true;
while (1) {
char C = *Start;
if (C == '%') {
// Modulo expression
++Start;
unsigned Arg = PluralNumber(Start, End);
assert(*Start == '=' && "Bad plural expression syntax: expected =");
++Start;
unsigned ValMod = ValNo % Arg;
if (TestPluralRange(ValMod, Start, End))
return true;
} else {
assert((C == '[' || (C >= '0' && C <= '9')) &&
"Bad plural expression syntax: unexpected character");
// Range expression
if (TestPluralRange(ValNo, Start, End))
return true;
}
// Scan for next or-expr part.
Start = std::find(Start, End, ',');
if (Start == End)
break;
++Start;
}
return false;
}
/// HandlePluralModifier - Handle the integer 'plural' modifier. This is used
/// for complex plural forms, or in languages where all plurals are complex.
/// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are
/// conditions that are tested in order, the form corresponding to the first
/// that applies being emitted. The empty condition is always true, making the
/// last form a default case.
/// Conditions are simple boolean expressions, where n is the number argument.
/// Here are the rules.
/// condition := expression | empty
/// empty := -> always true
/// expression := numeric [',' expression] -> logical or
/// numeric := range -> true if n in range
/// | '%' number '=' range -> true if n % number in range
/// range := number
/// | '[' number ',' number ']' -> ranges are inclusive both ends
///
/// Here are some examples from the GNU gettext manual written in this form:
/// English:
/// {1:form0|:form1}
/// Latvian:
/// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0}
/// Gaeilge:
/// {1:form0|2:form1|:form2}
/// Romanian:
/// {1:form0|0,%100=[1,19]:form1|:form2}
/// Lithuanian:
/// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1}
/// Russian (requires repeated form):
/// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2}
/// Slovak
/// {1:form0|[2,4]:form1|:form2}
/// Polish (requires repeated form):
/// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2}
static void HandlePluralModifier(const DiagnosticInfo &DInfo, unsigned ValNo,
const char *Argument, unsigned ArgumentLen,
SmallVectorImpl<char> &OutStr) {
const char *ArgumentEnd = Argument + ArgumentLen;
while (1) {
assert(Argument < ArgumentEnd && "Plural expression didn't match.");
const char *ExprEnd = Argument;
while (*ExprEnd != ':') {
assert(ExprEnd != ArgumentEnd && "Plural missing expression end");
++ExprEnd;
}
if (EvalPluralExpr(ValNo, Argument, ExprEnd)) {
Argument = ExprEnd + 1;
ExprEnd = ScanFormat(Argument, ArgumentEnd, '|');
// Recursively format the result of the plural clause into the
// output string.
DInfo.FormatDiagnostic(Argument, ExprEnd, OutStr);
return;
}
Argument = ScanFormat(Argument, ArgumentEnd - 1, '|') + 1;
}
}
/// FormatDiagnostic - Format this diagnostic into a string, substituting the
/// formal arguments into the %0 slots. The result is appended onto the Str
/// array.
void DiagnosticInfo::
FormatDiagnostic(SmallVectorImpl<char> &OutStr) const {
if (!StoredDiagMessage.empty()) {
OutStr.append(StoredDiagMessage.begin(), StoredDiagMessage.end());
return;
}
StringRef Diag =
getDiags()->getDiagnosticIDs()->getDescription(getID());
FormatDiagnostic(Diag.begin(), Diag.end(), OutStr);
}
void DiagnosticInfo::
FormatDiagnostic(const char *DiagStr, const char *DiagEnd,
SmallVectorImpl<char> &OutStr) const {
/// FormattedArgs - Keep track of all of the arguments formatted by
/// ConvertArgToString and pass them into subsequent calls to
/// ConvertArgToString, allowing the implementation to avoid redundancies in
/// obvious cases.
SmallVector<Diagnostic::ArgumentValue, 8> FormattedArgs;
/// QualTypeVals - Pass a vector of arrays so that QualType names can be
/// compared to see if more information is needed to be printed.
SmallVector<intptr_t, 2> QualTypeVals;
for (unsigned i = 0, e = getNumArgs(); i < e; ++i)
if (getArgKind(i) == Diagnostic::ak_qualtype)
QualTypeVals.push_back(getRawArg(i));
while (DiagStr != DiagEnd) {
if (DiagStr[0] != '%') {
// Append non-%0 substrings to Str if we have one.
const char *StrEnd = std::find(DiagStr, DiagEnd, '%');
OutStr.append(DiagStr, StrEnd);
DiagStr = StrEnd;
continue;
} else if (ispunct(DiagStr[1])) {
OutStr.push_back(DiagStr[1]); // %% -> %.
DiagStr += 2;
continue;
}
// Skip the %.
++DiagStr;
// This must be a placeholder for a diagnostic argument. The format for a
// placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0".
// The digit is a number from 0-9 indicating which argument this comes from.
// The modifier is a string of digits from the set [-a-z]+, arguments is a
// brace enclosed string.
const char *Modifier = 0, *Argument = 0;
unsigned ModifierLen = 0, ArgumentLen = 0;
// Check to see if we have a modifier. If so eat it.
if (!isdigit(DiagStr[0])) {
Modifier = DiagStr;
while (DiagStr[0] == '-' ||
(DiagStr[0] >= 'a' && DiagStr[0] <= 'z'))
++DiagStr;
ModifierLen = DiagStr-Modifier;
// If we have an argument, get it next.
if (DiagStr[0] == '{') {
++DiagStr; // Skip {.
Argument = DiagStr;
DiagStr = ScanFormat(DiagStr, DiagEnd, '}');
assert(DiagStr != DiagEnd && "Mismatched {}'s in diagnostic string!");
ArgumentLen = DiagStr-Argument;
++DiagStr; // Skip }.
}
}
assert(isdigit(*DiagStr) && "Invalid format for argument in diagnostic");
unsigned ArgNo = *DiagStr++ - '0';
Diagnostic::ArgumentKind Kind = getArgKind(ArgNo);
switch (Kind) {
// ---- STRINGS ----
case Diagnostic::ak_std_string: {
const std::string &S = getArgStdStr(ArgNo);
assert(ModifierLen == 0 && "No modifiers for strings yet");
OutStr.append(S.begin(), S.end());
break;
}
case Diagnostic::ak_c_string: {
const char *S = getArgCStr(ArgNo);
assert(ModifierLen == 0 && "No modifiers for strings yet");
// Don't crash if get passed a null pointer by accident.
if (!S)
S = "(null)";
OutStr.append(S, S + strlen(S));
break;
}
// ---- INTEGERS ----
case Diagnostic::ak_sint: {
int Val = getArgSInt(ArgNo);
if (ModifierIs(Modifier, ModifierLen, "select")) {
HandleSelectModifier(*this, (unsigned)Val, Argument, ArgumentLen,
OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "s")) {
HandleIntegerSModifier(Val, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "plural")) {
HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen,
OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "ordinal")) {
HandleOrdinalModifier((unsigned)Val, OutStr);
} else {
assert(ModifierLen == 0 && "Unknown integer modifier");
llvm::raw_svector_ostream(OutStr) << Val;
}
break;
}
case Diagnostic::ak_uint: {
unsigned Val = getArgUInt(ArgNo);
if (ModifierIs(Modifier, ModifierLen, "select")) {
HandleSelectModifier(*this, Val, Argument, ArgumentLen, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "s")) {
HandleIntegerSModifier(Val, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "plural")) {
HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen,
OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "ordinal")) {
HandleOrdinalModifier(Val, OutStr);
} else {
assert(ModifierLen == 0 && "Unknown integer modifier");
llvm::raw_svector_ostream(OutStr) << Val;
}
break;
}
// ---- NAMES and TYPES ----
case Diagnostic::ak_identifierinfo: {
const IdentifierInfo *II = getArgIdentifier(ArgNo);
assert(ModifierLen == 0 && "No modifiers for strings yet");
// Don't crash if get passed a null pointer by accident.
if (!II) {
const char *S = "(null)";
OutStr.append(S, S + strlen(S));
continue;
}
llvm::raw_svector_ostream(OutStr) << '\'' << II->getName() << '\'';
break;
}
case Diagnostic::ak_qualtype:
case Diagnostic::ak_declarationname:
case Diagnostic::ak_nameddecl:
case Diagnostic::ak_nestednamespec:
case Diagnostic::ak_declcontext:
getDiags()->ConvertArgToString(Kind, getRawArg(ArgNo),
Modifier, ModifierLen,
Argument, ArgumentLen,
FormattedArgs.data(), FormattedArgs.size(),
OutStr, QualTypeVals);
break;
}
// Remember this argument info for subsequent formatting operations. Turn
// std::strings into a null terminated string to make it be the same case as
// all the other ones.
if (Kind != Diagnostic::ak_std_string)
FormattedArgs.push_back(std::make_pair(Kind, getRawArg(ArgNo)));
else
FormattedArgs.push_back(std::make_pair(Diagnostic::ak_c_string,
(intptr_t)getArgStdStr(ArgNo).c_str()));
}
}
StoredDiagnostic::StoredDiagnostic() { }
StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level, unsigned ID,
StringRef Message)
: ID(ID), Level(Level), Loc(), Message(Message) { }
StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level,
const DiagnosticInfo &Info)
: ID(Info.getID()), Level(Level)
{
assert((Info.getLocation().isInvalid() || Info.hasSourceManager()) &&
"Valid source location without setting a source manager for diagnostic");
if (Info.getLocation().isValid())
Loc = FullSourceLoc(Info.getLocation(), Info.getSourceManager());
llvm::SmallString<64> Message;
Info.FormatDiagnostic(Message);
this->Message.assign(Message.begin(), Message.end());
Ranges.reserve(Info.getNumRanges());
for (unsigned I = 0, N = Info.getNumRanges(); I != N; ++I)
Ranges.push_back(Info.getRange(I));
FixIts.reserve(Info.getNumFixItHints());
for (unsigned I = 0, N = Info.getNumFixItHints(); I != N; ++I)
FixIts.push_back(Info.getFixItHint(I));
}
StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level, unsigned ID,
StringRef Message, FullSourceLoc Loc,
ArrayRef<CharSourceRange> Ranges,
ArrayRef<FixItHint> Fixits)
: ID(ID), Level(Level), Loc(Loc), Message(Message)
{
this->Ranges.assign(Ranges.begin(), Ranges.end());
this->FixIts.assign(FixIts.begin(), FixIts.end());
}
StoredDiagnostic::~StoredDiagnostic() { }
/// IncludeInDiagnosticCounts - This method (whose default implementation
/// returns true) indicates whether the diagnostics handled by this
/// DiagnosticClient should be included in the number of diagnostics
/// reported by Diagnostic.
bool DiagnosticClient::IncludeInDiagnosticCounts() const { return true; }
PartialDiagnostic::StorageAllocator::StorageAllocator() {
for (unsigned I = 0; I != NumCached; ++I)
FreeList[I] = Cached + I;
NumFreeListEntries = NumCached;
}
PartialDiagnostic::StorageAllocator::~StorageAllocator() {
// Don't assert if we are in a CrashRecovery context, as this
// invariant may be invalidated during a crash.
assert((NumFreeListEntries == NumCached || llvm::CrashRecoveryContext::isRecoveringFromCrash()) && "A partial is on the lamb");
}