blob: f35fe813d0d14e9dd181f0ecd846ce63ffe6a6c7 [file] [log] [blame]
//===-- GRConstants.cpp - Simple, Path-Sens. Constant Prop. ------*- C++ -*-==//
//
// The LLValM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Constant Propagation via Graph Reachability
//
// This files defines a simple analysis that performs path-sensitive
// constant propagation within a function. An example use of this analysis
// is to perform simple checks for NULL dereferences.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GREngine.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
//===----------------------------------------------------------------------===//
/// ValueKey - A variant smart pointer that wraps either a ValueDecl* or a
/// Stmt*. Use cast<> or dyn_cast<> to get actual pointer type
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN ValueKey {
uintptr_t Raw;
public:
enum Kind { IsSubExp=0x0, IsBlkExpr=0x1, IsDecl=0x2, Flags=0x3 };
inline void* getPtr() const { return reinterpret_cast<void*>(Raw & ~Flags); }
inline Kind getKind() const { return (Kind) (Raw & Flags); }
ValueKey(const ValueDecl* VD)
: Raw(reinterpret_cast<uintptr_t>(VD) | IsDecl) {}
ValueKey(Stmt* S, bool isBlkExpr = false)
: Raw(reinterpret_cast<uintptr_t>(S) | (isBlkExpr ? IsBlkExpr : IsSubExp)){}
bool isSubExpr() const { return getKind() == IsSubExp; }
bool isDecl() const { return getKind() == IsDecl; }
inline void Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddPointer(getPtr());
ID.AddInteger((unsigned) getKind());
}
inline bool operator==(const ValueKey& X) const {
return getPtr() == X.getPtr();
}
inline bool operator!=(const ValueKey& X) const {
return !operator==(X);
}
inline bool operator<(const ValueKey& X) const {
Kind k = getKind(), Xk = X.getKind();
if (k == IsDecl) {
if (Xk != IsDecl)
return false;
}
else {
if (Xk == IsDecl)
return true;
}
return getPtr() < X.getPtr();
}
};
} // end anonymous namespace
// Machinery to get cast<> and dyn_cast<> working with ValueKey.
namespace llvm {
template<> inline bool isa<ValueDecl,ValueKey>(const ValueKey& V) {
return V.getKind() == ValueKey::IsDecl;
}
template<> inline bool isa<Stmt,ValueKey>(const ValueKey& V) {
return ((unsigned) V.getKind()) != ValueKey::IsDecl;
}
template<> struct VISIBILITY_HIDDEN cast_retty_impl<ValueDecl,ValueKey> {
typedef const ValueDecl* ret_type;
};
template<> struct VISIBILITY_HIDDEN cast_retty_impl<Stmt,ValueKey> {
typedef const Stmt* ret_type;
};
template<> struct VISIBILITY_HIDDEN simplify_type<ValueKey> {
typedef void* SimpleType;
static inline SimpleType getSimplifiedValue(const ValueKey &V) {
return V.getPtr();
}
};
} // end llvm namespace
//===----------------------------------------------------------------------===//
// ValueManager.
//===----------------------------------------------------------------------===//
namespace {
typedef llvm::ImmutableSet<llvm::APSInt > APSIntSetTy;
class VISIBILITY_HIDDEN ValueManager {
APSIntSetTy::Factory APSIntSetFactory;
ASTContext* Ctx;
public:
ValueManager() {}
~ValueManager() {}
void setContext(ASTContext* ctx) { Ctx = ctx; }
ASTContext* getContext() const { return Ctx; }
APSIntSetTy GetEmptyAPSIntSet() {
return APSIntSetFactory.GetEmptySet();
}
APSIntSetTy AddToSet(const APSIntSetTy& Set, const llvm::APSInt& Val) {
return APSIntSetFactory.Add(Set, Val);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Expression Values.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN ExprValue {
public:
enum Kind { // L-Values.
LValueDeclKind = 0x0,
// Special "Invalid" value.
InvalidValueKind = 0x1,
// R-Values.
RValueMayEqualSetKind = 0x2,
// Note that the Lvalue and RValue "kinds" overlap;
// the "InvalidValue" class can be used either as
// an LValue or RValue.
MinLValueKind = 0x0, MaxLValueKind = 0x1,
MinRValueKind = 0x1, MaxRValueKind = 0x2 };
private:
enum Kind kind;
void* Data;
protected:
ExprValue(Kind k, void* d) : kind(k), Data(d) {}
void* getRawPtr() const { return Data; }
public:
~ExprValue() {};
ExprValue EvalCast(ValueManager& ValMgr, Expr* CastExpr) const;
void Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddInteger((unsigned) getKind());
ID.AddPointer(Data);
}
bool operator==(const ExprValue& RHS) const {
return kind == RHS.kind && Data == RHS.Data;
}
Kind getKind() const { return kind; }
bool isValid() const { return getKind() != InvalidValueKind; }
void print(std::ostream& OS) const;
void print() const { print(*llvm::cerr.stream()); }
// Implement isa<T> support.
static inline bool classof(const ExprValue*) { return true; }
};
class VISIBILITY_HIDDEN InvalidValue : public ExprValue {
public:
InvalidValue() : ExprValue(InvalidValueKind, NULL) {}
static inline bool classof(const ExprValue* V) {
return V->getKind() == InvalidValueKind;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// "R-Values": Interface.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN RValue : public ExprValue {
protected:
RValue(Kind k, void* d) : ExprValue(k,d) {}
public:
RValue EvalAdd(ValueManager& ValMgr, const RValue& RHS) const;
RValue EvalSub(ValueManager& ValMgr, const RValue& RHS) const;
RValue EvalMul(ValueManager& ValMgr, const RValue& RHS) const;
RValue EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const;
static RValue GetRValue(ValueManager& ValMgr, const llvm::APSInt& V);
static RValue GetRValue(ValueManager& ValMgr, IntegerLiteral* I);
// Implement isa<T> support.
static inline bool classof(const ExprValue* V) {
return V->getKind() >= MinRValueKind;
}
};
class VISIBILITY_HIDDEN RValueMayEqualSet : public RValue {
public:
RValueMayEqualSet(const APSIntSetTy& S)
: RValue(RValueMayEqualSetKind, S.getRoot()) {}
APSIntSetTy GetValues() const {
return APSIntSetTy(reinterpret_cast<APSIntSetTy::TreeTy*>(getRawPtr()));
}
RValueMayEqualSet EvalAdd(ValueManager& ValMgr,
const RValueMayEqualSet& V) const;
RValueMayEqualSet EvalSub(ValueManager& ValMgr,
const RValueMayEqualSet& V) const;
RValueMayEqualSet EvalMul(ValueManager& ValMgr,
const RValueMayEqualSet& V) const;
RValueMayEqualSet EvalCast(ValueManager& ValMgr, Expr* CastExpr) const;
RValueMayEqualSet EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const;
// Implement isa<T> support.
static inline bool classof(const ExprValue* V) {
return V->getKind() == RValueMayEqualSetKind;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Transfer functions: Casts.
//===----------------------------------------------------------------------===//
ExprValue ExprValue::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const {
switch (getKind()) {
case RValueMayEqualSetKind:
return cast<RValueMayEqualSet>(this)->EvalCast(ValMgr, CastExpr);
default:
return InvalidValue();
}
}
RValueMayEqualSet
RValueMayEqualSet::EvalCast(ValueManager& ValMgr, Expr* CastExpr) const {
QualType T = CastExpr->getType();
assert (T->isIntegerType());
APSIntSetTy S1 = GetValues();
APSIntSetTy S2 = ValMgr.GetEmptyAPSIntSet();
for (APSIntSetTy::iterator I=S1.begin(), E=S1.end(); I!=E; ++I) {
llvm::APSInt X = *I;
X.setIsSigned(T->isSignedIntegerType());
X.extOrTrunc(ValMgr.getContext()->getTypeSize(T,CastExpr->getLocStart()));
S2 = ValMgr.AddToSet(S2, X);
}
return S2;
}
//===----------------------------------------------------------------------===//
// Transfer functions: Unary Operations over R-Values.
//===----------------------------------------------------------------------===//
RValue RValue::EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const {
switch (getKind()) {
case RValueMayEqualSetKind:
return cast<RValueMayEqualSet>(this)->EvalMinus(ValMgr, U);
default:
return cast<RValue>(InvalidValue());
}
}
RValueMayEqualSet
RValueMayEqualSet::EvalMinus(ValueManager& ValMgr, UnaryOperator* U) const {
assert (U->getType() == U->getSubExpr()->getType());
assert (U->getType()->isIntegerType());
APSIntSetTy S1 = GetValues();
APSIntSetTy S2 = ValMgr.GetEmptyAPSIntSet();
for (APSIntSetTy::iterator I=S1.begin(), E=S1.end(); I!=E; ++I) {
assert ((*I).isSigned());
// FIXME: Shouldn't operator- on APSInt return an APSInt with the proper
// sign?
llvm::APSInt X(-(*I));
X.setIsSigned(true);
S2 = ValMgr.AddToSet(S2, X);
}
return S2;
}
//===----------------------------------------------------------------------===//
// Transfer functions: Binary Operations over R-Values.
//===----------------------------------------------------------------------===//
#define RVALUE_DISPATCH_CASE(k1,k2,Op)\
case ((k1##Kind+(MaxRValueKind-MinRValueKind))+(k2##Kind - MinRValueKind)):\
return cast<k1>(*this).Eval##Op(ValMgr,cast<k2>(RHS));
#define RVALUE_DISPATCH(Op)\
switch (getKind()+(MaxRValueKind-MinRValueKind)+(RHS.getKind()-MinRValueKind)){\
RVALUE_DISPATCH_CASE(RValueMayEqualSet,RValueMayEqualSet,Op)\
default:\
assert (!isValid() || !RHS.isValid() && "Missing case.");\
break;\
}\
return cast<RValue>(InvalidValue());
RValue RValue::EvalAdd(ValueManager& ValMgr, const RValue& RHS) const {
RVALUE_DISPATCH(Add)
}
RValue RValue::EvalSub(ValueManager& ValMgr, const RValue& RHS) const {
RVALUE_DISPATCH(Sub)
}
RValue RValue::EvalMul(ValueManager& ValMgr, const RValue& RHS) const {
RVALUE_DISPATCH(Mul)
}
#undef RVALUE_DISPATCH_CASE
#undef RVALUE_DISPATCH
RValueMayEqualSet
RValueMayEqualSet::EvalAdd(ValueManager& ValMgr,
const RValueMayEqualSet& RHS) const {
APSIntSetTy S1 = GetValues();
APSIntSetTy S2 = RHS.GetValues();
APSIntSetTy M = ValMgr.GetEmptyAPSIntSet();
for (APSIntSetTy::iterator I1=S1.begin(), E1=S2.end(); I1!=E1; ++I1)
for (APSIntSetTy::iterator I2=S2.begin(), E2=S2.end(); I2!=E2; ++I2) {
// FIXME: operator- on APSInt is really operator* on APInt, which loses
// the "signess" information (although the bits are correct).
const llvm::APSInt& X = *I1;
llvm::APSInt Y = X + *I2;
Y.setIsSigned(X.isSigned());
M = ValMgr.AddToSet(M, Y);
}
return M;
}
RValueMayEqualSet
RValueMayEqualSet::EvalSub(ValueManager& ValMgr,
const RValueMayEqualSet& RHS) const {
APSIntSetTy S1 = GetValues();
APSIntSetTy S2 = RHS.GetValues();
APSIntSetTy M = ValMgr.GetEmptyAPSIntSet();
for (APSIntSetTy::iterator I1=S1.begin(), E1=S2.end(); I1!=E1; ++I1)
for (APSIntSetTy::iterator I2=S2.begin(), E2=S2.end(); I2!=E2; ++I2) {
// FIXME: operator- on APSInt is really operator* on APInt, which loses
// the "signess" information (although the bits are correct).
const llvm::APSInt& X = *I1;
llvm::APSInt Y = X - *I2;
Y.setIsSigned(X.isSigned());
M = ValMgr.AddToSet(M, Y);
}
return M;
}
RValueMayEqualSet
RValueMayEqualSet::EvalMul(ValueManager& ValMgr,
const RValueMayEqualSet& RHS) const {
APSIntSetTy S1 = GetValues();
APSIntSetTy S2 = RHS.GetValues();
APSIntSetTy M = ValMgr.GetEmptyAPSIntSet();
for (APSIntSetTy::iterator I1=S1.begin(), E1=S2.end(); I1!=E1; ++I1)
for (APSIntSetTy::iterator I2=S2.begin(), E2=S2.end(); I2!=E2; ++I2) {
// FIXME: operator* on APSInt is really operator* on APInt, which loses
// the "signess" information (although the bits are correct).
const llvm::APSInt& X = *I1;
llvm::APSInt Y = X * *I2;
Y.setIsSigned(X.isSigned());
M = ValMgr.AddToSet(M, Y);
}
return M;
}
RValue RValue::GetRValue(ValueManager& ValMgr, const llvm::APSInt& V) {
return RValueMayEqualSet(ValMgr.AddToSet(ValMgr.GetEmptyAPSIntSet(), V));
}
RValue RValue::GetRValue(ValueManager& ValMgr, IntegerLiteral* I) {
llvm::APSInt X(I->getValue());
X.setIsSigned(I->getType()->isSignedIntegerType());
return GetRValue(ValMgr, X);
}
//===----------------------------------------------------------------------===//
// "L-Values".
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN LValue : public ExprValue {
protected:
LValue(Kind k, void* D) : ExprValue(k, D) {}
public:
// Implement isa<T> support.
static inline bool classof(const ExprValue* V) {
return V->getKind() <= MaxLValueKind;
}
};
class VISIBILITY_HIDDEN LValueDecl : public LValue {
public:
LValueDecl(const ValueDecl* vd)
: LValue(LValueDeclKind,const_cast<ValueDecl*>(vd)) {}
ValueDecl* getDecl() const {
return static_cast<ValueDecl*>(getRawPtr());
}
// Implement isa<T> support.
static inline bool classof(const ExprValue* V) {
return V->getKind() == LValueDeclKind;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Pretty-Printing.
//===----------------------------------------------------------------------===//
void ExprValue::print(std::ostream& Out) const {
switch (getKind()) {
case InvalidValueKind:
Out << "Invalid"; break;
case RValueMayEqualSetKind: {
APSIntSetTy S = cast<RValueMayEqualSet>(this)->GetValues();
bool first = true;
for (APSIntSetTy::iterator I=S.begin(), E=S.end(); I!=E; ++I) {
if (first) first = false;
else Out << " | ";
Out << (*I).toString();
}
break;
}
default:
assert (false && "Pretty-printed not implemented for this ExprValue.");
break;
}
}
//===----------------------------------------------------------------------===//
// ValueMapTy - A ImmutableMap type Stmt*/Decl* to ExprValues.
//===----------------------------------------------------------------------===//
typedef llvm::ImmutableMap<ValueKey,ExprValue> ValueMapTy;
namespace clang {
template<>
struct VISIBILITY_HIDDEN GRTrait<ValueMapTy> {
static inline void* toPtr(ValueMapTy M) {
return reinterpret_cast<void*>(M.getRoot());
}
static inline ValueMapTy toState(void* P) {
return ValueMapTy(static_cast<ValueMapTy::TreeTy*>(P));
}
};
}
//===----------------------------------------------------------------------===//
// The Checker!
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN GRConstants {
public:
typedef ValueMapTy StateTy;
typedef GRNodeBuilder<GRConstants> NodeBuilder;
typedef ExplodedNode<StateTy> NodeTy;
class NodeSet {
typedef llvm::SmallVector<NodeTy*,3> ImplTy;
ImplTy Impl;
public:
NodeSet() {}
NodeSet(NodeTy* N) { assert (N && !N->isInfeasible()); Impl.push_back(N); }
void Add(NodeTy* N) { if (N && !N->isInfeasible()) Impl.push_back(N); }
typedef ImplTy::iterator iterator;
typedef ImplTy::const_iterator const_iterator;
unsigned size() const { return Impl.size(); }
bool empty() const { return Impl.empty(); }
iterator begin() { return Impl.begin(); }
iterator end() { return Impl.end(); }
const_iterator begin() const { return Impl.begin(); }
const_iterator end() const { return Impl.end(); }
};
protected:
/// Liveness - live-variables information the ValueDecl* and block-level
/// Expr* in the CFG. Used to prune out dead state.
LiveVariables* Liveness;
/// Builder - The current GRNodeBuilder which is used when building the nodes
/// for a given statement.
NodeBuilder* Builder;
/// StateMgr - Object that manages the data for all created states.
ValueMapTy::Factory StateMgr;
/// ValueMgr - Object that manages the data for all created ExprValues.
ValueManager ValMgr;
/// cfg - the current CFG.
CFG* cfg;
/// StmtEntryNode - The immediate predecessor node.
NodeTy* StmtEntryNode;
/// CurrentStmt - The current block-level statement.
Stmt* CurrentStmt;
bool StateCleaned;
ASTContext* getContext() const { return ValMgr.getContext(); }
public:
GRConstants() : Liveness(NULL), Builder(NULL), cfg(NULL),
StmtEntryNode(NULL), CurrentStmt(NULL) {}
~GRConstants() { delete Liveness; }
/// getCFG - Returns the CFG associated with this analysis.
CFG& getCFG() { assert (cfg); return *cfg; }
/// Initialize - Initialize the checker's state based on the specified
/// CFG. This results in liveness information being computed for
/// each block-level statement in the CFG.
void Initialize(CFG& c, ASTContext& ctx) {
cfg = &c;
ValMgr.setContext(&ctx);
Liveness = new LiveVariables(c);
Liveness->runOnCFG(c);
Liveness->runOnAllBlocks(c, NULL, true);
}
/// getInitialState - Return the initial state used for the root vertex
/// in the ExplodedGraph.
StateTy getInitialState() {
return StateMgr.GetEmptyMap();
}
/// ProcessStmt - Called by GREngine. Used to generate new successor
/// nodes by processing the 'effects' of a block-level statement.
void ProcessStmt(Stmt* S, NodeBuilder& builder);
/// RemoveDeadBindings - Return a new state that is the same as 'M' except
/// that all subexpression mappings are removed and that any
/// block-level expressions that are not live at 'S' also have their
/// mappings removed.
StateTy RemoveDeadBindings(Stmt* S, StateTy M);
StateTy SetValue(StateTy St, Stmt* S, const ExprValue& V);
StateTy SetValue(StateTy St, const Stmt* S, const ExprValue& V) {
return SetValue(St, const_cast<Stmt*>(S), V);
}
StateTy SetValue(StateTy St, const LValue& LV, const ExprValue& V);
ExprValue GetValue(const StateTy& St, Stmt* S);
inline ExprValue GetValue(const StateTy& St, const Stmt* S) {
return GetValue(St, const_cast<Stmt*>(S));
}
ExprValue GetValue(const StateTy& St, const LValue& LV);
LValue GetLValue(const StateTy& St, Stmt* S);
void Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St);
/// Visit - Transfer function logic for all statements. Dispatches to
/// other functions that handle specific kinds of statements.
void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst);
/// VisitCast - Transfer function logic for all casts (implicit and explicit).
void VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst);
/// VisitUnaryOperator - Transfer function logic for unary operators.
void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitBinaryOperator - Transfer function logic for binary operators.
void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitDeclStmt - Transfer function logic for DeclStmts.
void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst);
};
} // end anonymous namespace
void GRConstants::ProcessStmt(Stmt* S, NodeBuilder& builder) {
Builder = &builder;
StmtEntryNode = builder.getLastNode();
CurrentStmt = S;
NodeSet Dst;
StateCleaned = false;
Visit(S, StmtEntryNode, Dst);
// If no nodes were generated, generate a new node that has all the
// dead mappings removed.
if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) {
StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState());
builder.generateNode(S, St, StmtEntryNode);
}
CurrentStmt = NULL;
StmtEntryNode = NULL;
Builder = NULL;
}
ExprValue GRConstants::GetValue(const StateTy& St, const LValue& LV) {
switch (LV.getKind()) {
case ExprValue::LValueDeclKind: {
StateTy::TreeTy* T = St.SlimFind(cast<LValueDecl>(LV).getDecl());
return T ? T->getValue().second : InvalidValue();
}
default:
assert (false && "Invalid LValue.");
break;
}
return InvalidValue();
}
ExprValue GRConstants::GetValue(const StateTy& St, Stmt* S) {
for (;;) {
switch (S->getStmtClass()) {
case Stmt::ParenExprClass:
S = cast<ParenExpr>(S)->getSubExpr();
continue;
case Stmt::DeclRefExprClass:
return GetValue(St, LValueDecl(cast<DeclRefExpr>(S)->getDecl()));
case Stmt::IntegerLiteralClass:
return RValue::GetRValue(ValMgr, cast<IntegerLiteral>(S));
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
default:
break;
};
break;
}
StateTy::TreeTy* T = St.SlimFind(S);
return T ? T->getValue().second : InvalidValue();
}
LValue GRConstants::GetLValue(const StateTy& St, Stmt* S) {
if (Expr* E = dyn_cast<Expr>(S))
S = E->IgnoreParens();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S))
return LValueDecl(DR->getDecl());
return cast<LValue>(GetValue(St, S));
}
GRConstants::StateTy GRConstants::SetValue(StateTy St, Stmt* S,
const ExprValue& V) {
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
bool isBlkExpr = S == CurrentStmt && getCFG().isBlkExpr(S);
return V.isValid() ? StateMgr.Add(St, ValueKey(S,isBlkExpr), V)
: St;
}
GRConstants::StateTy GRConstants::SetValue(StateTy St, const LValue& LV,
const ExprValue& V) {
if (!LV.isValid())
return St;
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
switch (LV.getKind()) {
case ExprValue::LValueDeclKind:
return V.isValid() ? StateMgr.Add(St, cast<LValueDecl>(LV).getDecl(), V)
: StateMgr.Remove(St, cast<LValueDecl>(LV).getDecl());
default:
assert ("SetValue for given LValue type not yet implemented.");
return St;
}
}
GRConstants::StateTy GRConstants::RemoveDeadBindings(Stmt* Loc, StateTy M) {
#if 0
// Note: in the code below, we can assign a new map to M since the
// iterators are iterating over the tree of the *original* map.
StateTy::iterator I = M.begin(), E = M.end();
// Remove old bindings for subexpressions and "dead" block-level expressions.
for (; I!=E && !I.getKey().isDecl(); ++I) {
if (I.getKey().isSubExpr() || !Liveness->isLive(Loc,cast<Stmt>(I.getKey())))
M = StateMgr.Remove(M, I.getKey());
}
// Remove bindings for "dead" decls.
for (; I!=E ; ++I) {
assert (I.getKey().isDecl());
if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
if (!Liveness->isLive(Loc, V))
M = StateMgr.Remove(M, I.getKey());
}
#endif
return M;
}
void GRConstants::Nodify(NodeSet& Dst, Stmt* S, GRConstants::NodeTy* Pred,
GRConstants::StateTy St) {
// If the state hasn't changed, don't generate a new node.
if (St == Pred->getState())
return;
Dst.Add(Builder->generateNode(S, St, Pred));
}
void GRConstants::VisitCast(Expr* CastE, Expr* E, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
QualType T = CastE->getType();
// Check for redundant casts.
if (E->getType() == T) {
Dst.Add(Pred);
return;
}
NodeSet S1;
Visit(E, Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
StateTy St = N->getState();
const ExprValue& V = GetValue(St, E);
Nodify(Dst, CastE, N, SetValue(St, CastE, V.EvalCast(ValMgr, CastE)));
}
}
void GRConstants::VisitDeclStmt(DeclStmt* DS, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
StateTy St = Pred->getState();
for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator())
if (const VarDecl* VD = dyn_cast<VarDecl>(D))
St = SetValue(St, LValueDecl(VD), GetValue(St, VD->getInit()));
Nodify(Dst, DS, Pred, St);
if (Dst.empty())
Dst.Add(Pred);
}
void GRConstants::VisitUnaryOperator(UnaryOperator* U,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
Visit(U->getSubExpr(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
StateTy St = N1->getState();
switch (U->getOpcode()) {
case UnaryOperator::PostInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
RValue R1 = cast<RValue>(GetValue(St, L1));
QualType T = U->getType();
unsigned bits = getContext()->getTypeSize(T, U->getLocStart());
llvm::APSInt One(llvm::APInt(bits, 1), T->isUnsignedIntegerType());
RValue R2 = RValue::GetRValue(ValMgr, One);
RValue Result = R1.EvalAdd(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PostDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
RValue R1 = cast<RValue>(GetValue(St, L1));
QualType T = U->getType();
unsigned bits = getContext()->getTypeSize(T, U->getLocStart());
llvm::APSInt One(llvm::APInt(bits, 1), T->isUnsignedIntegerType());
RValue R2 = RValue::GetRValue(ValMgr, One);
RValue Result = R1.EvalSub(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PreInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
RValue R1 = cast<RValue>(GetValue(St, L1));
QualType T = U->getType();
unsigned bits = getContext()->getTypeSize(T, U->getLocStart());
llvm::APSInt One(llvm::APInt(bits, 1), T->isUnsignedIntegerType());
RValue R2 = RValue::GetRValue(ValMgr, One);
RValue Result = R1.EvalAdd(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::PreDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
RValue R1 = cast<RValue>(GetValue(St, L1));
QualType T = U->getType();
unsigned bits = getContext()->getTypeSize(T, U->getLocStart());
llvm::APSInt One(llvm::APInt(bits, 1), T->isUnsignedIntegerType());
RValue R2 = RValue::GetRValue(ValMgr, One);
RValue Result = R1.EvalSub(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::Minus: {
const RValue& R1 = cast<RValue>(GetValue(St, U->getSubExpr()));
Nodify(Dst, U, N1, SetValue(St, U, R1.EvalMinus(ValMgr, U)));
break;
}
default: ;
assert (false && "Not implemented.");
}
}
}
void GRConstants::VisitBinaryOperator(BinaryOperator* B,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
Visit(B->getLHS(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
// When getting the value for the LHS, check if we are in an assignment.
// In such cases, we want to (initially) treat the LHS as an LValue,
// so we use GetLValue instead of GetValue so that DeclRefExpr's are
// evaluated to LValueDecl's instead of to an RValue.
const ExprValue& V1 =
B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS())
: GetValue(N1->getState(), B->getLHS());
NodeSet S2;
Visit(B->getRHS(), N1, S2);
for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) {
NodeTy* N2 = *I2;
StateTy St = N2->getState();
const ExprValue& V2 = GetValue(St, B->getRHS());
switch (B->getOpcode()) {
case BinaryOperator::Add: {
const RValue& R1 = cast<RValue>(V1);
const RValue& R2 = cast<RValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.EvalAdd(ValMgr, R2)));
break;
}
case BinaryOperator::Sub: {
const RValue& R1 = cast<RValue>(V1);
const RValue& R2 = cast<RValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.EvalSub(ValMgr, R2)));
break;
}
case BinaryOperator::Mul: {
const RValue& R1 = cast<RValue>(V1);
const RValue& R2 = cast<RValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.EvalMul(ValMgr, R2)));
break;
}
case BinaryOperator::Assign: {
const LValue& L1 = cast<LValue>(V1);
const RValue& R2 = cast<RValue>(V2);
Nodify(Dst, B, N2, SetValue(SetValue(St, B, R2), L1, R2));
break;
}
case BinaryOperator::AddAssign: {
const LValue& L1 = cast<LValue>(V1);
RValue R1 = cast<RValue>(GetValue(N1->getState(), L1));
RValue Result = R1.EvalAdd(ValMgr, cast<RValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::SubAssign: {
const LValue& L1 = cast<LValue>(V1);
RValue R1 = cast<RValue>(GetValue(N1->getState(), L1));
RValue Result = R1.EvalSub(ValMgr, cast<RValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::MulAssign: {
const LValue& L1 = cast<LValue>(V1);
RValue R1 = cast<RValue>(GetValue(N1->getState(), L1));
RValue Result = R1.EvalMul(ValMgr, cast<RValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
default:
Dst.Add(N2);
break;
}
}
}
}
void GRConstants::Visit(Stmt* S, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
case Stmt::BinaryOperatorClass:
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst);
break;
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst);
break;
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
default:
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
}
}
//===----------------------------------------------------------------------===//
// Driver.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRConstants::NodeTy*> :
public DefaultDOTGraphTraits {
static void PrintKind(std::ostringstream& Out, ValueKey::Kind kind) {
switch (kind) {
case ValueKey::IsSubExp: Out << "Sub-Expressions:\\l"; break;
case ValueKey::IsDecl: Out << "Variables:\\l"; break;
case ValueKey::IsBlkExpr: Out << "Block-level Expressions:\\l"; break;
default: assert (false && "Unknown ValueKey type.");
}
}
static std::string getNodeLabel(const GRConstants::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::PostStmtKind: {
const PostStmt& L = cast<PostStmt>(Loc);
Out << "(" << (void*) L.getStmt() << ") ";
L.getStmt()->printPretty(Out);
break;
}
default: {
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
}
}
Out << "\\|";
GRConstants::StateTy M = N->getState();
bool isFirst = true;
ValueKey::Kind kind;
for (GRConstants::StateTy::iterator I=M.begin(), E=M.end(); I!=E; ++I) {
if (!isFirst) {
ValueKey::Kind newKind = I.getKey().getKind();
if (newKind != kind) {
Out << "\\l\\l";
PrintKind(Out, newKind);
}
else
Out << "\\l";
kind = newKind;
}
else {
kind = I.getKey().getKind();
PrintKind(Out, kind);
isFirst = false;
}
Out << ' ';
if (ValueDecl* V = dyn_cast<ValueDecl>(I.getKey())) {
Out << V->getName();
}
else {
Stmt* E = cast<Stmt>(I.getKey());
Out << " (" << (void*) E << ") ";
E->printPretty(Out);
}
Out << " : ";
I.getData().print(Out);
}
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
namespace clang {
void RunGRConstants(CFG& cfg, ASTContext& Ctx) {
GREngine<GRConstants> Engine(cfg, Ctx);
Engine.ExecuteWorkList();
#ifndef NDEBUG
llvm::ViewGraph(*Engine.getGraph().roots_begin(),"GRConstants");
#endif
}
} // end clang namespace