| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Builtins.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Scope.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/DenseSet.h" |
| using namespace clang; |
| |
| Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const { |
| Decl *IIDecl = II.getFETokenInfo<Decl>(); |
| // Find first occurance of none-tagged declaration |
| while(IIDecl && IIDecl->getIdentifierNamespace() != Decl::IDNS_Ordinary) |
| IIDecl = cast<ScopedDecl>(IIDecl)->getNext(); |
| if (!IIDecl) |
| return 0; |
| if (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl)) |
| return IIDecl; |
| if (ObjCCompatibleAliasDecl *ADecl = |
| dyn_cast<ObjCCompatibleAliasDecl>(IIDecl)) |
| return ADecl->getClassInterface(); |
| return 0; |
| } |
| |
| void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
| if (S->decl_empty()) return; |
| assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!"); |
| |
| for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); |
| I != E; ++I) { |
| Decl *TmpD = static_cast<Decl*>(*I); |
| assert(TmpD && "This decl didn't get pushed??"); |
| ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD); |
| assert(D && "This decl isn't a ScopedDecl?"); |
| |
| IdentifierInfo *II = D->getIdentifier(); |
| if (!II) continue; |
| |
| // Unlink this decl from the identifier. Because the scope contains decls |
| // in an unordered collection, and because we have multiple identifier |
| // namespaces (e.g. tag, normal, label),the decl may not be the first entry. |
| if (II->getFETokenInfo<Decl>() == D) { |
| // Normal case, no multiple decls in different namespaces. |
| II->setFETokenInfo(D->getNext()); |
| } else { |
| // Scan ahead. There are only three namespaces in C, so this loop can |
| // never execute more than 3 times. |
| ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>(); |
| while (SomeDecl->getNext() != D) { |
| SomeDecl = SomeDecl->getNext(); |
| assert(SomeDecl && "Didn't find this decl on its identifier's chain!"); |
| } |
| SomeDecl->setNext(D->getNext()); |
| } |
| |
| // This will have to be revisited for C++: there we want to nest stuff in |
| // namespace decls etc. Even for C, we might want a top-level translation |
| // unit decl or something. |
| if (!CurFunctionDecl) |
| continue; |
| |
| // Chain this decl to the containing function, it now owns the memory for |
| // the decl. |
| D->setNext(CurFunctionDecl->getDeclChain()); |
| CurFunctionDecl->setDeclChain(D); |
| } |
| } |
| |
| /// LookupInterfaceDecl - Lookup interface declaration in the scope chain. |
| /// Return the first declaration found (which may or may not be a class |
| /// declaration. Caller is responsible for handling the none-class case. |
| /// Bypassing the alias of a class by returning the aliased class. |
| ScopedDecl *Sema::LookupInterfaceDecl(IdentifierInfo *ClassName) { |
| ScopedDecl *IDecl; |
| // Scan up the scope chain looking for a decl that matches this identifier |
| // that is in the appropriate namespace. |
| for (IDecl = ClassName->getFETokenInfo<ScopedDecl>(); IDecl; |
| IDecl = IDecl->getNext()) |
| if (IDecl->getIdentifierNamespace() == Decl::IDNS_Ordinary) |
| break; |
| |
| if (ObjCCompatibleAliasDecl *ADecl = |
| dyn_cast_or_null<ObjCCompatibleAliasDecl>(IDecl)) |
| return ADecl->getClassInterface(); |
| return IDecl; |
| } |
| |
| /// getObjCInterfaceDecl - Look up a for a class declaration in the scope. |
| /// return 0 if one not found. |
| ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) { |
| ScopedDecl *IdDecl = LookupInterfaceDecl(Id); |
| return cast_or_null<ObjCInterfaceDecl>(IdDecl); |
| } |
| |
| /// LookupScopedDecl - Look up the inner-most declaration in the specified |
| /// namespace. |
| ScopedDecl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI, |
| SourceLocation IdLoc, Scope *S) { |
| if (II == 0) return 0; |
| Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI; |
| |
| // Scan up the scope chain looking for a decl that matches this identifier |
| // that is in the appropriate namespace. This search should not take long, as |
| // shadowing of names is uncommon, and deep shadowing is extremely uncommon. |
| for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext()) |
| if (D->getIdentifierNamespace() == NS) |
| return D; |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NS == Decl::IDNS_Ordinary) { |
| // If this is a builtin on some other target, or if this builtin varies |
| // across targets (e.g. in type), emit a diagnostic and mark the translation |
| // unit non-portable for using it. |
| if (II->isNonPortableBuiltin()) { |
| // Only emit this diagnostic once for this builtin. |
| II->setNonPortableBuiltin(false); |
| Context.Target.DiagnoseNonPortability(Context.getFullLoc(IdLoc), |
| diag::port_target_builtin_use); |
| } |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) |
| return LazilyCreateBuiltin(II, BuiltinID, S); |
| } |
| return 0; |
| } |
| |
| void Sema::InitBuiltinVaListType() |
| { |
| if (!Context.getBuiltinVaListType().isNull()) |
| return; |
| |
| IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list"); |
| ScopedDecl *VaDecl = LookupScopedDecl(VaIdent, Decl::IDNS_Ordinary, |
| SourceLocation(), TUScope); |
| TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl); |
| Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef)); |
| } |
| |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope. |
| /// lazily create a decl for it. |
| ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, |
| Scope *S) { |
| Builtin::ID BID = (Builtin::ID)bid; |
| |
| if (BID == Builtin::BI__builtin_va_start || |
| BID == Builtin::BI__builtin_va_copy || |
| BID == Builtin::BI__builtin_va_end) |
| InitBuiltinVaListType(); |
| |
| QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context); |
| FunctionDecl *New = new FunctionDecl(SourceLocation(), II, R, |
| FunctionDecl::Extern, false, 0); |
| |
| // Find translation-unit scope to insert this function into. |
| if (Scope *FnS = S->getFnParent()) |
| S = FnS->getParent(); // Skip all scopes in a function at once. |
| while (S->getParent()) |
| S = S->getParent(); |
| S->AddDecl(New); |
| |
| // Add this decl to the end of the identifier info. |
| if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) { |
| // Scan until we find the last (outermost) decl in the id chain. |
| while (LastDecl->getNext()) |
| LastDecl = LastDecl->getNext(); |
| // Insert before (outside) it. |
| LastDecl->setNext(New); |
| } else { |
| II->setFETokenInfo(New); |
| } |
| return New; |
| } |
| |
| /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, ScopedDecl *OldD) { |
| // Verify the old decl was also a typedef. |
| TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| // Allow multiple definitions for ObjC built-in typedefs. |
| // FIXME: Verify the underlying types are equivalent! |
| if (getLangOptions().ObjC1 && isBuiltinObjCType(New)) |
| return Old; |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| /// MergeFunctionDecl - We just parsed a function 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, ScopedDecl *OldD) { |
| // Verify the old decl was also a function. |
| FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| QualType OldQType = Old->getCanonicalType(); |
| QualType NewQType = New->getCanonicalType(); |
| |
| // This is not right, but it's a start. |
| // If Old is a function prototype with no defined arguments we only compare |
| // the return type; If arguments are defined on the prototype we validate the |
| // entire function type. |
| // FIXME: We should link up decl objects here. |
| if (Old->getBody() == 0) { |
| if (OldQType.getTypePtr()->getTypeClass() == Type::FunctionNoProto && |
| Old->getResultType() == New->getResultType()) |
| return New; |
| } |
| // Function types need to be compatible, not identical. This handles |
| // duplicate function decls like "void f(int); void f(enum X);" properly. |
| if (Context.functionTypesAreCompatible(OldQType, NewQType)) |
| return New; |
| |
| // A function that has already been declared has been redeclared or defined |
| // with a different type- show appropriate diagnostic |
| diag::kind PrevDiag = Old->getBody() ? diag::err_previous_definition : |
| diag::err_previous_declaration; |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_conflicting_types, New->getName()); |
| Diag(Old->getLocation(), PrevDiag); |
| return New; |
| } |
| |
| |
| /// hasUndefinedLength - Used by equivalentArrayTypes to determine whether the |
| /// the outermost VariableArrayType has no size defined. |
| static bool hasUndefinedLength(const ArrayType *Array) { |
| const VariableArrayType *VAT = Array->getAsVariableArrayType(); |
| return VAT && !VAT->getSizeExpr(); |
| } |
| |
| /// equivalentArrayTypes - Used to determine whether two array types are |
| /// equivalent. |
| /// We need to check this explicitly as an incomplete array definition is |
| /// considered a VariableArrayType, so will not match a complete array |
| /// definition that would be otherwise equivalent. |
| static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) { |
| const ArrayType *NewAT = NewQType->getAsArrayType(); |
| const ArrayType *OldAT = OldQType->getAsArrayType(); |
| |
| if (!NewAT || !OldAT) |
| return false; |
| |
| // If either (or both) array types in incomplete we need to strip off the |
| // outer VariableArrayType. Once the outer VAT is removed the remaining |
| // types must be identical if the array types are to be considered |
| // equivalent. |
| // eg. int[][1] and int[1][1] become |
| // VAT(null, CAT(1, int)) and CAT(1, CAT(1, int)) |
| // removing the outermost VAT gives |
| // CAT(1, int) and CAT(1, int) |
| // which are equal, therefore the array types are equivalent. |
| if (hasUndefinedLength(NewAT) || hasUndefinedLength(OldAT)) { |
| if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier()) |
| return false; |
| NewQType = NewAT->getElementType(); |
| OldQType = OldAT->getElementType(); |
| } |
| |
| return NewQType == OldQType; |
| } |
| |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| /// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2). |
| /// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4. |
| /// |
| VarDecl *Sema::MergeVarDecl(VarDecl *New, ScopedDecl *OldD) { |
| // Verify the old decl was also a variable. |
| VarDecl *Old = dyn_cast<VarDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old); |
| FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New); |
| bool OldIsTentative = false; |
| |
| if (OldFSDecl && NewFSDecl) { // C99 6.9.2 |
| // Handle C "tentative" external object definitions. FIXME: finish! |
| if (!OldFSDecl->getInit() && |
| (OldFSDecl->getStorageClass() == VarDecl::None || |
| OldFSDecl->getStorageClass() == VarDecl::Static)) |
| OldIsTentative = true; |
| } |
| // Verify the types match. |
| if (Old->getCanonicalType() != New->getCanonicalType() && |
| !areEquivalentArrayTypes(New->getCanonicalType(), Old->getCanonicalType())) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| // We've verified the types match, now check if Old is "extern". |
| if (Old->getStorageClass() != VarDecl::Extern) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| } |
| return New; |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. |
| Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { |
| // TODO: emit error on 'int;' or 'const enum foo;'. |
| // TODO: emit error on 'typedef int;' |
| // if (!DS.isMissingDeclaratorOk()) Diag(...); |
| |
| return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep())); |
| } |
| |
| bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) { |
| // Get the type before calling CheckSingleAssignmentConstraints(), since |
| // it can promote the expression. |
| QualType InitType = Init->getType(); |
| |
| AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init); |
| return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType, |
| InitType, Init, "initializing"); |
| } |
| |
| bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot, |
| QualType ElementType) { |
| Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer. |
| if (CheckSingleInitializer(expr, ElementType)) |
| return true; // types weren't compatible. |
| |
| if (savExpr != expr) // The type was promoted, update initializer list. |
| IList->setInit(slot, expr); |
| return false; |
| } |
| |
| void Sema::CheckVariableInitList(QualType DeclType, InitListExpr *IList, |
| QualType ElementType, |
| int &nInitializers, bool &hadError) { |
| unsigned numInits = IList->getNumInits(); |
| |
| if (numInits) { |
| if (CheckForCharArrayInitializer(IList, ElementType, nInitializers, |
| false, hadError)) |
| return; |
| |
| for (unsigned i = 0; i < numInits; i++) { |
| Expr *expr = IList->getInit(i); |
| |
| if (InitListExpr *InitList = dyn_cast<InitListExpr>(expr)) { |
| if (const ConstantArrayType *CAT = DeclType->getAsConstantArrayType()) { |
| int maxElements = CAT->getMaximumElements(); |
| CheckConstantInitList(DeclType, InitList, ElementType, |
| maxElements, hadError); |
| } |
| } else { |
| hadError = CheckInitExpr(expr, IList, i, ElementType); |
| } |
| nInitializers++; |
| } |
| } else { |
| Diag(IList->getLocStart(), |
| diag::err_at_least_one_initializer_needed_to_size_array); |
| hadError = true; |
| } |
| } |
| |
| bool Sema::CheckForCharArrayInitializer(InitListExpr *IList, |
| QualType ElementType, |
| int &nInitializers, bool isConstant, |
| bool &hadError) |
| { |
| if (ElementType->isPointerType()) |
| return false; |
| |
| if (StringLiteral *literal = dyn_cast<StringLiteral>(IList->getInit(0))) { |
| // FIXME: Handle wide strings |
| if (ElementType->isCharType()) { |
| if (isConstant) { |
| if (literal->getByteLength() > (unsigned)nInitializers) { |
| Diag(literal->getSourceRange().getBegin(), |
| diag::warn_initializer_string_for_char_array_too_long, |
| literal->getSourceRange()); |
| } |
| } else { |
| nInitializers = literal->getByteLength() + 1; |
| } |
| } else { |
| // FIXME: It might be better if we could point to the declaration |
| // here, instead of the string literal. |
| Diag(literal->getSourceRange().getBegin(), |
| diag::array_of_wrong_type_initialized_from_string, |
| ElementType.getAsString()); |
| hadError = true; |
| } |
| |
| // Check for excess initializers |
| for (unsigned i = 1; i < IList->getNumInits(); i++) { |
| Expr *expr = IList->getInit(i); |
| Diag(expr->getLocStart(), |
| diag::err_excess_initializers_in_char_array_initializer, |
| expr->getSourceRange()); |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // FIXME: Doesn't deal with arrays of structures yet. |
| void Sema::CheckConstantInitList(QualType DeclType, InitListExpr *IList, |
| QualType ElementType, |
| int &totalInits, bool &hadError) { |
| int maxElementsAtThisLevel = 0; |
| int nInitsAtLevel = 0; |
| |
| if (ElementType->isRecordType()) // FIXME: until we support structures... |
| return; |
| |
| if (const ConstantArrayType *CAT = DeclType->getAsConstantArrayType()) { |
| // We have a constant array type, compute maxElements *at this level*. |
| maxElementsAtThisLevel = CAT->getMaximumElements(); |
| // Set DeclType, used below to recurse (for multi-dimensional arrays). |
| DeclType = CAT->getElementType(); |
| } else if (DeclType->isScalarType()) { |
| if (const VectorType *VT = DeclType->getAsVectorType()) |
| maxElementsAtThisLevel = VT->getNumElements(); |
| else { |
| Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init, |
| IList->getSourceRange()); |
| maxElementsAtThisLevel = 1; |
| } |
| } |
| // The empty init list "{ }" is treated specially below. |
| unsigned numInits = IList->getNumInits(); |
| if (numInits) { |
| if (CheckForCharArrayInitializer(IList, ElementType, |
| maxElementsAtThisLevel, |
| true, hadError)) |
| return; |
| |
| for (unsigned i = 0; i < numInits; i++) { |
| Expr *expr = IList->getInit(i); |
| |
| if (InitListExpr *InitList = dyn_cast<InitListExpr>(expr)) { |
| CheckConstantInitList(DeclType, InitList, ElementType, |
| totalInits, hadError); |
| } else { |
| hadError = CheckInitExpr(expr, IList, i, ElementType); |
| nInitsAtLevel++; // increment the number of initializers at this level. |
| totalInits--; // decrement the total number of initializers. |
| |
| // Check if we have space for another initializer. |
| if (((nInitsAtLevel > maxElementsAtThisLevel) || (totalInits < 0))) |
| Diag(expr->getLocStart(), diag::warn_excess_initializers, |
| expr->getSourceRange()); |
| } |
| } |
| if (nInitsAtLevel < maxElementsAtThisLevel) // fill the remaining elements. |
| totalInits -= (maxElementsAtThisLevel - nInitsAtLevel); |
| } else { |
| // we have an initializer list with no elements. |
| totalInits -= maxElementsAtThisLevel; |
| if (totalInits < 0) |
| Diag(IList->getLocStart(), diag::warn_excess_initializers, |
| IList->getSourceRange()); |
| } |
| } |
| |
| bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) { |
| if (const VariableArrayType *VAT = DeclT->getAsIncompleteArrayType()) { |
| // C99 6.7.8p14. We have an array of character type with unknown size |
| // being initialized to a string literal. |
| llvm::APSInt ConstVal(32); |
| ConstVal = strLiteral->getByteLength() + 1; |
| // Return a new array type (C99 6.7.8p22). |
| DeclT = Context.getConstantArrayType(VAT->getElementType(), ConstVal, |
| ArrayType::Normal, 0); |
| } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) { |
| // C99 6.7.8p14. We have an array of character type with known size. |
| if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements()) |
| Diag(strLiteral->getSourceRange().getBegin(), |
| diag::warn_initializer_string_for_char_array_too_long, |
| strLiteral->getSourceRange()); |
| } else { |
| assert(0 && "HandleStringLiteralInit(): Invalid array type"); |
| } |
| // Set type from "char *" to "constant array of char". |
| strLiteral->setType(DeclT); |
| // For now, we always return false (meaning success). |
| return false; |
| } |
| |
| StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) { |
| StringLiteral *strLiteral = dyn_cast<StringLiteral>(Init); |
| const ArrayType *AT = DeclType->getAsArrayType(); |
| if (strLiteral && (AT && AT->getElementType()->isCharType())) |
| return strLiteral; |
| return 0; |
| } |
| |
| bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) { |
| bool hadError = false; |
| |
| // C99 6.7.8p3: The type of the entity to be initialized shall be an array |
| // of unknown size ("[]") or an object type that is not a variable array type. |
| if (const VariableArrayType *VAT = DeclType->getAsVariablyModifiedType()) |
| return Diag(VAT->getSizeExpr()->getLocStart(), |
| diag::err_variable_object_no_init, |
| VAT->getSizeExpr()->getSourceRange()); |
| |
| InitListExpr *InitList = dyn_cast<InitListExpr>(Init); |
| if (!InitList) { |
| // FIXME: Handle wide strings |
| if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType)) |
| return CheckStringLiteralInit(strLiteral, DeclType); |
| return CheckSingleInitializer(Init, DeclType); |
| } |
| // We have an InitListExpr, make sure we set the type. |
| Init->setType(DeclType); |
| |
| // C99 6.7.8p3: The type of the entity to be initialized shall be an array |
| // of unknown size ("[]") or an object type that is not a variable array type. |
| if (const VariableArrayType *VAT = DeclType->getAsIncompleteArrayType()) { |
| |
| // We have a VariableArrayType with unknown size. Note that only the first |
| // array can have unknown size. For example, "int [][]" is illegal. |
| int numInits = 0; |
| CheckVariableInitList(VAT->getElementType(), InitList, VAT->getBaseType(), |
| numInits, hadError); |
| llvm::APSInt ConstVal(32); |
| |
| if (!hadError) |
| ConstVal = numInits; |
| |
| // Return a new array type from the number of initializers (C99 6.7.8p22). |
| |
| // Note that if there was an error, we will still set the decl type, |
| // to an array type with 0 elements. |
| // This is to avoid "incomplete type foo[]" errors when we've already |
| // reported the real cause of the error. |
| DeclType = Context.getConstantArrayType(VAT->getElementType(), ConstVal, |
| ArrayType::Normal, 0); |
| return hadError; |
| } |
| if (const ConstantArrayType *CAT = DeclType->getAsConstantArrayType()) { |
| int maxElements = CAT->getMaximumElements(); |
| CheckConstantInitList(DeclType, InitList, CAT->getBaseType(), |
| maxElements, hadError); |
| return hadError; |
| } |
| if (const VectorType *VT = DeclType->getAsVectorType()) { |
| int maxElements = VT->getNumElements(); |
| CheckConstantInitList(DeclType, InitList, VT->getElementType(), |
| maxElements, hadError); |
| return hadError; |
| } |
| if (DeclType->isScalarType()) { // C99 6.7.8p11: Allow "int x = { 1, 2 };" |
| int maxElements = 1; |
| CheckConstantInitList(DeclType, InitList, DeclType, maxElements, hadError); |
| return hadError; |
| } |
| // FIXME: Handle struct/union types, including those appearing in a |
| // CompoundLiteralExpr... |
| return hadError; |
| } |
| |
| Sema::DeclTy * |
| Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) { |
| ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl); |
| IdentifierInfo *II = D.getIdentifier(); |
| |
| // All of these full declarators require an identifier. If it doesn't have |
| // one, the ParsedFreeStandingDeclSpec action should be used. |
| if (II == 0) { |
| Diag(D.getDeclSpec().getSourceRange().getBegin(), |
| diag::err_declarator_need_ident, |
| D.getDeclSpec().getSourceRange(), D.getSourceRange()); |
| return 0; |
| } |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // See if this is a redefinition of a variable in the same scope. |
| ScopedDecl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary, |
| D.getIdentifierLoc(), S); |
| ScopedDecl *New; |
| bool InvalidDecl = false; |
| |
| QualType R = GetTypeForDeclarator(D, S); |
| assert(!R.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator); |
| if (!NewTD) return 0; |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(), |
| D.getAttributes()); |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| if (PrevDecl && S->isDeclScope(PrevDecl)) { |
| NewTD = MergeTypeDefDecl(NewTD, PrevDecl); |
| if (NewTD == 0) return 0; |
| } |
| New = NewTD; |
| if (S->getParent() == 0) { |
| // C99 6.7.7p2: If a typedef name specifies a variably modified type |
| // then it shall have block scope. |
| if (const VariableArrayType *VAT = |
| NewTD->getUnderlyingType()->getAsVariablyModifiedType()) { |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla, |
| VAT->getSizeExpr()->getSourceRange()); |
| InvalidDecl = true; |
| } |
| } |
| } else if (R.getTypePtr()->isFunctionType()) { |
| FunctionDecl::StorageClass SC = FunctionDecl::None; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_auto: |
| case DeclSpec::SCS_register: |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func, |
| R.getAsString()); |
| InvalidDecl = true; |
| break; |
| case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break; |
| case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = FunctionDecl::Static; break; |
| } |
| |
| FunctionDecl *NewFD = new FunctionDecl(D.getIdentifierLoc(), II, R, SC, |
| D.getDeclSpec().isInlineSpecified(), |
| LastDeclarator, |
| D.getDeclSpec().getAttributes()); |
| |
| // Transfer ownership of DeclSpec attributes to FunctionDecl |
| D.getDeclSpec().clearAttributes(); |
| |
| // Merge the decl with the existing one if appropriate. Since C functions |
| // are in a flat namespace, make sure we consider decls in outer scopes. |
| if (PrevDecl) { |
| NewFD = MergeFunctionDecl(NewFD, PrevDecl); |
| if (NewFD == 0) return 0; |
| } |
| New = NewFD; |
| } else { |
| if (R.getTypePtr()->isObjCInterfaceType()) { |
| Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object, |
| D.getIdentifier()->getName()); |
| InvalidDecl = true; |
| } |
| |
| VarDecl *NewVD; |
| VarDecl::StorageClass SC; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; |
| case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = VarDecl::Static; break; |
| case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; |
| case DeclSpec::SCS_register: SC = VarDecl::Register; break; |
| } |
| if (S->getParent() == 0) { |
| // C99 6.9p2: The storage-class specifiers auto and register shall not |
| // appear in the declaration specifiers in an external declaration. |
| if (SC == VarDecl::Auto || SC == VarDecl::Register) { |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope, |
| R.getAsString()); |
| InvalidDecl = true; |
| } |
| NewVD = new FileVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator); |
| } else { |
| NewVD = new BlockVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator); |
| } |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(), |
| D.getAttributes()); |
| |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| if (PrevDecl && S->isDeclScope(PrevDecl)) { |
| NewVD = MergeVarDecl(NewVD, PrevDecl); |
| if (NewVD == 0) return 0; |
| } |
| New = NewVD; |
| } |
| |
| // If this has an identifier, add it to the scope stack. |
| if (II) { |
| New->setNext(II->getFETokenInfo<ScopedDecl>()); |
| II->setFETokenInfo(New); |
| S->AddDecl(New); |
| } |
| // If any semantic error occurred, mark the decl as invalid. |
| if (D.getInvalidType() || InvalidDecl) |
| New->setInvalidDecl(); |
| |
| return New; |
| } |
| |
| bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { |
| SourceLocation loc; |
| // FIXME: Remove the isReference check and handle assignment to a reference. |
| if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) { |
| assert(loc.isValid() && "isConstantExpr didn't return a loc!"); |
| Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| return false; |
| } |
| |
| void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) { |
| Decl *RealDecl = static_cast<Decl *>(dcl); |
| Expr *Init = static_cast<Expr *>(init); |
| assert(Init && "missing initializer"); |
| |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (RealDecl == 0) { |
| delete Init; |
| return; |
| } |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(), |
| diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| // Get the decls type and save a reference for later, since |
| // CheckInitializerTypes may change it. |
| QualType DclT = VDecl->getType(), SavT = DclT; |
| if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) { |
| VarDecl::StorageClass SC = BVD->getStorageClass(); |
| if (SC == VarDecl::Extern) { // C99 6.7.8p5 |
| Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
| BVD->setInvalidDecl(); |
| } else if (!BVD->isInvalidDecl()) { |
| CheckInitializerTypes(Init, DclT); |
| if (SC == VarDecl::Static) // C99 6.7.8p4. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) { |
| if (FVD->getStorageClass() == VarDecl::Extern) |
| Diag(VDecl->getLocation(), diag::warn_extern_init); |
| if (!FVD->isInvalidDecl()) |
| CheckInitializerTypes(Init, DclT); |
| |
| // C99 6.7.8p4. All file scoped initializers need to be constant. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| // If the type changed, it means we had an incomplete type that was |
| // completed by the initializer. For example: |
| // int ary[] = { 1, 3, 5 }; |
| // "ary" transitions from a VariableArrayType to a ConstantArrayType. |
| if (!VDecl->isInvalidDecl() && (DclT != SavT)) { |
| VDecl->setType(DclT); |
| Init->setType(DclT); |
| } |
| |
| // Attach the initializer to the decl. |
| VDecl->setInit(Init); |
| return; |
| } |
| |
| /// The declarators are chained together backwards, reverse the list. |
| Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) { |
| // Often we have single declarators, handle them quickly. |
| Decl *GroupDecl = static_cast<Decl*>(group); |
| if (GroupDecl == 0) |
| return 0; |
| |
| ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl); |
| ScopedDecl *NewGroup = 0; |
| if (Group->getNextDeclarator() == 0) |
| NewGroup = Group; |
| else { // reverse the list. |
| while (Group) { |
| ScopedDecl *Next = Group->getNextDeclarator(); |
| Group->setNextDeclarator(NewGroup); |
| NewGroup = Group; |
| Group = Next; |
| } |
| } |
| // Perform semantic analysis that depends on having fully processed both |
| // the declarator and initializer. |
| for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) { |
| VarDecl *IDecl = dyn_cast<VarDecl>(ID); |
| if (!IDecl) |
| continue; |
| FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl); |
| BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl); |
| QualType T = IDecl->getType(); |
| |
| // C99 6.7.5.2p2: If an identifier is declared to be an object with |
| // static storage duration, it shall not have a variable length array. |
| if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) { |
| if (const VariableArrayType *VLA = T->getAsVariableArrayType()) { |
| if (VLA->getSizeExpr()) { |
| Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| } |
| // Block scope. C99 6.7p7: If an identifier for an object is declared with |
| // no linkage (C99 6.2.2p6), the type for the object shall be complete... |
| if (BVD && IDecl->getStorageClass() != VarDecl::Extern) { |
| if (T->isIncompleteType()) { |
| Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type, |
| T.getAsString()); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| // File scope. C99 6.9.2p2: A declaration of an identifier for and |
| // object that has file scope without an initializer, and without a |
| // storage-class specifier or with the storage-class specifier "static", |
| // constitutes a tentative definition. Note: A tentative definition with |
| // external linkage is valid (C99 6.2.2p5). |
| if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static || |
| FVD->getStorageClass() == VarDecl::None)) { |
| const VariableArrayType *VAT = T->getAsVariableArrayType(); |
| |
| if (VAT && VAT->getSizeExpr() == 0) { |
| // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete |
| // array to be completed. Don't issue a diagnostic. |
| } else if (T->isIncompleteType()) { |
| // C99 6.9.2p3: If the declaration of an identifier for an object is |
| // a tentative definition and has internal linkage (C99 6.2.2p3), the |
| // declared type shall not be an incomplete type. |
| Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type, |
| T.getAsString()); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| } |
| return NewGroup; |
| } |
| |
| // Called from Sema::ParseStartOfFunctionDef(). |
| ParmVarDecl * |
| Sema::ActOnParamDeclarator(struct DeclaratorChunk::ParamInfo &PI, Scope *FnScope) |
| { |
| IdentifierInfo *II = PI.Ident; |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // Can this happen for params? We already checked that they don't conflict |
| // among each other. Here they can only shadow globals, which is ok. |
| if (/*Decl *PrevDecl = */LookupScopedDecl(II, Decl::IDNS_Ordinary, |
| PI.IdentLoc, FnScope)) { |
| |
| } |
| |
| // FIXME: Handle storage class (auto, register). No declarator? |
| // TODO: Chain to previous parameter with the prevdeclarator chain? |
| |
| // Perform the default function/array conversion (C99 6.7.5.3p[7,8]). |
| // Doing the promotion here has a win and a loss. The win is the type for |
| // both Decl's and DeclRefExpr's will match (a convenient invariant for the |
| // code generator). The loss is the orginal type isn't preserved. For example: |
| // |
| // void func(int parmvardecl[5]) { // convert "int [5]" to "int *" |
| // int blockvardecl[5]; |
| // sizeof(parmvardecl); // size == 4 |
| // sizeof(blockvardecl); // size == 20 |
| // } |
| // |
| // For expressions, all implicit conversions are captured using the |
| // ImplicitCastExpr AST node (we have no such mechanism for Decl's). |
| // |
| // FIXME: If a source translation tool needs to see the original type, then |
| // we need to consider storing both types (in ParmVarDecl)... |
| // |
| QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo); |
| if (const ArrayType *AT = parmDeclType->getAsArrayType()) { |
| // int x[restrict 4] -> int *restrict |
| parmDeclType = Context.getPointerType(AT->getElementType()); |
| parmDeclType = parmDeclType.getQualifiedType(AT->getIndexTypeQualifier()); |
| } else if (parmDeclType->isFunctionType()) |
| parmDeclType = Context.getPointerType(parmDeclType); |
| |
| ParmVarDecl *New = new ParmVarDecl(PI.IdentLoc, II, parmDeclType, |
| VarDecl::None, 0, PI.AttrList); |
| if (PI.InvalidType) |
| New->setInvalidDecl(); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (II) { |
| New->setNext(II->getFETokenInfo<ScopedDecl>()); |
| II->setFETokenInfo(New); |
| FnScope->AddDecl(New); |
| } |
| |
| return New; |
| } |
| |
| Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { |
| assert(CurFunctionDecl == 0 && "Function parsing confused"); |
| assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' |
| // for a K&R function. |
| if (!FTI.hasPrototype) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { |
| if (FTI.ArgInfo[i].TypeInfo == 0) { |
| Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared, |
| FTI.ArgInfo[i].Ident->getName()); |
| // Implicitly declare the argument as type 'int' for lack of a better |
| // type. |
| FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr(); |
| } |
| } |
| |
| // Since this is a function definition, act as though we have information |
| // about the arguments. |
| FTI.hasPrototype = true; |
| } else { |
| // FIXME: Diagnose arguments without names in C. |
| |
| } |
| |
| Scope *GlobalScope = FnBodyScope->getParent(); |
| |
| // See if this is a redefinition. |
| ScopedDecl *PrevDcl = LookupScopedDecl(D.getIdentifier(), Decl::IDNS_Ordinary, |
| D.getIdentifierLoc(), GlobalScope); |
| if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) { |
| if (FD->getBody()) { |
| Diag(D.getIdentifierLoc(), diag::err_redefinition, |
| D.getIdentifier()->getName()); |
| Diag(FD->getLocation(), diag::err_previous_definition); |
| } |
| } |
| FunctionDecl *FD = |
| static_cast<FunctionDecl*>(ActOnDeclarator(GlobalScope, D, 0)); |
| assert(FD != 0 && "ActOnDeclarator() didn't return a FunctionDecl"); |
| CurFunctionDecl = FD; |
| |
| // Create Decl objects for each parameter, adding them to the FunctionDecl. |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes |
| // no arguments, not a function that takes a single void argument. |
| if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| !QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo).getQualifiers() && |
| QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo)->isVoidType()) { |
| // empty arg list, don't push any params. |
| } else { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { |
| Params.push_back(ActOnParamDeclarator(D.getTypeObject(0).Fun.ArgInfo[i], |
| FnBodyScope)); |
| } |
| } |
| |
| FD->setParams(&Params[0], Params.size()); |
| |
| return FD; |
| } |
| |
| Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) { |
| Decl *dcl = static_cast<Decl *>(D); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) { |
| FD->setBody((Stmt*)Body); |
| assert(FD == CurFunctionDecl && "Function parsing confused"); |
| CurFunctionDecl = 0; |
| } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) { |
| MD->setBody((Stmt*)Body); |
| CurMethodDecl = 0; |
| } |
| // Verify and clean out per-function state. |
| |
| // Check goto/label use. |
| for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator |
| I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) { |
| // Verify that we have no forward references left. If so, there was a goto |
| // or address of a label taken, but no definition of it. Label fwd |
| // definitions are indicated with a null substmt. |
| if (I->second->getSubStmt() == 0) { |
| LabelStmt *L = I->second; |
| // Emit error. |
| Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName()); |
| |
| // At this point, we have gotos that use the bogus label. Stitch it into |
| // the function body so that they aren't leaked and that the AST is well |
| // formed. |
| L->setSubStmt(new NullStmt(L->getIdentLoc())); |
| cast<CompoundStmt>((Stmt*)Body)->push_back(L); |
| } |
| } |
| LabelMap.clear(); |
| |
| return D; |
| } |
| |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
| ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
| IdentifierInfo &II, Scope *S) { |
| if (getLangOptions().C99) // Extension in C99. |
| Diag(Loc, diag::ext_implicit_function_decl, II.getName()); |
| else // Legal in C90, but warn about it. |
| Diag(Loc, diag::warn_implicit_function_decl, II.getName()); |
| |
| // FIXME: handle stuff like: |
| // void foo() { extern float X(); } |
| // void bar() { X(); } <-- implicit decl for X in another scope. |
| |
| // Set a Declarator for the implicit definition: int foo(); |
| const char *Dummy; |
| DeclSpec DS; |
| bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); |
| Error = Error; // Silence warning. |
| assert(!Error && "Error setting up implicit decl!"); |
| Declarator D(DS, Declarator::BlockContext); |
| D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc)); |
| D.SetIdentifier(&II, Loc); |
| |
| // Find translation-unit scope to insert this function into. |
| if (Scope *FnS = S->getFnParent()) |
| S = FnS->getParent(); // Skip all scopes in a function at once. |
| while (S->getParent()) |
| S = S->getParent(); |
| |
| return dyn_cast<ScopedDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0))); |
| } |
| |
| |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, |
| ScopedDecl *LastDeclarator) { |
| assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| // Scope manipulation handled by caller. |
| TypedefDecl *NewTD = new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), |
| T, LastDeclarator); |
| if (D.getInvalidType()) |
| NewTD->setInvalidDecl(); |
| return NewTD; |
| } |
| |
| /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the |
| /// former case, Name will be non-null. In the later case, Name will be null. |
| /// TagType indicates what kind of tag this is. TK indicates whether this is a |
| /// reference/declaration/definition of a tag. |
| Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK, |
| SourceLocation KWLoc, IdentifierInfo *Name, |
| SourceLocation NameLoc, AttributeList *Attr) { |
| // If this is a use of an existing tag, it must have a name. |
| assert((Name != 0 || TK == TK_Definition) && |
| "Nameless record must be a definition!"); |
| |
| Decl::Kind Kind; |
| switch (TagType) { |
| default: assert(0 && "Unknown tag type!"); |
| case DeclSpec::TST_struct: Kind = Decl::Struct; break; |
| case DeclSpec::TST_union: Kind = Decl::Union; break; |
| //case DeclSpec::TST_class: Kind = Decl::Class; break; |
| case DeclSpec::TST_enum: Kind = Decl::Enum; break; |
| } |
| |
| // If this is a named struct, check to see if there was a previous forward |
| // declaration or definition. |
| if (TagDecl *PrevDecl = |
| dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag, |
| NameLoc, S))) { |
| |
| // If this is a use of a previous tag, or if the tag is already declared in |
| // the same scope (so that the definition/declaration completes or |
| // rementions the tag), reuse the decl. |
| if (TK == TK_Reference || S->isDeclScope(PrevDecl)) { |
| // Make sure that this wasn't declared as an enum and now used as a struct |
| // or something similar. |
| if (PrevDecl->getKind() != Kind) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_use); |
| } |
| |
| // If this is a use or a forward declaration, we're good. |
| if (TK != TK_Definition) |
| return PrevDecl; |
| |
| // Diagnose attempts to redefine a tag. |
| if (PrevDecl->isDefinition()) { |
| Diag(NameLoc, diag::err_redefinition, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| // If this is a redefinition, recover by making this struct be |
| // anonymous, which will make any later references get the previous |
| // definition. |
| Name = 0; |
| } else { |
| // Okay, this is definition of a previously declared or referenced tag. |
| // Move the location of the decl to be the definition site. |
| PrevDecl->setLocation(NameLoc); |
| return PrevDecl; |
| } |
| } |
| // If we get here, this is a definition of a new struct type in a nested |
| // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new |
| // type. |
| } |
| |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| |
| // Otherwise, if this is the first time we've seen this tag, create the decl. |
| TagDecl *New; |
| switch (Kind) { |
| default: assert(0 && "Unknown tag kind!"); |
| case Decl::Enum: |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // enum X { A, B, C } D; D should chain to X. |
| New = new EnumDecl(Loc, Name, 0); |
| // If this is an undefined enum, warn. |
| if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum); |
| break; |
| case Decl::Union: |
| case Decl::Struct: |
| case Decl::Class: |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // struct X { int A; } D; D should chain to X. |
| New = new RecordDecl(Kind, Loc, Name, 0); |
| break; |
| } |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Name) { |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // Add it to the decl chain. |
| New->setNext(Name->getFETokenInfo<ScopedDecl>()); |
| Name->setFETokenInfo(New); |
| S->AddDecl(New); |
| } |
| |
| return New; |
| } |
| |
| /// ActOnField - Each field of a struct/union/class is passed into this in order |
| /// to create a FieldDecl object for it. |
| Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagDecl, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth) { |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| |
| if (BitWidth) { |
| // TODO: Validate. |
| //printf("WARNING: BITFIELDS IGNORED!\n"); |
| |
| // 6.7.2.1p3 |
| // 6.7.2.1p4 |
| |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| |
| QualType T = GetTypeForDeclarator(D, S); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| bool InvalidDecl = false; |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (const VariableArrayType *VAT = T->getAsVariablyModifiedType()) { |
| Diag(Loc, diag::err_typecheck_illegal_vla, |
| VAT->getSizeExpr()->getSourceRange()); |
| InvalidDecl = true; |
| } |
| // FIXME: Chain fielddecls together. |
| FieldDecl *NewFD; |
| |
| if (isa<RecordDecl>(static_cast<Decl *>(TagDecl))) |
| NewFD = new FieldDecl(Loc, II, T, BitWidth); |
| else if (isa<ObjCInterfaceDecl>(static_cast<Decl *>(TagDecl)) || |
| isa<ObjCImplementationDecl>(static_cast<Decl *>(TagDecl)) || |
| isa<ObjCCategoryDecl>(static_cast<Decl *>(TagDecl)) || |
| // FIXME: ivars are currently used to model properties, and |
| // properties can appear within a protocol. |
| // See corresponding FIXME in DeclObjC.h:ObjCPropertyDecl. |
| isa<ObjCProtocolDecl>(static_cast<Decl *>(TagDecl))) |
| NewFD = new ObjCIvarDecl(Loc, II, T); |
| else |
| assert(0 && "Sema::ActOnField(): Unknown TagDecl"); |
| |
| if (D.getInvalidType() || InvalidDecl) |
| NewFD->setInvalidDecl(); |
| return NewFD; |
| } |
| |
| /// TranslateIvarVisibility - Translate visibility from a token ID to an |
| /// AST enum value. |
| static ObjCIvarDecl::AccessControl |
| TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
| switch (ivarVisibility) { |
| case tok::objc_private: return ObjCIvarDecl::Private; |
| case tok::objc_public: return ObjCIvarDecl::Public; |
| case tok::objc_protected: return ObjCIvarDecl::Protected; |
| case tok::objc_package: return ObjCIvarDecl::Package; |
| default: assert(false && "Unknown visitibility kind"); |
| } |
| } |
| |
| void Sema::ActOnFields(Scope* S, |
| SourceLocation RecLoc, DeclTy *RecDecl, |
| DeclTy **Fields, unsigned NumFields, |
| SourceLocation LBrac, SourceLocation RBrac, |
| tok::ObjCKeywordKind *visibility) { |
| Decl *EnclosingDecl = static_cast<Decl*>(RecDecl); |
| assert(EnclosingDecl && "missing record or interface decl"); |
| RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); |
| |
| if (Record && Record->isDefinition()) { |
| // Diagnose code like: |
| // struct S { struct S {} X; }; |
| // We discover this when we complete the outer S. Reject and ignore the |
| // outer S. |
| Diag(Record->getLocation(), diag::err_nested_redefinition, |
| Record->getKindName()); |
| Diag(RecLoc, diag::err_previous_definition); |
| Record->setInvalidDecl(); |
| return; |
| } |
| // Verify that all the fields are okay. |
| unsigned NumNamedMembers = 0; |
| llvm::SmallVector<FieldDecl*, 32> RecFields; |
| llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs; |
| |
| for (unsigned i = 0; i != NumFields; ++i) { |
| |
| FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i])); |
| assert(FD && "missing field decl"); |
| |
| // Remember all fields. |
| RecFields.push_back(FD); |
| |
| // Get the type for the field. |
| Type *FDTy = FD->getType().getTypePtr(); |
| |
| // If we have visibility info, make sure the AST is set accordingly. |
| if (visibility) |
| cast<ObjCIvarDecl>(FD)->setAccessControl( |
| TranslateIvarVisibility(visibility[i])); |
| |
| // C99 6.7.2.1p2 - A field may not be a function type. |
| if (FDTy->isFunctionType()) { |
| Diag(FD->getLocation(), diag::err_field_declared_as_function, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // C99 6.7.2.1p2 - A field may not be an incomplete type except... |
| if (FDTy->isIncompleteType()) { |
| if (!Record) { // Incomplete ivar type is always an error. |
| Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (i != NumFields-1 || // ... that the last member ... |
| Record->getKind() != Decl::Struct || // ... of a structure ... |
| !FDTy->isArrayType()) { //... may have incomplete array type. |
| Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (NumNamedMembers < 1) { //... must have more than named member ... |
| Diag(FD->getLocation(), diag::err_flexible_array_empty_struct, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Okay, we have a legal flexible array member at the end of the struct. |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the |
| /// field of another structure or the element of an array. |
| if (const RecordType *FDTTy = FDTy->getAsRecordType()) { |
| if (FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| // If this is a member of a union, then entire union becomes "flexible". |
| if (Record && Record->getKind() == Decl::Union) { |
| Record->setHasFlexibleArrayMember(true); |
| } else { |
| // If this is a struct/class and this is not the last element, reject |
| // it. Note that GCC supports variable sized arrays in the middle of |
| // structures. |
| if (i != NumFields-1) { |
| Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // We support flexible arrays at the end of structs in other structs |
| // as an extension. |
| Diag(FD->getLocation(), diag::ext_flexible_array_in_struct, |
| FD->getName()); |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| } |
| } |
| /// A field cannot be an Objective-c object |
| if (FDTy->isObjCInterfaceType()) { |
| Diag(FD->getLocation(), diag::err_statically_allocated_object, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Keep track of the number of named members. |
| if (IdentifierInfo *II = FD->getIdentifier()) { |
| // Detect duplicate member names. |
| if (!FieldIDs.insert(II)) { |
| Diag(FD->getLocation(), diag::err_duplicate_member, II->getName()); |
| // Find the previous decl. |
| SourceLocation PrevLoc; |
| for (unsigned i = 0, e = RecFields.size(); ; ++i) { |
| assert(i != e && "Didn't find previous def!"); |
| if (RecFields[i]->getIdentifier() == II) { |
| PrevLoc = RecFields[i]->getLocation(); |
| break; |
| } |
| } |
| Diag(PrevLoc, diag::err_previous_definition); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| ++NumNamedMembers; |
| } |
| } |
| |
| // Okay, we successfully defined 'Record'. |
| if (Record) |
| Record->defineBody(&RecFields[0], RecFields.size()); |
| else { |
| ObjCIvarDecl **ClsFields = |
| reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]); |
| if (isa<ObjCInterfaceDecl>(static_cast<Decl*>(RecDecl))) |
| cast<ObjCInterfaceDecl>(static_cast<Decl*>(RecDecl))-> |
| addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac); |
| else if (isa<ObjCImplementationDecl>(static_cast<Decl*>(RecDecl))) { |
| ObjCImplementationDecl* IMPDecl = |
| cast<ObjCImplementationDecl>(static_cast<Decl*>(RecDecl)); |
| assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); |
| IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size()); |
| CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); |
| } |
| } |
| } |
| |
| Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl, |
| DeclTy *lastEnumConst, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| SourceLocation EqualLoc, ExprTy *val) { |
| theEnumDecl = theEnumDecl; // silence unused warning. |
| EnumConstantDecl *LastEnumConst = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst)); |
| Expr *Val = static_cast<Expr*>(val); |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // Verify that there isn't already something declared with this name in this |
| // scope. |
| if (ScopedDecl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary, |
| IdLoc, S)) { |
| if (S->isDeclScope(PrevDecl)) { |
| if (isa<EnumConstantDecl>(PrevDecl)) |
| Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName()); |
| else |
| Diag(IdLoc, diag::err_redefinition, Id->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| // FIXME: Don't leak memory: delete Val; |
| return 0; |
| } |
| } |
| |
| llvm::APSInt EnumVal(32); |
| QualType EltTy; |
| if (Val) { |
| // Make sure to promote the operand type to int. |
| UsualUnaryConversions(Val); |
| |
| // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
| SourceLocation ExpLoc; |
| if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) { |
| Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr, |
| Id->getName()); |
| // FIXME: Don't leak memory: delete Val; |
| Val = 0; // Just forget about it. |
| } else { |
| EltTy = Val->getType(); |
| } |
| } |
| |
| if (!Val) { |
| if (LastEnumConst) { |
| // Assign the last value + 1. |
| EnumVal = LastEnumConst->getInitVal(); |
| ++EnumVal; |
| |
| // Check for overflow on increment. |
| if (EnumVal < LastEnumConst->getInitVal()) |
| Diag(IdLoc, diag::warn_enum_value_overflow); |
| |
| EltTy = LastEnumConst->getType(); |
| } else { |
| // First value, set to zero. |
| EltTy = Context.IntTy; |
| EnumVal.zextOrTrunc( |
| static_cast<uint32_t>(Context.getTypeSize(EltTy, IdLoc))); |
| } |
| } |
| |
| EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, EltTy, Val, EnumVal, |
| LastEnumConst); |
| |
| // Register this decl in the current scope stack. |
| New->setNext(Id->getFETokenInfo<ScopedDecl>()); |
| Id->setFETokenInfo(New); |
| S->AddDecl(New); |
| return New; |
| } |
| |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX, |
| DeclTy **Elements, unsigned NumElements) { |
| EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX)); |
| assert(!Enum->isDefinition() && "Enum redefinitions can't reach here"); |
| |
| // TODO: If the result value doesn't fit in an int, it must be a long or long |
| // long value. ISO C does not support this, but GCC does as an extension, |
| // emit a warning. |
| unsigned IntWidth = |
| Context.Target.getIntWidth(Context.getFullLoc(Enum->getLocation())); |
| |
| |
| // Verify that all the values are okay, compute the size of the values, and |
| // reverse the list. |
| unsigned NumNegativeBits = 0; |
| unsigned NumPositiveBits = 0; |
| |
| // Keep track of whether all elements have type int. |
| bool AllElementsInt = true; |
| |
| EnumConstantDecl *EltList = 0; |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // If the enum value doesn't fit in an int, emit an extension warning. |
| assert(ECD->getInitVal().getBitWidth() >= IntWidth && |
| "Should have promoted value to int"); |
| const llvm::APSInt &InitVal = ECD->getInitVal(); |
| if (InitVal.getBitWidth() > IntWidth) { |
| llvm::APSInt V(InitVal); |
| V.trunc(IntWidth); |
| V.extend(InitVal.getBitWidth()); |
| if (V != InitVal) |
| Diag(ECD->getLocation(), diag::ext_enum_value_not_int, |
| InitVal.toString()); |
| } |
| |
| // Keep track of the size of positive and negative values. |
| if (InitVal.isUnsigned() || !InitVal.isNegative()) |
| NumPositiveBits = std::max(NumPositiveBits, |
| (unsigned)InitVal.getActiveBits()); |
| else |
| NumNegativeBits = std::max(NumNegativeBits, |
| (unsigned)InitVal.getMinSignedBits()); |
| |
| // Keep track of whether every enum element has type int (very commmon). |
| if (AllElementsInt) |
| AllElementsInt = ECD->getType() == Context.IntTy; |
| |
| ECD->setNextDeclarator(EltList); |
| EltList = ECD; |
| } |
| |
| // Figure out the type that should be used for this enum. |
| // FIXME: Support attribute(packed) on enums and -fshort-enums. |
| QualType BestType; |
| unsigned BestWidth; |
| |
| if (NumNegativeBits) { |
| // If there is a negative value, figure out the smallest integer type (of |
| // int/long/longlong) that fits. |
| if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
| BestType = Context.IntTy; |
| BestWidth = IntWidth; |
| } else { |
| BestWidth = |
| Context.Target.getLongWidth(Context.getFullLoc(Enum->getLocation())); |
| |
| if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) |
| BestType = Context.LongTy; |
| else { |
| BestWidth = Context.Target.getLongLongWidth( |
| Context.getFullLoc(Enum->getLocation())); |
| |
| if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
| Diag(Enum->getLocation(), diag::warn_enum_too_large); |
| BestType = Context.LongLongTy; |
| } |
| } |
| } else { |
| // If there is no negative value, figure out which of uint, ulong, ulonglong |
| // fits. |
| if (NumPositiveBits <= IntWidth) { |
| BestType = Context.UnsignedIntTy; |
| BestWidth = IntWidth; |
| } else if (NumPositiveBits <= |
| (BestWidth = Context.Target.getLongWidth( |
| Context.getFullLoc(Enum->getLocation())))) |
| |
| BestType = Context.UnsignedLongTy; |
| else { |
| BestWidth = |
| Context.Target.getLongLongWidth(Context.getFullLoc(Enum->getLocation())); |
| |
| assert(NumPositiveBits <= BestWidth && |
| "How could an initializer get larger than ULL?"); |
| BestType = Context.UnsignedLongLongTy; |
| } |
| } |
| |
| // Loop over all of the enumerator constants, changing their types to match |
| // the type of the enum if needed. |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // Standard C says the enumerators have int type, but we allow, as an |
| // extension, the enumerators to be larger than int size. If each |
| // enumerator value fits in an int, type it as an int, otherwise type it the |
| // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
| // that X has type 'int', not 'unsigned'. |
| if (ECD->getType() == Context.IntTy) |
| continue; // Already int type. |
| |
| // Determine whether the value fits into an int. |
| llvm::APSInt InitVal = ECD->getInitVal(); |
| bool FitsInInt; |
| if (InitVal.isUnsigned() || !InitVal.isNegative()) |
| FitsInInt = InitVal.getActiveBits() < IntWidth; |
| else |
| FitsInInt = InitVal.getMinSignedBits() <= IntWidth; |
| |
| // If it fits into an integer type, force it. Otherwise force it to match |
| // the enum decl type. |
| QualType NewTy; |
| unsigned NewWidth; |
| bool NewSign; |
| if (FitsInInt) { |
| NewTy = Context.IntTy; |
| NewWidth = IntWidth; |
| NewSign = true; |
| } else if (ECD->getType() == BestType) { |
| // Already the right type! |
| continue; |
| } else { |
| NewTy = BestType; |
| NewWidth = BestWidth; |
| NewSign = BestType->isSignedIntegerType(); |
| } |
| |
| // Adjust the APSInt value. |
| InitVal.extOrTrunc(NewWidth); |
| InitVal.setIsSigned(NewSign); |
| ECD->setInitVal(InitVal); |
| |
| // Adjust the Expr initializer and type. |
| ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr())); |
| ECD->setType(NewTy); |
| } |
| |
| Enum->defineElements(EltList, BestType); |
| } |
| |
| Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc, |
| SourceLocation LBrace, |
| SourceLocation RBrace, |
| const char *Lang, |
| unsigned StrSize, |
| DeclTy *D) { |
| LinkageSpecDecl::LanguageIDs Language; |
| Decl *dcl = static_cast<Decl *>(D); |
| if (strncmp(Lang, "\"C\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_c; |
| else if (strncmp(Lang, "\"C++\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_cxx; |
| else { |
| Diag(Loc, diag::err_bad_language); |
| return 0; |
| } |
| |
| // FIXME: Add all the various semantics of linkage specifications |
| return new LinkageSpecDecl(Loc, Language, dcl); |
| } |
| |
| void Sema::HandleDeclAttribute(Decl *New, AttributeList *rawAttr) { |
| const char *attrName = rawAttr->getAttributeName()->getName(); |
| unsigned attrLen = rawAttr->getAttributeName()->getLength(); |
| |
| // Normalize the attribute name, __foo__ becomes foo. |
| if (attrLen > 4 && attrName[0] == '_' && attrName[1] == '_' && |
| attrName[attrLen - 2] == '_' && attrName[attrLen - 1] == '_') { |
| attrName += 2; |
| attrLen -= 4; |
| } |
| |
| if (attrLen == 11 && !memcmp(attrName, "vector_size", 11)) { |
| if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) { |
| QualType newType = HandleVectorTypeAttribute(vDecl->getType(), rawAttr); |
| if (!newType.isNull()) // install the new vector type into the decl |
| vDecl->setType(newType); |
| } |
| if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) { |
| QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(), |
| rawAttr); |
| if (!newType.isNull()) // install the new vector type into the decl |
| tDecl->setUnderlyingType(newType); |
| } |
| } else if (attrLen == 15 && !memcmp(attrName, "ocu_vector_type", 15)) { |
| if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) |
| HandleOCUVectorTypeAttribute(tDecl, rawAttr); |
| else |
| Diag(rawAttr->getAttributeLoc(), |
| diag::err_typecheck_ocu_vector_not_typedef); |
| } else if (attrLen == 7 && !memcmp(attrName, "aligned", 7)) { |
| HandleAlignedAttribute(New, rawAttr); |
| } |
| |
| // FIXME: add other attributes... |
| } |
| |
| void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix, |
| AttributeList *declarator_postfix) { |
| while (declspec_prefix) { |
| HandleDeclAttribute(New, declspec_prefix); |
| declspec_prefix = declspec_prefix->getNext(); |
| } |
| while (declarator_postfix) { |
| HandleDeclAttribute(New, declarator_postfix); |
| declarator_postfix = declarator_postfix->getNext(); |
| } |
| } |
| |
| void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl, |
| AttributeList *rawAttr) { |
| QualType curType = tDecl->getUnderlyingType(); |
| // check the attribute arguments. |
| if (rawAttr->getNumArgs() != 1) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int, |
| sizeExpr->getSourceRange()); |
| return; |
| } |
| // unlike gcc's vector_size attribute, we do not allow vectors to be defined |
| // in conjunction with complex types (pointers, arrays, functions, etc.). |
| Type *canonType = curType.getCanonicalType().getTypePtr(); |
| if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type, |
| curType.getCanonicalType().getAsString()); |
| return; |
| } |
| // unlike gcc's vector_size attribute, the size is specified as the |
| // number of elements, not the number of bytes. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue()); |
| |
| if (vectorSize == 0) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size, |
| sizeExpr->getSourceRange()); |
| return; |
| } |
| // Instantiate/Install the vector type, the number of elements is > 0. |
| tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize)); |
| // Remember this typedef decl, we will need it later for diagnostics. |
| OCUVectorDecls.push_back(tDecl); |
| } |
| |
| QualType Sema::HandleVectorTypeAttribute(QualType curType, |
| AttributeList *rawAttr) { |
| // check the attribute arugments. |
| if (rawAttr->getNumArgs() != 1) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return QualType(); |
| } |
| Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int, |
| sizeExpr->getSourceRange()); |
| return QualType(); |
| } |
| // navigate to the base type - we need to provide for vector pointers, |
| // vector arrays, and functions returning vectors. |
| Type *canonType = curType.getCanonicalType().getTypePtr(); |
| |
| if (canonType->isPointerType() || canonType->isArrayType() || |
| canonType->isFunctionType()) { |
| assert(0 && "HandleVector(): Complex type construction unimplemented"); |
| /* FIXME: rebuild the type from the inside out, vectorizing the inner type. |
| do { |
| if (PointerType *PT = dyn_cast<PointerType>(canonType)) |
| canonType = PT->getPointeeType().getTypePtr(); |
| else if (ArrayType *AT = dyn_cast<ArrayType>(canonType)) |
| canonType = AT->getElementType().getTypePtr(); |
| else if (FunctionType *FT = dyn_cast<FunctionType>(canonType)) |
| canonType = FT->getResultType().getTypePtr(); |
| } while (canonType->isPointerType() || canonType->isArrayType() || |
| canonType->isFunctionType()); |
| */ |
| } |
| // the base type must be integer or float. |
| if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type, |
| curType.getCanonicalType().getAsString()); |
| return QualType(); |
| } |
| unsigned typeSize = static_cast<unsigned>( |
| Context.getTypeSize(curType, rawAttr->getAttributeLoc())); |
| // vecSize is specified in bytes - convert to bits. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8); |
| |
| // the vector size needs to be an integral multiple of the type size. |
| if (vectorSize % typeSize) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_size, |
| sizeExpr->getSourceRange()); |
| return QualType(); |
| } |
| if (vectorSize == 0) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size, |
| sizeExpr->getSourceRange()); |
| return QualType(); |
| } |
| // Since OpenCU requires 3 element vectors (OpenCU 5.1.2), we don't restrict |
| // the number of elements to be a power of two (unlike GCC). |
| // Instantiate the vector type, the number of elements is > 0. |
| return Context.getVectorType(curType, vectorSize/typeSize); |
| } |
| |
| void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr) |
| { |
| // check the attribute arguments. |
| // FIXME: Handle the case where are no arguments. |
| if (rawAttr->getNumArgs() != 1) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| |
| Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0)); |
| llvm::APSInt alignment(32); |
| if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int, |
| alignmentExpr->getSourceRange()); |
| return; |
| } |
| } |