| //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements extra semantic analysis beyond what is enforced |
| // by the C type system. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Analysis/Analyses/FormatString.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/ConvertUTF.h" |
| #include <limits> |
| using namespace clang; |
| using namespace sema; |
| |
| SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, |
| unsigned ByteNo) const { |
| return SL->getLocationOfByte(ByteNo, PP.getSourceManager(), |
| PP.getLangOptions(), PP.getTargetInfo()); |
| } |
| |
| |
| /// CheckablePrintfAttr - does a function call have a "printf" attribute |
| /// and arguments that merit checking? |
| bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) { |
| if (Format->getType() == "printf") return true; |
| if (Format->getType() == "printf0") { |
| // printf0 allows null "format" string; if so don't check format/args |
| unsigned format_idx = Format->getFormatIdx() - 1; |
| // Does the index refer to the implicit object argument? |
| if (isa<CXXMemberCallExpr>(TheCall)) { |
| if (format_idx == 0) |
| return false; |
| --format_idx; |
| } |
| if (format_idx < TheCall->getNumArgs()) { |
| Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts(); |
| if (!Format->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Checks that a call expression's argument count is the desired number. |
| /// This is useful when doing custom type-checking. Returns true on error. |
| static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { |
| unsigned argCount = call->getNumArgs(); |
| if (argCount == desiredArgCount) return false; |
| |
| if (argCount < desiredArgCount) |
| return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args) |
| << 0 /*function call*/ << desiredArgCount << argCount |
| << call->getSourceRange(); |
| |
| // Highlight all the excess arguments. |
| SourceRange range(call->getArg(desiredArgCount)->getLocStart(), |
| call->getArg(argCount - 1)->getLocEnd()); |
| |
| return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) |
| << 0 /*function call*/ << desiredArgCount << argCount |
| << call->getArg(1)->getSourceRange(); |
| } |
| |
| ExprResult |
| Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
| ExprResult TheCallResult(Owned(TheCall)); |
| |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| if (Error != ASTContext::GE_None) |
| ICEArguments = 0; // Don't diagnose previously diagnosed errors. |
| |
| // If any arguments are required to be ICE's, check and diagnose. |
| for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { |
| // Skip arguments not required to be ICE's. |
| if ((ICEArguments & (1 << ArgNo)) == 0) continue; |
| |
| llvm::APSInt Result; |
| if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) |
| return true; |
| ICEArguments &= ~(1 << ArgNo); |
| } |
| |
| switch (BuiltinID) { |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| assert(TheCall->getNumArgs() == 1 && |
| "Wrong # arguments to builtin CFStringMakeConstantString"); |
| if (CheckObjCString(TheCall->getArg(0))) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_stdarg_start: |
| case Builtin::BI__builtin_va_start: |
| if (SemaBuiltinVAStart(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: |
| if (SemaBuiltinUnorderedCompare(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_fpclassify: |
| if (SemaBuiltinFPClassification(TheCall, 6)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_isfinite: |
| case Builtin::BI__builtin_isinf: |
| case Builtin::BI__builtin_isinf_sign: |
| case Builtin::BI__builtin_isnan: |
| case Builtin::BI__builtin_isnormal: |
| if (SemaBuiltinFPClassification(TheCall, 1)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_shufflevector: |
| return SemaBuiltinShuffleVector(TheCall); |
| // TheCall will be freed by the smart pointer here, but that's fine, since |
| // SemaBuiltinShuffleVector guts it, but then doesn't release it. |
| case Builtin::BI__builtin_prefetch: |
| if (SemaBuiltinPrefetch(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_object_size: |
| if (SemaBuiltinObjectSize(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_longjmp: |
| if (SemaBuiltinLongjmp(TheCall)) |
| return ExprError(); |
| break; |
| |
| case Builtin::BI__builtin_classify_type: |
| if (checkArgCount(*this, TheCall, 1)) return true; |
| TheCall->setType(Context.IntTy); |
| break; |
| case Builtin::BI__builtin_constant_p: |
| if (checkArgCount(*this, TheCall, 1)) return true; |
| TheCall->setType(Context.IntTy); |
| break; |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_release: |
| return SemaBuiltinAtomicOverloaded(move(TheCallResult)); |
| } |
| |
| // Since the target specific builtins for each arch overlap, only check those |
| // of the arch we are compiling for. |
| if (BuiltinID >= Builtin::FirstTSBuiltin) { |
| switch (Context.Target.getTriple().getArch()) { |
| case llvm::Triple::arm: |
| case llvm::Triple::thumb: |
| if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall)) |
| return ExprError(); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return move(TheCallResult); |
| } |
| |
| // Get the valid immediate range for the specified NEON type code. |
| static unsigned RFT(unsigned t, bool shift = false) { |
| bool quad = t & 0x10; |
| |
| switch (t & 0x7) { |
| case 0: // i8 |
| return shift ? 7 : (8 << (int)quad) - 1; |
| case 1: // i16 |
| return shift ? 15 : (4 << (int)quad) - 1; |
| case 2: // i32 |
| return shift ? 31 : (2 << (int)quad) - 1; |
| case 3: // i64 |
| return shift ? 63 : (1 << (int)quad) - 1; |
| case 4: // f32 |
| assert(!shift && "cannot shift float types!"); |
| return (2 << (int)quad) - 1; |
| case 5: // poly8 |
| return shift ? 7 : (8 << (int)quad) - 1; |
| case 6: // poly16 |
| return shift ? 15 : (4 << (int)quad) - 1; |
| case 7: // float16 |
| assert(!shift && "cannot shift float types!"); |
| return (4 << (int)quad) - 1; |
| } |
| return 0; |
| } |
| |
| bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
| llvm::APSInt Result; |
| |
| unsigned mask = 0; |
| unsigned TV = 0; |
| switch (BuiltinID) { |
| #define GET_NEON_OVERLOAD_CHECK |
| #include "clang/Basic/arm_neon.inc" |
| #undef GET_NEON_OVERLOAD_CHECK |
| } |
| |
| // For NEON intrinsics which are overloaded on vector element type, validate |
| // the immediate which specifies which variant to emit. |
| if (mask) { |
| unsigned ArgNo = TheCall->getNumArgs()-1; |
| if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) |
| return true; |
| |
| TV = Result.getLimitedValue(32); |
| if ((TV > 31) || (mask & (1 << TV)) == 0) |
| return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code) |
| << TheCall->getArg(ArgNo)->getSourceRange(); |
| } |
| |
| // For NEON intrinsics which take an immediate value as part of the |
| // instruction, range check them here. |
| unsigned i = 0, l = 0, u = 0; |
| switch (BuiltinID) { |
| default: return false; |
| case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break; |
| case ARM::BI__builtin_arm_usat: i = 1; u = 31; break; |
| case ARM::BI__builtin_arm_vcvtr_f: |
| case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break; |
| #define GET_NEON_IMMEDIATE_CHECK |
| #include "clang/Basic/arm_neon.inc" |
| #undef GET_NEON_IMMEDIATE_CHECK |
| }; |
| |
| // Check that the immediate argument is actually a constant. |
| if (SemaBuiltinConstantArg(TheCall, i, Result)) |
| return true; |
| |
| // Range check against the upper/lower values for this isntruction. |
| unsigned Val = Result.getZExtValue(); |
| if (Val < l || Val > (u + l)) |
| return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) |
| << l << u+l << TheCall->getArg(i)->getSourceRange(); |
| |
| // FIXME: VFP Intrinsics should error if VFP not present. |
| return false; |
| } |
| |
| /// CheckFunctionCall - Check a direct function call for various correctness |
| /// and safety properties not strictly enforced by the C type system. |
| bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) { |
| // Get the IdentifierInfo* for the called function. |
| IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
| |
| // None of the checks below are needed for functions that don't have |
| // simple names (e.g., C++ conversion functions). |
| if (!FnInfo) |
| return false; |
| |
| // FIXME: This mechanism should be abstracted to be less fragile and |
| // more efficient. For example, just map function ids to custom |
| // handlers. |
| |
| // Printf and scanf checking. |
| for (specific_attr_iterator<FormatAttr> |
| i = FDecl->specific_attr_begin<FormatAttr>(), |
| e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) { |
| |
| const FormatAttr *Format = *i; |
| const bool b = Format->getType() == "scanf"; |
| if (b || CheckablePrintfAttr(Format, TheCall)) { |
| bool HasVAListArg = Format->getFirstArg() == 0; |
| CheckPrintfScanfArguments(TheCall, HasVAListArg, |
| Format->getFormatIdx() - 1, |
| HasVAListArg ? 0 : Format->getFirstArg() - 1, |
| !b); |
| } |
| } |
| |
| for (specific_attr_iterator<NonNullAttr> |
| i = FDecl->specific_attr_begin<NonNullAttr>(), |
| e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) { |
| CheckNonNullArguments(*i, TheCall); |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) { |
| // Printf checking. |
| const FormatAttr *Format = NDecl->getAttr<FormatAttr>(); |
| if (!Format) |
| return false; |
| |
| const VarDecl *V = dyn_cast<VarDecl>(NDecl); |
| if (!V) |
| return false; |
| |
| QualType Ty = V->getType(); |
| if (!Ty->isBlockPointerType()) |
| return false; |
| |
| const bool b = Format->getType() == "scanf"; |
| if (!b && !CheckablePrintfAttr(Format, TheCall)) |
| return false; |
| |
| bool HasVAListArg = Format->getFirstArg() == 0; |
| CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1, |
| HasVAListArg ? 0 : Format->getFirstArg() - 1, !b); |
| |
| return false; |
| } |
| |
| /// SemaBuiltinAtomicOverloaded - We have a call to a function like |
| /// __sync_fetch_and_add, which is an overloaded function based on the pointer |
| /// type of its first argument. The main ActOnCallExpr routines have already |
| /// promoted the types of arguments because all of these calls are prototyped as |
| /// void(...). |
| /// |
| /// This function goes through and does final semantic checking for these |
| /// builtins, |
| ExprResult |
| Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { |
| CallExpr *TheCall = (CallExpr *)TheCallResult.get(); |
| DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); |
| FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); |
| |
| // Ensure that we have at least one argument to do type inference from. |
| if (TheCall->getNumArgs() < 1) { |
| Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) |
| << 0 << 1 << TheCall->getNumArgs() |
| << TheCall->getCallee()->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // Inspect the first argument of the atomic builtin. This should always be |
| // a pointer type, whose element is an integral scalar or pointer type. |
| // Because it is a pointer type, we don't have to worry about any implicit |
| // casts here. |
| // FIXME: We don't allow floating point scalars as input. |
| Expr *FirstArg = TheCall->getArg(0); |
| if (!FirstArg->getType()->isPointerType()) { |
| Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer) |
| << FirstArg->getType() << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| QualType ValType = |
| FirstArg->getType()->getAs<PointerType>()->getPointeeType(); |
| if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
| !ValType->isBlockPointerType()) { |
| Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr) |
| << FirstArg->getType() << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // The majority of builtins return a value, but a few have special return |
| // types, so allow them to override appropriately below. |
| QualType ResultType = ValType; |
| |
| // We need to figure out which concrete builtin this maps onto. For example, |
| // __sync_fetch_and_add with a 2 byte object turns into |
| // __sync_fetch_and_add_2. |
| #define BUILTIN_ROW(x) \ |
| { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ |
| Builtin::BI##x##_8, Builtin::BI##x##_16 } |
| |
| static const unsigned BuiltinIndices[][5] = { |
| BUILTIN_ROW(__sync_fetch_and_add), |
| BUILTIN_ROW(__sync_fetch_and_sub), |
| BUILTIN_ROW(__sync_fetch_and_or), |
| BUILTIN_ROW(__sync_fetch_and_and), |
| BUILTIN_ROW(__sync_fetch_and_xor), |
| |
| BUILTIN_ROW(__sync_add_and_fetch), |
| BUILTIN_ROW(__sync_sub_and_fetch), |
| BUILTIN_ROW(__sync_and_and_fetch), |
| BUILTIN_ROW(__sync_or_and_fetch), |
| BUILTIN_ROW(__sync_xor_and_fetch), |
| |
| BUILTIN_ROW(__sync_val_compare_and_swap), |
| BUILTIN_ROW(__sync_bool_compare_and_swap), |
| BUILTIN_ROW(__sync_lock_test_and_set), |
| BUILTIN_ROW(__sync_lock_release) |
| }; |
| #undef BUILTIN_ROW |
| |
| // Determine the index of the size. |
| unsigned SizeIndex; |
| switch (Context.getTypeSizeInChars(ValType).getQuantity()) { |
| case 1: SizeIndex = 0; break; |
| case 2: SizeIndex = 1; break; |
| case 4: SizeIndex = 2; break; |
| case 8: SizeIndex = 3; break; |
| case 16: SizeIndex = 4; break; |
| default: |
| Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size) |
| << FirstArg->getType() << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // Each of these builtins has one pointer argument, followed by some number of |
| // values (0, 1 or 2) followed by a potentially empty varags list of stuff |
| // that we ignore. Find out which row of BuiltinIndices to read from as well |
| // as the number of fixed args. |
| unsigned BuiltinID = FDecl->getBuiltinID(); |
| unsigned BuiltinIndex, NumFixed = 1; |
| switch (BuiltinID) { |
| default: assert(0 && "Unknown overloaded atomic builtin!"); |
| case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break; |
| case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break; |
| case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break; |
| case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break; |
| case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break; |
| |
| case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break; |
| case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break; |
| case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break; |
| case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break; |
| case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break; |
| |
| case Builtin::BI__sync_val_compare_and_swap: |
| BuiltinIndex = 10; |
| NumFixed = 2; |
| break; |
| case Builtin::BI__sync_bool_compare_and_swap: |
| BuiltinIndex = 11; |
| NumFixed = 2; |
| ResultType = Context.BoolTy; |
| break; |
| case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break; |
| case Builtin::BI__sync_lock_release: |
| BuiltinIndex = 13; |
| NumFixed = 0; |
| ResultType = Context.VoidTy; |
| break; |
| } |
| |
| // Now that we know how many fixed arguments we expect, first check that we |
| // have at least that many. |
| if (TheCall->getNumArgs() < 1+NumFixed) { |
| Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least) |
| << 0 << 1+NumFixed << TheCall->getNumArgs() |
| << TheCall->getCallee()->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // Get the decl for the concrete builtin from this, we can tell what the |
| // concrete integer type we should convert to is. |
| unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; |
| const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID); |
| IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName); |
| FunctionDecl *NewBuiltinDecl = |
| cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID, |
| TUScope, false, DRE->getLocStart())); |
| |
| // The first argument --- the pointer --- has a fixed type; we |
| // deduce the types of the rest of the arguments accordingly. Walk |
| // the remaining arguments, converting them to the deduced value type. |
| for (unsigned i = 0; i != NumFixed; ++i) { |
| Expr *Arg = TheCall->getArg(i+1); |
| |
| // If the argument is an implicit cast, then there was a promotion due to |
| // "...", just remove it now. |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) { |
| Arg = ICE->getSubExpr(); |
| ICE->setSubExpr(0); |
| TheCall->setArg(i+1, Arg); |
| } |
| |
| // GCC does an implicit conversion to the pointer or integer ValType. This |
| // can fail in some cases (1i -> int**), check for this error case now. |
| CastKind Kind = CK_Invalid; |
| ExprValueKind VK = VK_RValue; |
| CXXCastPath BasePath; |
| if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, VK, BasePath)) |
| return ExprError(); |
| |
| // Okay, we have something that *can* be converted to the right type. Check |
| // to see if there is a potentially weird extension going on here. This can |
| // happen when you do an atomic operation on something like an char* and |
| // pass in 42. The 42 gets converted to char. This is even more strange |
| // for things like 45.123 -> char, etc. |
| // FIXME: Do this check. |
| ImpCastExprToType(Arg, ValType, Kind, VK, &BasePath); |
| TheCall->setArg(i+1, Arg); |
| } |
| |
| // Switch the DeclRefExpr to refer to the new decl. |
| DRE->setDecl(NewBuiltinDecl); |
| DRE->setType(NewBuiltinDecl->getType()); |
| |
| // Set the callee in the CallExpr. |
| // FIXME: This leaks the original parens and implicit casts. |
| Expr *PromotedCall = DRE; |
| UsualUnaryConversions(PromotedCall); |
| TheCall->setCallee(PromotedCall); |
| |
| // Change the result type of the call to match the original value type. This |
| // is arbitrary, but the codegen for these builtins ins design to handle it |
| // gracefully. |
| TheCall->setType(ResultType); |
| |
| return move(TheCallResult); |
| } |
| |
| |
| /// CheckObjCString - Checks that the argument to the builtin |
| /// CFString constructor is correct |
| /// Note: It might also make sense to do the UTF-16 conversion here (would |
| /// simplify the backend). |
| bool Sema::CheckObjCString(Expr *Arg) { |
| Arg = Arg->IgnoreParenCasts(); |
| StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); |
| |
| if (!Literal || Literal->isWide()) { |
| Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant) |
| << Arg->getSourceRange(); |
| return true; |
| } |
| |
| size_t NulPos = Literal->getString().find('\0'); |
| if (NulPos != llvm::StringRef::npos) { |
| Diag(getLocationOfStringLiteralByte(Literal, NulPos), |
| diag::warn_cfstring_literal_contains_nul_character) |
| << Arg->getSourceRange(); |
| } |
| if (Literal->containsNonAsciiOrNull()) { |
| llvm::StringRef String = Literal->getString(); |
| unsigned NumBytes = String.size(); |
| llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); |
| const UTF8 *FromPtr = (UTF8 *)String.data(); |
| UTF16 *ToPtr = &ToBuf[0]; |
| |
| ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, |
| &ToPtr, ToPtr + NumBytes, |
| strictConversion); |
| // Check for conversion failure. |
| if (Result != conversionOK) |
| Diag(Arg->getLocStart(), |
| diag::warn_cfstring_truncated) << Arg->getSourceRange(); |
| } |
| return false; |
| } |
| |
| /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity. |
| /// Emit an error and return true on failure, return false on success. |
| bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) { |
| Expr *Fn = TheCall->getCallee(); |
| if (TheCall->getNumArgs() > 2) { |
| Diag(TheCall->getArg(2)->getLocStart(), |
| diag::err_typecheck_call_too_many_args) |
| << 0 /*function call*/ << 2 << TheCall->getNumArgs() |
| << Fn->getSourceRange() |
| << SourceRange(TheCall->getArg(2)->getLocStart(), |
| (*(TheCall->arg_end()-1))->getLocEnd()); |
| return true; |
| } |
| |
| if (TheCall->getNumArgs() < 2) { |
| return Diag(TheCall->getLocEnd(), |
| diag::err_typecheck_call_too_few_args_at_least) |
| << 0 /*function call*/ << 2 << TheCall->getNumArgs(); |
| } |
| |
| // Determine whether the current function is variadic or not. |
| BlockScopeInfo *CurBlock = getCurBlock(); |
| bool isVariadic; |
| if (CurBlock) |
| isVariadic = CurBlock->TheDecl->isVariadic(); |
| else if (FunctionDecl *FD = getCurFunctionDecl()) |
| isVariadic = FD->isVariadic(); |
| else |
| isVariadic = getCurMethodDecl()->isVariadic(); |
| |
| if (!isVariadic) { |
| Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function); |
| return true; |
| } |
| |
| // Verify that the second argument to the builtin is the last argument of the |
| // current function or method. |
| bool SecondArgIsLastNamedArgument = false; |
| const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); |
| |
| if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { |
| if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { |
| // FIXME: This isn't correct for methods (results in bogus warning). |
| // Get the last formal in the current function. |
| const ParmVarDecl *LastArg; |
| if (CurBlock) |
| LastArg = *(CurBlock->TheDecl->param_end()-1); |
| else if (FunctionDecl *FD = getCurFunctionDecl()) |
| LastArg = *(FD->param_end()-1); |
| else |
| LastArg = *(getCurMethodDecl()->param_end()-1); |
| SecondArgIsLastNamedArgument = PV == LastArg; |
| } |
| } |
| |
| if (!SecondArgIsLastNamedArgument) |
| Diag(TheCall->getArg(1)->getLocStart(), |
| diag::warn_second_parameter_of_va_start_not_last_named_argument); |
| return false; |
| } |
| |
| /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and |
| /// friends. This is declared to take (...), so we have to check everything. |
| bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { |
| if (TheCall->getNumArgs() < 2) |
| return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) |
| << 0 << 2 << TheCall->getNumArgs()/*function call*/; |
| if (TheCall->getNumArgs() > 2) |
| return Diag(TheCall->getArg(2)->getLocStart(), |
| diag::err_typecheck_call_too_many_args) |
| << 0 /*function call*/ << 2 << TheCall->getNumArgs() |
| << SourceRange(TheCall->getArg(2)->getLocStart(), |
| (*(TheCall->arg_end()-1))->getLocEnd()); |
| |
| Expr *OrigArg0 = TheCall->getArg(0); |
| Expr *OrigArg1 = TheCall->getArg(1); |
| |
| // Do standard promotions between the two arguments, returning their common |
| // type. |
| QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false); |
| |
| // Make sure any conversions are pushed back into the call; this is |
| // type safe since unordered compare builtins are declared as "_Bool |
| // foo(...)". |
| TheCall->setArg(0, OrigArg0); |
| TheCall->setArg(1, OrigArg1); |
| |
| if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent()) |
| return false; |
| |
| // If the common type isn't a real floating type, then the arguments were |
| // invalid for this operation. |
| if (!Res->isRealFloatingType()) |
| return Diag(OrigArg0->getLocStart(), |
| diag::err_typecheck_call_invalid_ordered_compare) |
| << OrigArg0->getType() << OrigArg1->getType() |
| << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()); |
| |
| return false; |
| } |
| |
| /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like |
| /// __builtin_isnan and friends. This is declared to take (...), so we have |
| /// to check everything. We expect the last argument to be a floating point |
| /// value. |
| bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { |
| if (TheCall->getNumArgs() < NumArgs) |
| return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args) |
| << 0 << NumArgs << TheCall->getNumArgs()/*function call*/; |
| if (TheCall->getNumArgs() > NumArgs) |
| return Diag(TheCall->getArg(NumArgs)->getLocStart(), |
| diag::err_typecheck_call_too_many_args) |
| << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() |
| << SourceRange(TheCall->getArg(NumArgs)->getLocStart(), |
| (*(TheCall->arg_end()-1))->getLocEnd()); |
| |
| Expr *OrigArg = TheCall->getArg(NumArgs-1); |
| |
| if (OrigArg->isTypeDependent()) |
| return false; |
| |
| // This operation requires a non-_Complex floating-point number. |
| if (!OrigArg->getType()->isRealFloatingType()) |
| return Diag(OrigArg->getLocStart(), |
| diag::err_typecheck_call_invalid_unary_fp) |
| << OrigArg->getType() << OrigArg->getSourceRange(); |
| |
| // If this is an implicit conversion from float -> double, remove it. |
| if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) { |
| Expr *CastArg = Cast->getSubExpr(); |
| if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) { |
| assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) && |
| "promotion from float to double is the only expected cast here"); |
| Cast->setSubExpr(0); |
| TheCall->setArg(NumArgs-1, CastArg); |
| OrigArg = CastArg; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. |
| // This is declared to take (...), so we have to check everything. |
| ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { |
| if (TheCall->getNumArgs() < 2) |
| return ExprError(Diag(TheCall->getLocEnd(), |
| diag::err_typecheck_call_too_few_args_at_least) |
| << 0 /*function call*/ << 2 << TheCall->getNumArgs() |
| << TheCall->getSourceRange()); |
| |
| // Determine which of the following types of shufflevector we're checking: |
| // 1) unary, vector mask: (lhs, mask) |
| // 2) binary, vector mask: (lhs, rhs, mask) |
| // 3) binary, scalar mask: (lhs, rhs, index, ..., index) |
| QualType resType = TheCall->getArg(0)->getType(); |
| unsigned numElements = 0; |
| |
| if (!TheCall->getArg(0)->isTypeDependent() && |
| !TheCall->getArg(1)->isTypeDependent()) { |
| QualType LHSType = TheCall->getArg(0)->getType(); |
| QualType RHSType = TheCall->getArg(1)->getType(); |
| |
| if (!LHSType->isVectorType() || !RHSType->isVectorType()) { |
| Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector) |
| << SourceRange(TheCall->getArg(0)->getLocStart(), |
| TheCall->getArg(1)->getLocEnd()); |
| return ExprError(); |
| } |
| |
| numElements = LHSType->getAs<VectorType>()->getNumElements(); |
| unsigned numResElements = TheCall->getNumArgs() - 2; |
| |
| // Check to see if we have a call with 2 vector arguments, the unary shuffle |
| // with mask. If so, verify that RHS is an integer vector type with the |
| // same number of elts as lhs. |
| if (TheCall->getNumArgs() == 2) { |
| if (!RHSType->hasIntegerRepresentation() || |
| RHSType->getAs<VectorType>()->getNumElements() != numElements) |
| Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector) |
| << SourceRange(TheCall->getArg(1)->getLocStart(), |
| TheCall->getArg(1)->getLocEnd()); |
| numResElements = numElements; |
| } |
| else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { |
| Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector) |
| << SourceRange(TheCall->getArg(0)->getLocStart(), |
| TheCall->getArg(1)->getLocEnd()); |
| return ExprError(); |
| } else if (numElements != numResElements) { |
| QualType eltType = LHSType->getAs<VectorType>()->getElementType(); |
| resType = Context.getVectorType(eltType, numResElements, |
| VectorType::GenericVector); |
| } |
| } |
| |
| for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { |
| if (TheCall->getArg(i)->isTypeDependent() || |
| TheCall->getArg(i)->isValueDependent()) |
| continue; |
| |
| llvm::APSInt Result(32); |
| if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) |
| return ExprError(Diag(TheCall->getLocStart(), |
| diag::err_shufflevector_nonconstant_argument) |
| << TheCall->getArg(i)->getSourceRange()); |
| |
| if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) |
| return ExprError(Diag(TheCall->getLocStart(), |
| diag::err_shufflevector_argument_too_large) |
| << TheCall->getArg(i)->getSourceRange()); |
| } |
| |
| llvm::SmallVector<Expr*, 32> exprs; |
| |
| for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { |
| exprs.push_back(TheCall->getArg(i)); |
| TheCall->setArg(i, 0); |
| } |
| |
| return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(), |
| exprs.size(), resType, |
| TheCall->getCallee()->getLocStart(), |
| TheCall->getRParenLoc())); |
| } |
| |
| /// SemaBuiltinPrefetch - Handle __builtin_prefetch. |
| // This is declared to take (const void*, ...) and can take two |
| // optional constant int args. |
| bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { |
| unsigned NumArgs = TheCall->getNumArgs(); |
| |
| if (NumArgs > 3) |
| return Diag(TheCall->getLocEnd(), |
| diag::err_typecheck_call_too_many_args_at_most) |
| << 0 /*function call*/ << 3 << NumArgs |
| << TheCall->getSourceRange(); |
| |
| // Argument 0 is checked for us and the remaining arguments must be |
| // constant integers. |
| for (unsigned i = 1; i != NumArgs; ++i) { |
| Expr *Arg = TheCall->getArg(i); |
| |
| llvm::APSInt Result; |
| if (SemaBuiltinConstantArg(TheCall, i, Result)) |
| return true; |
| |
| // FIXME: gcc issues a warning and rewrites these to 0. These |
| // seems especially odd for the third argument since the default |
| // is 3. |
| if (i == 1) { |
| if (Result.getLimitedValue() > 1) |
| return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) |
| << "0" << "1" << Arg->getSourceRange(); |
| } else { |
| if (Result.getLimitedValue() > 3) |
| return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) |
| << "0" << "3" << Arg->getSourceRange(); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr |
| /// TheCall is a constant expression. |
| bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, |
| llvm::APSInt &Result) { |
| Expr *Arg = TheCall->getArg(ArgNum); |
| DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); |
| FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); |
| |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; |
| |
| if (!Arg->isIntegerConstantExpr(Result, Context)) |
| return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type) |
| << FDecl->getDeclName() << Arg->getSourceRange(); |
| |
| return false; |
| } |
| |
| /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr, |
| /// int type). This simply type checks that type is one of the defined |
| /// constants (0-3). |
| // For compatability check 0-3, llvm only handles 0 and 2. |
| bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) { |
| llvm::APSInt Result; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, 1, Result)) |
| return true; |
| |
| Expr *Arg = TheCall->getArg(1); |
| if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) { |
| return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range) |
| << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd()); |
| } |
| |
| return false; |
| } |
| |
| /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). |
| /// This checks that val is a constant 1. |
| bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { |
| Expr *Arg = TheCall->getArg(1); |
| llvm::APSInt Result; |
| |
| // TODO: This is less than ideal. Overload this to take a value. |
| if (SemaBuiltinConstantArg(TheCall, 1, Result)) |
| return true; |
| |
| if (Result != 1) |
| return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val) |
| << SourceRange(Arg->getLocStart(), Arg->getLocEnd()); |
| |
| return false; |
| } |
| |
| // Handle i > 1 ? "x" : "y", recursively. |
| bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall, |
| bool HasVAListArg, |
| unsigned format_idx, unsigned firstDataArg, |
| bool isPrintf) { |
| tryAgain: |
| if (E->isTypeDependent() || E->isValueDependent()) |
| return false; |
| |
| switch (E->getStmtClass()) { |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: { |
| const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E); |
| return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg, |
| format_idx, firstDataArg, isPrintf) |
| && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg, |
| format_idx, firstDataArg, isPrintf); |
| } |
| |
| case Stmt::IntegerLiteralClass: |
| // Technically -Wformat-nonliteral does not warn about this case. |
| // The behavior of printf and friends in this case is implementation |
| // dependent. Ideally if the format string cannot be null then |
| // it should have a 'nonnull' attribute in the function prototype. |
| return true; |
| |
| case Stmt::ImplicitCastExprClass: { |
| E = cast<ImplicitCastExpr>(E)->getSubExpr(); |
| goto tryAgain; |
| } |
| |
| case Stmt::ParenExprClass: { |
| E = cast<ParenExpr>(E)->getSubExpr(); |
| goto tryAgain; |
| } |
| |
| case Stmt::OpaqueValueExprClass: |
| if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { |
| E = src; |
| goto tryAgain; |
| } |
| return false; |
| |
| case Stmt::PredefinedExprClass: |
| // While __func__, etc., are technically not string literals, they |
| // cannot contain format specifiers and thus are not a security |
| // liability. |
| return true; |
| |
| case Stmt::DeclRefExprClass: { |
| const DeclRefExpr *DR = cast<DeclRefExpr>(E); |
| |
| // As an exception, do not flag errors for variables binding to |
| // const string literals. |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { |
| bool isConstant = false; |
| QualType T = DR->getType(); |
| |
| if (const ArrayType *AT = Context.getAsArrayType(T)) { |
| isConstant = AT->getElementType().isConstant(Context); |
| } else if (const PointerType *PT = T->getAs<PointerType>()) { |
| isConstant = T.isConstant(Context) && |
| PT->getPointeeType().isConstant(Context); |
| } |
| |
| if (isConstant) { |
| if (const Expr *Init = VD->getAnyInitializer()) |
| return SemaCheckStringLiteral(Init, TheCall, |
| HasVAListArg, format_idx, firstDataArg, |
| isPrintf); |
| } |
| |
| // For vprintf* functions (i.e., HasVAListArg==true), we add a |
| // special check to see if the format string is a function parameter |
| // of the function calling the printf function. If the function |
| // has an attribute indicating it is a printf-like function, then we |
| // should suppress warnings concerning non-literals being used in a call |
| // to a vprintf function. For example: |
| // |
| // void |
| // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ |
| // va_list ap; |
| // va_start(ap, fmt); |
| // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". |
| // ... |
| // |
| // |
| // FIXME: We don't have full attribute support yet, so just check to see |
| // if the argument is a DeclRefExpr that references a parameter. We'll |
| // add proper support for checking the attribute later. |
| if (HasVAListArg) |
| if (isa<ParmVarDecl>(VD)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| case Stmt::CallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(E); |
| if (const ImplicitCastExpr *ICE |
| = dyn_cast<ImplicitCastExpr>(CE->getCallee())) { |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { |
| if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) { |
| unsigned ArgIndex = FA->getFormatIdx(); |
| const Expr *Arg = CE->getArg(ArgIndex - 1); |
| |
| return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg, |
| format_idx, firstDataArg, isPrintf); |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::StringLiteralClass: { |
| const StringLiteral *StrE = NULL; |
| |
| if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) |
| StrE = ObjCFExpr->getString(); |
| else |
| StrE = cast<StringLiteral>(E); |
| |
| if (StrE) { |
| CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx, |
| firstDataArg, isPrintf); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| void |
| Sema::CheckNonNullArguments(const NonNullAttr *NonNull, |
| const CallExpr *TheCall) { |
| for (NonNullAttr::args_iterator i = NonNull->args_begin(), |
| e = NonNull->args_end(); |
| i != e; ++i) { |
| const Expr *ArgExpr = TheCall->getArg(*i); |
| if (ArgExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull)) |
| Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg) |
| << ArgExpr->getSourceRange(); |
| } |
| } |
| |
| /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar |
| /// functions) for correct use of format strings. |
| void |
| Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg, |
| unsigned format_idx, unsigned firstDataArg, |
| bool isPrintf) { |
| |
| const Expr *Fn = TheCall->getCallee(); |
| |
| // The way the format attribute works in GCC, the implicit this argument |
| // of member functions is counted. However, it doesn't appear in our own |
| // lists, so decrement format_idx in that case. |
| if (isa<CXXMemberCallExpr>(TheCall)) { |
| const CXXMethodDecl *method_decl = |
| dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl()); |
| if (method_decl && method_decl->isInstance()) { |
| // Catch a format attribute mistakenly referring to the object argument. |
| if (format_idx == 0) |
| return; |
| --format_idx; |
| if(firstDataArg != 0) |
| --firstDataArg; |
| } |
| } |
| |
| // CHECK: printf/scanf-like function is called with no format string. |
| if (format_idx >= TheCall->getNumArgs()) { |
| Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string) |
| << Fn->getSourceRange(); |
| return; |
| } |
| |
| const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts(); |
| |
| // CHECK: format string is not a string literal. |
| // |
| // Dynamically generated format strings are difficult to |
| // automatically vet at compile time. Requiring that format strings |
| // are string literals: (1) permits the checking of format strings by |
| // the compiler and thereby (2) can practically remove the source of |
| // many format string exploits. |
| |
| // Format string can be either ObjC string (e.g. @"%d") or |
| // C string (e.g. "%d") |
| // ObjC string uses the same format specifiers as C string, so we can use |
| // the same format string checking logic for both ObjC and C strings. |
| if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx, |
| firstDataArg, isPrintf)) |
| return; // Literal format string found, check done! |
| |
| // If there are no arguments specified, warn with -Wformat-security, otherwise |
| // warn only with -Wformat-nonliteral. |
| if (TheCall->getNumArgs() == format_idx+1) |
| Diag(TheCall->getArg(format_idx)->getLocStart(), |
| diag::warn_format_nonliteral_noargs) |
| << OrigFormatExpr->getSourceRange(); |
| else |
| Diag(TheCall->getArg(format_idx)->getLocStart(), |
| diag::warn_format_nonliteral) |
| << OrigFormatExpr->getSourceRange(); |
| } |
| |
| namespace { |
| class CheckFormatHandler : public analyze_format_string::FormatStringHandler { |
| protected: |
| Sema &S; |
| const StringLiteral *FExpr; |
| const Expr *OrigFormatExpr; |
| const unsigned FirstDataArg; |
| const unsigned NumDataArgs; |
| const bool IsObjCLiteral; |
| const char *Beg; // Start of format string. |
| const bool HasVAListArg; |
| const CallExpr *TheCall; |
| unsigned FormatIdx; |
| llvm::BitVector CoveredArgs; |
| bool usesPositionalArgs; |
| bool atFirstArg; |
| public: |
| CheckFormatHandler(Sema &s, const StringLiteral *fexpr, |
| const Expr *origFormatExpr, unsigned firstDataArg, |
| unsigned numDataArgs, bool isObjCLiteral, |
| const char *beg, bool hasVAListArg, |
| const CallExpr *theCall, unsigned formatIdx) |
| : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), |
| FirstDataArg(firstDataArg), |
| NumDataArgs(numDataArgs), |
| IsObjCLiteral(isObjCLiteral), Beg(beg), |
| HasVAListArg(hasVAListArg), |
| TheCall(theCall), FormatIdx(formatIdx), |
| usesPositionalArgs(false), atFirstArg(true) { |
| CoveredArgs.resize(numDataArgs); |
| CoveredArgs.reset(); |
| } |
| |
| void DoneProcessing(); |
| |
| void HandleIncompleteSpecifier(const char *startSpecifier, |
| unsigned specifierLen); |
| |
| virtual void HandleInvalidPosition(const char *startSpecifier, |
| unsigned specifierLen, |
| analyze_format_string::PositionContext p); |
| |
| virtual void HandleZeroPosition(const char *startPos, unsigned posLen); |
| |
| void HandleNullChar(const char *nullCharacter); |
| |
| protected: |
| bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, |
| const char *startSpec, |
| unsigned specifierLen, |
| const char *csStart, unsigned csLen); |
| |
| SourceRange getFormatStringRange(); |
| CharSourceRange getSpecifierRange(const char *startSpecifier, |
| unsigned specifierLen); |
| SourceLocation getLocationOfByte(const char *x); |
| |
| const Expr *getDataArg(unsigned i) const; |
| |
| bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen, |
| unsigned argIndex); |
| }; |
| } |
| |
| SourceRange CheckFormatHandler::getFormatStringRange() { |
| return OrigFormatExpr->getSourceRange(); |
| } |
| |
| CharSourceRange CheckFormatHandler:: |
| getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { |
| SourceLocation Start = getLocationOfByte(startSpecifier); |
| SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); |
| |
| // Advance the end SourceLocation by one due to half-open ranges. |
| End = End.getFileLocWithOffset(1); |
| |
| return CharSourceRange::getCharRange(Start, End); |
| } |
| |
| SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { |
| return S.getLocationOfStringLiteralByte(FExpr, x - Beg); |
| } |
| |
| void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, |
| unsigned specifierLen){ |
| SourceLocation Loc = getLocationOfByte(startSpecifier); |
| S.Diag(Loc, diag::warn_printf_incomplete_specifier) |
| << getSpecifierRange(startSpecifier, specifierLen); |
| } |
| |
| void |
| CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, |
| analyze_format_string::PositionContext p) { |
| SourceLocation Loc = getLocationOfByte(startPos); |
| S.Diag(Loc, diag::warn_format_invalid_positional_specifier) |
| << (unsigned) p << getSpecifierRange(startPos, posLen); |
| } |
| |
| void CheckFormatHandler::HandleZeroPosition(const char *startPos, |
| unsigned posLen) { |
| SourceLocation Loc = getLocationOfByte(startPos); |
| S.Diag(Loc, diag::warn_format_zero_positional_specifier) |
| << getSpecifierRange(startPos, posLen); |
| } |
| |
| void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { |
| // The presence of a null character is likely an error. |
| S.Diag(getLocationOfByte(nullCharacter), |
| diag::warn_printf_format_string_contains_null_char) |
| << getFormatStringRange(); |
| } |
| |
| const Expr *CheckFormatHandler::getDataArg(unsigned i) const { |
| return TheCall->getArg(FirstDataArg + i); |
| } |
| |
| void CheckFormatHandler::DoneProcessing() { |
| // Does the number of data arguments exceed the number of |
| // format conversions in the format string? |
| if (!HasVAListArg) { |
| // Find any arguments that weren't covered. |
| CoveredArgs.flip(); |
| signed notCoveredArg = CoveredArgs.find_first(); |
| if (notCoveredArg >= 0) { |
| assert((unsigned)notCoveredArg < NumDataArgs); |
| S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(), |
| diag::warn_printf_data_arg_not_used) |
| << getFormatStringRange(); |
| } |
| } |
| } |
| |
| bool |
| CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, |
| SourceLocation Loc, |
| const char *startSpec, |
| unsigned specifierLen, |
| const char *csStart, |
| unsigned csLen) { |
| |
| bool keepGoing = true; |
| if (argIndex < NumDataArgs) { |
| // Consider the argument coverered, even though the specifier doesn't |
| // make sense. |
| CoveredArgs.set(argIndex); |
| } |
| else { |
| // If argIndex exceeds the number of data arguments we |
| // don't issue a warning because that is just a cascade of warnings (and |
| // they may have intended '%%' anyway). We don't want to continue processing |
| // the format string after this point, however, as we will like just get |
| // gibberish when trying to match arguments. |
| keepGoing = false; |
| } |
| |
| S.Diag(Loc, diag::warn_format_invalid_conversion) |
| << llvm::StringRef(csStart, csLen) |
| << getSpecifierRange(startSpec, specifierLen); |
| |
| return keepGoing; |
| } |
| |
| bool |
| CheckFormatHandler::CheckNumArgs( |
| const analyze_format_string::FormatSpecifier &FS, |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { |
| |
| if (argIndex >= NumDataArgs) { |
| if (FS.usesPositionalArg()) { |
| S.Diag(getLocationOfByte(CS.getStart()), |
| diag::warn_printf_positional_arg_exceeds_data_args) |
| << (argIndex+1) << NumDataArgs |
| << getSpecifierRange(startSpecifier, specifierLen); |
| } |
| else { |
| S.Diag(getLocationOfByte(CS.getStart()), |
| diag::warn_printf_insufficient_data_args) |
| << getSpecifierRange(startSpecifier, specifierLen); |
| } |
| |
| return false; |
| } |
| return true; |
| } |
| |
| //===--- CHECK: Printf format string checking ------------------------------===// |
| |
| namespace { |
| class CheckPrintfHandler : public CheckFormatHandler { |
| public: |
| CheckPrintfHandler(Sema &s, const StringLiteral *fexpr, |
| const Expr *origFormatExpr, unsigned firstDataArg, |
| unsigned numDataArgs, bool isObjCLiteral, |
| const char *beg, bool hasVAListArg, |
| const CallExpr *theCall, unsigned formatIdx) |
| : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg, |
| numDataArgs, isObjCLiteral, beg, hasVAListArg, |
| theCall, formatIdx) {} |
| |
| |
| bool HandleInvalidPrintfConversionSpecifier( |
| const analyze_printf::PrintfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen); |
| |
| bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen); |
| |
| bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, |
| const char *startSpecifier, unsigned specifierLen); |
| void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalAmount &Amt, |
| unsigned type, |
| const char *startSpecifier, unsigned specifierLen); |
| void HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, unsigned specifierLen); |
| void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &ignoredFlag, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, unsigned specifierLen); |
| }; |
| } |
| |
| bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( |
| const analyze_printf::PrintfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| const analyze_printf::PrintfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| |
| return HandleInvalidConversionSpecifier(FS.getArgIndex(), |
| getLocationOfByte(CS.getStart()), |
| startSpecifier, specifierLen, |
| CS.getStart(), CS.getLength()); |
| } |
| |
| bool CheckPrintfHandler::HandleAmount( |
| const analyze_format_string::OptionalAmount &Amt, |
| unsigned k, const char *startSpecifier, |
| unsigned specifierLen) { |
| |
| if (Amt.hasDataArgument()) { |
| if (!HasVAListArg) { |
| unsigned argIndex = Amt.getArgIndex(); |
| if (argIndex >= NumDataArgs) { |
| S.Diag(getLocationOfByte(Amt.getStart()), |
| diag::warn_printf_asterisk_missing_arg) |
| << k << getSpecifierRange(startSpecifier, specifierLen); |
| // Don't do any more checking. We will just emit |
| // spurious errors. |
| return false; |
| } |
| |
| // Type check the data argument. It should be an 'int'. |
| // Although not in conformance with C99, we also allow the argument to be |
| // an 'unsigned int' as that is a reasonably safe case. GCC also |
| // doesn't emit a warning for that case. |
| CoveredArgs.set(argIndex); |
| const Expr *Arg = getDataArg(argIndex); |
| QualType T = Arg->getType(); |
| |
| const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context); |
| assert(ATR.isValid()); |
| |
| if (!ATR.matchesType(S.Context, T)) { |
| S.Diag(getLocationOfByte(Amt.getStart()), |
| diag::warn_printf_asterisk_wrong_type) |
| << k |
| << ATR.getRepresentativeType(S.Context) << T |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << Arg->getSourceRange(); |
| // Don't do any more checking. We will just emit |
| // spurious errors. |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void CheckPrintfHandler::HandleInvalidAmount( |
| const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalAmount &Amt, |
| unsigned type, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| const analyze_printf::PrintfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| switch (Amt.getHowSpecified()) { |
| case analyze_printf::OptionalAmount::Constant: |
| S.Diag(getLocationOfByte(Amt.getStart()), |
| diag::warn_printf_nonsensical_optional_amount) |
| << type |
| << CS.toString() |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), |
| Amt.getConstantLength())); |
| break; |
| |
| default: |
| S.Diag(getLocationOfByte(Amt.getStart()), |
| diag::warn_printf_nonsensical_optional_amount) |
| << type |
| << CS.toString() |
| << getSpecifierRange(startSpecifier, specifierLen); |
| break; |
| } |
| } |
| |
| void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| // Warn about pointless flag with a fixit removal. |
| const analyze_printf::PrintfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| S.Diag(getLocationOfByte(flag.getPosition()), |
| diag::warn_printf_nonsensical_flag) |
| << flag.toString() << CS.toString() |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1)); |
| } |
| |
| void CheckPrintfHandler::HandleIgnoredFlag( |
| const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &ignoredFlag, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| // Warn about ignored flag with a fixit removal. |
| S.Diag(getLocationOfByte(ignoredFlag.getPosition()), |
| diag::warn_printf_ignored_flag) |
| << ignoredFlag.toString() << flag.toString() |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << FixItHint::CreateRemoval(getSpecifierRange( |
| ignoredFlag.getPosition(), 1)); |
| } |
| |
| bool |
| CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier |
| &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| |
| using namespace analyze_format_string; |
| using namespace analyze_printf; |
| const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); |
| |
| if (FS.consumesDataArgument()) { |
| if (atFirstArg) { |
| atFirstArg = false; |
| usesPositionalArgs = FS.usesPositionalArg(); |
| } |
| else if (usesPositionalArgs != FS.usesPositionalArg()) { |
| // Cannot mix-and-match positional and non-positional arguments. |
| S.Diag(getLocationOfByte(CS.getStart()), |
| diag::warn_format_mix_positional_nonpositional_args) |
| << getSpecifierRange(startSpecifier, specifierLen); |
| return false; |
| } |
| } |
| |
| // First check if the field width, precision, and conversion specifier |
| // have matching data arguments. |
| if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, |
| startSpecifier, specifierLen)) { |
| return false; |
| } |
| |
| if (!HandleAmount(FS.getPrecision(), /* precision */ 1, |
| startSpecifier, specifierLen)) { |
| return false; |
| } |
| |
| if (!CS.consumesDataArgument()) { |
| // FIXME: Technically specifying a precision or field width here |
| // makes no sense. Worth issuing a warning at some point. |
| return true; |
| } |
| |
| // Consume the argument. |
| unsigned argIndex = FS.getArgIndex(); |
| if (argIndex < NumDataArgs) { |
| // The check to see if the argIndex is valid will come later. |
| // We set the bit here because we may exit early from this |
| // function if we encounter some other error. |
| CoveredArgs.set(argIndex); |
| } |
| |
| // Check for using an Objective-C specific conversion specifier |
| // in a non-ObjC literal. |
| if (!IsObjCLiteral && CS.isObjCArg()) { |
| return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
| specifierLen); |
| } |
| |
| // Check for invalid use of field width |
| if (!FS.hasValidFieldWidth()) { |
| HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, |
| startSpecifier, specifierLen); |
| } |
| |
| // Check for invalid use of precision |
| if (!FS.hasValidPrecision()) { |
| HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, |
| startSpecifier, specifierLen); |
| } |
| |
| // Check each flag does not conflict with any other component. |
| if (!FS.hasValidThousandsGroupingPrefix()) |
| HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); |
| if (!FS.hasValidLeadingZeros()) |
| HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); |
| if (!FS.hasValidPlusPrefix()) |
| HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); |
| if (!FS.hasValidSpacePrefix()) |
| HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); |
| if (!FS.hasValidAlternativeForm()) |
| HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); |
| if (!FS.hasValidLeftJustified()) |
| HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); |
| |
| // Check that flags are not ignored by another flag |
| if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' |
| HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), |
| startSpecifier, specifierLen); |
| if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' |
| HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), |
| startSpecifier, specifierLen); |
| |
| // Check the length modifier is valid with the given conversion specifier. |
| const LengthModifier &LM = FS.getLengthModifier(); |
| if (!FS.hasValidLengthModifier()) |
| S.Diag(getLocationOfByte(LM.getStart()), |
| diag::warn_format_nonsensical_length) |
| << LM.toString() << CS.toString() |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(), |
| LM.getLength())); |
| |
| // Are we using '%n'? |
| if (CS.getKind() == ConversionSpecifier::nArg) { |
| // Issue a warning about this being a possible security issue. |
| S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back) |
| << getSpecifierRange(startSpecifier, specifierLen); |
| // Continue checking the other format specifiers. |
| return true; |
| } |
| |
| // The remaining checks depend on the data arguments. |
| if (HasVAListArg) |
| return true; |
| |
| if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
| return false; |
| |
| // Now type check the data expression that matches the |
| // format specifier. |
| const Expr *Ex = getDataArg(argIndex); |
| const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context); |
| if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) { |
| // Check if we didn't match because of an implicit cast from a 'char' |
| // or 'short' to an 'int'. This is done because printf is a varargs |
| // function. |
| if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex)) |
| if (ICE->getType() == S.Context.IntTy) { |
| // All further checking is done on the subexpression. |
| Ex = ICE->getSubExpr(); |
| if (ATR.matchesType(S.Context, Ex->getType())) |
| return true; |
| } |
| |
| // We may be able to offer a FixItHint if it is a supported type. |
| PrintfSpecifier fixedFS = FS; |
| bool success = fixedFS.fixType(Ex->getType()); |
| |
| if (success) { |
| // Get the fix string from the fixed format specifier |
| llvm::SmallString<128> buf; |
| llvm::raw_svector_ostream os(buf); |
| fixedFS.toString(os); |
| |
| // FIXME: getRepresentativeType() perhaps should return a string |
| // instead of a QualType to better handle when the representative |
| // type is 'wint_t' (which is defined in the system headers). |
| S.Diag(getLocationOfByte(CS.getStart()), |
| diag::warn_printf_conversion_argument_type_mismatch) |
| << ATR.getRepresentativeType(S.Context) << Ex->getType() |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << Ex->getSourceRange() |
| << FixItHint::CreateReplacement( |
| getSpecifierRange(startSpecifier, specifierLen), |
| os.str()); |
| } |
| else { |
| S.Diag(getLocationOfByte(CS.getStart()), |
| diag::warn_printf_conversion_argument_type_mismatch) |
| << ATR.getRepresentativeType(S.Context) << Ex->getType() |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << Ex->getSourceRange(); |
| } |
| } |
| |
| return true; |
| } |
| |
| //===--- CHECK: Scanf format string checking ------------------------------===// |
| |
| namespace { |
| class CheckScanfHandler : public CheckFormatHandler { |
| public: |
| CheckScanfHandler(Sema &s, const StringLiteral *fexpr, |
| const Expr *origFormatExpr, unsigned firstDataArg, |
| unsigned numDataArgs, bool isObjCLiteral, |
| const char *beg, bool hasVAListArg, |
| const CallExpr *theCall, unsigned formatIdx) |
| : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg, |
| numDataArgs, isObjCLiteral, beg, hasVAListArg, |
| theCall, formatIdx) {} |
| |
| bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen); |
| |
| bool HandleInvalidScanfConversionSpecifier( |
| const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen); |
| |
| void HandleIncompleteScanList(const char *start, const char *end); |
| }; |
| } |
| |
| void CheckScanfHandler::HandleIncompleteScanList(const char *start, |
| const char *end) { |
| S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete) |
| << getSpecifierRange(start, end - start); |
| } |
| |
| bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( |
| const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| |
| const analyze_scanf::ScanfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| |
| return HandleInvalidConversionSpecifier(FS.getArgIndex(), |
| getLocationOfByte(CS.getStart()), |
| startSpecifier, specifierLen, |
| CS.getStart(), CS.getLength()); |
| } |
| |
| bool CheckScanfHandler::HandleScanfSpecifier( |
| const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| |
| using namespace analyze_scanf; |
| using namespace analyze_format_string; |
| |
| const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); |
| |
| // Handle case where '%' and '*' don't consume an argument. These shouldn't |
| // be used to decide if we are using positional arguments consistently. |
| if (FS.consumesDataArgument()) { |
| if (atFirstArg) { |
| atFirstArg = false; |
| usesPositionalArgs = FS.usesPositionalArg(); |
| } |
| else if (usesPositionalArgs != FS.usesPositionalArg()) { |
| // Cannot mix-and-match positional and non-positional arguments. |
| S.Diag(getLocationOfByte(CS.getStart()), |
| diag::warn_format_mix_positional_nonpositional_args) |
| << getSpecifierRange(startSpecifier, specifierLen); |
| return false; |
| } |
| } |
| |
| // Check if the field with is non-zero. |
| const OptionalAmount &Amt = FS.getFieldWidth(); |
| if (Amt.getHowSpecified() == OptionalAmount::Constant) { |
| if (Amt.getConstantAmount() == 0) { |
| const CharSourceRange &R = getSpecifierRange(Amt.getStart(), |
| Amt.getConstantLength()); |
| S.Diag(getLocationOfByte(Amt.getStart()), |
| diag::warn_scanf_nonzero_width) |
| << R << FixItHint::CreateRemoval(R); |
| } |
| } |
| |
| if (!FS.consumesDataArgument()) { |
| // FIXME: Technically specifying a precision or field width here |
| // makes no sense. Worth issuing a warning at some point. |
| return true; |
| } |
| |
| // Consume the argument. |
| unsigned argIndex = FS.getArgIndex(); |
| if (argIndex < NumDataArgs) { |
| // The check to see if the argIndex is valid will come later. |
| // We set the bit here because we may exit early from this |
| // function if we encounter some other error. |
| CoveredArgs.set(argIndex); |
| } |
| |
| // Check the length modifier is valid with the given conversion specifier. |
| const LengthModifier &LM = FS.getLengthModifier(); |
| if (!FS.hasValidLengthModifier()) { |
| S.Diag(getLocationOfByte(LM.getStart()), |
| diag::warn_format_nonsensical_length) |
| << LM.toString() << CS.toString() |
| << getSpecifierRange(startSpecifier, specifierLen) |
| << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(), |
| LM.getLength())); |
| } |
| |
| // The remaining checks depend on the data arguments. |
| if (HasVAListArg) |
| return true; |
| |
| if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
| return false; |
| |
| // FIXME: Check that the argument type matches the format specifier. |
| |
| return true; |
| } |
| |
| void Sema::CheckFormatString(const StringLiteral *FExpr, |
| const Expr *OrigFormatExpr, |
| const CallExpr *TheCall, bool HasVAListArg, |
| unsigned format_idx, unsigned firstDataArg, |
| bool isPrintf) { |
| |
| // CHECK: is the format string a wide literal? |
| if (FExpr->isWide()) { |
| Diag(FExpr->getLocStart(), |
| diag::warn_format_string_is_wide_literal) |
| << OrigFormatExpr->getSourceRange(); |
| return; |
| } |
| |
| // Str - The format string. NOTE: this is NOT null-terminated! |
| llvm::StringRef StrRef = FExpr->getString(); |
| const char *Str = StrRef.data(); |
| unsigned StrLen = StrRef.size(); |
| |
| // CHECK: empty format string? |
| if (StrLen == 0) { |
| Diag(FExpr->getLocStart(), diag::warn_empty_format_string) |
| << OrigFormatExpr->getSourceRange(); |
| return; |
| } |
| |
| if (isPrintf) { |
| CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, |
| TheCall->getNumArgs() - firstDataArg, |
| isa<ObjCStringLiteral>(OrigFormatExpr), Str, |
| HasVAListArg, TheCall, format_idx); |
| |
| if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen)) |
| H.DoneProcessing(); |
| } |
| else { |
| CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, |
| TheCall->getNumArgs() - firstDataArg, |
| isa<ObjCStringLiteral>(OrigFormatExpr), Str, |
| HasVAListArg, TheCall, format_idx); |
| |
| if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen)) |
| H.DoneProcessing(); |
| } |
| } |
| |
| //===--- CHECK: Return Address of Stack Variable --------------------------===// |
| |
| static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars); |
| static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars); |
| |
| /// CheckReturnStackAddr - Check if a return statement returns the address |
| /// of a stack variable. |
| void |
| Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, |
| SourceLocation ReturnLoc) { |
| |
| Expr *stackE = 0; |
| llvm::SmallVector<DeclRefExpr *, 8> refVars; |
| |
| // Perform checking for returned stack addresses, local blocks, |
| // label addresses or references to temporaries. |
| if (lhsType->isPointerType() || lhsType->isBlockPointerType()) { |
| stackE = EvalAddr(RetValExp, refVars); |
| } else if (lhsType->isReferenceType()) { |
| stackE = EvalVal(RetValExp, refVars); |
| } |
| |
| if (stackE == 0) |
| return; // Nothing suspicious was found. |
| |
| SourceLocation diagLoc; |
| SourceRange diagRange; |
| if (refVars.empty()) { |
| diagLoc = stackE->getLocStart(); |
| diagRange = stackE->getSourceRange(); |
| } else { |
| // We followed through a reference variable. 'stackE' contains the |
| // problematic expression but we will warn at the return statement pointing |
| // at the reference variable. We will later display the "trail" of |
| // reference variables using notes. |
| diagLoc = refVars[0]->getLocStart(); |
| diagRange = refVars[0]->getSourceRange(); |
| } |
| |
| if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var. |
| Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref |
| : diag::warn_ret_stack_addr) |
| << DR->getDecl()->getDeclName() << diagRange; |
| } else if (isa<BlockExpr>(stackE)) { // local block. |
| Diag(diagLoc, diag::err_ret_local_block) << diagRange; |
| } else if (isa<AddrLabelExpr>(stackE)) { // address of label. |
| Diag(diagLoc, diag::warn_ret_addr_label) << diagRange; |
| } else { // local temporary. |
| Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref |
| : diag::warn_ret_local_temp_addr) |
| << diagRange; |
| } |
| |
| // Display the "trail" of reference variables that we followed until we |
| // found the problematic expression using notes. |
| for (unsigned i = 0, e = refVars.size(); i != e; ++i) { |
| VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl()); |
| // If this var binds to another reference var, show the range of the next |
| // var, otherwise the var binds to the problematic expression, in which case |
| // show the range of the expression. |
| SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange() |
| : stackE->getSourceRange(); |
| Diag(VD->getLocation(), diag::note_ref_var_local_bind) |
| << VD->getDeclName() << range; |
| } |
| } |
| |
| /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that |
| /// check if the expression in a return statement evaluates to an address |
| /// to a location on the stack, a local block, an address of a label, or a |
| /// reference to local temporary. The recursion is used to traverse the |
| /// AST of the return expression, with recursion backtracking when we |
| /// encounter a subexpression that (1) clearly does not lead to one of the |
| /// above problematic expressions (2) is something we cannot determine leads to |
| /// a problematic expression based on such local checking. |
| /// |
| /// Both EvalAddr and EvalVal follow through reference variables to evaluate |
| /// the expression that they point to. Such variables are added to the |
| /// 'refVars' vector so that we know what the reference variable "trail" was. |
| /// |
| /// EvalAddr processes expressions that are pointers that are used as |
| /// references (and not L-values). EvalVal handles all other values. |
| /// At the base case of the recursion is a check for the above problematic |
| /// expressions. |
| /// |
| /// This implementation handles: |
| /// |
| /// * pointer-to-pointer casts |
| /// * implicit conversions from array references to pointers |
| /// * taking the address of fields |
| /// * arbitrary interplay between "&" and "*" operators |
| /// * pointer arithmetic from an address of a stack variable |
| /// * taking the address of an array element where the array is on the stack |
| static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) { |
| if (E->isTypeDependent()) |
| return NULL; |
| |
| // We should only be called for evaluating pointer expressions. |
| assert((E->getType()->isAnyPointerType() || |
| E->getType()->isBlockPointerType() || |
| E->getType()->isObjCQualifiedIdType()) && |
| "EvalAddr only works on pointers"); |
| |
| // Our "symbolic interpreter" is just a dispatch off the currently |
| // viewed AST node. We then recursively traverse the AST by calling |
| // EvalAddr and EvalVal appropriately. |
| switch (E->getStmtClass()) { |
| case Stmt::ParenExprClass: |
| // Ignore parentheses. |
| return EvalAddr(cast<ParenExpr>(E)->getSubExpr(), refVars); |
| |
| case Stmt::DeclRefExprClass: { |
| DeclRefExpr *DR = cast<DeclRefExpr>(E); |
| |
| if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) |
| // If this is a reference variable, follow through to the expression that |
| // it points to. |
| if (V->hasLocalStorage() && |
| V->getType()->isReferenceType() && V->hasInit()) { |
| // Add the reference variable to the "trail". |
| refVars.push_back(DR); |
| return EvalAddr(V->getInit(), refVars); |
| } |
| |
| return NULL; |
| } |
| |
| case Stmt::UnaryOperatorClass: { |
| // The only unary operator that make sense to handle here |
| // is AddrOf. All others don't make sense as pointers. |
| UnaryOperator *U = cast<UnaryOperator>(E); |
| |
| if (U->getOpcode() == UO_AddrOf) |
| return EvalVal(U->getSubExpr(), refVars); |
| else |
| return NULL; |
| } |
| |
| case Stmt::BinaryOperatorClass: { |
| // Handle pointer arithmetic. All other binary operators are not valid |
| // in this context. |
| BinaryOperator *B = cast<BinaryOperator>(E); |
| BinaryOperatorKind op = B->getOpcode(); |
| |
| if (op != BO_Add && op != BO_Sub) |
| return NULL; |
| |
| Expr *Base = B->getLHS(); |
| |
| // Determine which argument is the real pointer base. It could be |
| // the RHS argument instead of the LHS. |
| if (!Base->getType()->isPointerType()) Base = B->getRHS(); |
| |
| assert (Base->getType()->isPointerType()); |
| return EvalAddr(Base, refVars); |
| } |
| |
| // For conditional operators we need to see if either the LHS or RHS are |
| // valid DeclRefExpr*s. If one of them is valid, we return it. |
| case Stmt::ConditionalOperatorClass: { |
| ConditionalOperator *C = cast<ConditionalOperator>(E); |
| |
| // Handle the GNU extension for missing LHS. |
| if (Expr *lhsExpr = C->getLHS()) { |
| // In C++, we can have a throw-expression, which has 'void' type. |
| if (!lhsExpr->getType()->isVoidType()) |
| if (Expr* LHS = EvalAddr(lhsExpr, refVars)) |
| return LHS; |
| } |
| |
| // In C++, we can have a throw-expression, which has 'void' type. |
| if (C->getRHS()->getType()->isVoidType()) |
| return NULL; |
| |
| return EvalAddr(C->getRHS(), refVars); |
| } |
| |
| case Stmt::BlockExprClass: |
| if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures()) |
| return E; // local block. |
| return NULL; |
| |
| case Stmt::AddrLabelExprClass: |
| return E; // address of label. |
| |
| // For casts, we need to handle conversions from arrays to |
| // pointer values, and pointer-to-pointer conversions. |
| case Stmt::ImplicitCastExprClass: |
| case Stmt::CStyleCastExprClass: |
| case Stmt::CXXFunctionalCastExprClass: { |
| Expr* SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| QualType T = SubExpr->getType(); |
| |
| if (SubExpr->getType()->isPointerType() || |
| SubExpr->getType()->isBlockPointerType() || |
| SubExpr->getType()->isObjCQualifiedIdType()) |
| return EvalAddr(SubExpr, refVars); |
| else if (T->isArrayType()) |
| return EvalVal(SubExpr, refVars); |
| else |
| return 0; |
| } |
| |
| // C++ casts. For dynamic casts, static casts, and const casts, we |
| // are always converting from a pointer-to-pointer, so we just blow |
| // through the cast. In the case the dynamic cast doesn't fail (and |
| // return NULL), we take the conservative route and report cases |
| // where we return the address of a stack variable. For Reinterpre |
| // FIXME: The comment about is wrong; we're not always converting |
| // from pointer to pointer. I'm guessing that this code should also |
| // handle references to objects. |
| case Stmt::CXXStaticCastExprClass: |
| case Stmt::CXXDynamicCastExprClass: |
| case Stmt::CXXConstCastExprClass: |
| case Stmt::CXXReinterpretCastExprClass: { |
| Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr(); |
| if (S->getType()->isPointerType() || S->getType()->isBlockPointerType()) |
| return EvalAddr(S, refVars); |
| else |
| return NULL; |
| } |
| |
| // Everything else: we simply don't reason about them. |
| default: |
| return NULL; |
| } |
| } |
| |
| |
| /// EvalVal - This function is complements EvalAddr in the mutual recursion. |
| /// See the comments for EvalAddr for more details. |
| static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) { |
| do { |
| // We should only be called for evaluating non-pointer expressions, or |
| // expressions with a pointer type that are not used as references but instead |
| // are l-values (e.g., DeclRefExpr with a pointer type). |
| |
| // Our "symbolic interpreter" is just a dispatch off the currently |
| // viewed AST node. We then recursively traverse the AST by calling |
| // EvalAddr and EvalVal appropriately. |
| switch (E->getStmtClass()) { |
| case Stmt::ImplicitCastExprClass: { |
| ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E); |
| if (IE->getValueKind() == VK_LValue) { |
| E = IE->getSubExpr(); |
| continue; |
| } |
| return NULL; |
| } |
| |
| case Stmt::DeclRefExprClass: { |
| // When we hit a DeclRefExpr we are looking at code that refers to a |
| // variable's name. If it's not a reference variable we check if it has |
| // local storage within the function, and if so, return the expression. |
| DeclRefExpr *DR = cast<DeclRefExpr>(E); |
| |
| if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) |
| if (V->hasLocalStorage()) { |
| if (!V->getType()->isReferenceType()) |
| return DR; |
| |
| // Reference variable, follow through to the expression that |
| // it points to. |
| if (V->hasInit()) { |
| // Add the reference variable to the "trail". |
| refVars.push_back(DR); |
| return EvalVal(V->getInit(), refVars); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| case Stmt::ParenExprClass: { |
| // Ignore parentheses. |
| E = cast<ParenExpr>(E)->getSubExpr(); |
| continue; |
| } |
| |
| case Stmt::UnaryOperatorClass: { |
| // The only unary operator that make sense to handle here |
| // is Deref. All others don't resolve to a "name." This includes |
| // handling all sorts of rvalues passed to a unary operator. |
| UnaryOperator *U = cast<UnaryOperator>(E); |
| |
| if (U->getOpcode() == UO_Deref) |
| return EvalAddr(U->getSubExpr(), refVars); |
| |
| return NULL; |
| } |
| |
| case Stmt::ArraySubscriptExprClass: { |
| // Array subscripts are potential references to data on the stack. We |
| // retrieve the DeclRefExpr* for the array variable if it indeed |
| // has local storage. |
| return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars); |
| } |
| |
| case Stmt::ConditionalOperatorClass: { |
| // For conditional operators we need to see if either the LHS or RHS are |
| // non-NULL Expr's. If one is non-NULL, we return it. |
| ConditionalOperator *C = cast<ConditionalOperator>(E); |
| |
| // Handle the GNU extension for missing LHS. |
| if (Expr *lhsExpr = C->getLHS()) |
| if (Expr *LHS = EvalVal(lhsExpr, refVars)) |
| return LHS; |
| |
| return EvalVal(C->getRHS(), refVars); |
| } |
| |
| // Accesses to members are potential references to data on the stack. |
| case Stmt::MemberExprClass: { |
| MemberExpr *M = cast<MemberExpr>(E); |
| |
| // Check for indirect access. We only want direct field accesses. |
| if (M->isArrow()) |
| return NULL; |
| |
| // Check whether the member type is itself a reference, in which case |
| // we're not going to refer to the member, but to what the member refers to. |
| if (M->getMemberDecl()->getType()->isReferenceType()) |
| return NULL; |
| |
| return EvalVal(M->getBase(), refVars); |
| } |
| |
| default: |
| // Check that we don't return or take the address of a reference to a |
| // temporary. This is only useful in C++. |
| if (!E->isTypeDependent() && E->isRValue()) |
| return E; |
| |
| // Everything else: we simply don't reason about them. |
| return NULL; |
| } |
| } while (true); |
| } |
| |
| //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// |
| |
| /// Check for comparisons of floating point operands using != and ==. |
| /// Issue a warning if these are no self-comparisons, as they are not likely |
| /// to do what the programmer intended. |
| void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) { |
| bool EmitWarning = true; |
| |
| Expr* LeftExprSansParen = lex->IgnoreParenImpCasts(); |
| Expr* RightExprSansParen = rex->IgnoreParenImpCasts(); |
| |
| // Special case: check for x == x (which is OK). |
| // Do not emit warnings for such cases. |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) |
| if (DRL->getDecl() == DRR->getDecl()) |
| EmitWarning = false; |
| |
| |
| // Special case: check for comparisons against literals that can be exactly |
| // represented by APFloat. In such cases, do not emit a warning. This |
| // is a heuristic: often comparison against such literals are used to |
| // detect if a value in a variable has not changed. This clearly can |
| // lead to false negatives. |
| if (EmitWarning) { |
| if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { |
| if (FLL->isExact()) |
| EmitWarning = false; |
| } else |
| if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){ |
| if (FLR->isExact()) |
| EmitWarning = false; |
| } |
| } |
| |
| // Check for comparisons with builtin types. |
| if (EmitWarning) |
| if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) |
| if (CL->isBuiltinCall(Context)) |
| EmitWarning = false; |
| |
| if (EmitWarning) |
| if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) |
| if (CR->isBuiltinCall(Context)) |
| EmitWarning = false; |
| |
| // Emit the diagnostic. |
| if (EmitWarning) |
| Diag(loc, diag::warn_floatingpoint_eq) |
| << lex->getSourceRange() << rex->getSourceRange(); |
| } |
| |
| //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// |
| //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// |
| |
| namespace { |
| |
| /// Structure recording the 'active' range of an integer-valued |
| /// expression. |
| struct IntRange { |
| /// The number of bits active in the int. |
| unsigned Width; |
| |
| /// True if the int is known not to have negative values. |
| bool NonNegative; |
| |
| IntRange(unsigned Width, bool NonNegative) |
| : Width(Width), NonNegative(NonNegative) |
| {} |
| |
| /// Returns the range of the bool type. |
| static IntRange forBoolType() { |
| return IntRange(1, true); |
| } |
| |
| /// Returns the range of an opaque value of the given integral type. |
| static IntRange forValueOfType(ASTContext &C, QualType T) { |
| return forValueOfCanonicalType(C, |
| T->getCanonicalTypeInternal().getTypePtr()); |
| } |
| |
| /// Returns the range of an opaque value of a canonical integral type. |
| static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { |
| assert(T->isCanonicalUnqualified()); |
| |
| if (const VectorType *VT = dyn_cast<VectorType>(T)) |
| T = VT->getElementType().getTypePtr(); |
| if (const ComplexType *CT = dyn_cast<ComplexType>(T)) |
| T = CT->getElementType().getTypePtr(); |
| |
| // For enum types, use the known bit width of the enumerators. |
| if (const EnumType *ET = dyn_cast<EnumType>(T)) { |
| EnumDecl *Enum = ET->getDecl(); |
| if (!Enum->isDefinition()) |
| return IntRange(C.getIntWidth(QualType(T, 0)), false); |
| |
| unsigned NumPositive = Enum->getNumPositiveBits(); |
| unsigned NumNegative = Enum->getNumNegativeBits(); |
| |
| return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0); |
| } |
| |
| const BuiltinType *BT = cast<BuiltinType>(T); |
| assert(BT->isInteger()); |
| |
| return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); |
| } |
| |
| /// Returns the "target" range of a canonical integral type, i.e. |
| /// the range of values expressible in the type. |
| /// |
| /// This matches forValueOfCanonicalType except that enums have the |
| /// full range of their type, not the range of their enumerators. |
| static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { |
| assert(T->isCanonicalUnqualified()); |
| |
| if (const VectorType *VT = dyn_cast<VectorType>(T)) |
| T = VT->getElementType().getTypePtr(); |
| if (const ComplexType *CT = dyn_cast<ComplexType>(T)) |
| T = CT->getElementType().getTypePtr(); |
| if (const EnumType *ET = dyn_cast<EnumType>(T)) |
| T = ET->getDecl()->getIntegerType().getTypePtr(); |
| |
| const BuiltinType *BT = cast<BuiltinType>(T); |
| assert(BT->isInteger()); |
| |
| return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); |
| } |
| |
| /// Returns the supremum of two ranges: i.e. their conservative merge. |
| static IntRange join(IntRange L, IntRange R) { |
| return IntRange(std::max(L.Width, R.Width), |
| L.NonNegative && R.NonNegative); |
| } |
| |
| /// Returns the infinum of two ranges: i.e. their aggressive merge. |
| static IntRange meet(IntRange L, IntRange R) { |
| return IntRange(std::min(L.Width, R.Width), |
| L.NonNegative || R.NonNegative); |
| } |
| }; |
| |
| IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) { |
| if (value.isSigned() && value.isNegative()) |
| return IntRange(value.getMinSignedBits(), false); |
| |
| if (value.getBitWidth() > MaxWidth) |
| value = value.trunc(MaxWidth); |
| |
| // isNonNegative() just checks the sign bit without considering |
| // signedness. |
| return IntRange(value.getActiveBits(), true); |
| } |
| |
| IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, |
| unsigned MaxWidth) { |
| if (result.isInt()) |
| return GetValueRange(C, result.getInt(), MaxWidth); |
| |
| if (result.isVector()) { |
| IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); |
| for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { |
| IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); |
| R = IntRange::join(R, El); |
| } |
| return R; |
| } |
| |
| if (result.isComplexInt()) { |
| IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); |
| IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); |
| return IntRange::join(R, I); |
| } |
| |
| // This can happen with lossless casts to intptr_t of "based" lvalues. |
| // Assume it might use arbitrary bits. |
| // FIXME: The only reason we need to pass the type in here is to get |
| // the sign right on this one case. It would be nice if APValue |
| // preserved this. |
| assert(result.isLValue()); |
| return IntRange(MaxWidth, Ty->isUnsignedIntegerType()); |
| } |
| |
| /// Pseudo-evaluate the given integer expression, estimating the |
| /// range of values it might take. |
| /// |
| /// \param MaxWidth - the width to which the value will be truncated |
| IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) { |
| E = E->IgnoreParens(); |
| |
| // Try a full evaluation first. |
| Expr::EvalResult result; |
| if (E->Evaluate(result, C)) |
| return GetValueRange(C, result.Val, E->getType(), MaxWidth); |
| |
| // I think we only want to look through implicit casts here; if the |
| // user has an explicit widening cast, we should treat the value as |
| // being of the new, wider type. |
| if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (CE->getCastKind() == CK_NoOp) |
| return GetExprRange(C, CE->getSubExpr(), MaxWidth); |
| |
| IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType()); |
| |
| bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast); |
| |
| // Assume that non-integer casts can span the full range of the type. |
| if (!isIntegerCast) |
| return OutputTypeRange; |
| |
| IntRange SubRange |
| = GetExprRange(C, CE->getSubExpr(), |
| std::min(MaxWidth, OutputTypeRange.Width)); |
| |
| // Bail out if the subexpr's range is as wide as the cast type. |
| if (SubRange.Width >= OutputTypeRange.Width) |
| return OutputTypeRange; |
| |
| // Otherwise, we take the smaller width, and we're non-negative if |
| // either the output type or the subexpr is. |
| return IntRange(SubRange.Width, |
| SubRange.NonNegative || OutputTypeRange.NonNegative); |
| } |
| |
| if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { |
| // If we can fold the condition, just take that operand. |
| bool CondResult; |
| if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) |
| return GetExprRange(C, CondResult ? CO->getTrueExpr() |
| : CO->getFalseExpr(), |
| MaxWidth); |
| |
| // Otherwise, conservatively merge. |
| IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth); |
| IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth); |
| return IntRange::join(L, R); |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| switch (BO->getOpcode()) { |
| |
| // Boolean-valued operations are single-bit and positive. |
| case BO_LAnd: |
| case BO_LOr: |
| case BO_LT: |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: |
| case BO_NE: |
| return IntRange::forBoolType(); |
| |
| // The type of these compound assignments is the type of the LHS, |
| // so the RHS is not necessarily an integer. |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_RemAssign: |
| case BO_AddAssign: |
| case BO_SubAssign: |
| return IntRange::forValueOfType(C, E->getType()); |
| |
| // Operations with opaque sources are black-listed. |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| return IntRange::forValueOfType(C, E->getType()); |
| |
| // Bitwise-and uses the *infinum* of the two source ranges. |
| case BO_And: |
| case BO_AndAssign: |
| return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth), |
| GetExprRange(C, BO->getRHS(), MaxWidth)); |
| |
| // Left shift gets black-listed based on a judgement call. |
| case BO_Shl: |
| // ...except that we want to treat '1 << (blah)' as logically |
| // positive. It's an important idiom. |
| if (IntegerLiteral *I |
| = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { |
| if (I->getValue() == 1) { |
| IntRange R = IntRange::forValueOfType(C, E->getType()); |
| return IntRange(R.Width, /*NonNegative*/ true); |
| } |
| } |
| // fallthrough |
| |
| case BO_ShlAssign: |
| return IntRange::forValueOfType(C, E->getType()); |
| |
| // Right shift by a constant can narrow its left argument. |
| case BO_Shr: |
| case BO_ShrAssign: { |
| IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); |
| |
| // If the shift amount is a positive constant, drop the width by |
| // that much. |
| llvm::APSInt shift; |
| if (BO->getRHS()->isIntegerConstantExpr(shift, C) && |
| shift.isNonNegative()) { |
| unsigned zext = shift.getZExtValue(); |
| if (zext >= L.Width) |
| L.Width = (L.NonNegative ? 0 : 1); |
| else |
| L.Width -= zext; |
| } |
| |
| return L; |
| } |
| |
| // Comma acts as its right operand. |
| case BO_Comma: |
| return GetExprRange(C, BO->getRHS(), MaxWidth); |
| |
| // Black-list pointer subtractions. |
| case BO_Sub: |
| if (BO->getLHS()->getType()->isPointerType()) |
| return IntRange::forValueOfType(C, E->getType()); |
| // fallthrough |
| |
| default: |
| break; |
| } |
| |
| // Treat every other operator as if it were closed on the |
| // narrowest type that encompasses both operands. |
| IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); |
| IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth); |
| return IntRange::join(L, R); |
| } |
| |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
| switch (UO->getOpcode()) { |
| // Boolean-valued operations are white-listed. |
| case UO_LNot: |
| return IntRange::forBoolType(); |
| |
| // Operations with opaque sources are black-listed. |
| case UO_Deref: |
| case UO_AddrOf: // should be impossible |
| return IntRange::forValueOfType(C, E->getType()); |
| |
| default: |
| return GetExprRange(C, UO->getSubExpr(), MaxWidth); |
| } |
| } |
| |
| if (dyn_cast<OffsetOfExpr>(E)) { |
| IntRange::forValueOfType(C, E->getType()); |
| } |
| |
| FieldDecl *BitField = E->getBitField(); |
| if (BitField) { |
| llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C); |
| unsigned BitWidth = BitWidthAP.getZExtValue(); |
| |
| return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType()); |
| } |
| |
| return IntRange::forValueOfType(C, E->getType()); |
| } |
| |
| IntRange GetExprRange(ASTContext &C, Expr *E) { |
| return GetExprRange(C, E, C.getIntWidth(E->getType())); |
| } |
| |
| /// Checks whether the given value, which currently has the given |
| /// source semantics, has the same value when coerced through the |
| /// target semantics. |
| bool IsSameFloatAfterCast(const llvm::APFloat &value, |
| const llvm::fltSemantics &Src, |
| const llvm::fltSemantics &Tgt) { |
| llvm::APFloat truncated = value; |
| |
| bool ignored; |
| truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); |
| truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); |
| |
| return truncated.bitwiseIsEqual(value); |
| } |
| |
| /// Checks whether the given value, which currently has the given |
| /// source semantics, has the same value when coerced through the |
| /// target semantics. |
| /// |
| /// The value might be a vector of floats (or a complex number). |
| bool IsSameFloatAfterCast(const APValue &value, |
| const llvm::fltSemantics &Src, |
| const llvm::fltSemantics &Tgt) { |
| if (value.isFloat()) |
| return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); |
| |
| if (value.isVector()) { |
| for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) |
| if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) |
| return false; |
| return true; |
| } |
| |
| assert(value.isComplexFloat()); |
| return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && |
| IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); |
| } |
| |
| void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC); |
| |
| static bool IsZero(Sema &S, Expr *E) { |
| // Suppress cases where we are comparing against an enum constant. |
| if (const DeclRefExpr *DR = |
| dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) |
| if (isa<EnumConstantDecl>(DR->getDecl())) |
| return false; |
| |
| // Suppress cases where the '0' value is expanded from a macro. |
| if (E->getLocStart().isMacroID()) |
| return false; |
| |
| llvm::APSInt Value; |
| return E->isIntegerConstantExpr(Value, S.Context) && Value == 0; |
| } |
| |
| static bool HasEnumType(Expr *E) { |
| // Strip off implicit integral promotions. |
| while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() != CK_IntegralCast && |
| ICE->getCastKind() != CK_NoOp) |
| break; |
| E = ICE->getSubExpr(); |
| } |
| |
| return E->getType()->isEnumeralType(); |
| } |
| |
| void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) { |
| BinaryOperatorKind op = E->getOpcode(); |
| if (E->isValueDependent()) |
| return; |
| |
| if (op == BO_LT && IsZero(S, E->getRHS())) { |
| S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison) |
| << "< 0" << "false" << HasEnumType(E->getLHS()) |
| << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| } else if (op == BO_GE && IsZero(S, E->getRHS())) { |
| S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison) |
| << ">= 0" << "true" << HasEnumType(E->getLHS()) |
| << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| } else if (op == BO_GT && IsZero(S, E->getLHS())) { |
| S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison) |
| << "0 >" << "false" << HasEnumType(E->getRHS()) |
| << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| } else if (op == BO_LE && IsZero(S, E->getLHS())) { |
| S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison) |
| << "0 <=" << "true" << HasEnumType(E->getRHS()) |
| << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| } |
| } |
| |
| /// Analyze the operands of the given comparison. Implements the |
| /// fallback case from AnalyzeComparison. |
| void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { |
| AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); |
| AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); |
| } |
| |
| /// \brief Implements -Wsign-compare. |
| /// |
| /// \param lex the left-hand expression |
| /// \param rex the right-hand expression |
| /// \param OpLoc the location of the joining operator |
| /// \param BinOpc binary opcode or 0 |
| void AnalyzeComparison(Sema &S, BinaryOperator *E) { |
| // The type the comparison is being performed in. |
| QualType T = E->getLHS()->getType(); |
| assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()) |
| && "comparison with mismatched types"); |
| |
| // We don't do anything special if this isn't an unsigned integral |
| // comparison: we're only interested in integral comparisons, and |
| // signed comparisons only happen in cases we don't care to warn about. |
| // |
| // We also don't care about value-dependent expressions or expressions |
| // whose result is a constant. |
| if (!T->hasUnsignedIntegerRepresentation() |
| || E->isValueDependent() || E->isIntegerConstantExpr(S.Context)) |
| return AnalyzeImpConvsInComparison(S, E); |
| |
| Expr *lex = E->getLHS()->IgnoreParenImpCasts(); |
| Expr *rex = E->getRHS()->IgnoreParenImpCasts(); |
| |
| // Check to see if one of the (unmodified) operands is of different |
| // signedness. |
| Expr *signedOperand, *unsignedOperand; |
| if (lex->getType()->hasSignedIntegerRepresentation()) { |
| assert(!rex->getType()->hasSignedIntegerRepresentation() && |
| "unsigned comparison between two signed integer expressions?"); |
| signedOperand = lex; |
| unsignedOperand = rex; |
| } else if (rex->getType()->hasSignedIntegerRepresentation()) { |
| signedOperand = rex; |
| unsignedOperand = lex; |
| } else { |
| CheckTrivialUnsignedComparison(S, E); |
| return AnalyzeImpConvsInComparison(S, E); |
| } |
| |
| // Otherwise, calculate the effective range of the signed operand. |
| IntRange signedRange = GetExprRange(S.Context, signedOperand); |
| |
| // Go ahead and analyze implicit conversions in the operands. Note |
| // that we skip the implicit conversions on both sides. |
| AnalyzeImplicitConversions(S, lex, E->getOperatorLoc()); |
| AnalyzeImplicitConversions(S, rex, E->getOperatorLoc()); |
| |
| // If the signed range is non-negative, -Wsign-compare won't fire, |
| // but we should still check for comparisons which are always true |
| // or false. |
| if (signedRange.NonNegative) |
| return CheckTrivialUnsignedComparison(S, E); |
| |
| // For (in)equality comparisons, if the unsigned operand is a |
| // constant which cannot collide with a overflowed signed operand, |
| // then reinterpreting the signed operand as unsigned will not |
| // change the result of the comparison. |
| if (E->isEqualityOp()) { |
| unsigned comparisonWidth = S.Context.getIntWidth(T); |
| IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand); |
| |
| // We should never be unable to prove that the unsigned operand is |
| // non-negative. |
| assert(unsignedRange.NonNegative && "unsigned range includes negative?"); |
| |
| if (unsignedRange.Width < comparisonWidth) |
| return; |
| } |
| |
| S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison) |
| << lex->getType() << rex->getType() |
| << lex->getSourceRange() << rex->getSourceRange(); |
| } |
| |
| /// Analyzes an attempt to assign the given value to a bitfield. |
| /// |
| /// Returns true if there was something fishy about the attempt. |
| bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, |
| SourceLocation InitLoc) { |
| assert(Bitfield->isBitField()); |
| if (Bitfield->isInvalidDecl()) |
| return false; |
| |
| // White-list bool bitfields. |
| if (Bitfield->getType()->isBooleanType()) |
| return false; |
| |
| // Ignore value- or type-dependent expressions. |
| if (Bitfield->getBitWidth()->isValueDependent() || |
| Bitfield->getBitWidth()->isTypeDependent() || |
| Init->isValueDependent() || |
| Init->isTypeDependent()) |
| return false; |
| |
| Expr *OriginalInit = Init->IgnoreParenImpCasts(); |
| |
| llvm::APSInt Width(32); |
| Expr::EvalResult InitValue; |
| if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) || |
| !OriginalInit->Evaluate(InitValue, S.Context) || |
| !InitValue.Val.isInt()) |
| return false; |
| |
| const llvm::APSInt &Value = InitValue.Val.getInt(); |
| unsigned OriginalWidth = Value.getBitWidth(); |
| unsigned FieldWidth = Width.getZExtValue(); |
| |
| if (OriginalWidth <= FieldWidth) |
| return false; |
| |
| llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); |
| |
| // It's fairly common to write values into signed bitfields |
| // that, if sign-extended, would end up becoming a different |
| // value. We don't want to warn about that. |
| if (Value.isSigned() && Value.isNegative()) |
| TruncatedValue = TruncatedValue.sext(OriginalWidth); |
| else |
| TruncatedValue = TruncatedValue.zext(OriginalWidth); |
| |
| if (Value == TruncatedValue) |
| return false; |
| |
| std::string PrettyValue = Value.toString(10); |
| std::string PrettyTrunc = TruncatedValue.toString(10); |
| |
| S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) |
| << PrettyValue << PrettyTrunc << OriginalInit->getType() |
| << Init->getSourceRange(); |
| |
| return true; |
| } |
| |
| /// Analyze the given simple or compound assignment for warning-worthy |
| /// operations. |
| void AnalyzeAssignment(Sema &S, BinaryOperator *E) { |
| // Just recurse on the LHS. |
| AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); |
| |
| // We want to recurse on the RHS as normal unless we're assigning to |
| // a bitfield. |
| if (FieldDecl *Bitfield = E->getLHS()->getBitField()) { |
| if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), |
| E->getOperatorLoc())) { |
| // Recurse, ignoring any implicit conversions on the RHS. |
| return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), |
| E->getOperatorLoc()); |
| } |
| } |
| |
| AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); |
| } |
| |
| /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
| void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext, |
| unsigned diag) { |
| S.Diag(E->getExprLoc(), diag) |
| << E->getType() << T << E->getSourceRange() << SourceRange(CContext); |
| } |
| |
| std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) { |
| if (!Range.Width) return "0"; |
| |
| llvm::APSInt ValueInRange = Value; |
| ValueInRange.setIsSigned(!Range.NonNegative); |
| ValueInRange = ValueInRange.trunc(Range.Width); |
| return ValueInRange.toString(10); |
| } |
| |
| void CheckImplicitConversion(Sema &S, Expr *E, QualType T, |
| SourceLocation CC, bool *ICContext = 0) { |
| if (E->isTypeDependent() || E->isValueDependent()) return; |
| |
| const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); |
| const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); |
| if (Source == Target) return; |
| if (Target->isDependentType()) return; |
| |
| // If the conversion context location is invalid or instantiated |
| // from a system macro, don't complain. |
| if (CC.isInvalid() || |
| (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader( |
| S.Context.getSourceManager().getSpellingLoc(CC)))) |
| return; |
| |
| // Never diagnose implicit casts to bool. |
| if (Target->isSpecificBuiltinType(BuiltinType::Bool)) |
| return; |
| |
| // Strip vector types. |
| if (isa<VectorType>(Source)) { |
| if (!isa<VectorType>(Target)) |
| return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); |
| |
| Source = cast<VectorType>(Source)->getElementType().getTypePtr(); |
| Target = cast<VectorType>(Target)->getElementType().getTypePtr(); |
| } |
| |
| // Strip complex types. |
| if (isa<ComplexType>(Source)) { |
| if (!isa<ComplexType>(Target)) |
| return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar); |
| |
| Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); |
| Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); |
| } |
| |
| const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); |
| const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); |
| |
| // If the source is floating point... |
| if (SourceBT && SourceBT->isFloatingPoint()) { |
| // ...and the target is floating point... |
| if (TargetBT && TargetBT->isFloatingPoint()) { |
| // ...then warn if we're dropping FP rank. |
| |
| // Builtin FP kinds are ordered by increasing FP rank. |
| if (SourceBT->getKind() > TargetBT->getKind()) { |
| // Don't warn about float constants that are precisely |
| // representable in the target type. |
| Expr::EvalResult result; |
| if (E->Evaluate(result, S.Context)) { |
| // Value might be a float, a float vector, or a float complex. |
| if (IsSameFloatAfterCast(result.Val, |
| S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), |
| S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) |
| return; |
| } |
| |
| DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); |
| } |
| return; |
| } |
| |
| // If the target is integral, always warn. |
| if ((TargetBT && TargetBT->isInteger())) { |
| Expr *InnerE = E->IgnoreParenImpCasts(); |
| if (FloatingLiteral *LiteralExpr = dyn_cast<FloatingLiteral>(InnerE)) { |
| DiagnoseImpCast(S, LiteralExpr, T, CC, |
| diag::warn_impcast_literal_float_to_integer); |
| } else { |
| DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer); |
| } |
| } |
| |
| return; |
| } |
| |
| if (!Source->isIntegerType() || !Target->isIntegerType()) |
| return; |
| |
| IntRange SourceRange = GetExprRange(S.Context, E); |
| IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); |
| |
| if (SourceRange.Width > TargetRange.Width) { |
| // If the source is a constant, use a default-on diagnostic. |
| // TODO: this should happen for bitfield stores, too. |
| llvm::APSInt Value(32); |
| if (E->isIntegerConstantExpr(Value, S.Context)) { |
| std::string PrettySourceValue = Value.toString(10); |
| std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); |
| |
| S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant) |
| << PrettySourceValue << PrettyTargetValue |
| << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC); |
| return; |
| } |
| |
| // People want to build with -Wshorten-64-to-32 and not -Wconversion |
| // and by god we'll let them. |
| if (SourceRange.Width == 64 && TargetRange.Width == 32) |
| return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32); |
| return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); |
| } |
| |
| if ((TargetRange.NonNegative && !SourceRange.NonNegative) || |
| (!TargetRange.NonNegative && SourceRange.NonNegative && |
| SourceRange.Width == TargetRange.Width)) { |
| unsigned DiagID = diag::warn_impcast_integer_sign; |
| |
| // Traditionally, gcc has warned about this under -Wsign-compare. |
| // We also want to warn about it in -Wconversion. |
| // So if -Wconversion is off, use a completely identical diagnostic |
| // in the sign-compare group. |
| // The conditional-checking code will |
| if (ICContext) { |
| DiagID = diag::warn_impcast_integer_sign_conditional; |
| *ICContext = true; |
| } |
| |
| return DiagnoseImpCast(S, E, T, CC, DiagID); |
| } |
| |
| // Diagnose conversions between different enumeration types. |
| if (const EnumType *SourceEnum = Source->getAs<EnumType>()) |
| if (const EnumType *TargetEnum = Target->getAs<EnumType>()) |
| if ((SourceEnum->getDecl()->getIdentifier() || |
| SourceEnum->getDecl()->getTypedefForAnonDecl()) && |
| (TargetEnum->getDecl()->getIdentifier() || |
| TargetEnum->getDecl()->getTypedefForAnonDecl()) && |
| SourceEnum != TargetEnum) |
| return DiagnoseImpCast(S, E, T, CC, |
| diag::warn_impcast_different_enum_types); |
| |
| return; |
| } |
| |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T); |
| |
| void CheckConditionalOperand(Sema &S, Expr *E, QualType T, |
| SourceLocation CC, bool &ICContext) { |
| E = E->IgnoreParenImpCasts(); |
| |
| if (isa<ConditionalOperator>(E)) |
| return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T); |
| |
| AnalyzeImplicitConversions(S, E, CC); |
| if (E->getType() != T) |
| return CheckImplicitConversion(S, E, T, CC, &ICContext); |
| return; |
| } |
| |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) { |
| SourceLocation CC = E->getQuestionLoc(); |
| |
| AnalyzeImplicitConversions(S, E->getCond(), CC); |
| |
| bool Suspicious = false; |
| CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious); |
| CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); |
| |
| // If -Wconversion would have warned about either of the candidates |
| // for a signedness conversion to the context type... |
| if (!Suspicious) return; |
| |
| // ...but it's currently ignored... |
| if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional, |
| CC)) |
| return; |
| |
| // ...and -Wsign-compare isn't... |
| if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC)) |
| return; |
| |
| // ...then check whether it would have warned about either of the |
| // candidates for a signedness conversion to the condition type. |
| if (E->getType() != T) { |
| Suspicious = false; |
| CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(), |
| E->getType(), CC, &Suspicious); |
| if (!Suspicious) |
| CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), |
| E->getType(), CC, &Suspicious); |
| if (!Suspicious) |
| return; |
| } |
| |
| // If so, emit a diagnostic under -Wsign-compare. |
| Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts(); |
| Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts(); |
| S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional) |
| << lex->getType() << rex->getType() |
| << lex->getSourceRange() << rex->getSourceRange(); |
| } |
| |
| /// AnalyzeImplicitConversions - Find and report any interesting |
| /// implicit conversions in the given expression. There are a couple |
| /// of competing diagnostics here, -Wconversion and -Wsign-compare. |
| void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) { |
| QualType T = OrigE->getType(); |
| Expr *E = OrigE->IgnoreParenImpCasts(); |
| |
| // For conditional operators, we analyze the arguments as if they |
| // were being fed directly into the output. |
| if (isa<ConditionalOperator>(E)) { |
| ConditionalOperator *CO = cast<ConditionalOperator>(E); |
| CheckConditionalOperator(S, CO, T); |
| return; |
| } |
| |
| // Go ahead and check any implicit conversions we might have skipped. |
| // The non-canonical typecheck is just an optimization; |
| // CheckImplicitConversion will filter out dead implicit conversions. |
| if (E->getType() != T) |
| CheckImplicitConversion(S, E, T, CC); |
| |
| // Now continue drilling into this expression. |
| |
| // Skip past explicit casts. |
| if (isa<ExplicitCastExpr>(E)) { |
| E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts(); |
| return AnalyzeImplicitConversions(S, E, CC); |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| // Do a somewhat different check with comparison operators. |
| if (BO->isComparisonOp()) |
| return AnalyzeComparison(S, BO); |
| |
| // And with assignments and compound assignments. |
| if (BO->isAssignmentOp()) |
| return AnalyzeAssignment(S, BO); |
| } |
| |
| // These break the otherwise-useful invariant below. Fortunately, |
| // we don't really need to recurse into them, because any internal |
| // expressions should have been analyzed already when they were |
| // built into statements. |
| if (isa<StmtExpr>(E)) return; |
| |
| // Don't descend into unevaluated contexts. |
| if (isa<SizeOfAlignOfExpr>(E)) return; |
| |
| // Now just recurse over the expression's children. |
| CC = E->getExprLoc(); |
| for (Stmt::child_range I = E->children(); I; ++I) |
| AnalyzeImplicitConversions(S, cast<Expr>(*I), CC); |
| } |
| |
| } // end anonymous namespace |
| |
| /// Diagnoses "dangerous" implicit conversions within the given |
| /// expression (which is a full expression). Implements -Wconversion |
| /// and -Wsign-compare. |
| /// |
| /// \param CC the "context" location of the implicit conversion, i.e. |
| /// the most location of the syntactic entity requiring the implicit |
| /// conversion |
| void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { |
| // Don't diagnose in unevaluated contexts. |
| if (ExprEvalContexts.back().Context == Sema::Unevaluated) |
| return; |
| |
| // Don't diagnose for value- or type-dependent expressions. |
| if (E->isTypeDependent() || E->isValueDependent()) |
| return; |
| |
| // This is not the right CC for (e.g.) a variable initialization. |
| AnalyzeImplicitConversions(*this, E, CC); |
| } |
| |
| void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, |
| FieldDecl *BitField, |
| Expr *Init) { |
| (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); |
| } |
| |
| /// CheckParmsForFunctionDef - Check that the parameters of the given |
| /// function are appropriate for the definition of a function. This |
| /// takes care of any checks that cannot be performed on the |
| /// declaration itself, e.g., that the types of each of the function |
| /// parameters are complete. |
| bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd, |
| bool CheckParameterNames) { |
| bool HasInvalidParm = false; |
| for (; P != PEnd; ++P) { |
| ParmVarDecl *Param = *P; |
| |
| // C99 6.7.5.3p4: the parameters in a parameter type list in a |
| // function declarator that is part of a function definition of |
| // that function shall not have incomplete type. |
| // |
| // This is also C++ [dcl.fct]p6. |
| if (!Param->isInvalidDecl() && |
| RequireCompleteType(Param->getLocation(), Param->getType(), |
| diag::err_typecheck_decl_incomplete_type)) { |
| Param->setInvalidDecl(); |
| HasInvalidParm = true; |
| } |
| |
| // C99 6.9.1p5: If the declarator includes a parameter type list, the |
| // declaration of each parameter shall include an identifier. |
| if (CheckParameterNames && |
| Param->getIdentifier() == 0 && |
| !Param->isImplicit() && |
| !getLangOptions().CPlusPlus) |
| Diag(Param->getLocation(), diag::err_parameter_name_omitted); |
| |
| // C99 6.7.5.3p12: |
| // If the function declarator is not part of a definition of that |
| // function, parameters may have incomplete type and may use the [*] |
| // notation in their sequences of declarator specifiers to specify |
| // variable length array types. |
| QualType PType = Param->getOriginalType(); |
| if (const ArrayType *AT = Context.getAsArrayType(PType)) { |
| if (AT->getSizeModifier() == ArrayType::Star) { |
| // FIXME: This diagnosic should point the the '[*]' if source-location |
| // information is added for it. |
| Diag(Param->getLocation(), diag::err_array_star_in_function_definition); |
| } |
| } |
| } |
| |
| return HasInvalidParm; |
| } |
| |
| /// CheckCastAlign - Implements -Wcast-align, which warns when a |
| /// pointer cast increases the alignment requirements. |
| void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { |
| // This is actually a lot of work to potentially be doing on every |
| // cast; don't do it if we're ignoring -Wcast_align (as is the default). |
| if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align, |
| TRange.getBegin()) |
| == Diagnostic::Ignored) |
| return; |
| |
| // Ignore dependent types. |
| if (T->isDependentType() || Op->getType()->isDependentType()) |
| return; |
| |
| // Require that the destination be a pointer type. |
| const PointerType *DestPtr = T->getAs<PointerType>(); |
| if (!DestPtr) return; |
| |
| // If the destination has alignment 1, we're done. |
| QualType DestPointee = DestPtr->getPointeeType(); |
| if (DestPointee->isIncompleteType()) return; |
| CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); |
| if (DestAlign.isOne()) return; |
| |
| // Require that the source be a pointer type. |
| const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); |
| if (!SrcPtr) return; |
| QualType SrcPointee = SrcPtr->getPointeeType(); |
| |
| // Whitelist casts from cv void*. We already implicitly |
| // whitelisted casts to cv void*, since they have alignment 1. |
| // Also whitelist casts involving incomplete types, which implicitly |
| // includes 'void'. |
| if (SrcPointee->isIncompleteType()) return; |
| |
| CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee); |
| if (SrcAlign >= DestAlign) return; |
| |
| Diag(TRange.getBegin(), diag::warn_cast_align) |
| << Op->getType() << T |
| << static_cast<unsigned>(SrcAlign.getQuantity()) |
| << static_cast<unsigned>(DestAlign.getQuantity()) |
| << TRange << Op->getSourceRange(); |
| } |
| |
| void Sema::CheckArrayAccess(const clang::ArraySubscriptExpr *E) { |
| const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts(); |
| const ConstantArrayType *ArrayTy = |
| Context.getAsConstantArrayType(BaseExpr->getType()); |
| if (!ArrayTy) |
| return; |
| |
| const Expr *IndexExpr = E->getIdx(); |
| if (IndexExpr->isValueDependent()) |
| return; |
| llvm::APSInt index; |
| if (!IndexExpr->isIntegerConstantExpr(index, Context)) |
| return; |
| |
| if (index.isUnsigned() || !index.isNegative()) { |
| llvm::APInt size = ArrayTy->getSize(); |
| if (!size.isStrictlyPositive()) |
| return; |
| if (size.getBitWidth() > index.getBitWidth()) |
| index = index.sext(size.getBitWidth()); |
| else if (size.getBitWidth() < index.getBitWidth()) |
| size = size.sext(index.getBitWidth()); |
| |
| if (index.slt(size)) |
| return; |
| |
| DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr, |
| PDiag(diag::warn_array_index_exceeds_bounds) |
| << index.toString(10, true) << size.toString(10, true) |
| << IndexExpr->getSourceRange()); |
| } else { |
| DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr, |
| PDiag(diag::warn_array_index_precedes_bounds) |
| << index.toString(10, true) |
| << IndexExpr->getSourceRange()); |
| } |
| |
| const NamedDecl *ND = NULL; |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) |
| ND = dyn_cast<NamedDecl>(DRE->getDecl()); |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) |
| ND = dyn_cast<NamedDecl>(ME->getMemberDecl()); |
| if (ND) |
| DiagRuntimeBehavior(ND->getLocStart(), BaseExpr, |
| PDiag(diag::note_array_index_out_of_bounds) |
| << ND->getDeclName()); |
| } |
| |