| //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "TypeLocBuilder.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/ErrorHandling.h" |
| using namespace clang; |
| using namespace sema; |
| |
| ParsedType Sema::getDestructorName(SourceLocation TildeLoc, |
| IdentifierInfo &II, |
| SourceLocation NameLoc, |
| Scope *S, CXXScopeSpec &SS, |
| ParsedType ObjectTypePtr, |
| bool EnteringContext) { |
| // Determine where to perform name lookup. |
| |
| // FIXME: This area of the standard is very messy, and the current |
| // wording is rather unclear about which scopes we search for the |
| // destructor name; see core issues 399 and 555. Issue 399 in |
| // particular shows where the current description of destructor name |
| // lookup is completely out of line with existing practice, e.g., |
| // this appears to be ill-formed: |
| // |
| // namespace N { |
| // template <typename T> struct S { |
| // ~S(); |
| // }; |
| // } |
| // |
| // void f(N::S<int>* s) { |
| // s->N::S<int>::~S(); |
| // } |
| // |
| // See also PR6358 and PR6359. |
| // For this reason, we're currently only doing the C++03 version of this |
| // code; the C++0x version has to wait until we get a proper spec. |
| QualType SearchType; |
| DeclContext *LookupCtx = 0; |
| bool isDependent = false; |
| bool LookInScope = false; |
| |
| // If we have an object type, it's because we are in a |
| // pseudo-destructor-expression or a member access expression, and |
| // we know what type we're looking for. |
| if (ObjectTypePtr) |
| SearchType = GetTypeFromParser(ObjectTypePtr); |
| |
| if (SS.isSet()) { |
| NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); |
| |
| bool AlreadySearched = false; |
| bool LookAtPrefix = true; |
| // C++ [basic.lookup.qual]p6: |
| // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, |
| // the type-names are looked up as types in the scope designated by the |
| // nested-name-specifier. In a qualified-id of the form: |
| // |
| // ::[opt] nested-name-specifier ~ class-name |
| // |
| // where the nested-name-specifier designates a namespace scope, and in |
| // a qualified-id of the form: |
| // |
| // ::opt nested-name-specifier class-name :: ~ class-name |
| // |
| // the class-names are looked up as types in the scope designated by |
| // the nested-name-specifier. |
| // |
| // Here, we check the first case (completely) and determine whether the |
| // code below is permitted to look at the prefix of the |
| // nested-name-specifier. |
| DeclContext *DC = computeDeclContext(SS, EnteringContext); |
| if (DC && DC->isFileContext()) { |
| AlreadySearched = true; |
| LookupCtx = DC; |
| isDependent = false; |
| } else if (DC && isa<CXXRecordDecl>(DC)) |
| LookAtPrefix = false; |
| |
| // The second case from the C++03 rules quoted further above. |
| NestedNameSpecifier *Prefix = 0; |
| if (AlreadySearched) { |
| // Nothing left to do. |
| } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { |
| CXXScopeSpec PrefixSS; |
| PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); |
| LookupCtx = computeDeclContext(PrefixSS, EnteringContext); |
| isDependent = isDependentScopeSpecifier(PrefixSS); |
| } else if (ObjectTypePtr) { |
| LookupCtx = computeDeclContext(SearchType); |
| isDependent = SearchType->isDependentType(); |
| } else { |
| LookupCtx = computeDeclContext(SS, EnteringContext); |
| isDependent = LookupCtx && LookupCtx->isDependentContext(); |
| } |
| |
| LookInScope = false; |
| } else if (ObjectTypePtr) { |
| // C++ [basic.lookup.classref]p3: |
| // If the unqualified-id is ~type-name, the type-name is looked up |
| // in the context of the entire postfix-expression. If the type T |
| // of the object expression is of a class type C, the type-name is |
| // also looked up in the scope of class C. At least one of the |
| // lookups shall find a name that refers to (possibly |
| // cv-qualified) T. |
| LookupCtx = computeDeclContext(SearchType); |
| isDependent = SearchType->isDependentType(); |
| assert((isDependent || !SearchType->isIncompleteType()) && |
| "Caller should have completed object type"); |
| |
| LookInScope = true; |
| } else { |
| // Perform lookup into the current scope (only). |
| LookInScope = true; |
| } |
| |
| TypeDecl *NonMatchingTypeDecl = 0; |
| LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); |
| for (unsigned Step = 0; Step != 2; ++Step) { |
| // Look for the name first in the computed lookup context (if we |
| // have one) and, if that fails to find a match, in the scope (if |
| // we're allowed to look there). |
| Found.clear(); |
| if (Step == 0 && LookupCtx) |
| LookupQualifiedName(Found, LookupCtx); |
| else if (Step == 1 && LookInScope && S) |
| LookupName(Found, S); |
| else |
| continue; |
| |
| // FIXME: Should we be suppressing ambiguities here? |
| if (Found.isAmbiguous()) |
| return ParsedType(); |
| |
| if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { |
| QualType T = Context.getTypeDeclType(Type); |
| |
| if (SearchType.isNull() || SearchType->isDependentType() || |
| Context.hasSameUnqualifiedType(T, SearchType)) { |
| // We found our type! |
| |
| return ParsedType::make(T); |
| } |
| |
| if (!SearchType.isNull()) |
| NonMatchingTypeDecl = Type; |
| } |
| |
| // If the name that we found is a class template name, and it is |
| // the same name as the template name in the last part of the |
| // nested-name-specifier (if present) or the object type, then |
| // this is the destructor for that class. |
| // FIXME: This is a workaround until we get real drafting for core |
| // issue 399, for which there isn't even an obvious direction. |
| if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { |
| QualType MemberOfType; |
| if (SS.isSet()) { |
| if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { |
| // Figure out the type of the context, if it has one. |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) |
| MemberOfType = Context.getTypeDeclType(Record); |
| } |
| } |
| if (MemberOfType.isNull()) |
| MemberOfType = SearchType; |
| |
| if (MemberOfType.isNull()) |
| continue; |
| |
| // We're referring into a class template specialization. If the |
| // class template we found is the same as the template being |
| // specialized, we found what we are looking for. |
| if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { |
| if (Spec->getSpecializedTemplate()->getCanonicalDecl() == |
| Template->getCanonicalDecl()) |
| return ParsedType::make(MemberOfType); |
| } |
| |
| continue; |
| } |
| |
| // We're referring to an unresolved class template |
| // specialization. Determine whether we class template we found |
| // is the same as the template being specialized or, if we don't |
| // know which template is being specialized, that it at least |
| // has the same name. |
| if (const TemplateSpecializationType *SpecType |
| = MemberOfType->getAs<TemplateSpecializationType>()) { |
| TemplateName SpecName = SpecType->getTemplateName(); |
| |
| // The class template we found is the same template being |
| // specialized. |
| if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { |
| if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) |
| return ParsedType::make(MemberOfType); |
| |
| continue; |
| } |
| |
| // The class template we found has the same name as the |
| // (dependent) template name being specialized. |
| if (DependentTemplateName *DepTemplate |
| = SpecName.getAsDependentTemplateName()) { |
| if (DepTemplate->isIdentifier() && |
| DepTemplate->getIdentifier() == Template->getIdentifier()) |
| return ParsedType::make(MemberOfType); |
| |
| continue; |
| } |
| } |
| } |
| } |
| |
| if (isDependent) { |
| // We didn't find our type, but that's okay: it's dependent |
| // anyway. |
| |
| // FIXME: What if we have no nested-name-specifier? |
| QualType T = CheckTypenameType(ETK_None, SourceLocation(), |
| SS.getWithLocInContext(Context), |
| II, NameLoc); |
| return ParsedType::make(T); |
| } |
| |
| if (NonMatchingTypeDecl) { |
| QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); |
| Diag(NameLoc, diag::err_destructor_expr_type_mismatch) |
| << T << SearchType; |
| Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) |
| << T; |
| } else if (ObjectTypePtr) |
| Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) |
| << &II; |
| else |
| Diag(NameLoc, diag::err_destructor_class_name); |
| |
| return ParsedType(); |
| } |
| |
| ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { |
| if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) |
| return ParsedType(); |
| assert(DS.getTypeSpecType() == DeclSpec::TST_decltype |
| && "only get destructor types from declspecs"); |
| QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); |
| QualType SearchType = GetTypeFromParser(ObjectType); |
| if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { |
| return ParsedType::make(T); |
| } |
| |
| Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) |
| << T << SearchType; |
| return ParsedType(); |
| } |
| |
| /// \brief Build a C++ typeid expression with a type operand. |
| ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| TypeSourceInfo *Operand, |
| SourceLocation RParenLoc) { |
| // C++ [expr.typeid]p4: |
| // The top-level cv-qualifiers of the lvalue expression or the type-id |
| // that is the operand of typeid are always ignored. |
| // If the type of the type-id is a class type or a reference to a class |
| // type, the class shall be completely-defined. |
| Qualifiers Quals; |
| QualType T |
| = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), |
| Quals); |
| if (T->getAs<RecordType>() && |
| RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
| return ExprError(); |
| |
| return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), |
| Operand, |
| SourceRange(TypeidLoc, RParenLoc))); |
| } |
| |
| /// \brief Build a C++ typeid expression with an expression operand. |
| ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| Expr *E, |
| SourceLocation RParenLoc) { |
| if (E && !E->isTypeDependent()) { |
| if (E->getType()->isPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.take(); |
| } |
| |
| QualType T = E->getType(); |
| if (const RecordType *RecordT = T->getAs<RecordType>()) { |
| CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); |
| // C++ [expr.typeid]p3: |
| // [...] If the type of the expression is a class type, the class |
| // shall be completely-defined. |
| if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
| return ExprError(); |
| |
| // C++ [expr.typeid]p3: |
| // When typeid is applied to an expression other than an glvalue of a |
| // polymorphic class type [...] [the] expression is an unevaluated |
| // operand. [...] |
| if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) { |
| // The subexpression is potentially evaluated; switch the context |
| // and recheck the subexpression. |
| ExprResult Result = TranformToPotentiallyEvaluated(E); |
| if (Result.isInvalid()) return ExprError(); |
| E = Result.take(); |
| |
| // We require a vtable to query the type at run time. |
| MarkVTableUsed(TypeidLoc, RecordD); |
| } |
| } |
| |
| // C++ [expr.typeid]p4: |
| // [...] If the type of the type-id is a reference to a possibly |
| // cv-qualified type, the result of the typeid expression refers to a |
| // std::type_info object representing the cv-unqualified referenced |
| // type. |
| Qualifiers Quals; |
| QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); |
| if (!Context.hasSameType(T, UnqualT)) { |
| T = UnqualT; |
| E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take(); |
| } |
| } |
| |
| return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), |
| E, |
| SourceRange(TypeidLoc, RParenLoc))); |
| } |
| |
| /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); |
| ExprResult |
| Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, |
| bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| // Find the std::type_info type. |
| if (!getStdNamespace()) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| |
| if (!CXXTypeInfoDecl) { |
| IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); |
| LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); |
| LookupQualifiedName(R, getStdNamespace()); |
| CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); |
| if (!CXXTypeInfoDecl) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| } |
| |
| QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); |
| |
| if (isType) { |
| // The operand is a type; handle it as such. |
| TypeSourceInfo *TInfo = 0; |
| QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), |
| &TInfo); |
| if (T.isNull()) |
| return ExprError(); |
| |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); |
| |
| return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); |
| } |
| |
| // The operand is an expression. |
| return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); |
| } |
| |
| /// Retrieve the UuidAttr associated with QT. |
| static UuidAttr *GetUuidAttrOfType(QualType QT) { |
| // Optionally remove one level of pointer, reference or array indirection. |
| const Type *Ty = QT.getTypePtr();; |
| if (QT->isPointerType() || QT->isReferenceType()) |
| Ty = QT->getPointeeType().getTypePtr(); |
| else if (QT->isArrayType()) |
| Ty = cast<ArrayType>(QT)->getElementType().getTypePtr(); |
| |
| // Loop all record redeclaration looking for an uuid attribute. |
| CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(), |
| E = RD->redecls_end(); I != E; ++I) { |
| if (UuidAttr *Uuid = I->getAttr<UuidAttr>()) |
| return Uuid; |
| } |
| |
| return 0; |
| } |
| |
| /// \brief Build a Microsoft __uuidof expression with a type operand. |
| ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| TypeSourceInfo *Operand, |
| SourceLocation RParenLoc) { |
| if (!Operand->getType()->isDependentType()) { |
| if (!GetUuidAttrOfType(Operand->getType())) |
| return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); |
| } |
| |
| // FIXME: add __uuidof semantic analysis for type operand. |
| return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), |
| Operand, |
| SourceRange(TypeidLoc, RParenLoc))); |
| } |
| |
| /// \brief Build a Microsoft __uuidof expression with an expression operand. |
| ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| Expr *E, |
| SourceLocation RParenLoc) { |
| if (!E->getType()->isDependentType()) { |
| if (!GetUuidAttrOfType(E->getType()) && |
| !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) |
| return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); |
| } |
| // FIXME: add __uuidof semantic analysis for type operand. |
| return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), |
| E, |
| SourceRange(TypeidLoc, RParenLoc))); |
| } |
| |
| /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); |
| ExprResult |
| Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, |
| bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| // If MSVCGuidDecl has not been cached, do the lookup. |
| if (!MSVCGuidDecl) { |
| IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); |
| LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); |
| LookupQualifiedName(R, Context.getTranslationUnitDecl()); |
| MSVCGuidDecl = R.getAsSingle<RecordDecl>(); |
| if (!MSVCGuidDecl) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); |
| } |
| |
| QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); |
| |
| if (isType) { |
| // The operand is a type; handle it as such. |
| TypeSourceInfo *TInfo = 0; |
| QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), |
| &TInfo); |
| if (T.isNull()) |
| return ExprError(); |
| |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); |
| |
| return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); |
| } |
| |
| // The operand is an expression. |
| return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); |
| } |
| |
| /// ActOnCXXBoolLiteral - Parse {true,false} literals. |
| ExprResult |
| Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
| assert((Kind == tok::kw_true || Kind == tok::kw_false) && |
| "Unknown C++ Boolean value!"); |
| return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, |
| Context.BoolTy, OpLoc)); |
| } |
| |
| /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. |
| ExprResult |
| Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { |
| return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); |
| } |
| |
| /// ActOnCXXThrow - Parse throw expressions. |
| ExprResult |
| Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { |
| bool IsThrownVarInScope = false; |
| if (Ex) { |
| // C++0x [class.copymove]p31: |
| // When certain criteria are met, an implementation is allowed to omit the |
| // copy/move construction of a class object [...] |
| // |
| // - in a throw-expression, when the operand is the name of a |
| // non-volatile automatic object (other than a function or catch- |
| // clause parameter) whose scope does not extend beyond the end of the |
| // innermost enclosing try-block (if there is one), the copy/move |
| // operation from the operand to the exception object (15.1) can be |
| // omitted by constructing the automatic object directly into the |
| // exception object |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) |
| if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { |
| if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { |
| for( ; S; S = S->getParent()) { |
| if (S->isDeclScope(Var)) { |
| IsThrownVarInScope = true; |
| break; |
| } |
| |
| if (S->getFlags() & |
| (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | |
| Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | |
| Scope::TryScope)) |
| break; |
| } |
| } |
| } |
| } |
| |
| return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); |
| } |
| |
| ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, |
| bool IsThrownVarInScope) { |
| // Don't report an error if 'throw' is used in system headers. |
| if (!getLangOptions().CXXExceptions && |
| !getSourceManager().isInSystemHeader(OpLoc)) |
| Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; |
| |
| if (Ex && !Ex->isTypeDependent()) { |
| ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope); |
| if (ExRes.isInvalid()) |
| return ExprError(); |
| Ex = ExRes.take(); |
| } |
| |
| return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc, |
| IsThrownVarInScope)); |
| } |
| |
| /// CheckCXXThrowOperand - Validate the operand of a throw. |
| ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E, |
| bool IsThrownVarInScope) { |
| // C++ [except.throw]p3: |
| // A throw-expression initializes a temporary object, called the exception |
| // object, the type of which is determined by removing any top-level |
| // cv-qualifiers from the static type of the operand of throw and adjusting |
| // the type from "array of T" or "function returning T" to "pointer to T" |
| // or "pointer to function returning T", [...] |
| if (E->getType().hasQualifiers()) |
| E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp, |
| E->getValueKind()).take(); |
| |
| ExprResult Res = DefaultFunctionArrayConversion(E); |
| if (Res.isInvalid()) |
| return ExprError(); |
| E = Res.take(); |
| |
| // If the type of the exception would be an incomplete type or a pointer |
| // to an incomplete type other than (cv) void the program is ill-formed. |
| QualType Ty = E->getType(); |
| bool isPointer = false; |
| if (const PointerType* Ptr = Ty->getAs<PointerType>()) { |
| Ty = Ptr->getPointeeType(); |
| isPointer = true; |
| } |
| if (!isPointer || !Ty->isVoidType()) { |
| if (RequireCompleteType(ThrowLoc, Ty, |
| PDiag(isPointer ? diag::err_throw_incomplete_ptr |
| : diag::err_throw_incomplete) |
| << E->getSourceRange())) |
| return ExprError(); |
| |
| if (RequireNonAbstractType(ThrowLoc, E->getType(), |
| PDiag(diag::err_throw_abstract_type) |
| << E->getSourceRange())) |
| return ExprError(); |
| } |
| |
| // Initialize the exception result. This implicitly weeds out |
| // abstract types or types with inaccessible copy constructors. |
| |
| // C++0x [class.copymove]p31: |
| // When certain criteria are met, an implementation is allowed to omit the |
| // copy/move construction of a class object [...] |
| // |
| // - in a throw-expression, when the operand is the name of a |
| // non-volatile automatic object (other than a function or catch-clause |
| // parameter) whose scope does not extend beyond the end of the |
| // innermost enclosing try-block (if there is one), the copy/move |
| // operation from the operand to the exception object (15.1) can be |
| // omitted by constructing the automatic object directly into the |
| // exception object |
| const VarDecl *NRVOVariable = 0; |
| if (IsThrownVarInScope) |
| NRVOVariable = getCopyElisionCandidate(QualType(), E, false); |
| |
| InitializedEntity Entity = |
| InitializedEntity::InitializeException(ThrowLoc, E->getType(), |
| /*NRVO=*/NRVOVariable != 0); |
| Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable, |
| QualType(), E, |
| IsThrownVarInScope); |
| if (Res.isInvalid()) |
| return ExprError(); |
| E = Res.take(); |
| |
| // If the exception has class type, we need additional handling. |
| const RecordType *RecordTy = Ty->getAs<RecordType>(); |
| if (!RecordTy) |
| return Owned(E); |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| |
| // If we are throwing a polymorphic class type or pointer thereof, |
| // exception handling will make use of the vtable. |
| MarkVTableUsed(ThrowLoc, RD); |
| |
| // If a pointer is thrown, the referenced object will not be destroyed. |
| if (isPointer) |
| return Owned(E); |
| |
| // If the class has a destructor, we must be able to call it. |
| if (RD->hasIrrelevantDestructor()) |
| return Owned(E); |
| |
| CXXDestructorDecl *Destructor = LookupDestructor(RD); |
| if (!Destructor) |
| return Owned(E); |
| |
| MarkFunctionReferenced(E->getExprLoc(), Destructor); |
| CheckDestructorAccess(E->getExprLoc(), Destructor, |
| PDiag(diag::err_access_dtor_exception) << Ty); |
| DiagnoseUseOfDecl(Destructor, E->getExprLoc()); |
| return Owned(E); |
| } |
| |
| QualType Sema::getCurrentThisType() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| QualType ThisTy; |
| if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { |
| if (method && method->isInstance()) |
| ThisTy = method->getThisType(Context); |
| } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { |
| // C++0x [expr.prim]p4: |
| // Otherwise, if a member-declarator declares a non-static data member |
| // of a class X, the expression this is a prvalue of type "pointer to X" |
| // within the optional brace-or-equal-initializer. |
| Scope *S = getScopeForContext(DC); |
| if (!S || S->getFlags() & Scope::ThisScope) |
| ThisTy = Context.getPointerType(Context.getRecordType(RD)); |
| } |
| |
| return ThisTy; |
| } |
| |
| void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) { |
| // We don't need to capture this in an unevaluated context. |
| if (ExprEvalContexts.back().Context == Unevaluated && !Explicit) |
| return; |
| |
| // Otherwise, check that we can capture 'this'. |
| unsigned NumClosures = 0; |
| for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) { |
| if (CapturingScopeInfo *CSI = |
| dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { |
| if (CSI->CXXThisCaptureIndex != 0) { |
| // 'this' is already being captured; there isn't anything more to do. |
| break; |
| } |
| |
| if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || |
| CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || |
| CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || |
| Explicit) { |
| // This closure can capture 'this'; continue looking upwards. |
| NumClosures++; |
| Explicit = false; |
| continue; |
| } |
| // This context can't implicitly capture 'this'; fail out. |
| Diag(Loc, diag::err_this_capture) << Explicit; |
| return; |
| } |
| break; |
| } |
| |
| // Mark that we're implicitly capturing 'this' in all the scopes we skipped. |
| // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated |
| // contexts. |
| for (unsigned idx = FunctionScopes.size() - 1; |
| NumClosures; --idx, --NumClosures) { |
| CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); |
| Expr *ThisExpr = 0; |
| QualType ThisTy = getCurrentThisType(); |
| if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) { |
| // For lambda expressions, build a field and an initializing expression. |
| CXXRecordDecl *Lambda = LSI->Lambda; |
| FieldDecl *Field |
| = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy, |
| Context.getTrivialTypeSourceInfo(ThisTy, Loc), |
| 0, false, false); |
| Field->setImplicit(true); |
| Field->setAccess(AS_private); |
| Lambda->addDecl(Field); |
| ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true); |
| } |
| bool isNested = NumClosures > 1; |
| CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr); |
| } |
| } |
| |
| ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { |
| /// C++ 9.3.2: In the body of a non-static member function, the keyword this |
| /// is a non-lvalue expression whose value is the address of the object for |
| /// which the function is called. |
| |
| QualType ThisTy = getCurrentThisType(); |
| if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); |
| |
| CheckCXXThisCapture(Loc); |
| return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false)); |
| } |
| |
| ExprResult |
| Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, |
| SourceLocation LParenLoc, |
| MultiExprArg exprs, |
| SourceLocation RParenLoc) { |
| if (!TypeRep) |
| return ExprError(); |
| |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(TypeRep, &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); |
| |
| return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); |
| } |
| |
| /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. |
| /// Can be interpreted either as function-style casting ("int(x)") |
| /// or class type construction ("ClassType(x,y,z)") |
| /// or creation of a value-initialized type ("int()"). |
| ExprResult |
| Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, |
| SourceLocation LParenLoc, |
| MultiExprArg exprs, |
| SourceLocation RParenLoc) { |
| QualType Ty = TInfo->getType(); |
| unsigned NumExprs = exprs.size(); |
| Expr **Exprs = (Expr**)exprs.get(); |
| SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); |
| |
| if (Ty->isDependentType() || |
| CallExpr::hasAnyTypeDependentArguments( |
| llvm::makeArrayRef(Exprs, NumExprs))) { |
| exprs.release(); |
| |
| return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo, |
| LParenLoc, |
| Exprs, NumExprs, |
| RParenLoc)); |
| } |
| |
| bool ListInitialization = LParenLoc.isInvalid(); |
| assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0]))) |
| && "List initialization must have initializer list as expression."); |
| SourceRange FullRange = SourceRange(TyBeginLoc, |
| ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); |
| |
| // C++ [expr.type.conv]p1: |
| // If the expression list is a single expression, the type conversion |
| // expression is equivalent (in definedness, and if defined in meaning) to the |
| // corresponding cast expression. |
| if (NumExprs == 1 && !ListInitialization) { |
| Expr *Arg = Exprs[0]; |
| exprs.release(); |
| return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); |
| } |
| |
| QualType ElemTy = Ty; |
| if (Ty->isArrayType()) { |
| if (!ListInitialization) |
| return ExprError(Diag(TyBeginLoc, |
| diag::err_value_init_for_array_type) << FullRange); |
| ElemTy = Context.getBaseElementType(Ty); |
| } |
| |
| if (!Ty->isVoidType() && |
| RequireCompleteType(TyBeginLoc, ElemTy, |
| PDiag(diag::err_invalid_incomplete_type_use) |
| << FullRange)) |
| return ExprError(); |
| |
| if (RequireNonAbstractType(TyBeginLoc, Ty, |
| diag::err_allocation_of_abstract_type)) |
| return ExprError(); |
| |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); |
| InitializationKind Kind |
| = NumExprs ? ListInitialization |
| ? InitializationKind::CreateDirectList(TyBeginLoc) |
| : InitializationKind::CreateDirect(TyBeginLoc, |
| LParenLoc, RParenLoc) |
| : InitializationKind::CreateValue(TyBeginLoc, |
| LParenLoc, RParenLoc); |
| InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs)); |
| |
| if (!Result.isInvalid() && ListInitialization && |
| isa<InitListExpr>(Result.get())) { |
| // If the list-initialization doesn't involve a constructor call, we'll get |
| // the initializer-list (with corrected type) back, but that's not what we |
| // want, since it will be treated as an initializer list in further |
| // processing. Explicitly insert a cast here. |
| InitListExpr *List = cast<InitListExpr>(Result.take()); |
| Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(), |
| Expr::getValueKindForType(TInfo->getType()), |
| TInfo, TyBeginLoc, CK_NoOp, |
| List, /*Path=*/0, RParenLoc)); |
| } |
| |
| // FIXME: Improve AST representation? |
| return move(Result); |
| } |
| |
| /// doesUsualArrayDeleteWantSize - Answers whether the usual |
| /// operator delete[] for the given type has a size_t parameter. |
| static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, |
| QualType allocType) { |
| const RecordType *record = |
| allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); |
| if (!record) return false; |
| |
| // Try to find an operator delete[] in class scope. |
| |
| DeclarationName deleteName = |
| S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); |
| LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); |
| S.LookupQualifiedName(ops, record->getDecl()); |
| |
| // We're just doing this for information. |
| ops.suppressDiagnostics(); |
| |
| // Very likely: there's no operator delete[]. |
| if (ops.empty()) return false; |
| |
| // If it's ambiguous, it should be illegal to call operator delete[] |
| // on this thing, so it doesn't matter if we allocate extra space or not. |
| if (ops.isAmbiguous()) return false; |
| |
| LookupResult::Filter filter = ops.makeFilter(); |
| while (filter.hasNext()) { |
| NamedDecl *del = filter.next()->getUnderlyingDecl(); |
| |
| // C++0x [basic.stc.dynamic.deallocation]p2: |
| // A template instance is never a usual deallocation function, |
| // regardless of its signature. |
| if (isa<FunctionTemplateDecl>(del)) { |
| filter.erase(); |
| continue; |
| } |
| |
| // C++0x [basic.stc.dynamic.deallocation]p2: |
| // If class T does not declare [an operator delete[] with one |
| // parameter] but does declare a member deallocation function |
| // named operator delete[] with exactly two parameters, the |
| // second of which has type std::size_t, then this function |
| // is a usual deallocation function. |
| if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { |
| filter.erase(); |
| continue; |
| } |
| } |
| filter.done(); |
| |
| if (!ops.isSingleResult()) return false; |
| |
| const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); |
| return (del->getNumParams() == 2); |
| } |
| |
| /// \brief Parsed a C++ 'new' expression (C++ 5.3.4). |
| |
| /// E.g.: |
| /// @code new (memory) int[size][4] @endcode |
| /// or |
| /// @code ::new Foo(23, "hello") @endcode |
| /// |
| /// \param StartLoc The first location of the expression. |
| /// \param UseGlobal True if 'new' was prefixed with '::'. |
| /// \param PlacementLParen Opening paren of the placement arguments. |
| /// \param PlacementArgs Placement new arguments. |
| /// \param PlacementRParen Closing paren of the placement arguments. |
| /// \param TypeIdParens If the type is in parens, the source range. |
| /// \param D The type to be allocated, as well as array dimensions. |
| /// \param ConstructorLParen Opening paren of the constructor args, empty if |
| /// initializer-list syntax is used. |
| /// \param ConstructorArgs Constructor/initialization arguments. |
| /// \param ConstructorRParen Closing paren of the constructor args. |
| ExprResult |
| Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, SourceRange TypeIdParens, |
| Declarator &D, Expr *Initializer) { |
| bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto; |
| |
| Expr *ArraySize = 0; |
| // If the specified type is an array, unwrap it and save the expression. |
| if (D.getNumTypeObjects() > 0 && |
| D.getTypeObject(0).Kind == DeclaratorChunk::Array) { |
| DeclaratorChunk &Chunk = D.getTypeObject(0); |
| if (TypeContainsAuto) |
| return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) |
| << D.getSourceRange()); |
| if (Chunk.Arr.hasStatic) |
| return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) |
| << D.getSourceRange()); |
| if (!Chunk.Arr.NumElts) |
| return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) |
| << D.getSourceRange()); |
| |
| ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); |
| D.DropFirstTypeObject(); |
| } |
| |
| // Every dimension shall be of constant size. |
| if (ArraySize) { |
| for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { |
| if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) |
| break; |
| |
| DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; |
| if (Expr *NumElts = (Expr *)Array.NumElts) { |
| if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { |
| Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0, |
| PDiag(diag::err_new_array_nonconst)).take(); |
| if (!Array.NumElts) |
| return ExprError(); |
| } |
| } |
| } |
| } |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0); |
| QualType AllocType = TInfo->getType(); |
| if (D.isInvalidType()) |
| return ExprError(); |
| |
| SourceRange DirectInitRange; |
| if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) |
| DirectInitRange = List->getSourceRange(); |
| |
| return BuildCXXNew(StartLoc, UseGlobal, |
| PlacementLParen, |
| move(PlacementArgs), |
| PlacementRParen, |
| TypeIdParens, |
| AllocType, |
| TInfo, |
| ArraySize, |
| DirectInitRange, |
| Initializer, |
| TypeContainsAuto); |
| } |
| |
| static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, |
| Expr *Init) { |
| if (!Init) |
| return true; |
| if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) |
| return PLE->getNumExprs() == 0; |
| if (isa<ImplicitValueInitExpr>(Init)) |
| return true; |
| else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) |
| return !CCE->isListInitialization() && |
| CCE->getConstructor()->isDefaultConstructor(); |
| else if (Style == CXXNewExpr::ListInit) { |
| assert(isa<InitListExpr>(Init) && |
| "Shouldn't create list CXXConstructExprs for arrays."); |
| return true; |
| } |
| return false; |
| } |
| |
| ExprResult |
| Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, |
| MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, |
| SourceRange TypeIdParens, |
| QualType AllocType, |
| TypeSourceInfo *AllocTypeInfo, |
| Expr *ArraySize, |
| SourceRange DirectInitRange, |
| Expr *Initializer, |
| bool TypeMayContainAuto) { |
| SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); |
| |
| CXXNewExpr::InitializationStyle initStyle; |
| if (DirectInitRange.isValid()) { |
| assert(Initializer && "Have parens but no initializer."); |
| initStyle = CXXNewExpr::CallInit; |
| } else if (Initializer && isa<InitListExpr>(Initializer)) |
| initStyle = CXXNewExpr::ListInit; |
| else { |
| // In template instantiation, the initializer could be a CXXDefaultArgExpr |
| // unwrapped from a CXXConstructExpr that was implicitly built. There is no |
| // particularly sane way we can handle this (especially since it can even |
| // occur for array new), so we throw the initializer away and have it be |
| // rebuilt. |
| if (Initializer && isa<CXXDefaultArgExpr>(Initializer)) |
| Initializer = 0; |
| assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || |
| isa<CXXConstructExpr>(Initializer)) && |
| "Initializer expression that cannot have been implicitly created."); |
| initStyle = CXXNewExpr::NoInit; |
| } |
| |
| Expr **Inits = &Initializer; |
| unsigned NumInits = Initializer ? 1 : 0; |
| if (initStyle == CXXNewExpr::CallInit) { |
| if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) { |
| Inits = List->getExprs(); |
| NumInits = List->getNumExprs(); |
| } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){ |
| if (!isa<CXXTemporaryObjectExpr>(CCE)) { |
| // Can happen in template instantiation. Since this is just an implicit |
| // construction, we just take it apart and rebuild it. |
| Inits = CCE->getArgs(); |
| NumInits = CCE->getNumArgs(); |
| } |
| } |
| } |
| |
| // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. |
| if (TypeMayContainAuto && AllocType->getContainedAutoType()) { |
| if (initStyle == CXXNewExpr::NoInit || NumInits == 0) |
| return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) |
| << AllocType << TypeRange); |
| if (initStyle == CXXNewExpr::ListInit) |
| return ExprError(Diag(Inits[0]->getSourceRange().getBegin(), |
| diag::err_auto_new_requires_parens) |
| << AllocType << TypeRange); |
| if (NumInits > 1) { |
| Expr *FirstBad = Inits[1]; |
| return ExprError(Diag(FirstBad->getSourceRange().getBegin(), |
| diag::err_auto_new_ctor_multiple_expressions) |
| << AllocType << TypeRange); |
| } |
| Expr *Deduce = Inits[0]; |
| TypeSourceInfo *DeducedType = 0; |
| if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == |
| DAR_Failed) |
| return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) |
| << AllocType << Deduce->getType() |
| << TypeRange << Deduce->getSourceRange()); |
| if (!DeducedType) |
| return ExprError(); |
| |
| AllocTypeInfo = DeducedType; |
| AllocType = AllocTypeInfo->getType(); |
| } |
| |
| // Per C++0x [expr.new]p5, the type being constructed may be a |
| // typedef of an array type. |
| if (!ArraySize) { |
| if (const ConstantArrayType *Array |
| = Context.getAsConstantArrayType(AllocType)) { |
| ArraySize = IntegerLiteral::Create(Context, Array->getSize(), |
| Context.getSizeType(), |
| TypeRange.getEnd()); |
| AllocType = Array->getElementType(); |
| } |
| } |
| |
| if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) |
| return ExprError(); |
| |
| if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) { |
| Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), |
| diag::warn_dangling_std_initializer_list) |
| << /*at end of FE*/0 << Inits[0]->getSourceRange(); |
| } |
| |
| // In ARC, infer 'retaining' for the allocated |
| if (getLangOptions().ObjCAutoRefCount && |
| AllocType.getObjCLifetime() == Qualifiers::OCL_None && |
| AllocType->isObjCLifetimeType()) { |
| AllocType = Context.getLifetimeQualifiedType(AllocType, |
| AllocType->getObjCARCImplicitLifetime()); |
| } |
| |
| QualType ResultType = Context.getPointerType(AllocType); |
| |
| // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have |
| // integral or enumeration type with a non-negative value." |
| // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped |
| // enumeration type, or a class type for which a single non-explicit |
| // conversion function to integral or unscoped enumeration type exists. |
| if (ArraySize && !ArraySize->isTypeDependent()) { |
| ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType( |
| StartLoc, ArraySize, |
| PDiag(diag::err_array_size_not_integral) << getLangOptions().CPlusPlus0x, |
| PDiag(diag::err_array_size_incomplete_type) |
| << ArraySize->getSourceRange(), |
| PDiag(diag::err_array_size_explicit_conversion), |
| PDiag(diag::note_array_size_conversion), |
| PDiag(diag::err_array_size_ambiguous_conversion), |
| PDiag(diag::note_array_size_conversion), |
| PDiag(getLangOptions().CPlusPlus0x ? |
| diag::warn_cxx98_compat_array_size_conversion : |
| diag::ext_array_size_conversion), |
| /*AllowScopedEnumerations*/ false); |
| if (ConvertedSize.isInvalid()) |
| return ExprError(); |
| |
| ArraySize = ConvertedSize.take(); |
| QualType SizeType = ArraySize->getType(); |
| if (!SizeType->isIntegralOrUnscopedEnumerationType()) |
| return ExprError(); |
| |
| // C++98 [expr.new]p7: |
| // The expression in a direct-new-declarator shall have integral type |
| // with a non-negative value. |
| // |
| // Let's see if this is a constant < 0. If so, we reject it out of |
| // hand. Otherwise, if it's not a constant, we must have an unparenthesized |
| // array type. |
| // |
| // Note: such a construct has well-defined semantics in C++11: it throws |
| // std::bad_array_new_length. |
| if (!ArraySize->isValueDependent()) { |
| llvm::APSInt Value; |
| // We've already performed any required implicit conversion to integer or |
| // unscoped enumeration type. |
| if (ArraySize->isIntegerConstantExpr(Value, Context)) { |
| if (Value < llvm::APSInt( |
| llvm::APInt::getNullValue(Value.getBitWidth()), |
| Value.isUnsigned())) { |
| if (getLangOptions().CPlusPlus0x) |
| Diag(ArraySize->getSourceRange().getBegin(), |
| diag::warn_typecheck_negative_array_new_size) |
| << ArraySize->getSourceRange(); |
| else |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_typecheck_negative_array_size) |
| << ArraySize->getSourceRange()); |
| } else if (!AllocType->isDependentType()) { |
| unsigned ActiveSizeBits = |
| ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); |
| if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { |
| if (getLangOptions().CPlusPlus0x) |
| Diag(ArraySize->getSourceRange().getBegin(), |
| diag::warn_array_new_too_large) |
| << Value.toString(10) |
| << ArraySize->getSourceRange(); |
| else |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_array_too_large) |
| << Value.toString(10) |
| << ArraySize->getSourceRange()); |
| } |
| } |
| } else if (TypeIdParens.isValid()) { |
| // Can't have dynamic array size when the type-id is in parentheses. |
| Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) |
| << ArraySize->getSourceRange() |
| << FixItHint::CreateRemoval(TypeIdParens.getBegin()) |
| << FixItHint::CreateRemoval(TypeIdParens.getEnd()); |
| |
| TypeIdParens = SourceRange(); |
| } |
| } |
| |
| // ARC: warn about ABI issues. |
| if (getLangOptions().ObjCAutoRefCount) { |
| QualType BaseAllocType = Context.getBaseElementType(AllocType); |
| if (BaseAllocType.hasStrongOrWeakObjCLifetime()) |
| Diag(StartLoc, diag::warn_err_new_delete_object_array) |
| << 0 << BaseAllocType; |
| } |
| |
| // Note that we do *not* convert the argument in any way. It can |
| // be signed, larger than size_t, whatever. |
| } |
| |
| FunctionDecl *OperatorNew = 0; |
| FunctionDecl *OperatorDelete = 0; |
| Expr **PlaceArgs = (Expr**)PlacementArgs.get(); |
| unsigned NumPlaceArgs = PlacementArgs.size(); |
| |
| if (!AllocType->isDependentType() && |
| !Expr::hasAnyTypeDependentArguments( |
| llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) && |
| FindAllocationFunctions(StartLoc, |
| SourceRange(PlacementLParen, PlacementRParen), |
| UseGlobal, AllocType, ArraySize, PlaceArgs, |
| NumPlaceArgs, OperatorNew, OperatorDelete)) |
| return ExprError(); |
| |
| // If this is an array allocation, compute whether the usual array |
| // deallocation function for the type has a size_t parameter. |
| bool UsualArrayDeleteWantsSize = false; |
| if (ArraySize && !AllocType->isDependentType()) |
| UsualArrayDeleteWantsSize |
| = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); |
| |
| SmallVector<Expr *, 8> AllPlaceArgs; |
| if (OperatorNew) { |
| // Add default arguments, if any. |
| const FunctionProtoType *Proto = |
| OperatorNew->getType()->getAs<FunctionProtoType>(); |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; |
| |
| if (GatherArgumentsForCall(PlacementLParen, OperatorNew, |
| Proto, 1, PlaceArgs, NumPlaceArgs, |
| AllPlaceArgs, CallType)) |
| return ExprError(); |
| |
| NumPlaceArgs = AllPlaceArgs.size(); |
| if (NumPlaceArgs > 0) |
| PlaceArgs = &AllPlaceArgs[0]; |
| |
| DiagnoseSentinelCalls(OperatorNew, PlacementLParen, |
| PlaceArgs, NumPlaceArgs); |
| |
| // FIXME: Missing call to CheckFunctionCall or equivalent |
| } |
| |
| // Warn if the type is over-aligned and is being allocated by global operator |
| // new. |
| if (NumPlaceArgs == 0 && OperatorNew && |
| (OperatorNew->isImplicit() || |
| getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) { |
| if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ |
| unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); |
| if (Align > SuitableAlign) |
| Diag(StartLoc, diag::warn_overaligned_type) |
| << AllocType |
| << unsigned(Align / Context.getCharWidth()) |
| << unsigned(SuitableAlign / Context.getCharWidth()); |
| } |
| } |
| |
| QualType InitType = AllocType; |
| // Array 'new' can't have any initializers except empty parentheses. |
| // Initializer lists are also allowed, in C++11. Rely on the parser for the |
| // dialect distinction. |
| if (ResultType->isArrayType() || ArraySize) { |
| if (!isLegalArrayNewInitializer(initStyle, Initializer)) { |
| SourceRange InitRange(Inits[0]->getLocStart(), |
| Inits[NumInits - 1]->getLocEnd()); |
| Diag(StartLoc, diag::err_new_array_init_args) << InitRange; |
| return ExprError(); |
| } |
| if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { |
| // We do the initialization typechecking against the array type |
| // corresponding to the number of initializers + 1 (to also check |
| // default-initialization). |
| unsigned NumElements = ILE->getNumInits() + 1; |
| InitType = Context.getConstantArrayType(AllocType, |
| llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), |
| ArrayType::Normal, 0); |
| } |
| } |
| |
| if (!AllocType->isDependentType() && |
| !Expr::hasAnyTypeDependentArguments( |
| llvm::makeArrayRef(Inits, NumInits))) { |
| // C++11 [expr.new]p15: |
| // A new-expression that creates an object of type T initializes that |
| // object as follows: |
| InitializationKind Kind |
| // - If the new-initializer is omitted, the object is default- |
| // initialized (8.5); if no initialization is performed, |
| // the object has indeterminate value |
| = initStyle == CXXNewExpr::NoInit |
| ? InitializationKind::CreateDefault(TypeRange.getBegin()) |
| // - Otherwise, the new-initializer is interpreted according to the |
| // initialization rules of 8.5 for direct-initialization. |
| : initStyle == CXXNewExpr::ListInit |
| ? InitializationKind::CreateDirectList(TypeRange.getBegin()) |
| : InitializationKind::CreateDirect(TypeRange.getBegin(), |
| DirectInitRange.getBegin(), |
| DirectInitRange.getEnd()); |
| |
| InitializedEntity Entity |
| = InitializedEntity::InitializeNew(StartLoc, InitType); |
| InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits); |
| ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(Inits, NumInits)); |
| if (FullInit.isInvalid()) |
| return ExprError(); |
| |
| // FullInit is our initializer; strip off CXXBindTemporaryExprs, because |
| // we don't want the initialized object to be destructed. |
| if (CXXBindTemporaryExpr *Binder = |
| dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) |
| FullInit = Owned(Binder->getSubExpr()); |
| |
| Initializer = FullInit.take(); |
| } |
| |
| // Mark the new and delete operators as referenced. |
| if (OperatorNew) |
| MarkFunctionReferenced(StartLoc, OperatorNew); |
| if (OperatorDelete) |
| MarkFunctionReferenced(StartLoc, OperatorDelete); |
| |
| // C++0x [expr.new]p17: |
| // If the new expression creates an array of objects of class type, |
| // access and ambiguity control are done for the destructor. |
| if (ArraySize && AllocType->isRecordType() && !AllocType->isDependentType()) { |
| if (CXXDestructorDecl *dtor = LookupDestructor( |
| cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()))) { |
| MarkFunctionReferenced(StartLoc, dtor); |
| CheckDestructorAccess(StartLoc, dtor, |
| PDiag(diag::err_access_dtor) |
| << Context.getBaseElementType(AllocType)); |
| DiagnoseUseOfDecl(dtor, StartLoc); |
| } |
| } |
| |
| PlacementArgs.release(); |
| |
| return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew, |
| OperatorDelete, |
| UsualArrayDeleteWantsSize, |
| PlaceArgs, NumPlaceArgs, TypeIdParens, |
| ArraySize, initStyle, Initializer, |
| ResultType, AllocTypeInfo, |
| StartLoc, DirectInitRange)); |
| } |
| |
| /// \brief Checks that a type is suitable as the allocated type |
| /// in a new-expression. |
| bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, |
| SourceRange R) { |
| // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an |
| // abstract class type or array thereof. |
| if (AllocType->isFunctionType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 0 << R; |
| else if (AllocType->isReferenceType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 1 << R; |
| else if (!AllocType->isDependentType() && |
| RequireCompleteType(Loc, AllocType, |
| PDiag(diag::err_new_incomplete_type) |
| << R)) |
| return true; |
| else if (RequireNonAbstractType(Loc, AllocType, |
| diag::err_allocation_of_abstract_type)) |
| return true; |
| else if (AllocType->isVariablyModifiedType()) |
| return Diag(Loc, diag::err_variably_modified_new_type) |
| << AllocType; |
| else if (unsigned AddressSpace = AllocType.getAddressSpace()) |
| return Diag(Loc, diag::err_address_space_qualified_new) |
| << AllocType.getUnqualifiedType() << AddressSpace; |
| else if (getLangOptions().ObjCAutoRefCount) { |
| if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { |
| QualType BaseAllocType = Context.getBaseElementType(AT); |
| if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && |
| BaseAllocType->isObjCLifetimeType()) |
| return Diag(Loc, diag::err_arc_new_array_without_ownership) |
| << BaseAllocType; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// \brief Determine whether the given function is a non-placement |
| /// deallocation function. |
| static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) { |
| if (FD->isInvalidDecl()) |
| return false; |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) |
| return Method->isUsualDeallocationFunction(); |
| |
| return ((FD->getOverloadedOperator() == OO_Delete || |
| FD->getOverloadedOperator() == OO_Array_Delete) && |
| FD->getNumParams() == 1); |
| } |
| |
| /// FindAllocationFunctions - Finds the overloads of operator new and delete |
| /// that are appropriate for the allocation. |
| bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, |
| bool UseGlobal, QualType AllocType, |
| bool IsArray, Expr **PlaceArgs, |
| unsigned NumPlaceArgs, |
| FunctionDecl *&OperatorNew, |
| FunctionDecl *&OperatorDelete) { |
| // --- Choosing an allocation function --- |
| // C++ 5.3.4p8 - 14 & 18 |
| // 1) If UseGlobal is true, only look in the global scope. Else, also look |
| // in the scope of the allocated class. |
| // 2) If an array size is given, look for operator new[], else look for |
| // operator new. |
| // 3) The first argument is always size_t. Append the arguments from the |
| // placement form. |
| |
| SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); |
| // We don't care about the actual value of this argument. |
| // FIXME: Should the Sema create the expression and embed it in the syntax |
| // tree? Or should the consumer just recalculate the value? |
| IntegerLiteral Size(Context, llvm::APInt::getNullValue( |
| Context.getTargetInfo().getPointerWidth(0)), |
| Context.getSizeType(), |
| SourceLocation()); |
| AllocArgs[0] = &Size; |
| std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); |
| |
| // C++ [expr.new]p8: |
| // If the allocated type is a non-array type, the allocation |
| // function's name is operator new and the deallocation function's |
| // name is operator delete. If the allocated type is an array |
| // type, the allocation function's name is operator new[] and the |
| // deallocation function's name is operator delete[]. |
| DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( |
| IsArray ? OO_Array_New : OO_New); |
| DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| IsArray ? OO_Array_Delete : OO_Delete); |
| |
| QualType AllocElemType = Context.getBaseElementType(AllocType); |
| |
| if (AllocElemType->isRecordType() && !UseGlobal) { |
| CXXRecordDecl *Record |
| = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), Record, /*AllowMissing=*/true, |
| OperatorNew)) |
| return true; |
| } |
| if (!OperatorNew) { |
| // Didn't find a member overload. Look for a global one. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), TUDecl, /*AllowMissing=*/false, |
| OperatorNew)) |
| return true; |
| } |
| |
| // We don't need an operator delete if we're running under |
| // -fno-exceptions. |
| if (!getLangOptions().Exceptions) { |
| OperatorDelete = 0; |
| return false; |
| } |
| |
| // FindAllocationOverload can change the passed in arguments, so we need to |
| // copy them back. |
| if (NumPlaceArgs > 0) |
| std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); |
| |
| // C++ [expr.new]p19: |
| // |
| // If the new-expression begins with a unary :: operator, the |
| // deallocation function's name is looked up in the global |
| // scope. Otherwise, if the allocated type is a class type T or an |
| // array thereof, the deallocation function's name is looked up in |
| // the scope of T. If this lookup fails to find the name, or if |
| // the allocated type is not a class type or array thereof, the |
| // deallocation function's name is looked up in the global scope. |
| LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); |
| if (AllocElemType->isRecordType() && !UseGlobal) { |
| CXXRecordDecl *RD |
| = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); |
| LookupQualifiedName(FoundDelete, RD); |
| } |
| if (FoundDelete.isAmbiguous()) |
| return true; // FIXME: clean up expressions? |
| |
| if (FoundDelete.empty()) { |
| DeclareGlobalNewDelete(); |
| LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); |
| } |
| |
| FoundDelete.suppressDiagnostics(); |
| |
| SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; |
| |
| // Whether we're looking for a placement operator delete is dictated |
| // by whether we selected a placement operator new, not by whether |
| // we had explicit placement arguments. This matters for things like |
| // struct A { void *operator new(size_t, int = 0); ... }; |
| // A *a = new A() |
| bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1); |
| |
| if (isPlacementNew) { |
| // C++ [expr.new]p20: |
| // A declaration of a placement deallocation function matches the |
| // declaration of a placement allocation function if it has the |
| // same number of parameters and, after parameter transformations |
| // (8.3.5), all parameter types except the first are |
| // identical. [...] |
| // |
| // To perform this comparison, we compute the function type that |
| // the deallocation function should have, and use that type both |
| // for template argument deduction and for comparison purposes. |
| // |
| // FIXME: this comparison should ignore CC and the like. |
| QualType ExpectedFunctionType; |
| { |
| const FunctionProtoType *Proto |
| = OperatorNew->getType()->getAs<FunctionProtoType>(); |
| |
| SmallVector<QualType, 4> ArgTypes; |
| ArgTypes.push_back(Context.VoidPtrTy); |
| for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I) |
| ArgTypes.push_back(Proto->getArgType(I)); |
| |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = Proto->isVariadic(); |
| |
| ExpectedFunctionType |
| = Context.getFunctionType(Context.VoidTy, ArgTypes.data(), |
| ArgTypes.size(), EPI); |
| } |
| |
| for (LookupResult::iterator D = FoundDelete.begin(), |
| DEnd = FoundDelete.end(); |
| D != DEnd; ++D) { |
| FunctionDecl *Fn = 0; |
| if (FunctionTemplateDecl *FnTmpl |
| = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { |
| // Perform template argument deduction to try to match the |
| // expected function type. |
| TemplateDeductionInfo Info(Context, StartLoc); |
| if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info)) |
| continue; |
| } else |
| Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); |
| |
| if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) |
| Matches.push_back(std::make_pair(D.getPair(), Fn)); |
| } |
| } else { |
| // C++ [expr.new]p20: |
| // [...] Any non-placement deallocation function matches a |
| // non-placement allocation function. [...] |
| for (LookupResult::iterator D = FoundDelete.begin(), |
| DEnd = FoundDelete.end(); |
| D != DEnd; ++D) { |
| if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) |
| if (isNonPlacementDeallocationFunction(Fn)) |
| Matches.push_back(std::make_pair(D.getPair(), Fn)); |
| } |
| } |
| |
| // C++ [expr.new]p20: |
| // [...] If the lookup finds a single matching deallocation |
| // function, that function will be called; otherwise, no |
| // deallocation function will be called. |
| if (Matches.size() == 1) { |
| OperatorDelete = Matches[0].second; |
| |
| // C++0x [expr.new]p20: |
| // If the lookup finds the two-parameter form of a usual |
| // deallocation function (3.7.4.2) and that function, considered |
| // as a placement deallocation function, would have been |
| // selected as a match for the allocation function, the program |
| // is ill-formed. |
| if (NumPlaceArgs && getLangOptions().CPlusPlus0x && |
| isNonPlacementDeallocationFunction(OperatorDelete)) { |
| Diag(StartLoc, diag::err_placement_new_non_placement_delete) |
| << SourceRange(PlaceArgs[0]->getLocStart(), |
| PlaceArgs[NumPlaceArgs - 1]->getLocEnd()); |
| Diag(OperatorDelete->getLocation(), diag::note_previous_decl) |
| << DeleteName; |
| } else { |
| CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), |
| Matches[0].first); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// FindAllocationOverload - Find an fitting overload for the allocation |
| /// function in the specified scope. |
| bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, |
| DeclarationName Name, Expr** Args, |
| unsigned NumArgs, DeclContext *Ctx, |
| bool AllowMissing, FunctionDecl *&Operator, |
| bool Diagnose) { |
| LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); |
| LookupQualifiedName(R, Ctx); |
| if (R.empty()) { |
| if (AllowMissing || !Diagnose) |
| return false; |
| return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| } |
| |
| if (R.isAmbiguous()) |
| return true; |
| |
| R.suppressDiagnostics(); |
| |
| OverloadCandidateSet Candidates(StartLoc); |
| for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); |
| Alloc != AllocEnd; ++Alloc) { |
| // Even member operator new/delete are implicitly treated as |
| // static, so don't use AddMemberCandidate. |
| NamedDecl *D = (*Alloc)->getUnderlyingDecl(); |
| |
| if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { |
| AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), |
| /*ExplicitTemplateArgs=*/0, |
| llvm::makeArrayRef(Args, NumArgs), |
| Candidates, |
| /*SuppressUserConversions=*/false); |
| continue; |
| } |
| |
| FunctionDecl *Fn = cast<FunctionDecl>(D); |
| AddOverloadCandidate(Fn, Alloc.getPair(), |
| llvm::makeArrayRef(Args, NumArgs), Candidates, |
| /*SuppressUserConversions=*/false); |
| } |
| |
| // Do the resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { |
| case OR_Success: { |
| // Got one! |
| FunctionDecl *FnDecl = Best->Function; |
| MarkFunctionReferenced(StartLoc, FnDecl); |
| // The first argument is size_t, and the first parameter must be size_t, |
| // too. This is checked on declaration and can be assumed. (It can't be |
| // asserted on, though, since invalid decls are left in there.) |
| // Watch out for variadic allocator function. |
| unsigned NumArgsInFnDecl = FnDecl->getNumParams(); |
| for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { |
| InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
| FnDecl->getParamDecl(i)); |
| |
| if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i]))) |
| return true; |
| |
| ExprResult Result |
| = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i])); |
| if (Result.isInvalid()) |
| return true; |
| |
| Args[i] = Result.takeAs<Expr>(); |
| } |
| |
| Operator = FnDecl; |
| |
| if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), |
| Best->FoundDecl, Diagnose) == AR_inaccessible) |
| return true; |
| |
| return false; |
| } |
| |
| case OR_No_Viable_Function: |
| if (Diagnose) { |
| Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| Candidates.NoteCandidates(*this, OCD_AllCandidates, |
| llvm::makeArrayRef(Args, NumArgs)); |
| } |
| return true; |
| |
| case OR_Ambiguous: |
| if (Diagnose) { |
| Diag(StartLoc, diag::err_ovl_ambiguous_call) |
| << Name << Range; |
| Candidates.NoteCandidates(*this, OCD_ViableCandidates, |
| llvm::makeArrayRef(Args, NumArgs)); |
| } |
| return true; |
| |
| case OR_Deleted: { |
| if (Diagnose) { |
| Diag(StartLoc, diag::err_ovl_deleted_call) |
| << Best->Function->isDeleted() |
| << Name |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << Range; |
| Candidates.NoteCandidates(*this, OCD_AllCandidates, |
| llvm::makeArrayRef(Args, NumArgs)); |
| } |
| return true; |
| } |
| } |
| llvm_unreachable("Unreachable, bad result from BestViableFunction"); |
| } |
| |
| |
| /// DeclareGlobalNewDelete - Declare the global forms of operator new and |
| /// delete. These are: |
| /// @code |
| /// // C++03: |
| /// void* operator new(std::size_t) throw(std::bad_alloc); |
| /// void* operator new[](std::size_t) throw(std::bad_alloc); |
| /// void operator delete(void *) throw(); |
| /// void operator delete[](void *) throw(); |
| /// // C++0x: |
| /// void* operator new(std::size_t); |
| /// void* operator new[](std::size_t); |
| /// void operator delete(void *); |
| /// void operator delete[](void *); |
| /// @endcode |
| /// C++0x operator delete is implicitly noexcept. |
| /// Note that the placement and nothrow forms of new are *not* implicitly |
| /// declared. Their use requires including \<new\>. |
| void Sema::DeclareGlobalNewDelete() { |
| if (GlobalNewDeleteDeclared) |
| return; |
| |
| // C++ [basic.std.dynamic]p2: |
| // [...] The following allocation and deallocation functions (18.4) are |
| // implicitly declared in global scope in each translation unit of a |
| // program |
| // |
| // C++03: |
| // void* operator new(std::size_t) throw(std::bad_alloc); |
| // void* operator new[](std::size_t) throw(std::bad_alloc); |
| // void operator delete(void*) throw(); |
| // void operator delete[](void*) throw(); |
| // C++0x: |
| // void* operator new(std::size_t); |
| // void* operator new[](std::size_t); |
| // void operator delete(void*); |
| // void operator delete[](void*); |
| // |
| // These implicit declarations introduce only the function names operator |
| // new, operator new[], operator delete, operator delete[]. |
| // |
| // Here, we need to refer to std::bad_alloc, so we will implicitly declare |
| // "std" or "bad_alloc" as necessary to form the exception specification. |
| // However, we do not make these implicit declarations visible to name |
| // lookup. |
| // Note that the C++0x versions of operator delete are deallocation functions, |
| // and thus are implicitly noexcept. |
| if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) { |
| // The "std::bad_alloc" class has not yet been declared, so build it |
| // implicitly. |
| StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, |
| getOrCreateStdNamespace(), |
| SourceLocation(), SourceLocation(), |
| &PP.getIdentifierTable().get("bad_alloc"), |
| 0); |
| getStdBadAlloc()->setImplicit(true); |
| } |
| |
| GlobalNewDeleteDeclared = true; |
| |
| QualType VoidPtr = Context.getPointerType(Context.VoidTy); |
| QualType SizeT = Context.getSizeType(); |
| bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew; |
| |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_New), |
| VoidPtr, SizeT, AssumeSaneOperatorNew); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_New), |
| VoidPtr, SizeT, AssumeSaneOperatorNew); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Delete), |
| Context.VoidTy, VoidPtr); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), |
| Context.VoidTy, VoidPtr); |
| } |
| |
| /// DeclareGlobalAllocationFunction - Declares a single implicit global |
| /// allocation function if it doesn't already exist. |
| void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, |
| QualType Return, QualType Argument, |
| bool AddMallocAttr) { |
| DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); |
| |
| // Check if this function is already declared. |
| { |
| DeclContext::lookup_iterator Alloc, AllocEnd; |
| for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); |
| Alloc != AllocEnd; ++Alloc) { |
| // Only look at non-template functions, as it is the predefined, |
| // non-templated allocation function we are trying to declare here. |
| if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { |
| QualType InitialParamType = |
| Context.getCanonicalType( |
| Func->getParamDecl(0)->getType().getUnqualifiedType()); |
| // FIXME: Do we need to check for default arguments here? |
| if (Func->getNumParams() == 1 && InitialParamType == Argument) { |
| if(AddMallocAttr && !Func->hasAttr<MallocAttr>()) |
| Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); |
| return; |
| } |
| } |
| } |
| } |
| |
| QualType BadAllocType; |
| bool HasBadAllocExceptionSpec |
| = (Name.getCXXOverloadedOperator() == OO_New || |
| Name.getCXXOverloadedOperator() == OO_Array_New); |
| if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) { |
| assert(StdBadAlloc && "Must have std::bad_alloc declared"); |
| BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); |
| } |
| |
| FunctionProtoType::ExtProtoInfo EPI; |
| if (HasBadAllocExceptionSpec) { |
| if (!getLangOptions().CPlusPlus0x) { |
| EPI.ExceptionSpecType = EST_Dynamic; |
| EPI.NumExceptions = 1; |
| EPI.Exceptions = &BadAllocType; |
| } |
| } else { |
| EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ? |
| EST_BasicNoexcept : EST_DynamicNone; |
| } |
| |
| QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI); |
| FunctionDecl *Alloc = |
| FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), |
| SourceLocation(), Name, |
| FnType, /*TInfo=*/0, SC_None, |
| SC_None, false, true); |
| Alloc->setImplicit(); |
| |
| if (AddMallocAttr) |
| Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); |
| |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), |
| SourceLocation(), 0, |
| Argument, /*TInfo=*/0, |
| SC_None, SC_None, 0); |
| Alloc->setParams(Param); |
| |
| // FIXME: Also add this declaration to the IdentifierResolver, but |
| // make sure it is at the end of the chain to coincide with the |
| // global scope. |
| Context.getTranslationUnitDecl()->addDecl(Alloc); |
| } |
| |
| bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, |
| DeclarationName Name, |
| FunctionDecl* &Operator, bool Diagnose) { |
| LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); |
| // Try to find operator delete/operator delete[] in class scope. |
| LookupQualifiedName(Found, RD); |
| |
| if (Found.isAmbiguous()) |
| return true; |
| |
| Found.suppressDiagnostics(); |
| |
| SmallVector<DeclAccessPair,4> Matches; |
| for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| F != FEnd; ++F) { |
| NamedDecl *ND = (*F)->getUnderlyingDecl(); |
| |
| // Ignore template operator delete members from the check for a usual |
| // deallocation function. |
| if (isa<FunctionTemplateDecl>(ND)) |
| continue; |
| |
| if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) |
| Matches.push_back(F.getPair()); |
| } |
| |
| // There's exactly one suitable operator; pick it. |
| if (Matches.size() == 1) { |
| Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); |
| |
| if (Operator->isDeleted()) { |
| if (Diagnose) { |
| Diag(StartLoc, diag::err_deleted_function_use); |
| Diag(Operator->getLocation(), diag::note_unavailable_here) |
| << /*function*/ 1 << /*deleted*/ 1; |
| } |
| return true; |
| } |
| |
| if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), |
| Matches[0], Diagnose) == AR_inaccessible) |
| return true; |
| |
| return false; |
| |
| // We found multiple suitable operators; complain about the ambiguity. |
| } else if (!Matches.empty()) { |
| if (Diagnose) { |
| Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) |
| << Name << RD; |
| |
| for (SmallVectorImpl<DeclAccessPair>::iterator |
| F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) |
| Diag((*F)->getUnderlyingDecl()->getLocation(), |
| diag::note_member_declared_here) << Name; |
| } |
| return true; |
| } |
| |
| // We did find operator delete/operator delete[] declarations, but |
| // none of them were suitable. |
| if (!Found.empty()) { |
| if (Diagnose) { |
| Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) |
| << Name << RD; |
| |
| for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| F != FEnd; ++F) |
| Diag((*F)->getUnderlyingDecl()->getLocation(), |
| diag::note_member_declared_here) << Name; |
| } |
| return true; |
| } |
| |
| // Look for a global declaration. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| |
| CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); |
| Expr* DeallocArgs[1]; |
| DeallocArgs[0] = &Null; |
| if (FindAllocationOverload(StartLoc, SourceRange(), Name, |
| DeallocArgs, 1, TUDecl, !Diagnose, |
| Operator, Diagnose)) |
| return true; |
| |
| assert(Operator && "Did not find a deallocation function!"); |
| return false; |
| } |
| |
| /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: |
| /// @code ::delete ptr; @endcode |
| /// or |
| /// @code delete [] ptr; @endcode |
| ExprResult |
| Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, |
| bool ArrayForm, Expr *ExE) { |
| // C++ [expr.delete]p1: |
| // The operand shall have a pointer type, or a class type having a single |
| // conversion function to a pointer type. The result has type void. |
| // |
| // DR599 amends "pointer type" to "pointer to object type" in both cases. |
| |
| ExprResult Ex = Owned(ExE); |
| FunctionDecl *OperatorDelete = 0; |
| bool ArrayFormAsWritten = ArrayForm; |
| bool UsualArrayDeleteWantsSize = false; |
| |
| if (!Ex.get()->isTypeDependent()) { |
| QualType Type = Ex.get()->getType(); |
| |
| if (const RecordType *Record = Type->getAs<RecordType>()) { |
| if (RequireCompleteType(StartLoc, Type, |
| PDiag(diag::err_delete_incomplete_class_type))) |
| return ExprError(); |
| |
| SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions; |
| |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
| const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = I.getDecl(); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| // Skip over templated conversion functions; they aren't considered. |
| if (isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| |
| QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) |
| ObjectPtrConversions.push_back(Conv); |
| } |
| if (ObjectPtrConversions.size() == 1) { |
| // We have a single conversion to a pointer-to-object type. Perform |
| // that conversion. |
| // TODO: don't redo the conversion calculation. |
| ExprResult Res = |
| PerformImplicitConversion(Ex.get(), |
| ObjectPtrConversions.front()->getConversionType(), |
| AA_Converting); |
| if (Res.isUsable()) { |
| Ex = move(Res); |
| Type = Ex.get()->getType(); |
| } |
| } |
| else if (ObjectPtrConversions.size() > 1) { |
| Diag(StartLoc, diag::err_ambiguous_delete_operand) |
| << Type << Ex.get()->getSourceRange(); |
| for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) |
| NoteOverloadCandidate(ObjectPtrConversions[i]); |
| return ExprError(); |
| } |
| } |
| |
| if (!Type->isPointerType()) |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex.get()->getSourceRange()); |
| |
| QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); |
| QualType PointeeElem = Context.getBaseElementType(Pointee); |
| |
| if (unsigned AddressSpace = Pointee.getAddressSpace()) |
| return Diag(Ex.get()->getLocStart(), |
| diag::err_address_space_qualified_delete) |
| << Pointee.getUnqualifiedType() << AddressSpace; |
| |
| CXXRecordDecl *PointeeRD = 0; |
| if (Pointee->isVoidType() && !isSFINAEContext()) { |
| // The C++ standard bans deleting a pointer to a non-object type, which |
| // effectively bans deletion of "void*". However, most compilers support |
| // this, so we treat it as a warning unless we're in a SFINAE context. |
| Diag(StartLoc, diag::ext_delete_void_ptr_operand) |
| << Type << Ex.get()->getSourceRange(); |
| } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex.get()->getSourceRange()); |
| } else if (!Pointee->isDependentType()) { |
| if (!RequireCompleteType(StartLoc, Pointee, |
| PDiag(diag::warn_delete_incomplete) |
| << Ex.get()->getSourceRange())) { |
| if (const RecordType *RT = PointeeElem->getAs<RecordType>()) |
| PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); |
| } |
| } |
| |
| // Perform lvalue-to-rvalue cast, if needed. |
| Ex = DefaultLvalueConversion(Ex.take()); |
| |
| // C++ [expr.delete]p2: |
| // [Note: a pointer to a const type can be the operand of a |
| // delete-expression; it is not necessary to cast away the constness |
| // (5.2.11) of the pointer expression before it is used as the operand |
| // of the delete-expression. ] |
| if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy)) |
| Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, |
| CK_BitCast, Ex.take(), 0, VK_RValue)); |
| |
| if (Pointee->isArrayType() && !ArrayForm) { |
| Diag(StartLoc, diag::warn_delete_array_type) |
| << Type << Ex.get()->getSourceRange() |
| << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]"); |
| ArrayForm = true; |
| } |
| |
| DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| ArrayForm ? OO_Array_Delete : OO_Delete); |
| |
| if (PointeeRD) { |
| if (!UseGlobal && |
| FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, |
| OperatorDelete)) |
| return ExprError(); |
| |
| // If we're allocating an array of records, check whether the |
| // usual operator delete[] has a size_t parameter. |
| if (ArrayForm) { |
| // If the user specifically asked to use the global allocator, |
| // we'll need to do the lookup into the class. |
| if (UseGlobal) |
| UsualArrayDeleteWantsSize = |
| doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); |
| |
| // Otherwise, the usual operator delete[] should be the |
| // function we just found. |
| else if (isa<CXXMethodDecl>(OperatorDelete)) |
| UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); |
| } |
| |
| if (!PointeeRD->hasIrrelevantDestructor()) |
| if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { |
| MarkFunctionReferenced(StartLoc, |
| const_cast<CXXDestructorDecl*>(Dtor)); |
| DiagnoseUseOfDecl(Dtor, StartLoc); |
| } |
| |
| // C++ [expr.delete]p3: |
| // In the first alternative (delete object), if the static type of the |
| // object to be deleted is different from its dynamic type, the static |
| // type shall be a base class of the dynamic type of the object to be |
| // deleted and the static type shall have a virtual destructor or the |
| // behavior is undefined. |
| // |
| // Note: a final class cannot be derived from, no issue there |
| if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) { |
| CXXDestructorDecl *dtor = PointeeRD->getDestructor(); |
| if (dtor && !dtor->isVirtual()) { |
| if (PointeeRD->isAbstract()) { |
| // If the class is abstract, we warn by default, because we're |
| // sure the code has undefined behavior. |
| Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor) |
| << PointeeElem; |
| } else if (!ArrayForm) { |
| // Otherwise, if this is not an array delete, it's a bit suspect, |
| // but not necessarily wrong. |
| Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem; |
| } |
| } |
| } |
| |
| } else if (getLangOptions().ObjCAutoRefCount && |
| PointeeElem->isObjCLifetimeType() && |
| (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong || |
| PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) && |
| ArrayForm) { |
| Diag(StartLoc, diag::warn_err_new_delete_object_array) |
| << 1 << PointeeElem; |
| } |
| |
| if (!OperatorDelete) { |
| // Look for a global declaration. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| Expr *Arg = Ex.get(); |
| if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, |
| &Arg, 1, TUDecl, /*AllowMissing=*/false, |
| OperatorDelete)) |
| return ExprError(); |
| } |
| |
| MarkFunctionReferenced(StartLoc, OperatorDelete); |
| |
| // Check access and ambiguity of operator delete and destructor. |
| if (PointeeRD) { |
| if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { |
| CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, |
| PDiag(diag::err_access_dtor) << PointeeElem); |
| } |
| } |
| |
| } |
| |
| return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, |
| ArrayFormAsWritten, |
| UsualArrayDeleteWantsSize, |
| OperatorDelete, Ex.take(), StartLoc)); |
| } |
| |
| /// \brief Check the use of the given variable as a C++ condition in an if, |
| /// while, do-while, or switch statement. |
| ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, |
| SourceLocation StmtLoc, |
| bool ConvertToBoolean) { |
| QualType T = ConditionVar->getType(); |
| |
| // C++ [stmt.select]p2: |
| // The declarator shall not specify a function or an array. |
| if (T->isFunctionType()) |
| return ExprError(Diag(ConditionVar->getLocation(), |
| diag::err_invalid_use_of_function_type) |
| << ConditionVar->getSourceRange()); |
| else if (T->isArrayType()) |
| return ExprError(Diag(ConditionVar->getLocation(), |
| diag::err_invalid_use_of_array_type) |
| << ConditionVar->getSourceRange()); |
| |
| ExprResult Condition = |
| Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(), |
| SourceLocation(), |
| ConditionVar, |
| ConditionVar->getLocation(), |
| ConditionVar->getType().getNonReferenceType(), |
| VK_LValue)); |
| |
| MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); |
| |
| if (ConvertToBoolean) { |
| Condition = CheckBooleanCondition(Condition.take(), StmtLoc); |
| if (Condition.isInvalid()) |
| return ExprError(); |
| } |
| |
| return move(Condition); |
| } |
| |
| /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. |
| ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) { |
| // C++ 6.4p4: |
| // The value of a condition that is an initialized declaration in a statement |
| // other than a switch statement is the value of the declared variable |
| // implicitly converted to type bool. If that conversion is ill-formed, the |
| // program is ill-formed. |
| // The value of a condition that is an expression is the value of the |
| // expression, implicitly converted to bool. |
| // |
| return PerformContextuallyConvertToBool(CondExpr); |
| } |
| |
| /// Helper function to determine whether this is the (deprecated) C++ |
| /// conversion from a string literal to a pointer to non-const char or |
| /// non-const wchar_t (for narrow and wide string literals, |
| /// respectively). |
| bool |
| Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { |
| // Look inside the implicit cast, if it exists. |
| if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) |
| From = Cast->getSubExpr(); |
| |
| // A string literal (2.13.4) that is not a wide string literal can |
| // be converted to an rvalue of type "pointer to char"; a wide |
| // string literal can be converted to an rvalue of type "pointer |
| // to wchar_t" (C++ 4.2p2). |
| if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) |
| if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) |
| if (const BuiltinType *ToPointeeType |
| = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { |
| // This conversion is considered only when there is an |
| // explicit appropriate pointer target type (C++ 4.2p2). |
| if (!ToPtrType->getPointeeType().hasQualifiers()) { |
| switch (StrLit->getKind()) { |
| case StringLiteral::UTF8: |
| case StringLiteral::UTF16: |
| case StringLiteral::UTF32: |
| // We don't allow UTF literals to be implicitly converted |
| break; |
| case StringLiteral::Ascii: |
| return (ToPointeeType->getKind() == BuiltinType::Char_U || |
| ToPointeeType->getKind() == BuiltinType::Char_S); |
| case StringLiteral::Wide: |
| return ToPointeeType->isWideCharType(); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static ExprResult BuildCXXCastArgument(Sema &S, |
| SourceLocation CastLoc, |
| QualType Ty, |
| CastKind Kind, |
| CXXMethodDecl *Method, |
| DeclAccessPair FoundDecl, |
| bool HadMultipleCandidates, |
| Expr *From) { |
| switch (Kind) { |
| default: llvm_unreachable("Unhandled cast kind!"); |
| case CK_ConstructorConversion: { |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); |
| ASTOwningVector<Expr*> ConstructorArgs(S); |
| |
| if (S.CompleteConstructorCall(Constructor, |
| MultiExprArg(&From, 1), |
| CastLoc, ConstructorArgs)) |
| return ExprError(); |
| |
| S.CheckConstructorAccess(CastLoc, Constructor, Constructor->getAccess(), |
| S.PDiag(diag::err_access_ctor)); |
| |
| ExprResult Result |
| = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), |
| move_arg(ConstructorArgs), |
| HadMultipleCandidates, /*ZeroInit*/ false, |
| CXXConstructExpr::CK_Complete, SourceRange()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return S.MaybeBindToTemporary(Result.takeAs<Expr>()); |
| } |
| |
| case CK_UserDefinedConversion: { |
| assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); |
| |
| // Create an implicit call expr that calls it. |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); |
| ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, |
| HadMultipleCandidates); |
| if (Result.isInvalid()) |
| return ExprError(); |
| // Record usage of conversion in an implicit cast. |
| Result = S.Owned(ImplicitCastExpr::Create(S.Context, |
| Result.get()->getType(), |
| CK_UserDefinedConversion, |
| Result.get(), 0, |
| Result.get()->getValueKind())); |
| |
| S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl); |
| |
| return S.MaybeBindToTemporary(Result.get()); |
| } |
| } |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType using the pre-computed implicit |
| /// conversion sequence ICS. Returns the converted |
| /// expression. Action is the kind of conversion we're performing, |
| /// used in the error message. |
| ExprResult |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| const ImplicitConversionSequence &ICS, |
| AssignmentAction Action, |
| CheckedConversionKind CCK) { |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::StandardConversion: { |
| ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, |
| Action, CCK); |
| if (Res.isInvalid()) |
| return ExprError(); |
| From = Res.take(); |
| break; |
| } |
| |
| case ImplicitConversionSequence::UserDefinedConversion: { |
| |
| FunctionDecl *FD = ICS.UserDefined.ConversionFunction; |
| CastKind CastKind; |
| QualType BeforeToType; |
| assert(FD && "FIXME: aggregate initialization from init list"); |
| if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { |
| CastKind = CK_UserDefinedConversion; |
| |
| // If the user-defined conversion is specified by a conversion function, |
| // the initial standard conversion sequence converts the source type to |
| // the implicit object parameter of the conversion function. |
| BeforeToType = Context.getTagDeclType(Conv->getParent()); |
| } else { |
| const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); |
| CastKind = CK_ConstructorConversion; |
| // Do no conversion if dealing with ... for the first conversion. |
| if (!ICS.UserDefined.EllipsisConversion) { |
| // If the user-defined conversion is specified by a constructor, the |
| // initial standard conversion sequence converts the source type to the |
| // type required by the argument of the constructor |
| BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); |
| } |
| } |
| // Watch out for elipsis conversion. |
| if (!ICS.UserDefined.EllipsisConversion) { |
| ExprResult Res = |
| PerformImplicitConversion(From, BeforeToType, |
| ICS.UserDefined.Before, AA_Converting, |
| CCK); |
| if (Res.isInvalid()) |
| return ExprError(); |
| From = Res.take(); |
| } |
| |
| ExprResult CastArg |
| = BuildCXXCastArgument(*this, |
| From->getLocStart(), |
| ToType.getNonReferenceType(), |
| CastKind, cast<CXXMethodDecl>(FD), |
| ICS.UserDefined.FoundConversionFunction, |
| ICS.UserDefined.HadMultipleCandidates, |
| From); |
| |
| if (CastArg.isInvalid()) |
| return ExprError(); |
| |
| From = CastArg.take(); |
| |
| return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, |
| AA_Converting, CCK); |
| } |
| |
| case ImplicitConversionSequence::AmbiguousConversion: |
| ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), |
| PDiag(diag::err_typecheck_ambiguous_condition) |
| << From->getSourceRange()); |
| return ExprError(); |
| |
| case ImplicitConversionSequence::EllipsisConversion: |
| llvm_unreachable("Cannot perform an ellipsis conversion"); |
| |
| case ImplicitConversionSequence::BadConversion: |
| return ExprError(); |
| } |
| |
| // Everything went well. |
| return Owned(From); |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType by following the standard |
| /// conversion sequence SCS. Returns the converted |
| /// expression. Flavor is the context in which we're performing this |
| /// conversion, for use in error messages. |
| ExprResult |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| const StandardConversionSequence& SCS, |
| AssignmentAction Action, |
| CheckedConversionKind CCK) { |
| bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); |
| |
| // Overall FIXME: we are recomputing too many types here and doing far too |
| // much extra work. What this means is that we need to keep track of more |
| // information that is computed when we try the implicit conversion initially, |
| // so that we don't need to recompute anything here. |
| QualType FromType = From->getType(); |
| |
| if (SCS.CopyConstructor) { |
| // FIXME: When can ToType be a reference type? |
| assert(!ToType->isReferenceType()); |
| if (SCS.Second == ICK_Derived_To_Base) { |
| ASTOwningVector<Expr*> ConstructorArgs(*this); |
| if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), |
| MultiExprArg(*this, &From, 1), |
| /*FIXME:ConstructLoc*/SourceLocation(), |
| ConstructorArgs)) |
| return ExprError(); |
| return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| ToType, SCS.CopyConstructor, |
| move_arg(ConstructorArgs), |
| /*HadMultipleCandidates*/ false, |
| /*ZeroInit*/ false, |
| CXXConstructExpr::CK_Complete, |
| SourceRange()); |
| } |
| return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| ToType, SCS.CopyConstructor, |
| MultiExprArg(*this, &From, 1), |
| /*HadMultipleCandidates*/ false, |
| /*ZeroInit*/ false, |
| CXXConstructExpr::CK_Complete, |
| SourceRange()); |
| } |
| |
| // Resolve overloaded function references. |
| if (Context.hasSameType(FromType, Context.OverloadTy)) { |
| DeclAccessPair Found; |
| FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, |
| true, Found); |
| if (!Fn) |
| return ExprError(); |
| |
| if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) |
| return ExprError(); |
| |
| From = FixOverloadedFunctionReference(From, Found, Fn); |
| FromType = From->getType(); |
| } |
| |
| // Perform the first implicit conversion. |
| switch (SCS.First) { |
| case ICK_Identity: |
| // Nothing to do. |
| break; |
| |
| case ICK_Lvalue_To_Rvalue: { |
| assert(From->getObjectKind() != OK_ObjCProperty); |
| FromType = FromType.getUnqualifiedType(); |
| ExprResult FromRes = DefaultLvalueConversion(From); |
| assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); |
| From = FromRes.take(); |
| break; |
| } |
| |
| case ICK_Array_To_Pointer: |
| FromType = Context.getArrayDecayedType(FromType); |
| From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Function_To_Pointer: |
| FromType = Context.getPointerType(FromType); |
| From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| default: |
| llvm_unreachable("Improper first standard conversion"); |
| } |
| |
| // Perform the second implicit conversion |
| switch (SCS.Second) { |
| case ICK_Identity: |
| // If both sides are functions (or pointers/references to them), there could |
| // be incompatible exception declarations. |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return ExprError(); |
| // Nothing else to do. |
| break; |
| |
| case ICK_NoReturn_Adjustment: |
| // If both sides are functions (or pointers/references to them), there could |
| // be incompatible exception declarations. |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return ExprError(); |
| |
| From = ImpCastExprToType(From, ToType, CK_NoOp, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Integral_Promotion: |
| case ICK_Integral_Conversion: |
| From = ImpCastExprToType(From, ToType, CK_IntegralCast, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Floating_Promotion: |
| case ICK_Floating_Conversion: |
| From = ImpCastExprToType(From, ToType, CK_FloatingCast, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Complex_Promotion: |
| case ICK_Complex_Conversion: { |
| QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); |
| QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); |
| CastKind CK; |
| if (FromEl->isRealFloatingType()) { |
| if (ToEl->isRealFloatingType()) |
| CK = CK_FloatingComplexCast; |
| else |
| CK = CK_FloatingComplexToIntegralComplex; |
| } else if (ToEl->isRealFloatingType()) { |
| CK = CK_IntegralComplexToFloatingComplex; |
| } else { |
| CK = CK_IntegralComplexCast; |
| } |
| From = ImpCastExprToType(From, ToType, CK, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| } |
| |
| case ICK_Floating_Integral: |
| if (ToType->isRealFloatingType()) |
| From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| else |
| From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Compatible_Conversion: |
| From = ImpCastExprToType(From, ToType, CK_NoOp, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Writeback_Conversion: |
| case ICK_Pointer_Conversion: { |
| if (SCS.IncompatibleObjC && Action != AA_Casting) { |
| // Diagnose incompatible Objective-C conversions |
| if (Action == AA_Initializing || Action == AA_Assigning) |
| Diag(From->getSourceRange().getBegin(), |
| diag::ext_typecheck_convert_incompatible_pointer) |
| << ToType << From->getType() << Action |
| << From->getSourceRange() << 0; |
| else |
| Diag(From->getSourceRange().getBegin(), |
| diag::ext_typecheck_convert_incompatible_pointer) |
| << From->getType() << ToType << Action |
| << From->getSourceRange() << 0; |
| |
| if (From->getType()->isObjCObjectPointerType() && |
| ToType->isObjCObjectPointerType()) |
| EmitRelatedResultTypeNote(From); |
| } |
| else if (getLangOptions().ObjCAutoRefCount && |
| !CheckObjCARCUnavailableWeakConversion(ToType, |
| From->getType())) { |
| if (Action == AA_Initializing) |
| Diag(From->getSourceRange().getBegin(), |
| diag::err_arc_weak_unavailable_assign); |
| else |
| Diag(From->getSourceRange().getBegin(), |
| diag::err_arc_convesion_of_weak_unavailable) |
| << (Action == AA_Casting) << From->getType() << ToType |
| << From->getSourceRange(); |
| } |
| |
| CastKind Kind = CK_Invalid; |
| CXXCastPath BasePath; |
| if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) |
| return ExprError(); |
| |
| // Make sure we extend blocks if necessary. |
| // FIXME: doing this here is really ugly. |
| if (Kind == CK_BlockPointerToObjCPointerCast) { |
| ExprResult E = From; |
| (void) PrepareCastToObjCObjectPointer(E); |
| From = E.take(); |
| } |
| |
| From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) |
| .take(); |
| break; |
| } |
| |
| case ICK_Pointer_Member: { |
| CastKind Kind = CK_Invalid; |
| CXXCastPath BasePath; |
| if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) |
| return ExprError(); |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return ExprError(); |
| From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) |
| .take(); |
| break; |
| } |
| |
| case ICK_Boolean_Conversion: |
| // Perform half-to-boolean conversion via float. |
| if (From->getType()->isHalfType()) { |
| From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take(); |
| FromType = Context.FloatTy; |
| } |
| |
| From = ImpCastExprToType(From, Context.BoolTy, |
| ScalarTypeToBooleanCastKind(FromType), |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Derived_To_Base: { |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(From->getType(), |
| ToType.getNonReferenceType(), |
| From->getLocStart(), |
| From->getSourceRange(), |
| &BasePath, |
| CStyle)) |
| return ExprError(); |
| |
| From = ImpCastExprToType(From, ToType.getNonReferenceType(), |
| CK_DerivedToBase, From->getValueKind(), |
| &BasePath, CCK).take(); |
| break; |
| } |
| |
| case ICK_Vector_Conversion: |
| From = ImpCastExprToType(From, ToType, CK_BitCast, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Vector_Splat: |
| From = ImpCastExprToType(From, ToType, CK_VectorSplat, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| |
| case ICK_Complex_Real: |
| // Case 1. x -> _Complex y |
| if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { |
| QualType ElType = ToComplex->getElementType(); |
| bool isFloatingComplex = ElType->isRealFloatingType(); |
| |
| // x -> y |
| if (Context.hasSameUnqualifiedType(ElType, From->getType())) { |
| // do nothing |
| } else if (From->getType()->isRealFloatingType()) { |
| From = ImpCastExprToType(From, ElType, |
| isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take(); |
| } else { |
| assert(From->getType()->isIntegerType()); |
| From = ImpCastExprToType(From, ElType, |
| isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take(); |
| } |
| // y -> _Complex y |
| From = ImpCastExprToType(From, ToType, |
| isFloatingComplex ? CK_FloatingRealToComplex |
| : CK_IntegralRealToComplex).take(); |
| |
| // Case 2. _Complex x -> y |
| } else { |
| const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); |
| assert(FromComplex); |
| |
| QualType ElType = FromComplex->getElementType(); |
| bool isFloatingComplex = ElType->isRealFloatingType(); |
| |
| // _Complex x -> x |
| From = ImpCastExprToType(From, ElType, |
| isFloatingComplex ? CK_FloatingComplexToReal |
| : CK_IntegralComplexToReal, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| |
| // x -> y |
| if (Context.hasSameUnqualifiedType(ElType, ToType)) { |
| // do nothing |
| } else if (ToType->isRealFloatingType()) { |
| From = ImpCastExprToType(From, ToType, |
| isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| } else { |
| assert(ToType->isIntegerType()); |
| From = ImpCastExprToType(From, ToType, |
| isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| } |
| } |
| break; |
| |
| case ICK_Block_Pointer_Conversion: { |
| From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, |
| VK_RValue, /*BasePath=*/0, CCK).take(); |
| break; |
| } |
| |
| case ICK_TransparentUnionConversion: { |
| ExprResult FromRes = Owned(From); |
| Sema::AssignConvertType ConvTy = |
| CheckTransparentUnionArgumentConstraints(ToType, FromRes); |
| if (FromRes.isInvalid()) |
| return ExprError(); |
| From = FromRes.take(); |
| assert ((ConvTy == Sema::Compatible) && |
| "Improper transparent union conversion"); |
| (void)ConvTy; |
| break; |
| } |
| |
| case ICK_Lvalue_To_Rvalue: |
| case ICK_Array_To_Pointer: |
| case ICK_Function_To_Pointer: |
| case ICK_Qualification: |
| case ICK_Num_Conversion_Kinds: |
| llvm_unreachable("Improper second standard conversion"); |
| } |
| |
| switch (SCS.Third) { |
| case ICK_Identity: |
| // Nothing to do. |
| break; |
| |
| case ICK_Qualification: { |
| // The qualification keeps the category of the inner expression, unless the |
| // target type isn't a reference. |
| ExprValueKind VK = ToType->isReferenceType() ? |
| From->getValueKind() : VK_RValue; |
| From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), |
| CK_NoOp, VK, /*BasePath=*/0, CCK).take(); |
| |
| if (SCS.DeprecatedStringLiteralToCharPtr && |
| !getLangOptions().WritableStrings) |
| Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion) |
| << ToType.getNonReferenceType(); |
| |
| break; |
| } |
| |
| default: |
| llvm_unreachable("Improper third standard conversion"); |
| } |
| |
| return Owned(From); |
| } |
| |
| ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT, |
| SourceLocation KWLoc, |
| ParsedType Ty, |
| SourceLocation RParen) { |
| TypeSourceInfo *TSInfo; |
| QualType T = GetTypeFromParser(Ty, &TSInfo); |
| |
| if (!TSInfo) |
| TSInfo = Context.getTrivialTypeSourceInfo(T); |
| return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen); |
| } |
| |
| /// \brief Check the completeness of a type in a unary type trait. |
| /// |
| /// If the particular type trait requires a complete type, tries to complete |
| /// it. If completing the type fails, a diagnostic is emitted and false |
| /// returned. If completing the type succeeds or no completion was required, |
| /// returns true. |
| static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, |
| UnaryTypeTrait UTT, |
| SourceLocation Loc, |
| QualType ArgTy) { |
| // C++0x [meta.unary.prop]p3: |
| // For all of the class templates X declared in this Clause, instantiating |
| // that template with a template argument that is a class template |
| // specialization may result in the implicit instantiation of the template |
| // argument if and only if the semantics of X require that the argument |
| // must be a complete type. |
| // We apply this rule to all the type trait expressions used to implement |
| // these class templates. We also try to follow any GCC documented behavior |
| // in these expressions to ensure portability of standard libraries. |
| switch (UTT) { |
| // is_complete_type somewhat obviously cannot require a complete type. |
| case UTT_IsCompleteType: |
| // Fall-through |
| |
| // These traits are modeled on the type predicates in C++0x |
| // [meta.unary.cat] and [meta.unary.comp]. They are not specified as |
| // requiring a complete type, as whether or not they return true cannot be |
| // impacted by the completeness of the type. |
| case UTT_IsVoid: |
| case UTT_IsIntegral: |
| case UTT_IsFloatingPoint: |
| case UTT_IsArray: |
| case UTT_IsPointer: |
| case UTT_IsLvalueReference: |
| case UTT_IsRvalueReference: |
| case UTT_IsMemberFunctionPointer: |
| case UTT_IsMemberObjectPointer: |
| case UTT_IsEnum: |
| case UTT_IsUnion: |
| case UTT_IsClass: |
| case UTT_IsFunction: |
| case UTT_IsReference: |
| case UTT_IsArithmetic: |
| case UTT_IsFundamental: |
| case UTT_IsObject: |
| case UTT_IsScalar: |
| case UTT_IsCompound: |
| case UTT_IsMemberPointer: |
| // Fall-through |
| |
| // These traits are modeled on type predicates in C++0x [meta.unary.prop] |
| // which requires some of its traits to have the complete type. However, |
| // the completeness of the type cannot impact these traits' semantics, and |
| // so they don't require it. This matches the comments on these traits in |
| // Table 49. |
| case UTT_IsConst: |
| case UTT_IsVolatile: |
| case UTT_IsSigned: |
| case UTT_IsUnsigned: |
| return true; |
| |
| // C++0x [meta.unary.prop] Table 49 requires the following traits to be |
| // applied to a complete type. |
| case UTT_IsTrivial: |
| case UTT_IsTriviallyCopyable: |
| case UTT_IsStandardLayout: |
| case UTT_IsPOD: |
| case UTT_IsLiteral: |
| case UTT_IsEmpty: |
| case UTT_IsPolymorphic: |
| case UTT_IsAbstract: |
| // Fall-through |
| |
| // These traits require a complete type. |
| case UTT_IsFinal: |
| |
| // These trait expressions are designed to help implement predicates in |
| // [meta.unary.prop] despite not being named the same. They are specified |
| // by both GCC and the Embarcadero C++ compiler, and require the complete |
| // type due to the overarching C++0x type predicates being implemented |
| // requiring the complete type. |
| case UTT_HasNothrowAssign: |
| case UTT_HasNothrowConstructor: |
| case UTT_HasNothrowCopy: |
| case UTT_HasTrivialAssign: |
| case UTT_HasTrivialDefaultConstructor: |
| case UTT_HasTrivialCopy: |
| case UTT_HasTrivialDestructor: |
| case UTT_HasVirtualDestructor: |
| // Arrays of unknown bound are expressly allowed. |
| QualType ElTy = ArgTy; |
| if (ArgTy->isIncompleteArrayType()) |
| ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); |
| |
| // The void type is expressly allowed. |
| if (ElTy->isVoidType()) |
| return true; |
| |
| return !S.RequireCompleteType( |
| Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); |
| } |
| llvm_unreachable("Type trait not handled by switch"); |
| } |
| |
| static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, |
| SourceLocation KeyLoc, QualType T) { |
| assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); |
| |
| ASTContext &C = Self.Context; |
| switch(UTT) { |
| // Type trait expressions corresponding to the primary type category |
| // predicates in C++0x [meta.unary.cat]. |
| case UTT_IsVoid: |
| return T->isVoidType(); |
| case UTT_IsIntegral: |
| return T->isIntegralType(C); |
| case UTT_IsFloatingPoint: |
| return T->isFloatingType(); |
| case UTT_IsArray: |
| return T->isArrayType(); |
| case UTT_IsPointer: |
| return T->isPointerType(); |
| case UTT_IsLvalueReference: |
| return T->isLValueReferenceType(); |
| case UTT_IsRvalueReference: |
| return T->isRValueReferenceType(); |
| case UTT_IsMemberFunctionPointer: |
| return T->isMemberFunctionPointerType(); |
| case UTT_IsMemberObjectPointer: |
| return T->isMemberDataPointerType(); |
| case UTT_IsEnum: |
| return T->isEnumeralType(); |
| case UTT_IsUnion: |
| return T->isUnionType(); |
| case UTT_IsClass: |
| return T->isClassType() || T->isStructureType(); |
| case UTT_IsFunction: |
| return T->isFunctionType(); |
| |
| // Type trait expressions which correspond to the convenient composition |
| // predicates in C++0x [meta.unary.comp]. |
| case UTT_IsReference: |
| return T->isReferenceType(); |
| case UTT_IsArithmetic: |
| return T->isArithmeticType() && !T->isEnumeralType(); |
| case UTT_IsFundamental: |
| return T->isFundamentalType(); |
| case UTT_IsObject: |
| return T->isObjectType(); |
| case UTT_IsScalar: |
| // Note: semantic analysis depends on Objective-C lifetime types to be |
| // considered scalar types. However, such types do not actually behave |
| // like scalar types at run time (since they may require retain/release |
| // operations), so we report them as non-scalar. |
| if (T->isObjCLifetimeType()) { |
| switch (T.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| return true; |
| |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Weak: |
| case Qualifiers::OCL_Autoreleasing: |
| return false; |
| } |
| } |
| |
| return T->isScalarType(); |
| case UTT_IsCompound: |
| return T->isCompoundType(); |
| case UTT_IsMemberPointer: |
| return T->isMemberPointerType(); |
| |
| // Type trait expressions which correspond to the type property predicates |
| // in C++0x [meta.unary.prop]. |
| case UTT_IsConst: |
| return T.isConstQualified(); |
| case UTT_IsVolatile: |
| return T.isVolatileQualified(); |
| case UTT_IsTrivial: |
| return T.isTrivialType(Self.Context); |
| case UTT_IsTriviallyCopyable: |
| return T.isTriviallyCopyableType(Self.Context); |
| case UTT_IsStandardLayout: |
| return T->isStandardLayoutType(); |
| case UTT_IsPOD: |
| return T.isPODType(Self.Context); |
| case UTT_IsLiteral: |
| return T->isLiteralType(); |
| case UTT_IsEmpty: |
| if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| return !RD->isUnion() && RD->isEmpty(); |
| return false; |
| case UTT_IsPolymorphic: |
| if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| return RD->isPolymorphic(); |
| return false; |
| case UTT_IsAbstract: |
| if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| return RD->isAbstract(); |
| return false; |
| case UTT_IsFinal: |
| if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| return RD->hasAttr<FinalAttr>(); |
| return false; |
| case UTT_IsSigned: |
| return T->isSignedIntegerType(); |
| case UTT_IsUnsigned: |
| return T->isUnsignedIntegerType(); |
| |
| // Type trait expressions which query classes regarding their construction, |
| // destruction, and copying. Rather than being based directly on the |
| // related type predicates in the standard, they are specified by both |
| // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those |
| // specifications. |
| // |
| // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html |
| // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index |
| case UTT_HasTrivialDefaultConstructor: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If __is_pod (type) is true then the trait is true, else if type is |
| // a cv class or union type (or array thereof) with a trivial default |
| // constructor ([class.ctor]) then the trait is true, else it is false. |
| if (T.isPODType(Self.Context)) |
| return true; |
| if (const RecordType *RT = |
| C.getBaseElementType(T)->getAs<RecordType>()) |
| return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor(); |
| return false; |
| case UTT_HasTrivialCopy: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If __is_pod (type) is true or type is a reference type then |
| // the trait is true, else if type is a cv class or union type |
| // with a trivial copy constructor ([class.copy]) then the trait |
| // is true, else it is false. |
| if (T.isPODType(Self.Context) || T->isReferenceType()) |
| return true; |
| if (const RecordType *RT = T->getAs<RecordType>()) |
| return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor(); |
| return false; |
| case UTT_HasTrivialAssign: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If type is const qualified or is a reference type then the |
| // trait is false. Otherwise if __is_pod (type) is true then the |
| // trait is true, else if type is a cv class or union type with |
| // a trivial copy assignment ([class.copy]) then the trait is |
| // true, else it is false. |
| // Note: the const and reference restrictions are interesting, |
| // given that const and reference members don't prevent a class |
| // from having a trivial copy assignment operator (but do cause |
| // errors if the copy assignment operator is actually used, q.v. |
| // [class.copy]p12). |
| |
| if (C.getBaseElementType(T).isConstQualified()) |
| return false; |
| if (T.isPODType(Self.Context)) |
| return true; |
| if (const RecordType *RT = T->getAs<RecordType>()) |
| return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment(); |
| return false; |
| case UTT_HasTrivialDestructor: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If __is_pod (type) is true or type is a reference type |
| // then the trait is true, else if type is a cv class or union |
| // type (or array thereof) with a trivial destructor |
| // ([class.dtor]) then the trait is true, else it is |
| // false. |
| if (T.isPODType(Self.Context) || T->isReferenceType()) |
| return true; |
| |
| // Objective-C++ ARC: autorelease types don't require destruction. |
| if (T->isObjCLifetimeType() && |
| T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) |
| return true; |
| |
| if (const RecordType *RT = |
| C.getBaseElementType(T)->getAs<RecordType>()) |
| return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor(); |
| return false; |
| // TODO: Propagate nothrowness for implicitly declared special members. |
| case UTT_HasNothrowAssign: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If type is const qualified or is a reference type then the |
| // trait is false. Otherwise if __has_trivial_assign (type) |
| // is true then the trait is true, else if type is a cv class |
| // or union type with copy assignment operators that are known |
| // not to throw an exception then the trait is true, else it is |
| // false. |
| if (C.getBaseElementType(T).isConstQualified()) |
| return false; |
| if (T->isReferenceType()) |
| return false; |
| if (T.isPODType(Self.Context) || T->isObjCLifetimeType()) |
| return true; |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasTrivialCopyAssignment()) |
| return true; |
| |
| bool FoundAssign = false; |
| DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal); |
| LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc), |
| Sema::LookupOrdinaryName); |
| if (Self.LookupQualifiedName(Res, RD)) { |
| Res.suppressDiagnostics(); |
| for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); |
| Op != OpEnd; ++Op) { |
| if (isa<FunctionTemplateDecl>(*Op)) |
| continue; |
| |
| CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); |
| if (Operator->isCopyAssignmentOperator()) { |
| FoundAssign = true; |
| const FunctionProtoType *CPT |
| = Operator->getType()->getAs<FunctionProtoType>(); |
| if (CPT->getExceptionSpecType() == EST_Delayed) |
| return false; |
| if (!CPT->isNothrow(Self.Context)) |
| return false; |
| } |
| } |
| } |
| |
| return FoundAssign; |
| } |
| return false; |
| case UTT_HasNothrowCopy: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If __has_trivial_copy (type) is true then the trait is true, else |
| // if type is a cv class or union type with copy constructors that are |
| // known not to throw an exception then the trait is true, else it is |
| // false. |
| if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) |
| return true; |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasTrivialCopyConstructor()) |
| return true; |
| |
| bool FoundConstructor = false; |
| unsigned FoundTQs; |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); |
| Con != ConEnd; ++Con) { |
| // A template constructor is never a copy constructor. |
| // FIXME: However, it may actually be selected at the actual overload |
| // resolution point. |
| if (isa<FunctionTemplateDecl>(*Con)) |
| continue; |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); |
| if (Constructor->isCopyConstructor(FoundTQs)) { |
| FoundConstructor = true; |
| const FunctionProtoType *CPT |
| = Constructor->getType()->getAs<FunctionProtoType>(); |
| if (CPT->getExceptionSpecType() == EST_Delayed) |
| return false; |
| // FIXME: check whether evaluating default arguments can throw. |
| // For now, we'll be conservative and assume that they can throw. |
| if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) |
| return false; |
| } |
| } |
| |
| return FoundConstructor; |
| } |
| return false; |
| case UTT_HasNothrowConstructor: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If __has_trivial_constructor (type) is true then the trait is |
| // true, else if type is a cv class or union type (or array |
| // thereof) with a default constructor that is known not to |
| // throw an exception then the trait is true, else it is false. |
| if (T.isPODType(C) || T->isObjCLifetimeType()) |
| return true; |
| if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasTrivialDefaultConstructor()) |
| return true; |
| |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); |
| Con != ConEnd; ++Con) { |
| // FIXME: In C++0x, a constructor template can be a default constructor. |
| if (isa<FunctionTemplateDecl>(*Con)) |
| continue; |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); |
| if (Constructor->isDefaultConstructor()) { |
| const FunctionProtoType *CPT |
| = Constructor->getType()->getAs<FunctionProtoType>(); |
| if (CPT->getExceptionSpecType() == EST_Delayed) |
| return false; |
| // TODO: check whether evaluating default arguments can throw. |
| // For now, we'll be conservative and assume that they can throw. |
| return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0; |
| } |
| } |
| } |
| return false; |
| case UTT_HasVirtualDestructor: |
| // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| // If type is a class type with a virtual destructor ([class.dtor]) |
| // then the trait is true, else it is false. |
| if (const RecordType *Record = T->getAs<RecordType>()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
| if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) |
| return Destructor->isVirtual(); |
| } |
| return false; |
| |
| // These type trait expressions are modeled on the specifications for the |
| // Embarcadero C++0x type trait functions: |
| // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index |
| case UTT_IsCompleteType: |
| // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): |
| // Returns True if and only if T is a complete type at the point of the |
| // function call. |
| return !T->isIncompleteType(); |
| } |
| llvm_unreachable("Type trait not covered by switch"); |
| } |
| |
| ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT, |
| SourceLocation KWLoc, |
| TypeSourceInfo *TSInfo, |
| SourceLocation RParen) { |
| QualType T = TSInfo->getType(); |
| if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T)) |
| return ExprError(); |
| |
| bool Value = false; |
| if (!T->isDependentType()) |
| Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T); |
| |
| return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value, |
| RParen, Context.BoolTy)); |
| } |
| |
| ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT, |
| SourceLocation KWLoc, |
| ParsedType LhsTy, |
| ParsedType RhsTy, |
| SourceLocation RParen) { |
| TypeSourceInfo *LhsTSInfo; |
| QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo); |
| if (!LhsTSInfo) |
| LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT); |
| |
| TypeSourceInfo *RhsTSInfo; |
| QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo); |
| if (!RhsTSInfo) |
| RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT); |
| |
| return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen); |
| } |
| |
| static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, |
| ArrayRef<TypeSourceInfo *> Args, |
| SourceLocation RParenLoc) { |
| switch (Kind) { |
| case clang::TT_IsTriviallyConstructible: { |
| // C++11 [meta.unary.prop]: |
| // is_trivially_constructible is defined as: |
| // |
| // is_constructible<T, Args...>::value is true and the variable |
| // definition for is_constructible, as defined below, is known to call no |
| // operation that is not trivial. |
| // |
| // The predicate condition for a template specialization |
| // is_constructible<T, Args...> shall be satisfied if and only if the |
| // following variable definition would be well-formed for some invented |
| // variable t: |
| // |
| // T t(create<Args>()...); |
| if (Args.empty()) { |
| S.Diag(KWLoc, diag::err_type_trait_arity) |
| << 1 << 1 << 1 << (int)Args.size(); |
| return false; |
| } |
| |
| bool SawVoid = false; |
| for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
| if (Args[I]->getType()->isVoidType()) { |
| SawVoid = true; |
| continue; |
| } |
| |
| if (!Args[I]->getType()->isIncompleteType() && |
| S.RequireCompleteType(KWLoc, Args[I]->getType(), |
| diag::err_incomplete_type_used_in_type_trait_expr)) |
| return false; |
| } |
| |
| // If any argument was 'void', of course it won't type-check. |
| if (SawVoid) |
| return false; |
| |
| llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; |
| llvm::SmallVector<Expr *, 2> ArgExprs; |
| ArgExprs.reserve(Args.size() - 1); |
| for (unsigned I = 1, N = Args.size(); I != N; ++I) { |
| QualType T = Args[I]->getType(); |
| if (T->isObjectType() || T->isFunctionType()) |
| T = S.Context.getRValueReferenceType(T); |
| OpaqueArgExprs.push_back( |
| OpaqueValueExpr(Args[I]->getTypeLoc().getSourceRange().getBegin(), |
| T.getNonLValueExprType(S.Context), |
| Expr::getValueKindForType(T))); |
| ArgExprs.push_back(&OpaqueArgExprs.back()); |
| } |
| |
| // Perform the initialization in an unevaluated context within a SFINAE |
| // trap at translation unit scope. |
| EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); |
| Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); |
| Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); |
| InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); |
| InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, |
| RParenLoc)); |
| InitializationSequence Init(S, To, InitKind, |
| ArgExprs.begin(), ArgExprs.size()); |
| if (Init.Failed()) |
| return false; |
| |
| ExprResult Result = Init.Perform(S, To, InitKind, |
| MultiExprArg(ArgExprs.data(), |
| ArgExprs.size())); |
| if (Result.isInvalid() || SFINAE.hasErrorOccurred()) |
| return false; |
| |
| // The initialization succeeded; not make sure there are no non-trivial |
| // calls. |
| return !Result.get()->hasNonTrivialCall(S.Context); |
| } |
| } |
| |
| return false; |
| } |
| |
| ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, |
| ArrayRef<TypeSourceInfo *> Args, |
| SourceLocation RParenLoc) { |
| bool Dependent = false; |
| for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
| if (Args[I]->getType()->isDependentType()) { |
| Dependent = true; |
| break; |
| } |
| } |
| |
| bool Value = false; |
| if (!Dependent) |
| Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); |
| |
| return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind, |
| Args, RParenLoc, Value); |
| } |
| |
| ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, |
| ArrayRef<ParsedType> Args, |
| SourceLocation RParenLoc) { |
| llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs; |
| ConvertedArgs.reserve(Args.size()); |
| |
| for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
| TypeSourceInfo *TInfo; |
| QualType T = GetTypeFromParser(Args[I], &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); |
| |
| ConvertedArgs.push_back(TInfo); |
| } |
| |
| return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); |
| } |
| |
| static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT, |
| QualType LhsT, QualType RhsT, |
| SourceLocation KeyLoc) { |
| assert(!LhsT->isDependentType() && !RhsT->isDependentType() && |
| "Cannot evaluate traits of dependent types"); |
| |
| switch(BTT) { |
| case BTT_IsBaseOf: { |
| // C++0x [meta.rel]p2 |
| // Base is a base class of Derived without regard to cv-qualifiers or |
| // Base and Derived are not unions and name the same class type without |
| // regard to cv-qualifiers. |
| |
| const RecordType *lhsRecord = LhsT->getAs<RecordType>(); |
| if (!lhsRecord) return false; |
| |
| const RecordType *rhsRecord = RhsT->getAs<RecordType>(); |
| if (!rhsRecord) return false; |
| |
| assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) |
| == (lhsRecord == rhsRecord)); |
| |
| if (lhsRecord == rhsRecord) |
| return !lhsRecord->getDecl()->isUnion(); |
| |
| // C++0x [meta.rel]p2: |
| // If Base and Derived are class types and are different types |
| // (ignoring possible cv-qualifiers) then Derived shall be a |
| // complete type. |
| if (Self.RequireCompleteType(KeyLoc, RhsT, |
| diag::err_incomplete_type_used_in_type_trait_expr)) |
| return false; |
| |
| return cast<CXXRecordDecl>(rhsRecord->getDecl()) |
| ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); |
| } |
| case BTT_IsSame: |
| return Self.Context.hasSameType(LhsT, RhsT); |
| case BTT_TypeCompatible: |
| return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), |
| RhsT.getUnqualifiedType()); |
| case BTT_IsConvertible: |
| case BTT_IsConvertibleTo: { |
| // C++0x [meta.rel]p4: |
| // Given the following function prototype: |
| // |
| // template <class T> |
| // typename add_rvalue_reference<T>::type create(); |
| // |
| // the predicate condition for a template specialization |
| // is_convertible<From, To> shall be satisfied if and only if |
| // the return expression in the following code would be |
| // well-formed, including any implicit conversions to the return |
| // type of the function: |
| // |
| // To test() { |
| // return create<From>(); |
| // } |
| // |
| // Access checking is performed as if in a context unrelated to To and |
| // From. Only the validity of the immediate context of the expression |
| // of the return-statement (including conversions to the return type) |
| // is considered. |
| // |
| // We model the initialization as a copy-initialization of a temporary |
| // of the appropriate type, which for this expression is identical to the |
| // return statement (since NRVO doesn't apply). |
| if (LhsT->isObjectType() || LhsT->isFunctionType()) |
| LhsT = Self.Context.getRValueReferenceType(LhsT); |
| |
| InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); |
| OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), |
| Expr::getValueKindForType(LhsT)); |
| Expr *FromPtr = &From; |
| InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, |
| SourceLocation())); |
| |
| // Perform the initialization in an unevaluated context within a SFINAE |
| // trap at translation unit scope. |
| EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); |
| Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); |
| Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); |
| InitializationSequence Init(Self, To, Kind, &FromPtr, 1); |
| if (Init.Failed()) |
| return false; |
| |
| ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1)); |
| return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); |
| } |
| |
| case BTT_IsTriviallyAssignable: { |
| // C++11 [meta.unary.prop]p3: |
| // is_trivially_assignable is defined as: |
| // is_assignable<T, U>::value is true and the assignment, as defined by |
| // is_assignable, is known to call no operation that is not trivial |
| // |
| // is_assignable is defined as: |
| // The expression declval<T>() = declval<U>() is well-formed when |
| // treated as an unevaluated operand (Clause 5). |
| // |
| // For both, T and U shall be complete types, (possibly cv-qualified) |
| // void, or arrays of unknown bound. |
| if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && |
| Self.RequireCompleteType(KeyLoc, LhsT, |
| diag::err_incomplete_type_used_in_type_trait_expr)) |
| return false; |
| if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && |
| Self.RequireCompleteType(KeyLoc, RhsT, |
| diag::err_incomplete_type_used_in_type_trait_expr)) |
| return false; |
| |
| // cv void is never assignable. |
| if (LhsT->isVoidType() || RhsT->isVoidType()) |
| return false; |
| |
| // Build expressions that emulate the effect of declval<T>() and |
| // declval<U>(). |
| if (LhsT->isObjectType() || LhsT->isFunctionType()) |
| LhsT = Self.Context.getRValueReferenceType(LhsT); |
| if (RhsT->isObjectType() || RhsT->isFunctionType()) |
| RhsT = Self.Context.getRValueReferenceType(RhsT); |
| OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), |
| Expr::getValueKindForType(LhsT)); |
| OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), |
| Expr::getValueKindForType(RhsT)); |
| |
| // Attempt the assignment in an unevaluated context within a SFINAE |
| // trap at translation unit scope. |
| EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); |
| Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); |
| Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); |
| ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs); |
| if (Result.isInvalid() || SFINAE.hasErrorOccurred()) |
| return false; |
| |
| return !Result.get()->hasNonTrivialCall(Self.Context); |
| } |
| } |
| llvm_unreachable("Unknown type trait or not implemented"); |
| } |
| |
| ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT, |
| SourceLocation KWLoc, |
| TypeSourceInfo *LhsTSInfo, |
| TypeSourceInfo *RhsTSInfo, |
| SourceLocation RParen) { |
| QualType LhsT = LhsTSInfo->getType(); |
| QualType RhsT = RhsTSInfo->getType(); |
| |
| if (BTT == BTT_TypeCompatible) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus) |
| << SourceRange(KWLoc, RParen); |
| return ExprError(); |
| } |
| } |
| |
| bool Value = false; |
| if (!LhsT->isDependentType() && !RhsT->isDependentType()) |
| Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc); |
| |
| // Select trait result type. |
| QualType ResultType; |
| switch (BTT) { |
| case BTT_IsBaseOf: ResultType = Context.BoolTy; break; |
| case BTT_IsConvertible: ResultType = Context.BoolTy; break; |
| case BTT_IsSame: ResultType = Context.BoolTy; break; |
| case BTT_TypeCompatible: ResultType = Context.IntTy; break; |
| case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break; |
| case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy; |
| } |
| |
| return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo, |
| RhsTSInfo, Value, RParen, |
| ResultType)); |
| } |
| |
| ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, |
| SourceLocation KWLoc, |
| ParsedType Ty, |
| Expr* DimExpr, |
| SourceLocation RParen) { |
| TypeSourceInfo *TSInfo; |
| QualType T = GetTypeFromParser(Ty, &TSInfo); |
| if (!TSInfo) |
| TSInfo = Context.getTrivialTypeSourceInfo(T); |
| |
| return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); |
| } |
| |
| static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, |
| QualType T, Expr *DimExpr, |
| SourceLocation KeyLoc) { |
| assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); |
| |
| switch(ATT) { |
| case ATT_ArrayRank: |
| if (T->isArrayType()) { |
| unsigned Dim = 0; |
| while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { |
| ++Dim; |
| T = AT->getElementType(); |
| } |
| return Dim; |
| } |
| return 0; |
| |
| case ATT_ArrayExtent: { |
| llvm::APSInt Value; |
| uint64_t Dim; |
| if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, |
| Self.PDiag(diag::err_dimension_expr_not_constant_integer), |
| false).isInvalid()) |
| return 0; |
| if (Value.isSigned() && Value.isNegative()) { |
| Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer), |
| DimExpr->getSourceRange(); |
| return 0; |
| } |
| Dim = Value.getLimitedValue(); |
| |
| if (T->isArrayType()) { |
| unsigned D = 0; |
| bool Matched = false; |
| while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { |
| if (Dim == D) { |
| Matched = true; |
| break; |
| } |
| ++D; |
| T = AT->getElementType(); |
| } |
| |
| if (Matched && T->isArrayType()) { |
| if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) |
| return CAT->getSize().getLimitedValue(); |
| } |
| } |
| return 0; |
| } |
| } |
| llvm_unreachable("Unknown type trait or not implemented"); |
| } |
| |
| ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, |
| SourceLocation KWLoc, |
| TypeSourceInfo *TSInfo, |
| Expr* DimExpr, |
| SourceLocation RParen) { |
| QualType T = TSInfo->getType(); |
| |
| // FIXME: This should likely be tracked as an APInt to remove any host |
| // assumptions about the width of size_t on the target. |
| uint64_t Value = 0; |
| if (!T->isDependentType()) |
| Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); |
| |
| // While the specification for these traits from the Embarcadero C++ |
| // compiler's documentation says the return type is 'unsigned int', Clang |
| // returns 'size_t'. On Windows, the primary platform for the Embarcadero |
| // compiler, there is no difference. On several other platforms this is an |
| // important distinction. |
| return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, |
| DimExpr, RParen, |
| Context.getSizeType())); |
| } |
| |
| ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, |
| SourceLocation KWLoc, |
| Expr *Queried, |
| SourceLocation RParen) { |
| // If error parsing the expression, ignore. |
| if (!Queried) |
| return ExprError(); |
| |
| ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); |
| |
| return move(Result); |
| } |
| |
| static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { |
| switch (ET) { |
| case ET_IsLValueExpr: return E->isLValue(); |
| case ET_IsRValueExpr: return E->isRValue(); |
| } |
| llvm_unreachable("Expression trait not covered by switch"); |
| } |
| |
| ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, |
| SourceLocation KWLoc, |
| Expr *Queried, |
| SourceLocation RParen) { |
| if (Queried->isTypeDependent()) { |
| // Delay type-checking for type-dependent expressions. |
| } else if (Queried->getType()->isPlaceholderType()) { |
| ExprResult PE = CheckPlaceholderExpr(Queried); |
| if (PE.isInvalid()) return ExprError(); |
| return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen); |
| } |
| |
| bool Value = EvaluateExpressionTrait(ET, Queried); |
| |
| return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value, |
| RParen, Context.BoolTy)); |
| } |
| |
| QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, |
| ExprValueKind &VK, |
| SourceLocation Loc, |
| bool isIndirect) { |
| assert(!LHS.get()->getType()->isPlaceholderType() && |
| !RHS.get()->getType()->isPlaceholderType() && |
| "placeholders should have been weeded out by now"); |
| |
| // The LHS undergoes lvalue conversions if this is ->*. |
| if (isIndirect) { |
| LHS = DefaultLvalueConversion(LHS.take()); |
| if (LHS.isInvalid()) return QualType(); |
| } |
| |
| // The RHS always undergoes lvalue conversions. |
| RHS = DefaultLvalueConversion(RHS.take()); |
| if (RHS.isInvalid()) return QualType(); |
| |
| const char *OpSpelling = isIndirect ? "->*" : ".*"; |
| // C++ 5.5p2 |
| // The binary operator .* [p3: ->*] binds its second operand, which shall |
| // be of type "pointer to member of T" (where T is a completely-defined |
| // class type) [...] |
| QualType RHSType = RHS.get()->getType(); |
| const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); |
| if (!MemPtr) { |
| Diag(Loc, diag::err_bad_memptr_rhs) |
| << OpSpelling << RHSType << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| QualType Class(MemPtr->getClass(), 0); |
| |
| // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the |
| // member pointer points must be completely-defined. However, there is no |
| // reason for this semantic distinction, and the rule is not enforced by |
| // other compilers. Therefore, we do not check this property, as it is |
| // likely to be considered a defect. |
| |
| // C++ 5.5p2 |
| // [...] to its first operand, which shall be of class T or of a class of |
| // which T is an unambiguous and accessible base class. [p3: a pointer to |
| // such a class] |
| QualType LHSType = LHS.get()->getType(); |
| if (isIndirect) { |
| if (const PointerType *Ptr = LHSType->getAs<PointerType>()) |
| LHSType = Ptr->getPointeeType(); |
| else { |
| Diag(Loc, diag::err_bad_memptr_lhs) |
| << OpSpelling << 1 << LHSType |
| << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); |
| return QualType(); |
| } |
| } |
| |
| if (!Context.hasSameUnqualifiedType(Class, LHSType)) { |
| // If we want to check the hierarchy, we need a complete type. |
| if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs) |
| << OpSpelling << (int)isIndirect)) { |
| return QualType(); |
| } |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| // FIXME: Would it be useful to print full ambiguity paths, or is that |
| // overkill? |
| if (!IsDerivedFrom(LHSType, Class, Paths) || |
| Paths.isAmbiguous(Context.getCanonicalType(Class))) { |
| Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling |
| << (int)isIndirect << LHS.get()->getType(); |
| return QualType(); |
| } |
| // Cast LHS to type of use. |
| QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; |
| ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); |
| |
| CXXCastPath BasePath; |
| BuildBasePathArray(Paths, BasePath); |
| LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK, |
| &BasePath); |
| } |
| |
| if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { |
| // Diagnose use of pointer-to-member type which when used as |
| // the functional cast in a pointer-to-member expression. |
| Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; |
| return QualType(); |
| } |
| |
| // C++ 5.5p2 |
| // The result is an object or a function of the type specified by the |
| // second operand. |
| // The cv qualifiers are the union of those in the pointer and the left side, |
| // in accordance with 5.5p5 and 5.2.5. |
| QualType Result = MemPtr->getPointeeType(); |
| Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); |
| |
| // C++0x [expr.mptr.oper]p6: |
| // In a .* expression whose object expression is an rvalue, the program is |
| // ill-formed if the second operand is a pointer to member function with |
| // ref-qualifier &. In a ->* expression or in a .* expression whose object |
| // expression is an lvalue, the program is ill-formed if the second operand |
| // is a pointer to member function with ref-qualifier &&. |
| if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { |
| switch (Proto->getRefQualifier()) { |
| case RQ_None: |
| // Do nothing |
| break; |
| |
| case RQ_LValue: |
| if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) |
| Diag(Loc, diag::err_pointer_to_member_oper_value_classify) |
| << RHSType << 1 << LHS.get()->getSourceRange(); |
| break; |
| |
| case RQ_RValue: |
| if (isIndirect || !LHS.get()->Classify(Context).isRValue()) |
| Diag(Loc, diag::err_pointer_to_member_oper_value_classify) |
| << RHSType << 0 << LHS.get()->getSourceRange(); |
| break; |
| } |
| } |
| |
| // C++ [expr.mptr.oper]p6: |
| // The result of a .* expression whose second operand is a pointer |
| // to a data member is of the same value category as its |
| // first operand. The result of a .* expression whose second |
| // operand is a pointer to a member function is a prvalue. The |
| // result of an ->* expression is an lvalue if its second operand |
| // is a pointer to data member and a prvalue otherwise. |
| if (Result->isFunctionType()) { |
| VK = VK_RValue; |
| return Context.BoundMemberTy; |
| } else if (isIndirect) { |
| VK = VK_LValue; |
| } else { |
| VK = LHS.get()->getValueKind(); |
| } |
| |
| return Result; |
| } |
| |
| /// \brief Try to convert a type to another according to C++0x 5.16p3. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, the two operands are attempted to be |
| /// converted to each other. This function does the conversion in one direction. |
| /// It returns true if the program is ill-formed and has already been diagnosed |
| /// as such. |
| static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, |
| SourceLocation QuestionLoc, |
| bool &HaveConversion, |
| QualType &ToType) { |
| HaveConversion = false; |
| ToType = To->getType(); |
| |
| InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), |
| SourceLocation()); |
| // C++0x 5.16p3 |
| // The process for determining whether an operand expression E1 of type T1 |
| // can be converted to match an operand expression E2 of type T2 is defined |
| // as follows: |
| // -- If E2 is an lvalue: |
| bool ToIsLvalue = To->isLValue(); |
| if (ToIsLvalue) { |
| // E1 can be converted to match E2 if E1 can be implicitly converted to |
| // type "lvalue reference to T2", subject to the constraint that in the |
| // conversion the reference must bind directly to E1. |
| QualType T = Self.Context.getLValueReferenceType(ToType); |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); |
| |
| InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); |
| if (InitSeq.isDirectReferenceBinding()) { |
| ToType = T; |
| HaveConversion = true; |
| return false; |
| } |
| |
| if (InitSeq.isAmbiguous()) |
| return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); |
| } |
| |
| // -- If E2 is an rvalue, or if the conversion above cannot be done: |
| // -- if E1 and E2 have class type, and the underlying class types are |
| // the same or one is a base class of the other: |
| QualType FTy = From->getType(); |
| QualType TTy = To->getType(); |
| const RecordType *FRec = FTy->getAs<RecordType>(); |
| const RecordType *TRec = TTy->getAs<RecordType>(); |
| bool FDerivedFromT = FRec && TRec && FRec != TRec && |
| Self.IsDerivedFrom(FTy, TTy); |
| if (FRec && TRec && |
| (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { |
| // E1 can be converted to match E2 if the class of T2 is the |
| // same type as, or a base class of, the class of T1, and |
| // [cv2 > cv1]. |
| if (FRec == TRec || FDerivedFromT) { |
| if (TTy.isAtLeastAsQualifiedAs(FTy)) { |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); |
| InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); |
| if (InitSeq) { |
| HaveConversion = true; |
| return false; |
| } |
| |
| if (InitSeq.isAmbiguous()) |
| return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); |
| } |
| } |
| |
| return false; |
| } |
| |
| // -- Otherwise: E1 can be converted to match E2 if E1 can be |
| // implicitly converted to the type that expression E2 would have |
| // if E2 were converted to an rvalue (or the type it has, if E2 is |
| // an rvalue). |
| // |
| // This actually refers very narrowly to the lvalue-to-rvalue conversion, not |
| // to the array-to-pointer or function-to-pointer conversions. |
| if (!TTy->getAs<TagType>()) |
| TTy = TTy.getUnqualifiedType(); |
| |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); |
| InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); |
| HaveConversion = !InitSeq.Failed(); |
| ToType = TTy; |
| if (InitSeq.isAmbiguous()) |
| return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); |
| |
| return false; |
| } |
| |
| /// \brief Try to find a common type for two according to C++0x 5.16p5. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, overload resolution is used to find a |
| /// conversion to a common type. |
| static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| Expr *Args[2] = { LHS.get(), RHS.get() }; |
| OverloadCandidateSet CandidateSet(QuestionLoc); |
| Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2, |
| CandidateSet); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { |
| case OR_Success: { |
| // We found a match. Perform the conversions on the arguments and move on. |
| ExprResult LHSRes = |
| Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], Sema::AA_Converting); |
| if (LHSRes.isInvalid()) |
| break; |
| LHS = move(LHSRes); |
| |
| ExprResult RHSRes = |
| Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], Sema::AA_Converting); |
| if (RHSRes.isInvalid()) |
| break; |
| RHS = move(RHSRes); |
| if (Best->Function) |
| Self.MarkFunctionReferenced(QuestionLoc, Best->Function); |
| return false; |
| } |
| |
| case OR_No_Viable_Function: |
| |
| // Emit a better diagnostic if one of the expressions is a null pointer |
| // constant and the other is a pointer type. In this case, the user most |
| // likely forgot to take the address of the other expression. |
| if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
| return true; |
| |
| Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return true; |
| |
| case OR_Ambiguous: |
| Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| // FIXME: Print the possible common types by printing the return types of |
| // the viable candidates. |
| break; |
| |
| case OR_Deleted: |
| llvm_unreachable("Conditional operator has only built-in overloads"); |
| } |
| return true; |
| } |
| |
| /// \brief Perform an "extended" implicit conversion as returned by |
| /// TryClassUnification. |
| static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); |
| InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), |
| SourceLocation()); |
| Expr *Arg = E.take(); |
| InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1); |
| ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1)); |
| if (Result.isInvalid()) |
| return true; |
| |
| E = Result; |
| return false; |
| } |
| |
| /// \brief Check the operands of ?: under C++ semantics. |
| /// |
| /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y |
| /// extension. In this case, LHS == Cond. (But they're not aliases.) |
| QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, |
| ExprValueKind &VK, ExprObjectKind &OK, |
| SourceLocation QuestionLoc) { |
| // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ |
| // interface pointers. |
| |
| // C++0x 5.16p1 |
| // The first expression is contextually converted to bool. |
| if (!Cond.get()->isTypeDependent()) { |
| ExprResult CondRes = CheckCXXBooleanCondition(Cond.take()); |
| if (CondRes.isInvalid()) |
| return QualType(); |
| Cond = move(CondRes); |
| } |
| |
| // Assume r-value. |
| VK = VK_RValue; |
| OK = OK_Ordinary; |
| |
| // Either of the arguments dependent? |
| if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) |
| return Context.DependentTy; |
| |
| // C++0x 5.16p2 |
| // If either the second or the third operand has type (cv) void, ... |
| QualType LTy = LHS.get()->getType(); |
| QualType RTy = RHS.get()->getType(); |
| bool LVoid = LTy->isVoidType(); |
| bool RVoid = RTy->isVoidType(); |
| if (LVoid || RVoid) { |
| // ... then the [l2r] conversions are performed on the second and third |
| // operands ... |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.take()); |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| LTy = LHS.get()->getType(); |
| RTy = RHS.get()->getType(); |
| |
| // ... and one of the following shall hold: |
| // -- The second or the third operand (but not both) is a throw- |
| // expression; the result is of the type of the other and is an rvalue. |
| bool LThrow = isa<CXXThrowExpr>(LHS.get()); |
| bool RThrow = isa<CXXThrowExpr>(RHS.get()); |
| if (LThrow && !RThrow) |
| return RTy; |
| if (RThrow && !LThrow) |
| return LTy; |
| |
| // -- Both the second and third operands have type void; the result is of |
| // type void and is an rvalue. |
| if (LVoid && RVoid) |
| return Context.VoidTy; |
| |
| // Neither holds, error. |
| Diag(QuestionLoc, diag::err_conditional_void_nonvoid) |
| << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Neither is void. |
| |
| // C++0x 5.16p3 |
| // Otherwise, if the second and third operand have different types, and |
| // either has (cv) class type, and attempt is made to convert each of those |
| // operands to the other. |
| if (!Context.hasSameType(LTy, RTy) && |
| (LTy->isRecordType() || RTy->isRecordType())) { |
| ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; |
| // These return true if a single direction is already ambiguous. |
| QualType L2RType, R2LType; |
| bool HaveL2R, HaveR2L; |
| if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) |
| return QualType(); |
| if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) |
| return QualType(); |
| |
| // If both can be converted, [...] the program is ill-formed. |
| if (HaveL2R && HaveR2L) { |
| Diag(QuestionLoc, diag::err_conditional_ambiguous) |
| << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // If exactly one conversion is possible, that conversion is applied to |
| // the chosen operand and the converted operands are used in place of the |
| // original operands for the remainder of this section. |
| if (HaveL2R) { |
| if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) |
| return QualType(); |
| LTy = LHS.get()->getType(); |
| } else if (HaveR2L) { |
| if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) |
| return QualType(); |
| RTy = RHS.get()->getType(); |
| } |
| } |
| |
| // C++0x 5.16p4 |
| // If the second and third operands are glvalues of the same value |
| // category and have the same type, the result is of that type and |
| // value category and it is a bit-field if the second or the third |
| // operand is a bit-field, or if both are bit-fields. |
| // We only extend this to bitfields, not to the crazy other kinds of |
| // l-values. |
| bool Same = Context.hasSameType(LTy, RTy); |
| if (Same && |
| LHS.get()->isGLValue() && |
| LHS.get()->getValueKind() == RHS.get()->getValueKind() && |
| LHS.get()->isOrdinaryOrBitFieldObject() && |
| RHS.get()->isOrdinaryOrBitFieldObject()) { |
| VK = LHS.get()->getValueKind(); |
| if (LHS.get()->getObjectKind() == OK_BitField || |
| RHS.get()->getObjectKind() == OK_BitField) |
| OK = OK_BitField; |
| return LTy; |
| } |
| |
| // C++0x 5.16p5 |
| // Otherwise, the result is an rvalue. If the second and third operands |
| // do not have the same type, and either has (cv) class type, ... |
| if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { |
| // ... overload resolution is used to determine the conversions (if any) |
| // to be applied to the operands. If the overload resolution fails, the |
| // program is ill-formed. |
| if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) |
| return QualType(); |
| } |
| |
| // C++0x 5.16p6 |
| // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard |
| // conversions are performed on the second and third operands. |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.take()); |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| LTy = LHS.get()->getType(); |
| RTy = RHS.get()->getType(); |
| |
| // After those conversions, one of the following shall hold: |
| // -- The second and third operands have the same type; the result |
| // is of that type. If the operands have class type, the result |
| // is a prvalue temporary of the result type, which is |
| // copy-initialized from either the second operand or the third |
| // operand depending on the value of the first operand. |
| if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { |
| if (LTy->isRecordType()) { |
| // The operands have class type. Make a temporary copy. |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); |
| ExprResult LHSCopy = PerformCopyInitialization(Entity, |
| SourceLocation(), |
| LHS); |
| if (LHSCopy.isInvalid()) |
| return QualType(); |
| |
| ExprResult RHSCopy = PerformCopyInitialization(Entity, |
| SourceLocation(), |
| RHS); |
| if (RHSCopy.isInvalid()) |
| return QualType(); |
| |
| LHS = LHSCopy; |
| RHS = RHSCopy; |
| } |
| |
| return LTy; |
| } |
| |
| // Extension: conditional operator involving vector types. |
| if (LTy->isVectorType() || RTy->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); |
| |
| // -- The second and third operands have arithmetic or enumeration type; |
| // the usual arithmetic conversions are performed to bring them to a |
| // common type, and the result is of that type. |
| if (LTy->isArithmeticType() && RTy->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| return LHS.get()->getType(); |
| } |
| |
| // -- The second and third operands have pointer type, or one has pointer |
| // type and the other is a null pointer constant; pointer conversions |
| // and qualification conversions are performed to bring them to their |
| // composite pointer type. The result is of the composite pointer type. |
| // -- The second and third operands have pointer to member type, or one has |
| // pointer to member type and the other is a null pointer constant; |
| // pointer to member conversions and qualification conversions are |
| // performed to bring them to a common type, whose cv-qualification |
| // shall match the cv-qualification of either the second or the third |
| // operand. The result is of the common type. |
| bool NonStandardCompositeType = false; |
| QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, |
| isSFINAEContext()? 0 : &NonStandardCompositeType); |
| if (!Composite.isNull()) { |
| if (NonStandardCompositeType) |
| Diag(QuestionLoc, |
| diag::ext_typecheck_cond_incompatible_operands_nonstandard) |
| << LTy << RTy << Composite |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| |
| return Composite; |
| } |
| |
| // Similarly, attempt to find composite type of two objective-c pointers. |
| Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); |
| if (!Composite.isNull()) |
| return Composite; |
| |
| // Check if we are using a null with a non-pointer type. |
| if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
| return QualType(); |
| |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// \brief Find a merged pointer type and convert the two expressions to it. |
| /// |
| /// This finds the composite pointer type (or member pointer type) for @p E1 |
| /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this |
| /// type and returns it. |
| /// It does not emit diagnostics. |
| /// |
| /// \param Loc The location of the operator requiring these two expressions to |
| /// be converted to the composite pointer type. |
| /// |
| /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find |
| /// a non-standard (but still sane) composite type to which both expressions |
| /// can be converted. When such a type is chosen, \c *NonStandardCompositeType |
| /// will be set true. |
| QualType Sema::FindCompositePointerType(SourceLocation Loc, |
| Expr *&E1, Expr *&E2, |
| bool *NonStandardCompositeType) { |
| if (NonStandardCompositeType) |
| *NonStandardCompositeType = false; |
| |
| assert(getLangOptions().CPlusPlus && "This function assumes C++"); |
| QualType T1 = E1->getType(), T2 = E2->getType(); |
| |
| if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && |
| !T2->isAnyPointerType() && !T2->isMemberPointerType()) |
| return QualType(); |
| |
| // C++0x 5.9p2 |
| // Pointer conversions and qualification conversions are performed on |
| // pointer operands to bring them to their composite pointer type. If |
| // one operand is a null pointer constant, the composite pointer type is |
| // the type of the other operand. |
| if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| if (T2->isMemberPointerType()) |
| E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take(); |
| else |
| E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take(); |
| return T2; |
| } |
| if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| if (T1->isMemberPointerType()) |
| E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take(); |
| else |
| E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take(); |
| return T1; |
| } |
| |
| // Now both have to be pointers or member pointers. |
| if ((!T1->isPointerType() && !T1->isMemberPointerType()) || |
| (!T2->isPointerType() && !T2->isMemberPointerType())) |
| return QualType(); |
| |
| // Otherwise, of one of the operands has type "pointer to cv1 void," then |
| // the other has type "pointer to cv2 T" and the composite pointer type is |
| // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. |
| // Otherwise, the composite pointer type is a pointer type similar to the |
| // type of one of the operands, with a cv-qualification signature that is |
| // the union of the cv-qualification signatures of the operand types. |
| // In practice, the first part here is redundant; it's subsumed by the second. |
| // What we do here is, we build the two possible composite types, and try the |
| // conversions in both directions. If only one works, or if the two composite |
| // types are the same, we have succeeded. |
| // FIXME: extended qualifiers? |
| typedef SmallVector<unsigned, 4> QualifierVector; |
| QualifierVector QualifierUnion; |
| typedef SmallVector<std::pair<const Type *, const Type *>, 4> |
| ContainingClassVector; |
| ContainingClassVector MemberOfClass; |
| QualType Composite1 = Context.getCanonicalType(T1), |
| Composite2 = Context.getCanonicalType(T2); |
| unsigned NeedConstBefore = 0; |
| do { |
| const PointerType *Ptr1, *Ptr2; |
| if ((Ptr1 = Composite1->getAs<PointerType>()) && |
| (Ptr2 = Composite2->getAs<PointerType>())) { |
| Composite1 = Ptr1->getPointeeType(); |
| Composite2 = Ptr2->getPointeeType(); |
| |
| // If we're allowed to create a non-standard composite type, keep track |
| // of where we need to fill in additional 'const' qualifiers. |
| if (NonStandardCompositeType && |
| Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) |
| NeedConstBefore = QualifierUnion.size(); |
| |
| QualifierUnion.push_back( |
| Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); |
| continue; |
| } |
| |
| const MemberPointerType *MemPtr1, *MemPtr2; |
| if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && |
| (MemPtr2 = Composite2->getAs<MemberPointerType>())) { |
| Composite1 = MemPtr1->getPointeeType(); |
| Composite2 = MemPtr2->getPointeeType(); |
| |
| // If we're allowed to create a non-standard composite type, keep track |
| // of where we need to fill in additional 'const' qualifiers. |
| if (NonStandardCompositeType && |
| Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) |
| NeedConstBefore = QualifierUnion.size(); |
| |
| QualifierUnion.push_back( |
| Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), |
| MemPtr2->getClass())); |
| continue; |
| } |
| |
| // FIXME: block pointer types? |
| |
| // Cannot unwrap any more types. |
| break; |
| } while (true); |
| |
| if (NeedConstBefore && NonStandardCompositeType) { |
| // Extension: Add 'const' to qualifiers that come before the first qualifier |
| // mismatch, so that our (non-standard!) composite type meets the |
| // requirements of C++ [conv.qual]p4 bullet 3. |
| for (unsigned I = 0; I != NeedConstBefore; ++I) { |
| if ((QualifierUnion[I] & Qualifiers::Const) == 0) { |
| QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; |
| *NonStandardCompositeType = true; |
| } |
| } |
| } |
| |
| // Rewrap the composites as pointers or member pointers with the union CVRs. |
| ContainingClassVector::reverse_iterator MOC |
| = MemberOfClass.rbegin(); |
| for (QualifierVector::reverse_iterator |
| I = QualifierUnion.rbegin(), |
| E = QualifierUnion.rend(); |
| I != E; (void)++I, ++MOC) { |
| Qualifiers Quals = Qualifiers::fromCVRMask(*I); |
| if (MOC->first && MOC->second) { |
| // Rebuild member pointer type |
| Composite1 = Context.getMemberPointerType( |
| Context.getQualifiedType(Composite1, Quals), |
| MOC->first); |
| Composite2 = Context.getMemberPointerType( |
| Context.getQualifiedType(Composite2, Quals), |
| MOC->second); |
| } else { |
| // Rebuild pointer type |
| Composite1 |
| = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); |
| Composite2 |
| = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); |
| } |
| } |
| |
| // Try to convert to the first composite pointer type. |
| InitializedEntity Entity1 |
| = InitializedEntity::InitializeTemporary(Composite1); |
| InitializationKind Kind |
| = InitializationKind::CreateCopy(Loc, SourceLocation()); |
| InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1); |
| InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1); |
| |
| if (E1ToC1 && E2ToC1) { |
| // Conversion to Composite1 is viable. |
| if (!Context.hasSameType(Composite1, Composite2)) { |
| // Composite2 is a different type from Composite1. Check whether |
| // Composite2 is also viable. |
| InitializedEntity Entity2 |
| = InitializedEntity::InitializeTemporary(Composite2); |
| InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); |
| InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); |
| if (E1ToC2 && E2ToC2) { |
| // Both Composite1 and Composite2 are viable and are different; |
| // this is an ambiguity. |
| return QualType(); |
| } |
| } |
| |
| // Convert E1 to Composite1 |
| ExprResult E1Result |
| = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1)); |
| if (E1Result.isInvalid()) |
| return QualType(); |
| E1 = E1Result.takeAs<Expr>(); |
| |
| // Convert E2 to Composite1 |
| ExprResult E2Result |
| = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1)); |
| if (E2Result.isInvalid()) |
| return QualType(); |
| E2 = E2Result.takeAs<Expr>(); |
| |
| return Composite1; |
| } |
| |
| // Check whether Composite2 is viable. |
| InitializedEntity Entity2 |
| = InitializedEntity::InitializeTemporary(Composite2); |
| InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); |
| InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); |
| if (!E1ToC2 || !E2ToC2) |
| return QualType(); |
| |
| // Convert E1 to Composite2 |
| ExprResult E1Result |
| = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1)); |
| if (E1Result.isInvalid()) |
| return QualType(); |
| E1 = E1Result.takeAs<Expr>(); |
| |
| // Convert E2 to Composite2 |
| ExprResult E2Result |
| = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1)); |
| if (E2Result.isInvalid()) |
| return QualType(); |
| E2 = E2Result.takeAs<Expr>(); |
| |
| return Composite2; |
| } |
| |
| ExprResult Sema::MaybeBindToTemporary(Expr *E) { |
| if (!E) |
| return ExprError(); |
| |
| assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); |
| |
| // If the result is a glvalue, we shouldn't bind it. |
| if (!E->isRValue()) |
| return Owned(E); |
| |
| // In ARC, calls that return a retainable type can return retained, |
| // in which case we have to insert a consuming cast. |
| if (getLangOptions().ObjCAutoRefCount && |
| E->getType()->isObjCRetainableType()) { |
| |
| bool ReturnsRetained; |
| |
| // For actual calls, we compute this by examining the type of the |
| // called value. |
| if (CallExpr *Call = dyn_cast<CallExpr>(E)) { |
| Expr *Callee = Call->getCallee()->IgnoreParens(); |
| QualType T = Callee->getType(); |
| |
| if (T == Context.BoundMemberTy) { |
| // Handle pointer-to-members. |
| if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) |
| T = BinOp->getRHS()->getType(); |
| else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) |
| T = Mem->getMemberDecl()->getType(); |
| } |
| |
| if (const PointerType *Ptr = T->getAs<PointerType>()) |
| T = Ptr->getPointeeType(); |
| else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) |
| T = Ptr->getPointeeType(); |
| else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) |
| T = MemPtr->getPointeeType(); |
| |
| const FunctionType *FTy = T->getAs<FunctionType>(); |
| assert(FTy && "call to value not of function type?"); |
| ReturnsRetained = FTy->getExtInfo().getProducesResult(); |
| |
| // ActOnStmtExpr arranges things so that StmtExprs of retainable |
| // type always produce a +1 object. |
| } else if (isa<StmtExpr>(E)) { |
| ReturnsRetained = true; |
| |
| // For message sends and property references, we try to find an |
| // actual method. FIXME: we should infer retention by selector in |
| // cases where we don't have an actual method. |
| } else if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { |
| ObjCMethodDecl *D = Send->getMethodDecl(); |
| |
| ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); |
| |
| // Don't do reclaims on performSelector calls; despite their |
| // return type, the invoked method doesn't necessarily actually |
| // return an object. |
| if (!ReturnsRetained && |
| D && D->getMethodFamily() == OMF_performSelector) |
| return Owned(E); |
| } else if (isa<CastExpr>(E) && |
| isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { |
| // We hit this case with the lambda conversion-to-block optimization; |
| // we don't want any extra casts here. |
| return Owned(E); |
| } else { |
| ReturnsRetained = false; |
| } |
| |
| // Don't reclaim an object of Class type. |
| if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) |
| return Owned(E); |
| |
| ExprNeedsCleanups = true; |
| |
| CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject |
| : CK_ARCReclaimReturnedObject); |
| return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0, |
| VK_RValue)); |
| } |
| |
| if (!getLangOptions().CPlusPlus) |
| return Owned(E); |
| |
| // Search for the base element type (cf. ASTContext::getBaseElementType) with |
| // a fast path for the common case that the type is directly a RecordType. |
| const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); |
| const RecordType *RT = 0; |
| while (!RT) { |
| switch (T->getTypeClass()) { |
| case Type::Record: |
| RT = cast<RecordType>(T); |
| break; |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| T = cast<ArrayType>(T)->getElementType().getTypePtr(); |
| break; |
| default: |
| return Owned(E); |
| } |
| } |
| |
| // That should be enough to guarantee that this type is complete, if we're |
| // not processing a decltype expression. |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->isInvalidDecl() || RD->isDependentContext()) |
| return Owned(E); |
| |
| bool IsDecltype = ExprEvalContexts.back().IsDecltype; |
| CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD); |
| |
| if (Destructor) { |
| MarkFunctionReferenced(E->getExprLoc(), Destructor); |
| CheckDestructorAccess(E->getExprLoc(), Destructor, |
| PDiag(diag::err_access_dtor_temp) |
| << E->getType()); |
| DiagnoseUseOfDecl(Destructor, E->getExprLoc()); |
| |
| // If destructor is trivial, we can avoid the extra copy. |
| if (Destructor->isTrivial()) |
| return Owned(E); |
| |
| // We need a cleanup, but we don't need to remember the temporary. |
| ExprNeedsCleanups = true; |
| } |
| |
| CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); |
| CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); |
| |
| if (IsDecltype) |
| ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); |
| |
| return Owned(Bind); |
| } |
| |
| ExprResult |
| Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| return Owned(MaybeCreateExprWithCleanups(SubExpr.take())); |
| } |
| |
| Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { |
| assert(SubExpr && "sub expression can't be null!"); |
| |
| CleanupVarDeclMarking(); |
| |
| unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; |
| assert(ExprCleanupObjects.size() >= FirstCleanup); |
| assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup); |
| if (!ExprNeedsCleanups) |
| return SubExpr; |
| |
| ArrayRef<ExprWithCleanups::CleanupObject> Cleanups |
| = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, |
| ExprCleanupObjects.size() - FirstCleanup); |
| |
| Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups); |
| DiscardCleanupsInEvaluationContext(); |
| |
| return E; |
| } |
| |
| Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { |
| assert(SubStmt && "sub statement can't be null!"); |
| |
| CleanupVarDeclMarking(); |
| |
| if (!ExprNeedsCleanups) |
| return SubStmt; |
| |
| // FIXME: In order to attach the temporaries, wrap the statement into |
| // a StmtExpr; currently this is only used for asm statements. |
| // This is hacky, either create a new CXXStmtWithTemporaries statement or |
| // a new AsmStmtWithTemporaries. |
| CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1, |
| SourceLocation(), |
| SourceLocation()); |
| Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), |
| SourceLocation()); |
| return MaybeCreateExprWithCleanups(E); |
| } |
| |
| /// Process the expression contained within a decltype. For such expressions, |
| /// certain semantic checks on temporaries are delayed until this point, and |
| /// are omitted for the 'topmost' call in the decltype expression. If the |
| /// topmost call bound a temporary, strip that temporary off the expression. |
| ExprResult Sema::ActOnDecltypeExpression(Expr *E) { |
| ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back(); |
| assert(Rec.IsDecltype && "not in a decltype expression"); |
| |
| // C++11 [expr.call]p11: |
| // If a function call is a prvalue of object type, |
| // -- if the function call is either |
| // -- the operand of a decltype-specifier, or |
| // -- the right operand of a comma operator that is the operand of a |
| // decltype-specifier, |
| // a temporary object is not introduced for the prvalue. |
| |
| // Recursively rebuild ParenExprs and comma expressions to strip out the |
| // outermost CXXBindTemporaryExpr, if any. |
| if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
| ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| if (SubExpr.get() == PE->getSubExpr()) |
| return Owned(E); |
| return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take()); |
| } |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| if (BO->getOpcode() == BO_Comma) { |
| ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| if (RHS.get() == BO->getRHS()) |
| return Owned(E); |
| return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(), |
| BO_Comma, BO->getType(), |
| BO->getValueKind(), |
| BO->getObjectKind(), |
| BO->getOperatorLoc())); |
| } |
| } |
| |
| CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); |
| if (TopBind) |
| E = TopBind->getSubExpr(); |
| |
| // Disable the special decltype handling now. |
| Rec.IsDecltype = false; |
| |
| // Perform the semantic checks we delayed until this point. |
| CallExpr *TopCall = dyn_cast<CallExpr>(E); |
| for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) { |
| CallExpr *Call = Rec.DelayedDecltypeCalls[I]; |
| if (Call == TopCall) |
| continue; |
| |
| if (CheckCallReturnType(Call->getCallReturnType(), |
| Call->getSourceRange().getBegin(), |
| Call, Call->getDirectCallee())) |
| return ExprError(); |
| } |
| |
| // Now all relevant types are complete, check the destructors are accessible |
| // and non-deleted, and annotate them on the temporaries. |
| for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) { |
| CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I]; |
| if (Bind == TopBind) |
| continue; |
| |
| CXXTemporary *Temp = Bind->getTemporary(); |
| |
| CXXRecordDecl *RD = |
| Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| CXXDestructorDecl *Destructor = LookupDestructor(RD); |
| Temp->setDestructor(Destructor); |
| |
| MarkFunctionReferenced(E->getExprLoc(), Destructor); |
| CheckDestructorAccess(E->getExprLoc(), Destructor, |
| PDiag(diag::err_access_dtor_temp) |
| << E->getType()); |
| DiagnoseUseOfDecl(Destructor, E->getExprLoc()); |
| |
| // We need a cleanup, but we don't need to remember the temporary. |
| ExprNeedsCleanups = true; |
| } |
| |
| // Possibly strip off the top CXXBindTemporaryExpr. |
| return Owned(E); |
| } |
| |
| ExprResult |
| Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, ParsedType &ObjectType, |
| bool &MayBePseudoDestructor) { |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); |
| if (Result.isInvalid()) return ExprError(); |
| Base = Result.get(); |
| |
| Result = CheckPlaceholderExpr(Base); |
| if (Result.isInvalid()) return ExprError(); |
| Base = Result.take(); |
| |
| QualType BaseType = Base->getType(); |
| MayBePseudoDestructor = false; |
| if (BaseType->isDependentType()) { |
| // If we have a pointer to a dependent type and are using the -> operator, |
| // the object type is the type that the pointer points to. We might still |
| // have enough information about that type to do something useful. |
| if (OpKind == tok::arrow) |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| |
| ObjectType = ParsedType::make(BaseType); |
| MayBePseudoDestructor = true; |
| return Owned(Base); |
| } |
| |
| // C++ [over.match.oper]p8: |
| // [...] When operator->returns, the operator-> is applied to the value |
| // returned, with the original second operand. |
| if (OpKind == tok::arrow) { |
| // The set of types we've considered so far. |
| llvm::SmallPtrSet<CanQualType,8> CTypes; |
| SmallVector<SourceLocation, 8> Locations; |
| CTypes.insert(Context.getCanonicalType(BaseType)); |
| |
| while (BaseType->isRecordType()) { |
| Result = BuildOverloadedArrowExpr(S, Base, OpLoc); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Base = Result.get(); |
| if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) |
| Locations.push_back(OpCall->getDirectCallee()->getLocation()); |
| BaseType = Base->getType(); |
| CanQualType CBaseType = Context.getCanonicalType(BaseType); |
| if (!CTypes.insert(CBaseType)) { |
| Diag(OpLoc, diag::err_operator_arrow_circular); |
| for (unsigned i = 0; i < Locations.size(); i++) |
| Diag(Locations[i], diag::note_declared_at); |
| return ExprError(); |
| } |
| } |
| |
| if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()) |
| BaseType = BaseType->getPointeeType(); |
| } |
| |
| // Objective-C properties allow "." access on Objective-C pointer types, |
| // so adjust the base type to the object type itself. |
| if (BaseType->isObjCObjectPointerType()) |
| BaseType = BaseType->getPointeeType(); |
| |
| // C++ [basic.lookup.classref]p2: |
| // [...] If the type of the object expression is of pointer to scalar |
| // type, the unqualified-id is looked up in the context of the complete |
| // postfix-expression. |
| // |
| // This also indicates that we could be parsing a pseudo-destructor-name. |
| // Note that Objective-C class and object types can be pseudo-destructor |
| // expressions or normal member (ivar or property) access expressions. |
| if (BaseType->isObjCObjectOrInterfaceType()) { |
| MayBePseudoDestructor = true; |
| } else if (!BaseType->isRecordType()) { |
| ObjectType = ParsedType(); |
| MayBePseudoDestructor = true; |
| return Owned(Base); |
| } |
| |
| // The object type must be complete (or dependent). |
| if (!BaseType->isDependentType() && |
| RequireCompleteType(OpLoc, BaseType, |
| PDiag(diag::err_incomplete_member_access))) |
| return ExprError(); |
| |
| // C++ [basic.lookup.classref]p2: |
| // If the id-expression in a class member access (5.2.5) is an |
| // unqualified-id, and the type of the object expression is of a class |
| // type C (or of pointer to a class type C), the unqualified-id is looked |
| // up in the scope of class C. [...] |
| ObjectType = ParsedType::make(BaseType); |
| return move(Base); |
| } |
| |
| ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, |
| Expr *MemExpr) { |
| SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); |
| Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call) |
| << isa<CXXPseudoDestructorExpr>(MemExpr) |
| << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); |
| |
| return ActOnCallExpr(/*Scope*/ 0, |
| MemExpr, |
| /*LPLoc*/ ExpectedLParenLoc, |
| MultiExprArg(), |
| /*RPLoc*/ ExpectedLParenLoc); |
| } |
| |
| static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, |
| tok::TokenKind& OpKind, SourceLocation OpLoc) { |
| if (Base->hasPlaceholderType()) { |
| ExprResult result = S.CheckPlaceholderExpr(Base); |
| if (result.isInvalid()) return true; |
| Base = result.take(); |
| } |
| ObjectType = Base->getType(); |
| |
| // C++ [expr.pseudo]p2: |
| // The left-hand side of the dot operator shall be of scalar type. The |
| // left-hand side of the arrow operator shall be of pointer to scalar type. |
| // This scalar type is the object type. |
| // Note that this is rather different from the normal handling for the |
| // arrow operator. |
| if (OpKind == tok::arrow) { |
| if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { |
| ObjectType = Ptr->getPointeeType(); |
| } else if (!Base->isTypeDependent()) { |
| // The user wrote "p->" when she probably meant "p."; fix it. |
| S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| << ObjectType << true |
| << FixItHint::CreateReplacement(OpLoc, "."); |
| if (S.isSFINAEContext()) |
| return true; |
| |
| OpKind = tok::period; |
| } |
| } |
| |
| return false; |
| } |
| |
| ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, |
| SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| const CXXScopeSpec &SS, |
| TypeSourceInfo *ScopeTypeInfo, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| PseudoDestructorTypeStorage Destructed, |
| bool HasTrailingLParen) { |
| TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); |
| |
| QualType ObjectType; |
| if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) |
| return ExprError(); |
| |
| if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) { |
| if (getLangOptions().MicrosoftMode && ObjectType->isVoidType()) |
| Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); |
| else |
| Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) |
| << ObjectType << Base->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // C++ [expr.pseudo]p2: |
| // [...] The cv-unqualified versions of the object type and of the type |
| // designated by the pseudo-destructor-name shall be the same type. |
| if (DestructedTypeInfo) { |
| QualType DestructedType = DestructedTypeInfo->getType(); |
| SourceLocation DestructedTypeStart |
| = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); |
| if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { |
| if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { |
| Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) |
| << ObjectType << DestructedType << Base->getSourceRange() |
| << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); |
| |
| // Recover by setting the destructed type to the object type. |
| DestructedType = ObjectType; |
| DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, |
| DestructedTypeStart); |
| Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| } else if (DestructedType.getObjCLifetime() != |
| ObjectType.getObjCLifetime()) { |
| |
| if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { |
| // Okay: just pretend that the user provided the correctly-qualified |
| // type. |
| } else { |
| Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) |
| << ObjectType << DestructedType << Base->getSourceRange() |
| << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); |
| } |
| |
| // Recover by setting the destructed type to the object type. |
| DestructedType = ObjectType; |
| DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, |
| DestructedTypeStart); |
| Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| } |
| } |
| } |
| |
| // C++ [expr.pseudo]p2: |
| // [...] Furthermore, the two type-names in a pseudo-destructor-name of the |
| // form |
| // |
| // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name |
| // |
| // shall designate the same scalar type. |
| if (ScopeTypeInfo) { |
| QualType ScopeType = ScopeTypeInfo->getType(); |
| if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && |
| !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { |
| |
| Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), |
| diag::err_pseudo_dtor_type_mismatch) |
| << ObjectType << ScopeType << Base->getSourceRange() |
| << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); |
| |
| ScopeType = QualType(); |
| ScopeTypeInfo = 0; |
| } |
| } |
| |
| Expr *Result |
| = new (Context) CXXPseudoDestructorExpr(Context, Base, |
| OpKind == tok::arrow, OpLoc, |
| SS.getWithLocInContext(Context), |
| ScopeTypeInfo, |
| CCLoc, |
| TildeLoc, |
| Destructed); |
| |
| if (HasTrailingLParen) |
| return Owned(Result); |
| |
| return DiagnoseDtorReference(Destructed.getLocation(), Result); |
| } |
| |
| ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, |
| SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| CXXScopeSpec &SS, |
| UnqualifiedId &FirstTypeName, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| UnqualifiedId &SecondTypeName, |
| bool HasTrailingLParen) { |
| assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || |
| FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && |
| "Invalid first type name in pseudo-destructor"); |
| assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || |
| SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && |
| "Invalid second type name in pseudo-destructor"); |
| |
| QualType ObjectType; |
| if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) |
| return ExprError(); |
| |
| // Compute the object type that we should use for name lookup purposes. Only |
| // record types and dependent types matter. |
| ParsedType ObjectTypePtrForLookup; |
| if (!SS.isSet()) { |
| if (ObjectType->isRecordType()) |
| ObjectTypePtrForLookup = ParsedType::make(ObjectType); |
| else if (ObjectType->isDependentType()) |
| ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); |
| } |
| |
| // Convert the name of the type being destructed (following the ~) into a |
| // type (with source-location information). |
| QualType DestructedType; |
| TypeSourceInfo *DestructedTypeInfo = 0; |
| PseudoDestructorTypeStorage Destructed; |
| if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { |
| ParsedType T = getTypeName(*SecondTypeName.Identifier, |
| SecondTypeName.StartLocation, |
| S, &SS, true, false, ObjectTypePtrForLookup); |
| if (!T && |
| ((SS.isSet() && !computeDeclContext(SS, false)) || |
| (!SS.isSet() && ObjectType->isDependentType()))) { |
| // The name of the type being destroyed is a dependent name, and we |
| // couldn't find anything useful in scope. Just store the identifier and |
| // it's location, and we'll perform (qualified) name lookup again at |
| // template instantiation time. |
| Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, |
| SecondTypeName.StartLocation); |
| } else if (!T) { |
| Diag(SecondTypeName.StartLocation, |
| diag::err_pseudo_dtor_destructor_non_type) |
| << SecondTypeName.Identifier << ObjectType; |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| // Recover by assuming we had the right type all along. |
| DestructedType = ObjectType; |
| } else |
| DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); |
| } else { |
| // Resolve the template-id to a type. |
| TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; |
| ASTTemplateArgsPtr TemplateArgsPtr(*this, |
| TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| TypeResult T = ActOnTemplateIdType(TemplateId->SS, |
| TemplateId->TemplateKWLoc, |
| TemplateId->Template, |
| TemplateId->TemplateNameLoc, |
| TemplateId->LAngleLoc, |
| TemplateArgsPtr, |
| TemplateId->RAngleLoc); |
| if (T.isInvalid() || !T.get()) { |
| // Recover by assuming we had the right type all along. |
| DestructedType = ObjectType; |
| } else |
| DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); |
| } |
| |
| // If we've performed some kind of recovery, (re-)build the type source |
| // information. |
| if (!DestructedType.isNull()) { |
| if (!DestructedTypeInfo) |
| DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, |
| SecondTypeName.StartLocation); |
| Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| } |
| |
| // Convert the name of the scope type (the type prior to '::') into a type. |
| TypeSourceInfo *ScopeTypeInfo = 0; |
| QualType ScopeType; |
| if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || |
| FirstTypeName.Identifier) { |
| if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { |
| ParsedType T = getTypeName(*FirstTypeName.Identifier, |
| FirstTypeName.StartLocation, |
| S, &SS, true, false, ObjectTypePtrForLookup); |
| if (!T) { |
| Diag(FirstTypeName.StartLocation, |
| diag::err_pseudo_dtor_destructor_non_type) |
| << FirstTypeName.Identifier << ObjectType; |
| |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| // Just drop this type. It's unnecessary anyway. |
| ScopeType = QualType(); |
| } else |
| ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); |
| } else { |
| // Resolve the template-id to a type. |
| TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; |
| ASTTemplateArgsPtr TemplateArgsPtr(*this, |
| TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| TypeResult T = ActOnTemplateIdType(TemplateId->SS, |
| TemplateId->TemplateKWLoc, |
| TemplateId->Template, |
| TemplateId->TemplateNameLoc, |
| TemplateId->LAngleLoc, |
| TemplateArgsPtr, |
| TemplateId->RAngleLoc); |
| if (T.isInvalid() || !T.get()) { |
| // Recover by dropping this type. |
| ScopeType = QualType(); |
| } else |
| ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); |
| } |
| } |
| |
| if (!ScopeType.isNull() && !ScopeTypeInfo) |
| ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, |
| FirstTypeName.StartLocation); |
| |
| |
| return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, |
| ScopeTypeInfo, CCLoc, TildeLoc, |
| Destructed, HasTrailingLParen); |
| } |
| |
| ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, |
| SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| SourceLocation TildeLoc, |
| const DeclSpec& DS, |
| bool HasTrailingLParen) { |
| QualType ObjectType; |
| if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) |
| return ExprError(); |
| |
| QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); |
| |
| TypeLocBuilder TLB; |
| DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); |
| DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); |
| TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); |
| PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); |
| |
| return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), |
| 0, SourceLocation(), TildeLoc, |
| Destructed, HasTrailingLParen); |
| } |
| |
| ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, |
| CXXConversionDecl *Method, |
| bool HadMultipleCandidates) { |
| if (Method->getParent()->isLambda() && |
| Method->getConversionType()->isBlockPointerType()) { |
| // This is a lambda coversion to block pointer; check if the argument |
| // is a LambdaExpr. |
| Expr *SubE = E; |
| CastExpr *CE = dyn_cast<CastExpr>(SubE); |
| if (CE && CE->getCastKind() == CK_NoOp) |
| SubE = CE->getSubExpr(); |
| SubE = SubE->IgnoreParens(); |
| if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) |
| SubE = BE->getSubExpr(); |
| if (isa<LambdaExpr>(SubE)) { |
| // For the conversion to block pointer on a lambda expression, we |
| // construct a special BlockLiteral instead; this doesn't really make |
| // a difference in ARC, but outside of ARC the resulting block literal |
| // follows the normal lifetime rules for block literals instead of being |
| // autoreleased. |
| DiagnosticErrorTrap Trap(Diags); |
| ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), |
| E->getExprLoc(), |
| Method, E); |
| if (Exp.isInvalid()) |
| Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); |
| return Exp; |
| } |
| } |
| |
| |
| ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0, |
| FoundDecl, Method); |
| if (Exp.isInvalid()) |
| return true; |
| |
| MemberExpr *ME = |
| new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method, |
| SourceLocation(), Context.BoundMemberTy, |
| VK_RValue, OK_Ordinary); |
| if (HadMultipleCandidates) |
| ME->setHadMultipleCandidates(true); |
| |
| QualType ResultType = Method->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(ResultType); |
| ResultType = ResultType.getNonLValueExprType(Context); |
| |
| MarkFunctionReferenced(Exp.get()->getLocStart(), Method); |
| CXXMemberCallExpr *CE = |
| new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK, |
| Exp.get()->getLocEnd()); |
| return CE; |
| } |
| |
| ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, |
| SourceLocation RParen) { |
| return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand, |
| Operand->CanThrow(Context), |
| KeyLoc, RParen)); |
| } |
| |
| ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, |
| Expr *Operand, SourceLocation RParen) { |
| return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); |
| } |
| |
| /// Perform the conversions required for an expression used in a |
| /// context that ignores the result. |
| ExprResult Sema::IgnoredValueConversions(Expr *E) { |
| if (E->hasPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return Owned(E); |
| E = result.take(); |
| } |
| |
| // C99 6.3.2.1: |
| // [Except in specific positions,] an lvalue that does not have |
| // array type is converted to the value stored in the |
| // designated object (and is no longer an lvalue). |
| if (E->isRValue()) { |
| // In C, function designators (i.e. expressions of function type) |
| // are r-values, but we still want to do function-to-pointer decay |
| // on them. This is both technically correct and convenient for |
| // some clients. |
| if (!getLangOptions().CPlusPlus && E->getType()->isFunctionType()) |
| return DefaultFunctionArrayConversion(E); |
| |
| return Owned(E); |
| } |
| |
| // Otherwise, this rule does not apply in C++, at least not for the moment. |
| if (getLangOptions().CPlusPlus) return Owned(E); |
| |
| // GCC seems to also exclude expressions of incomplete enum type. |
| if (const EnumType *T = E->getType()->getAs<EnumType>()) { |
| if (!T->getDecl()->isComplete()) { |
| // FIXME: stupid workaround for a codegen bug! |
| E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take(); |
| return Owned(E); |
| } |
| } |
| |
| ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
| if (Res.isInvalid()) |
| return Owned(E); |
| E = Res.take(); |
| |
| if (!E->getType()->isVoidType()) |
| RequireCompleteType(E->getExprLoc(), E->getType(), |
| diag::err_incomplete_type); |
| return Owned(E); |
| } |
| |
| ExprResult Sema::ActOnFinishFullExpr(Expr *FE) { |
| ExprResult FullExpr = Owned(FE); |
| |
| if (!FullExpr.get()) |
| return ExprError(); |
| |
| if (DiagnoseUnexpandedParameterPack(FullExpr.get())) |
| return ExprError(); |
| |
| // Top-level message sends default to 'id' when we're in a debugger. |
| if (getLangOptions().DebuggerCastResultToId && |
| FullExpr.get()->getType() == Context.UnknownAnyTy && |
| isa<ObjCMessageExpr>(FullExpr.get())) { |
| FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType()); |
| if (FullExpr.isInvalid()) |
| return ExprError(); |
| } |
| |
| FullExpr = CheckPlaceholderExpr(FullExpr.take()); |
| if (FullExpr.isInvalid()) |
| return ExprError(); |
| |
| FullExpr = IgnoredValueConversions(FullExpr.take()); |
| if (FullExpr.isInvalid()) |
| return ExprError(); |
| |
| CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc()); |
| return MaybeCreateExprWithCleanups(FullExpr); |
| } |
| |
| StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { |
| if (!FullStmt) return StmtError(); |
| |
| return MaybeCreateStmtWithCleanups(FullStmt); |
| } |
| |
| Sema::IfExistsResult |
| Sema::CheckMicrosoftIfExistsSymbol(Scope *S, |
| CXXScopeSpec &SS, |
| const DeclarationNameInfo &TargetNameInfo) { |
| DeclarationName TargetName = TargetNameInfo.getName(); |
| if (!TargetName) |
| return IER_DoesNotExist; |
| |
| // If the name itself is dependent, then the result is dependent. |
| if (TargetName.isDependentName()) |
| return IER_Dependent; |
| |
| // Do the redeclaration lookup in the current scope. |
| LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, |
| Sema::NotForRedeclaration); |
| LookupParsedName(R, S, &SS); |
| R.suppressDiagnostics(); |
| |
| switch (R.getResultKind()) { |
| case LookupResult::Found: |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: |
| case LookupResult::Ambiguous: |
| return IER_Exists; |
| |
| case LookupResult::NotFound: |
| return IER_DoesNotExist; |
| |
| case LookupResult::NotFoundInCurrentInstantiation: |
| return IER_Dependent; |
| } |
| |
| llvm_unreachable("Invalid LookupResult Kind!"); |
| } |
| |
| Sema::IfExistsResult |
| Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, |
| bool IsIfExists, CXXScopeSpec &SS, |
| UnqualifiedId &Name) { |
| DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); |
| |
| // Check for unexpanded parameter packs. |
| SmallVector<UnexpandedParameterPack, 4> Unexpanded; |
| collectUnexpandedParameterPacks(SS, Unexpanded); |
| collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); |
| if (!Unexpanded.empty()) { |
| DiagnoseUnexpandedParameterPacks(KeywordLoc, |
| IsIfExists? UPPC_IfExists |
| : UPPC_IfNotExists, |
| Unexpanded); |
| return IER_Error; |
| } |
| |
| return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); |
| } |