blob: 8f37ad2d6583737532a1647d3d06dc19ae172260 [file] [log] [blame]
//=-- GRExprEngineInternalChecks.cpp - Builtin GRExprEngine Checks---*- C++ -*-=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the BugType classes used by GRExprEngine to report
// bugs derived from builtin checks in the path-sensitive engine.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
template <typename ITERATOR> inline
ExplodedNode<GRState>* GetNode(ITERATOR I) {
return *I;
}
template <> inline
ExplodedNode<GRState>* GetNode(GRExprEngine::undef_arg_iterator I) {
return I->first;
}
//===----------------------------------------------------------------------===//
// Forward declarations for bug reporter visitors.
//===----------------------------------------------------------------------===//
static void registerTrackNullValue(BugReporterContext& BRC,
const ExplodedNode<GRState>* N);
//===----------------------------------------------------------------------===//
// Bug Descriptions.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN BuiltinBugReport : public BugReport {
public:
BuiltinBugReport(BugType& bt, const char* desc,
const ExplodedNode<GRState> *n)
: BugReport(bt, desc, n) {}
void registerInitialVisitors(BugReporterContext& BRC,
const ExplodedNode<GRState>* N);
};
class VISIBILITY_HIDDEN BuiltinBug : public BugType {
GRExprEngine &Eng;
protected:
const std::string desc;
public:
BuiltinBug(GRExprEngine *eng, const char* n, const char* d)
: BugType(n, "Logic Errors"), Eng(*eng), desc(d) {}
BuiltinBug(GRExprEngine *eng, const char* n)
: BugType(n, "Logic Errors"), Eng(*eng), desc(n) {}
virtual void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) = 0;
void FlushReports(BugReporter& BR) { FlushReportsImpl(BR, Eng); }
virtual void registerInitialVisitors(BugReporterContext& BRC,
const ExplodedNode<GRState>* N,
BuiltinBugReport *R) {}
template <typename ITER> void Emit(BugReporter& BR, ITER I, ITER E);
};
template <typename ITER>
void BuiltinBug::Emit(BugReporter& BR, ITER I, ITER E) {
for (; I != E; ++I) BR.EmitReport(new BuiltinBugReport(*this, desc.c_str(),
GetNode(I)));
}
void BuiltinBugReport::registerInitialVisitors(BugReporterContext& BRC,
const ExplodedNode<GRState>* N) {
static_cast<BuiltinBug&>(getBugType()).registerInitialVisitors(BRC, N, this);
}
class VISIBILITY_HIDDEN NullDeref : public BuiltinBug {
public:
NullDeref(GRExprEngine* eng)
: BuiltinBug(eng,"Null dereference", "Dereference of null pointer") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
Emit(BR, Eng.null_derefs_begin(), Eng.null_derefs_end());
}
void registerInitialVisitors(BugReporterContext& BRC,
const ExplodedNode<GRState>* N,
BuiltinBugReport *R) {
registerTrackNullValue(BRC, N);
}
};
class VISIBILITY_HIDDEN NilReceiverStructRet : public BugType {
GRExprEngine &Eng;
public:
NilReceiverStructRet(GRExprEngine* eng) :
BugType("'nil' receiver with struct return type", "Logic Errors"),
Eng(*eng) {}
void FlushReports(BugReporter& BR) {
for (GRExprEngine::nil_receiver_struct_ret_iterator
I=Eng.nil_receiver_struct_ret_begin(),
E=Eng.nil_receiver_struct_ret_end(); I!=E; ++I) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
PostStmt P = cast<PostStmt>((*I)->getLocation());
ObjCMessageExpr *ME = cast<ObjCMessageExpr>(P.getStmt());
os << "The receiver in the message expression is 'nil' and results in the"
" returned value (of type '"
<< ME->getType().getAsString()
<< "') to be garbage or otherwise undefined.";
RangedBugReport *R = new RangedBugReport(*this, os.str().c_str(), *I);
R->addRange(ME->getReceiver()->getSourceRange());
BR.EmitReport(R);
}
}
};
class VISIBILITY_HIDDEN NilReceiverLargerThanVoidPtrRet : public BugType {
GRExprEngine &Eng;
public:
NilReceiverLargerThanVoidPtrRet(GRExprEngine* eng) :
BugType("'nil' receiver with return type larger than sizeof(void *)",
"Logic Errors"),
Eng(*eng) {}
void FlushReports(BugReporter& BR) {
for (GRExprEngine::nil_receiver_larger_than_voidptr_ret_iterator
I=Eng.nil_receiver_larger_than_voidptr_ret_begin(),
E=Eng.nil_receiver_larger_than_voidptr_ret_end(); I!=E; ++I) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
PostStmt P = cast<PostStmt>((*I)->getLocation());
ObjCMessageExpr *ME = cast<ObjCMessageExpr>(P.getStmt());
os << "The receiver in the message expression is 'nil' and results in the"
" returned value (of type '"
<< ME->getType().getAsString()
<< "' and of size "
<< Eng.getContext().getTypeSize(ME->getType()) / 8
<< " bytes) to be garbage or otherwise undefined.";
RangedBugReport *R = new RangedBugReport(*this, os.str().c_str(), *I);
R->addRange(ME->getReceiver()->getSourceRange());
BR.EmitReport(R);
}
}
};
class VISIBILITY_HIDDEN UndefinedDeref : public BuiltinBug {
public:
UndefinedDeref(GRExprEngine* eng)
: BuiltinBug(eng,"Dereference of undefined pointer value") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
Emit(BR, Eng.undef_derefs_begin(), Eng.undef_derefs_end());
}
};
class VISIBILITY_HIDDEN DivZero : public BuiltinBug {
public:
DivZero(GRExprEngine* eng)
: BuiltinBug(eng,"Division-by-zero",
"Division by zero or undefined value.") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
Emit(BR, Eng.explicit_bad_divides_begin(), Eng.explicit_bad_divides_end());
}
};
class VISIBILITY_HIDDEN UndefResult : public BuiltinBug {
public:
UndefResult(GRExprEngine* eng) : BuiltinBug(eng,"Undefined result",
"Result of operation is undefined.") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
Emit(BR, Eng.undef_results_begin(), Eng.undef_results_end());
}
};
class VISIBILITY_HIDDEN BadCall : public BuiltinBug {
public:
BadCall(GRExprEngine *eng)
: BuiltinBug(eng, "Invalid function call",
"Called function pointer is a null or undefined pointer value") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
Emit(BR, Eng.bad_calls_begin(), Eng.bad_calls_end());
}
};
class VISIBILITY_HIDDEN BadArg : public BuiltinBug {
public:
BadArg(GRExprEngine* eng) : BuiltinBug(eng,"Uninitialized argument",
"Pass-by-value argument in function call is undefined.") {}
BadArg(GRExprEngine* eng, const char* d)
: BuiltinBug(eng,"Uninitialized argument", d) {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
for (GRExprEngine::UndefArgsTy::iterator I = Eng.undef_arg_begin(),
E = Eng.undef_arg_end(); I!=E; ++I) {
// Generate a report for this bug.
RangedBugReport *report = new RangedBugReport(*this, desc.c_str(),
I->first);
report->addRange(I->second->getSourceRange());
BR.EmitReport(report);
}
}
};
class VISIBILITY_HIDDEN BadMsgExprArg : public BadArg {
public:
BadMsgExprArg(GRExprEngine* eng)
: BadArg(eng,"Pass-by-value argument in message expression is undefined"){}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
for (GRExprEngine::UndefArgsTy::iterator I=Eng.msg_expr_undef_arg_begin(),
E = Eng.msg_expr_undef_arg_end(); I!=E; ++I) {
// Generate a report for this bug.
RangedBugReport *report = new RangedBugReport(*this, desc.c_str(),
I->first);
report->addRange(I->second->getSourceRange());
BR.EmitReport(report);
}
}
};
class VISIBILITY_HIDDEN BadReceiver : public BuiltinBug {
public:
BadReceiver(GRExprEngine* eng)
: BuiltinBug(eng,"Uninitialized receiver",
"Receiver in message expression is an uninitialized value") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
for (GRExprEngine::ErrorNodes::iterator I=Eng.undef_receivers_begin(),
End = Eng.undef_receivers_end(); I!=End; ++I) {
// Generate a report for this bug.
RangedBugReport *report = new RangedBugReport(*this, desc.c_str(), *I);
ExplodedNode<GRState>* N = *I;
Stmt *S = cast<PostStmt>(N->getLocation()).getStmt();
Expr* E = cast<ObjCMessageExpr>(S)->getReceiver();
assert (E && "Receiver cannot be NULL");
report->addRange(E->getSourceRange());
BR.EmitReport(report);
}
}
};
class VISIBILITY_HIDDEN RetStack : public BuiltinBug {
public:
RetStack(GRExprEngine* eng)
: BuiltinBug(eng, "Return of address to stack-allocated memory") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
for (GRExprEngine::ret_stackaddr_iterator I=Eng.ret_stackaddr_begin(),
End = Eng.ret_stackaddr_end(); I!=End; ++I) {
ExplodedNode<GRState>* N = *I;
Stmt *S = cast<PostStmt>(N->getLocation()).getStmt();
Expr* E = cast<ReturnStmt>(S)->getRetValue();
assert (E && "Return expression cannot be NULL");
// Get the value associated with E.
loc::MemRegionVal V =
cast<loc::MemRegionVal>(Eng.getStateManager().GetSVal(N->getState(),
E));
// Generate a report for this bug.
std::string buf;
llvm::raw_string_ostream os(buf);
SourceRange R;
// Check if the region is a compound literal.
if (const CompoundLiteralRegion* CR =
dyn_cast<CompoundLiteralRegion>(V.getRegion())) {
const CompoundLiteralExpr* CL = CR->getLiteralExpr();
os << "Address of stack memory associated with a compound literal "
"declared on line "
<< BR.getSourceManager()
.getInstantiationLineNumber(CL->getLocStart())
<< " returned.";
R = CL->getSourceRange();
}
else if (const AllocaRegion* AR = dyn_cast<AllocaRegion>(V.getRegion())) {
const Expr* ARE = AR->getExpr();
SourceLocation L = ARE->getLocStart();
R = ARE->getSourceRange();
os << "Address of stack memory allocated by call to alloca() on line "
<< BR.getSourceManager().getInstantiationLineNumber(L)
<< " returned.";
}
else {
os << "Address of stack memory associated with local variable '"
<< V.getRegion()->getString() << "' returned.";
}
RangedBugReport *report = new RangedBugReport(*this, os.str().c_str(), N);
report->addRange(E->getSourceRange());
if (R.isValid()) report->addRange(R);
BR.EmitReport(report);
}
}
};
class VISIBILITY_HIDDEN RetUndef : public BuiltinBug {
public:
RetUndef(GRExprEngine* eng) : BuiltinBug(eng, "Uninitialized return value",
"Uninitialized or undefined return value returned to caller.") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
Emit(BR, Eng.ret_undef_begin(), Eng.ret_undef_end());
}
};
class VISIBILITY_HIDDEN UndefBranch : public BuiltinBug {
struct VISIBILITY_HIDDEN FindUndefExpr {
GRStateManager& VM;
const GRState* St;
FindUndefExpr(GRStateManager& V, const GRState* S) : VM(V), St(S) {}
Expr* FindExpr(Expr* Ex) {
if (!MatchesCriteria(Ex))
return 0;
for (Stmt::child_iterator I=Ex->child_begin(), E=Ex->child_end();I!=E;++I)
if (Expr* ExI = dyn_cast_or_null<Expr>(*I)) {
Expr* E2 = FindExpr(ExI);
if (E2) return E2;
}
return Ex;
}
bool MatchesCriteria(Expr* Ex) { return VM.GetSVal(St, Ex).isUndef(); }
};
public:
UndefBranch(GRExprEngine *eng)
: BuiltinBug(eng,"Use of uninitialized value",
"Branch condition evaluates to an uninitialized value.") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
for (GRExprEngine::undef_branch_iterator I=Eng.undef_branches_begin(),
E=Eng.undef_branches_end(); I!=E; ++I) {
// What's going on here: we want to highlight the subexpression of the
// condition that is the most likely source of the "uninitialized
// branch condition." We do a recursive walk of the condition's
// subexpressions and roughly look for the most nested subexpression
// that binds to Undefined. We then highlight that expression's range.
BlockEdge B = cast<BlockEdge>((*I)->getLocation());
Expr* Ex = cast<Expr>(B.getSrc()->getTerminatorCondition());
assert (Ex && "Block must have a terminator.");
// Get the predecessor node and check if is a PostStmt with the Stmt
// being the terminator condition. We want to inspect the state
// of that node instead because it will contain main information about
// the subexpressions.
assert (!(*I)->pred_empty());
// Note: any predecessor will do. They should have identical state,
// since all the BlockEdge did was act as an error sink since the value
// had to already be undefined.
ExplodedNode<GRState> *N = *(*I)->pred_begin();
ProgramPoint P = N->getLocation();
const GRState* St = (*I)->getState();
if (PostStmt* PS = dyn_cast<PostStmt>(&P))
if (PS->getStmt() == Ex)
St = N->getState();
FindUndefExpr FindIt(Eng.getStateManager(), St);
Ex = FindIt.FindExpr(Ex);
RangedBugReport *R = new RangedBugReport(*this, desc.c_str(), *I);
R->addRange(Ex->getSourceRange());
BR.EmitReport(R);
}
}
};
class VISIBILITY_HIDDEN OutOfBoundMemoryAccess : public BuiltinBug {
public:
OutOfBoundMemoryAccess(GRExprEngine* eng)
: BuiltinBug(eng,"Out-of-bounds memory access",
"Load or store into an out-of-bound memory position.") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
Emit(BR, Eng.explicit_oob_memacc_begin(), Eng.explicit_oob_memacc_end());
}
};
class VISIBILITY_HIDDEN BadSizeVLA : public BuiltinBug {
public:
BadSizeVLA(GRExprEngine* eng) :
BuiltinBug(eng, "Bad variable-length array (VLA) size") {}
void FlushReportsImpl(BugReporter& BR, GRExprEngine& Eng) {
for (GRExprEngine::ErrorNodes::iterator
I = Eng.ExplicitBadSizedVLA.begin(),
E = Eng.ExplicitBadSizedVLA.end(); I!=E; ++I) {
// Determine whether this was a 'zero-sized' VLA or a VLA with an
// undefined size.
GRExprEngine::NodeTy* N = *I;
PostStmt PS = cast<PostStmt>(N->getLocation());
DeclStmt *DS = cast<DeclStmt>(PS.getStmt());
VarDecl* VD = cast<VarDecl>(*DS->decl_begin());
QualType T = Eng.getContext().getCanonicalType(VD->getType());
VariableArrayType* VT = cast<VariableArrayType>(T);
Expr* SizeExpr = VT->getSizeExpr();
std::string buf;
llvm::raw_string_ostream os(buf);
os << "The expression used to specify the number of elements in the "
"variable-length array (VLA) '"
<< VD->getNameAsString() << "' evaluates to ";
bool isUndefined = Eng.getStateManager().GetSVal(N->getState(),
SizeExpr).isUndef();
if (isUndefined)
os << "an undefined or garbage value.";
else
os << "0. VLAs with no elements have undefined behavior.";
std::string shortBuf;
llvm::raw_string_ostream os_short(shortBuf);
os_short << "Variable-length array '" << VD->getNameAsString() << "' "
<< (isUndefined ? "garbage value for array size"
: "has zero elements (undefined behavior)");
RangedBugReport *report = new RangedBugReport(*this,
os_short.str().c_str(),
os.str().c_str(), N);
report->addRange(SizeExpr->getSourceRange());
BR.EmitReport(report);
}
}
};
//===----------------------------------------------------------------------===//
// __attribute__(nonnull) checking
class VISIBILITY_HIDDEN CheckAttrNonNull : public GRSimpleAPICheck {
BugType *BT;
BugReporter &BR;
public:
CheckAttrNonNull(BugReporter &br) : BT(0), BR(br) {}
virtual bool Audit(ExplodedNode<GRState>* N, GRStateManager& VMgr) {
CallExpr* CE = cast<CallExpr>(cast<PostStmt>(N->getLocation()).getStmt());
const GRState* state = N->getState();
SVal X = VMgr.GetSVal(state, CE->getCallee());
const FunctionDecl* FD = X.getAsFunctionDecl();
if (!FD)
return false;
const NonNullAttr* Att = FD->getAttr<NonNullAttr>();
if (!Att)
return false;
// Iterate through the arguments of CE and check them for null.
unsigned idx = 0;
bool hasError = false;
for (CallExpr::arg_iterator I=CE->arg_begin(), E=CE->arg_end(); I!=E;
++I, ++idx) {
if (!VMgr.isEqual(state, *I, 0) || !Att->isNonNull(idx))
continue;
// Lazily allocate the BugType object if it hasn't already been created.
// Ownership is transferred to the BugReporter object once the BugReport
// is passed to 'EmitWarning'.
if (!BT) BT =
new BugType("Argument with 'nonnull' attribute passed null", "API");
RangedBugReport *R = new RangedBugReport(*BT,
"Null pointer passed as an argument to a "
"'nonnull' parameter", N);
R->addRange((*I)->getSourceRange());
BR.EmitReport(R);
hasError = true;
}
return hasError;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Definitions for bug reporter visitors.
//===----------------------------------------------------------------------===//
namespace {
#if 0
class VISIBILITY_HIDDEN TrackValueBRVisitor : public BugReporterVisitor {
SVal V;
Stmt *S;
const MemRegion *R;
public:
TrackValueBRVisitor(SVal v, Stmt *s) : V(v), S(s), R(0) {}
PathDiagnosticPiece* VisitNode(const ExplodedNode<GRState> *N,
const ExplodedNode<GRState> *PrevN,
BugReporterContext& BRC) {
// Not at a expression?
if (!isa<PostStmt>(N->getLocation())) {
S = 0;
return NULL;
}
if (S)
return VisitNodeExpr(N, PrevN, BRC);
else if (R)
return VisitNodeRegion(N, PrevN, BRC);
return NULL;
}
PathDiagnosticPiece* VisitNodeExpr(const ExplodedNode<GRState> *N,
const ExplodedNode<GRState> *PrevN,
BugReporterContext& BRC) {
assert(S);
PostStmt P = cast<PostStmt>(N->getLocation());
Stmt *X = P.getStmt();
// Generate the subexpression path.
llvm::SmallVector<Stmt*, 4> SubExprPath;
ParentMap &PM = BRC.getParentMap();
for ( ; X && X != S ; X = X.getParent(X)) {
if (isa<ParenExpr>(X))
continue;
SubExprPath.push_back(L);
}
// Lost track? (X is not a subexpression of S).
if (X != S) {
S = NULL;
return NULL;
}
// Now go down the subexpression path!
}
};
#endif
class VISIBILITY_HIDDEN TrackConstraintBRVisitor : public BugReporterVisitor {
SVal Constraint;
const bool Assumption;
bool isSatisfied;
public:
TrackConstraintBRVisitor(SVal constraint, bool assumption)
: Constraint(constraint), Assumption(assumption), isSatisfied(false) {}
PathDiagnosticPiece* VisitNode(const ExplodedNode<GRState> *N,
const ExplodedNode<GRState> *PrevN,
BugReporterContext& BRC) {
if (isSatisfied)
return NULL;
// Check if in the previous state it was feasible for this constraint
// to *not* be true.
GRStateManager &StateMgr = BRC.getStateManager();
bool isFeasible = false;
if (StateMgr.Assume(PrevN->getState(), Constraint, !Assumption,
isFeasible)) {
assert(isFeasible); // Eventually we don't need 'isFeasible'.
isSatisfied = true;
// As a sanity check, make sure that the negation of the constraint
// was infeasible in the current state. If it is feasible, we somehow
// missed the transition point.
isFeasible = false;
if (StateMgr.Assume(N->getState(), Constraint, !Assumption,
isFeasible)) {
assert(isFeasible);
return NULL;
}
// We found the transition point for the constraint. We now need to
// pretty-print the constraint. (work-in-progress)
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
if (isa<Loc>(Constraint)) {
os << "Assuming pointer value is ";
os << (Assumption ? "non-NULL" : "NULL");
}
if (os.str().empty())
return NULL;
// FIXME: Refactor this into BugReporterContext.
Stmt *S = 0;
ProgramPoint P = N->getLocation();
if (BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
CFGBlock *BSrc = BE->getSrc();
S = BSrc->getTerminatorCondition();
}
else if (PostStmt *PS = dyn_cast<PostStmt>(&P)) {
S = PS->getStmt();
}
if (!S)
return NULL;
// Construct a new PathDiagnosticPiece.
PathDiagnosticLocation L(S, BRC.getSourceManager());
return new PathDiagnosticEventPiece(L, os.str());
}
return NULL;
}
};
} // end anonymous namespace
static void registerTrackConstraint(BugReporterContext& BRC, SVal Constraint,
bool Assumption) {
BRC.addVisitor(new TrackConstraintBRVisitor(Constraint, Assumption));
}
static void registerTrackNullValue(BugReporterContext& BRC,
const ExplodedNode<GRState>* N) {
ProgramPoint P = N->getLocation();
PostStmt *PS = dyn_cast<PostStmt>(&P);
if (!PS)
return;
Stmt *S = PS->getStmt();
if (ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(S)) {
S = AE->getBase();
}
SVal V = BRC.getStateManager().GetSValAsScalarOrLoc(N->getState(), S);
// Uncomment this to find cases where we aren't properly getting the
// base value that was dereferenced.
// assert(!V.isUnknownOrUndef());
// Is it a symbolic value?
if (loc::MemRegionVal *L = dyn_cast<loc::MemRegionVal>(&V)) {
const SubRegion *R = cast<SubRegion>(L->getRegion());
while (R && !isa<SymbolicRegion>(R)) {
R = dyn_cast<SubRegion>(R->getSuperRegion());
}
if (R) {
assert(isa<SymbolicRegion>(R));
registerTrackConstraint(BRC, loc::MemRegionVal(R), false);
// registerTrackValue(BRC, S, V, N);
}
}
// Was it a hard integer?
// if (isa<nonloc::ConcreteInt>(V))
// registerTrackValue(BRC, S, V, N);
}
//===----------------------------------------------------------------------===//
// Check registration.
//===----------------------------------------------------------------------===//
void GRExprEngine::RegisterInternalChecks() {
// Register internal "built-in" BugTypes with the BugReporter. These BugTypes
// are different than what probably many checks will do since they don't
// create BugReports on-the-fly but instead wait until GRExprEngine finishes
// analyzing a function. Generation of BugReport objects is done via a call
// to 'FlushReports' from BugReporter.
BR.Register(new NullDeref(this));
BR.Register(new UndefinedDeref(this));
BR.Register(new UndefBranch(this));
BR.Register(new DivZero(this));
BR.Register(new UndefResult(this));
BR.Register(new BadCall(this));
BR.Register(new RetStack(this));
BR.Register(new RetUndef(this));
BR.Register(new BadArg(this));
BR.Register(new BadMsgExprArg(this));
BR.Register(new BadReceiver(this));
BR.Register(new OutOfBoundMemoryAccess(this));
BR.Register(new BadSizeVLA(this));
BR.Register(new NilReceiverStructRet(this));
BR.Register(new NilReceiverLargerThanVoidPtrRet(this));
// The following checks do not need to have their associated BugTypes
// explicitly registered with the BugReporter. If they issue any BugReports,
// their associated BugType will get registered with the BugReporter
// automatically. Note that the check itself is owned by the GRExprEngine
// object.
AddCheck(new CheckAttrNonNull(BR), Stmt::CallExprClass);
}