blob: 542fc1b1078dc6c12861ce86fc2d1b375a735cc6 [file] [log] [blame]
// SValuator.cpp - Basic class for all SValuator implementations --*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SValuator, the base class for all (complete) SValuator
// implementations.
//
//===----------------------------------------------------------------------===//
#include "clang/Checker/PathSensitive/SValuator.h"
#include "clang/Checker/PathSensitive/GRState.h"
using namespace clang;
SVal SValuator::EvalBinOp(const GRState *ST, BinaryOperator::Opcode Op,
SVal L, SVal R, QualType T) {
if (L.isUndef() || R.isUndef())
return UndefinedVal();
if (L.isUnknown() || R.isUnknown())
return UnknownVal();
if (isa<Loc>(L)) {
if (isa<Loc>(R))
return EvalBinOpLL(Op, cast<Loc>(L), cast<Loc>(R), T);
return EvalBinOpLN(ST, Op, cast<Loc>(L), cast<NonLoc>(R), T);
}
if (isa<Loc>(R)) {
// Support pointer arithmetic where the increment/decrement operand
// is on the left and the pointer on the right.
assert(Op == BinaryOperator::Add || Op == BinaryOperator::Sub);
// Commute the operands.
return EvalBinOpLN(ST, Op, cast<Loc>(R), cast<NonLoc>(L), T);
}
return EvalBinOpNN(ST, Op, cast<NonLoc>(L), cast<NonLoc>(R), T);
}
DefinedOrUnknownSVal SValuator::EvalEQ(const GRState *ST,
DefinedOrUnknownSVal L,
DefinedOrUnknownSVal R) {
return cast<DefinedOrUnknownSVal>(EvalBinOp(ST, BinaryOperator::EQ, L, R,
ValMgr.getContext().IntTy));
}
SVal SValuator::EvalCast(SVal val, QualType castTy, QualType originalTy) {
if (val.isUnknownOrUndef() || castTy == originalTy)
return val;
ASTContext &C = ValMgr.getContext();
// For const casts, just propagate the value.
if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
if (C.hasSameUnqualifiedType(castTy, originalTy))
return val;
// Check for casts to real or complex numbers. We don't handle these at all
// right now.
if (castTy->isFloatingType() || castTy->isAnyComplexType())
return UnknownVal();
// Check for casts from integers to integers.
if (castTy->isIntegerType() && originalTy->isIntegerType())
return EvalCastNL(cast<NonLoc>(val), castTy);
// Check for casts from pointers to integers.
if (castTy->isIntegerType() && Loc::IsLocType(originalTy))
return EvalCastL(cast<Loc>(val), castTy);
// Check for casts from integers to pointers.
if (Loc::IsLocType(castTy) && originalTy->isIntegerType()) {
if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) {
if (const MemRegion *R = LV->getLoc().getAsRegion()) {
StoreManager &storeMgr = ValMgr.getStateManager().getStoreManager();
R = storeMgr.CastRegion(R, castTy);
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
}
return LV->getLoc();
}
goto DispatchCast;
}
// Just pass through function and block pointers.
if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
assert(Loc::IsLocType(castTy));
return val;
}
// Check for casts from array type to another type.
if (originalTy->isArrayType()) {
// We will always decay to a pointer.
val = ValMgr.getStateManager().ArrayToPointer(cast<Loc>(val));
// Are we casting from an array to a pointer? If so just pass on
// the decayed value.
if (castTy->isPointerType())
return val;
// Are we casting from an array to an integer? If so, cast the decayed
// pointer value to an integer.
assert(castTy->isIntegerType());
// FIXME: Keep these here for now in case we decide soon that we
// need the original decayed type.
// QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
// QualType pointerTy = C.getPointerType(elemTy);
return EvalCastL(cast<Loc>(val), castTy);
}
// Check for casts from a region to a specific type.
if (const MemRegion *R = val.getAsRegion()) {
// FIXME: We should handle the case where we strip off view layers to get
// to a desugared type.
assert(Loc::IsLocType(castTy));
// We get a symbolic function pointer for a dereference of a function
// pointer, but it is of function type. Example:
// struct FPRec {
// void (*my_func)(int * x);
// };
//
// int bar(int x);
//
// int f1_a(struct FPRec* foo) {
// int x;
// (*foo->my_func)(&x);
// return bar(x)+1; // no-warning
// }
assert(Loc::IsLocType(originalTy) || originalTy->isFunctionType() ||
originalTy->isBlockPointerType());
StoreManager &storeMgr = ValMgr.getStateManager().getStoreManager();
// Delegate to store manager to get the result of casting a region to a
// different type. If the MemRegion* returned is NULL, this expression
// evaluates to UnknownVal.
R = storeMgr.CastRegion(R, castTy);
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
}
DispatchCast:
// All other cases.
return isa<Loc>(val) ? EvalCastL(cast<Loc>(val), castTy)
: EvalCastNL(cast<NonLoc>(val), castTy);
}