| //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SemaInherit.h" |
| #include "Sema.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/STLExtras.h" |
| using namespace clang; |
| |
| /// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function |
| /// name (e.g., operator void const *) as an expression. This is |
| /// very similar to ActOnIdentifierExpr, except that instead of |
| /// providing an identifier the parser provides the type of the |
| /// conversion function. |
| Sema::OwningExprResult |
| Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc, |
| TypeTy *Ty, bool HasTrailingLParen, |
| const CXXScopeSpec &SS, |
| bool isAddressOfOperand) { |
| QualType ConvType = QualType::getFromOpaquePtr(Ty); |
| QualType ConvTypeCanon = Context.getCanonicalType(ConvType); |
| DeclarationName ConvName |
| = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon); |
| return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen, |
| &SS, isAddressOfOperand); |
| } |
| |
| /// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator |
| /// name (e.g., @c operator+ ) as an expression. This is very |
| /// similar to ActOnIdentifierExpr, except that instead of providing |
| /// an identifier the parser provides the kind of overloaded |
| /// operator that was parsed. |
| Sema::OwningExprResult |
| Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc, |
| OverloadedOperatorKind Op, |
| bool HasTrailingLParen, |
| const CXXScopeSpec &SS, |
| bool isAddressOfOperand) { |
| DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op); |
| return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS, |
| isAddressOfOperand); |
| } |
| |
| /// ActOnCXXTypeidOfType - Parse typeid( type-id ). |
| Action::OwningExprResult |
| Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, |
| bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| NamespaceDecl *StdNs = GetStdNamespace(); |
| if (!StdNs) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| |
| IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); |
| Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName); |
| RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl); |
| if (!TypeInfoRecordDecl) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| |
| QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); |
| |
| if (!isType) { |
| // C++0x [expr.typeid]p3: |
| // When typeid is applied to an expression other than an lvalue of a |
| // polymorphic class type [...] [the] expression is an unevaluated |
| // operand. |
| |
| // FIXME: if the type of the expression is a class type, the class |
| // shall be completely defined. |
| bool isUnevaluatedOperand = true; |
| Expr *E = static_cast<Expr *>(TyOrExpr); |
| if (E && !E->isTypeDependent() && E->isLvalue(Context) == Expr::LV_Valid) { |
| QualType T = E->getType(); |
| if (const RecordType *RecordT = T->getAsRecordType()) { |
| CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); |
| if (RecordD->isPolymorphic()) |
| isUnevaluatedOperand = false; |
| } |
| } |
| |
| // If this is an unevaluated operand, clear out the set of declaration |
| // references we have been computing. |
| if (isUnevaluatedOperand) |
| PotentiallyReferencedDeclStack.back().clear(); |
| } |
| |
| return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr, |
| TypeInfoType.withConst(), |
| SourceRange(OpLoc, RParenLoc))); |
| } |
| |
| /// ActOnCXXBoolLiteral - Parse {true,false} literals. |
| Action::OwningExprResult |
| Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
| assert((Kind == tok::kw_true || Kind == tok::kw_false) && |
| "Unknown C++ Boolean value!"); |
| return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, |
| Context.BoolTy, OpLoc)); |
| } |
| |
| /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. |
| Action::OwningExprResult |
| Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { |
| return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); |
| } |
| |
| /// ActOnCXXThrow - Parse throw expressions. |
| Action::OwningExprResult |
| Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) { |
| Expr *Ex = E.takeAs<Expr>(); |
| if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) |
| return ExprError(); |
| return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); |
| } |
| |
| /// CheckCXXThrowOperand - Validate the operand of a throw. |
| bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { |
| // C++ [except.throw]p3: |
| // [...] adjusting the type from "array of T" or "function returning T" |
| // to "pointer to T" or "pointer to function returning T", [...] |
| DefaultFunctionArrayConversion(E); |
| |
| // If the type of the exception would be an incomplete type or a pointer |
| // to an incomplete type other than (cv) void the program is ill-formed. |
| QualType Ty = E->getType(); |
| int isPointer = 0; |
| if (const PointerType* Ptr = Ty->getAsPointerType()) { |
| Ty = Ptr->getPointeeType(); |
| isPointer = 1; |
| } |
| if (!isPointer || !Ty->isVoidType()) { |
| if (RequireCompleteType(ThrowLoc, Ty, |
| isPointer ? diag::err_throw_incomplete_ptr |
| : diag::err_throw_incomplete, |
| E->getSourceRange(), SourceRange(), QualType())) |
| return true; |
| } |
| |
| // FIXME: Construct a temporary here. |
| return false; |
| } |
| |
| Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { |
| /// C++ 9.3.2: In the body of a non-static member function, the keyword this |
| /// is a non-lvalue expression whose value is the address of the object for |
| /// which the function is called. |
| |
| if (!isa<FunctionDecl>(CurContext)) |
| return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) |
| if (MD->isInstance()) |
| return Owned(new (Context) CXXThisExpr(ThisLoc, |
| MD->getThisType(Context))); |
| |
| return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| } |
| |
| /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. |
| /// Can be interpreted either as function-style casting ("int(x)") |
| /// or class type construction ("ClassType(x,y,z)") |
| /// or creation of a value-initialized type ("int()"). |
| Action::OwningExprResult |
| Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, |
| SourceLocation LParenLoc, |
| MultiExprArg exprs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| assert(TypeRep && "Missing type!"); |
| QualType Ty = QualType::getFromOpaquePtr(TypeRep); |
| unsigned NumExprs = exprs.size(); |
| Expr **Exprs = (Expr**)exprs.get(); |
| SourceLocation TyBeginLoc = TypeRange.getBegin(); |
| SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); |
| |
| if (Ty->isDependentType() || |
| CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { |
| exprs.release(); |
| |
| return Owned(CXXUnresolvedConstructExpr::Create(Context, |
| TypeRange.getBegin(), Ty, |
| LParenLoc, |
| Exprs, NumExprs, |
| RParenLoc)); |
| } |
| |
| |
| // C++ [expr.type.conv]p1: |
| // If the expression list is a single expression, the type conversion |
| // expression is equivalent (in definedness, and if defined in meaning) to the |
| // corresponding cast expression. |
| // |
| if (NumExprs == 1) { |
| if (CheckCastTypes(TypeRange, Ty, Exprs[0])) |
| return ExprError(); |
| exprs.release(); |
| return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), |
| Ty, TyBeginLoc, Exprs[0], |
| RParenLoc)); |
| } |
| |
| if (const RecordType *RT = Ty->getAsRecordType()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| // FIXME: We should always create a CXXTemporaryObjectExpr here unless |
| // both the ctor and dtor are trivial. |
| if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) { |
| CXXConstructorDecl *Constructor |
| = PerformInitializationByConstructor(Ty, Exprs, NumExprs, |
| TypeRange.getBegin(), |
| SourceRange(TypeRange.getBegin(), |
| RParenLoc), |
| DeclarationName(), |
| IK_Direct); |
| |
| if (!Constructor) |
| return ExprError(); |
| |
| exprs.release(); |
| Expr *E = new (Context) CXXTemporaryObjectExpr(Context, Constructor, |
| Ty, TyBeginLoc, Exprs, |
| NumExprs, RParenLoc); |
| return MaybeBindToTemporary(E); |
| } |
| |
| // Fall through to value-initialize an object of class type that |
| // doesn't have a user-declared default constructor. |
| } |
| |
| // C++ [expr.type.conv]p1: |
| // If the expression list specifies more than a single value, the type shall |
| // be a class with a suitably declared constructor. |
| // |
| if (NumExprs > 1) |
| return ExprError(Diag(CommaLocs[0], |
| diag::err_builtin_func_cast_more_than_one_arg) |
| << FullRange); |
| |
| assert(NumExprs == 0 && "Expected 0 expressions"); |
| |
| // C++ [expr.type.conv]p2: |
| // The expression T(), where T is a simple-type-specifier for a non-array |
| // complete object type or the (possibly cv-qualified) void type, creates an |
| // rvalue of the specified type, which is value-initialized. |
| // |
| if (Ty->isArrayType()) |
| return ExprError(Diag(TyBeginLoc, |
| diag::err_value_init_for_array_type) << FullRange); |
| if (!Ty->isDependentType() && !Ty->isVoidType() && |
| RequireCompleteType(TyBeginLoc, Ty, |
| diag::err_invalid_incomplete_type_use, FullRange)) |
| return ExprError(); |
| |
| if (RequireNonAbstractType(TyBeginLoc, Ty, |
| diag::err_allocation_of_abstract_type)) |
| return ExprError(); |
| |
| exprs.release(); |
| return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc)); |
| } |
| |
| |
| /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: |
| /// @code new (memory) int[size][4] @endcode |
| /// or |
| /// @code ::new Foo(23, "hello") @endcode |
| /// For the interpretation of this heap of arguments, consult the base version. |
| Action::OwningExprResult |
| Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, bool ParenTypeId, |
| Declarator &D, SourceLocation ConstructorLParen, |
| MultiExprArg ConstructorArgs, |
| SourceLocation ConstructorRParen) |
| { |
| Expr *ArraySize = 0; |
| unsigned Skip = 0; |
| // If the specified type is an array, unwrap it and save the expression. |
| if (D.getNumTypeObjects() > 0 && |
| D.getTypeObject(0).Kind == DeclaratorChunk::Array) { |
| DeclaratorChunk &Chunk = D.getTypeObject(0); |
| if (Chunk.Arr.hasStatic) |
| return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) |
| << D.getSourceRange()); |
| if (!Chunk.Arr.NumElts) |
| return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) |
| << D.getSourceRange()); |
| ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); |
| Skip = 1; |
| } |
| |
| QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip); |
| if (D.isInvalidType()) |
| return ExprError(); |
| |
| // Every dimension shall be of constant size. |
| unsigned i = 1; |
| QualType ElementType = AllocType; |
| while (const ArrayType *Array = Context.getAsArrayType(ElementType)) { |
| if (!Array->isConstantArrayType()) { |
| Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst) |
| << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange(); |
| return ExprError(); |
| } |
| ElementType = Array->getElementType(); |
| ++i; |
| } |
| |
| return BuildCXXNew(StartLoc, UseGlobal, |
| PlacementLParen, |
| move(PlacementArgs), |
| PlacementRParen, |
| ParenTypeId, |
| AllocType, |
| D.getSourceRange().getBegin(), |
| D.getSourceRange(), |
| Owned(ArraySize), |
| ConstructorLParen, |
| move(ConstructorArgs), |
| ConstructorRParen); |
| } |
| |
| Sema::OwningExprResult |
| Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, |
| MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, |
| bool ParenTypeId, |
| QualType AllocType, |
| SourceLocation TypeLoc, |
| SourceRange TypeRange, |
| ExprArg ArraySizeE, |
| SourceLocation ConstructorLParen, |
| MultiExprArg ConstructorArgs, |
| SourceLocation ConstructorRParen) { |
| if (CheckAllocatedType(AllocType, TypeLoc, TypeRange)) |
| return ExprError(); |
| |
| QualType ResultType = Context.getPointerType(AllocType); |
| |
| // That every array dimension except the first is constant was already |
| // checked by the type check above. |
| |
| // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral |
| // or enumeration type with a non-negative value." |
| Expr *ArraySize = (Expr *)ArraySizeE.get(); |
| if (ArraySize && !ArraySize->isTypeDependent()) { |
| QualType SizeType = ArraySize->getType(); |
| if (!SizeType->isIntegralType() && !SizeType->isEnumeralType()) |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_array_size_not_integral) |
| << SizeType << ArraySize->getSourceRange()); |
| // Let's see if this is a constant < 0. If so, we reject it out of hand. |
| // We don't care about special rules, so we tell the machinery it's not |
| // evaluated - it gives us a result in more cases. |
| if (!ArraySize->isValueDependent()) { |
| llvm::APSInt Value; |
| if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { |
| if (Value < llvm::APSInt( |
| llvm::APInt::getNullValue(Value.getBitWidth()), false)) |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_typecheck_negative_array_size) |
| << ArraySize->getSourceRange()); |
| } |
| } |
| } |
| |
| FunctionDecl *OperatorNew = 0; |
| FunctionDecl *OperatorDelete = 0; |
| Expr **PlaceArgs = (Expr**)PlacementArgs.get(); |
| unsigned NumPlaceArgs = PlacementArgs.size(); |
| if (!AllocType->isDependentType() && |
| !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && |
| FindAllocationFunctions(StartLoc, |
| SourceRange(PlacementLParen, PlacementRParen), |
| UseGlobal, AllocType, ArraySize, PlaceArgs, |
| NumPlaceArgs, OperatorNew, OperatorDelete)) |
| return ExprError(); |
| |
| bool Init = ConstructorLParen.isValid(); |
| // --- Choosing a constructor --- |
| // C++ 5.3.4p15 |
| // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid) |
| // the object is not initialized. If the object, or any part of it, is |
| // const-qualified, it's an error. |
| // 2) If T is a POD and there's an empty initializer, the object is value- |
| // initialized. |
| // 3) If T is a POD and there's one initializer argument, the object is copy- |
| // constructed. |
| // 4) If T is a POD and there's more initializer arguments, it's an error. |
| // 5) If T is not a POD, the initializer arguments are used as constructor |
| // arguments. |
| // |
| // Or by the C++0x formulation: |
| // 1) If there's no initializer, the object is default-initialized according |
| // to C++0x rules. |
| // 2) Otherwise, the object is direct-initialized. |
| CXXConstructorDecl *Constructor = 0; |
| Expr **ConsArgs = (Expr**)ConstructorArgs.get(); |
| const RecordType *RT; |
| unsigned NumConsArgs = ConstructorArgs.size(); |
| if (AllocType->isDependentType()) { |
| // Skip all the checks. |
| } |
| else if ((RT = AllocType->getAsRecordType()) && |
| !AllocType->isAggregateType()) { |
| Constructor = PerformInitializationByConstructor( |
| AllocType, ConsArgs, NumConsArgs, |
| TypeLoc, |
| SourceRange(TypeLoc, ConstructorRParen), |
| RT->getDecl()->getDeclName(), |
| NumConsArgs != 0 ? IK_Direct : IK_Default); |
| if (!Constructor) |
| return ExprError(); |
| } else { |
| if (!Init) { |
| // FIXME: Check that no subpart is const. |
| if (AllocType.isConstQualified()) |
| return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const) |
| << TypeRange); |
| } else if (NumConsArgs == 0) { |
| // Object is value-initialized. Do nothing. |
| } else if (NumConsArgs == 1) { |
| // Object is direct-initialized. |
| // FIXME: What DeclarationName do we pass in here? |
| if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc, |
| DeclarationName() /*AllocType.getAsString()*/, |
| /*DirectInit=*/true)) |
| return ExprError(); |
| } else { |
| return ExprError(Diag(StartLoc, |
| diag::err_builtin_direct_init_more_than_one_arg) |
| << SourceRange(ConstructorLParen, ConstructorRParen)); |
| } |
| } |
| |
| // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) |
| |
| PlacementArgs.release(); |
| ConstructorArgs.release(); |
| ArraySizeE.release(); |
| return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs, |
| NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init, |
| ConsArgs, NumConsArgs, OperatorDelete, ResultType, |
| StartLoc, Init ? ConstructorRParen : SourceLocation())); |
| } |
| |
| /// CheckAllocatedType - Checks that a type is suitable as the allocated type |
| /// in a new-expression. |
| /// dimension off and stores the size expression in ArraySize. |
| bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, |
| SourceRange R) |
| { |
| // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an |
| // abstract class type or array thereof. |
| if (AllocType->isFunctionType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 0 << R; |
| else if (AllocType->isReferenceType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 1 << R; |
| else if (!AllocType->isDependentType() && |
| RequireCompleteType(Loc, AllocType, |
| diag::err_new_incomplete_type, |
| R)) |
| return true; |
| else if (RequireNonAbstractType(Loc, AllocType, |
| diag::err_allocation_of_abstract_type)) |
| return true; |
| |
| return false; |
| } |
| |
| /// FindAllocationFunctions - Finds the overloads of operator new and delete |
| /// that are appropriate for the allocation. |
| bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, |
| bool UseGlobal, QualType AllocType, |
| bool IsArray, Expr **PlaceArgs, |
| unsigned NumPlaceArgs, |
| FunctionDecl *&OperatorNew, |
| FunctionDecl *&OperatorDelete) |
| { |
| // --- Choosing an allocation function --- |
| // C++ 5.3.4p8 - 14 & 18 |
| // 1) If UseGlobal is true, only look in the global scope. Else, also look |
| // in the scope of the allocated class. |
| // 2) If an array size is given, look for operator new[], else look for |
| // operator new. |
| // 3) The first argument is always size_t. Append the arguments from the |
| // placement form. |
| // FIXME: Also find the appropriate delete operator. |
| |
| llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); |
| // We don't care about the actual value of this argument. |
| // FIXME: Should the Sema create the expression and embed it in the syntax |
| // tree? Or should the consumer just recalculate the value? |
| AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue( |
| Context.Target.getPointerWidth(0)), |
| Context.getSizeType(), |
| SourceLocation()); |
| std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); |
| |
| DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( |
| IsArray ? OO_Array_New : OO_New); |
| if (AllocType->isRecordType() && !UseGlobal) { |
| CXXRecordDecl *Record |
| = cast<CXXRecordDecl>(AllocType->getAsRecordType()->getDecl()); |
| // FIXME: We fail to find inherited overloads. |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), Record, /*AllowMissing=*/true, |
| OperatorNew)) |
| return true; |
| } |
| if (!OperatorNew) { |
| // Didn't find a member overload. Look for a global one. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), TUDecl, /*AllowMissing=*/false, |
| OperatorNew)) |
| return true; |
| } |
| |
| // FindAllocationOverload can change the passed in arguments, so we need to |
| // copy them back. |
| if (NumPlaceArgs > 0) |
| std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); |
| |
| // FIXME: This is leaked on error. But so much is currently in Sema that it's |
| // easier to clean it in one go. |
| AllocArgs[0]->Destroy(Context); |
| return false; |
| } |
| |
| /// FindAllocationOverload - Find an fitting overload for the allocation |
| /// function in the specified scope. |
| bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, |
| DeclarationName Name, Expr** Args, |
| unsigned NumArgs, DeclContext *Ctx, |
| bool AllowMissing, FunctionDecl *&Operator) |
| { |
| DeclContext::lookup_iterator Alloc, AllocEnd; |
| llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Context, Name); |
| if (Alloc == AllocEnd) { |
| if (AllowMissing) |
| return false; |
| return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| } |
| |
| OverloadCandidateSet Candidates; |
| for (; Alloc != AllocEnd; ++Alloc) { |
| // Even member operator new/delete are implicitly treated as |
| // static, so don't use AddMemberCandidate. |
| if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc)) |
| AddOverloadCandidate(Fn, Args, NumArgs, Candidates, |
| /*SuppressUserConversions=*/false); |
| } |
| |
| // Do the resolution. |
| OverloadCandidateSet::iterator Best; |
| switch(BestViableFunction(Candidates, StartLoc, Best)) { |
| case OR_Success: { |
| // Got one! |
| FunctionDecl *FnDecl = Best->Function; |
| // The first argument is size_t, and the first parameter must be size_t, |
| // too. This is checked on declaration and can be assumed. (It can't be |
| // asserted on, though, since invalid decls are left in there.) |
| for (unsigned i = 1; i < NumArgs; ++i) { |
| // FIXME: Passing word to diagnostic. |
| if (PerformCopyInitialization(Args[i], |
| FnDecl->getParamDecl(i)->getType(), |
| "passing")) |
| return true; |
| } |
| Operator = FnDecl; |
| return false; |
| } |
| |
| case OR_No_Viable_Function: |
| Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, /*OnlyViable=*/false); |
| return true; |
| |
| case OR_Ambiguous: |
| Diag(StartLoc, diag::err_ovl_ambiguous_call) |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, /*OnlyViable=*/true); |
| return true; |
| |
| case OR_Deleted: |
| Diag(StartLoc, diag::err_ovl_deleted_call) |
| << Best->Function->isDeleted() |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, /*OnlyViable=*/true); |
| return true; |
| } |
| assert(false && "Unreachable, bad result from BestViableFunction"); |
| return true; |
| } |
| |
| |
| /// DeclareGlobalNewDelete - Declare the global forms of operator new and |
| /// delete. These are: |
| /// @code |
| /// void* operator new(std::size_t) throw(std::bad_alloc); |
| /// void* operator new[](std::size_t) throw(std::bad_alloc); |
| /// void operator delete(void *) throw(); |
| /// void operator delete[](void *) throw(); |
| /// @endcode |
| /// Note that the placement and nothrow forms of new are *not* implicitly |
| /// declared. Their use requires including \<new\>. |
| void Sema::DeclareGlobalNewDelete() |
| { |
| if (GlobalNewDeleteDeclared) |
| return; |
| GlobalNewDeleteDeclared = true; |
| |
| QualType VoidPtr = Context.getPointerType(Context.VoidTy); |
| QualType SizeT = Context.getSizeType(); |
| |
| // FIXME: Exception specifications are not added. |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_New), |
| VoidPtr, SizeT); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_New), |
| VoidPtr, SizeT); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Delete), |
| Context.VoidTy, VoidPtr); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), |
| Context.VoidTy, VoidPtr); |
| } |
| |
| /// DeclareGlobalAllocationFunction - Declares a single implicit global |
| /// allocation function if it doesn't already exist. |
| void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, |
| QualType Return, QualType Argument) |
| { |
| DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); |
| |
| // Check if this function is already declared. |
| { |
| DeclContext::lookup_iterator Alloc, AllocEnd; |
| for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Context, Name); |
| Alloc != AllocEnd; ++Alloc) { |
| // FIXME: Do we need to check for default arguments here? |
| FunctionDecl *Func = cast<FunctionDecl>(*Alloc); |
| if (Func->getNumParams() == 1 && |
| Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument) |
| return; |
| } |
| } |
| |
| QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0); |
| FunctionDecl *Alloc = |
| FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, |
| FnType, FunctionDecl::None, false, true, |
| SourceLocation()); |
| Alloc->setImplicit(); |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), |
| 0, Argument, VarDecl::None, 0); |
| Alloc->setParams(Context, &Param, 1); |
| |
| // FIXME: Also add this declaration to the IdentifierResolver, but |
| // make sure it is at the end of the chain to coincide with the |
| // global scope. |
| ((DeclContext *)TUScope->getEntity())->addDecl(Context, Alloc); |
| } |
| |
| /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: |
| /// @code ::delete ptr; @endcode |
| /// or |
| /// @code delete [] ptr; @endcode |
| Action::OwningExprResult |
| Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, |
| bool ArrayForm, ExprArg Operand) |
| { |
| // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type |
| // having a single conversion function to a pointer type. The result has |
| // type void." |
| // DR599 amends "pointer type" to "pointer to object type" in both cases. |
| |
| Expr *Ex = (Expr *)Operand.get(); |
| if (!Ex->isTypeDependent()) { |
| QualType Type = Ex->getType(); |
| |
| if (Type->isRecordType()) { |
| // FIXME: Find that one conversion function and amend the type. |
| } |
| |
| if (!Type->isPointerType()) |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex->getSourceRange()); |
| |
| QualType Pointee = Type->getAsPointerType()->getPointeeType(); |
| if (Pointee->isFunctionType() || Pointee->isVoidType()) |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex->getSourceRange()); |
| else if (!Pointee->isDependentType() && |
| RequireCompleteType(StartLoc, Pointee, |
| diag::warn_delete_incomplete, |
| Ex->getSourceRange())) |
| return ExprError(); |
| |
| // FIXME: Look up the correct operator delete overload and pass a pointer |
| // along. |
| // FIXME: Check access and ambiguity of operator delete and destructor. |
| } |
| |
| Operand.release(); |
| return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, |
| 0, Ex, StartLoc)); |
| } |
| |
| |
| /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a |
| /// C++ if/switch/while/for statement. |
| /// e.g: "if (int x = f()) {...}" |
| Action::OwningExprResult |
| Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, |
| Declarator &D, |
| SourceLocation EqualLoc, |
| ExprArg AssignExprVal) { |
| assert(AssignExprVal.get() && "Null assignment expression"); |
| |
| // C++ 6.4p2: |
| // The declarator shall not specify a function or an array. |
| // The type-specifier-seq shall not contain typedef and shall not declare a |
| // new class or enumeration. |
| |
| assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
| "Parser allowed 'typedef' as storage class of condition decl."); |
| |
| QualType Ty = GetTypeForDeclarator(D, S); |
| |
| if (Ty->isFunctionType()) { // The declarator shall not specify a function... |
| // We exit without creating a CXXConditionDeclExpr because a FunctionDecl |
| // would be created and CXXConditionDeclExpr wants a VarDecl. |
| return ExprError(Diag(StartLoc, diag::err_invalid_use_of_function_type) |
| << SourceRange(StartLoc, EqualLoc)); |
| } else if (Ty->isArrayType()) { // ...or an array. |
| Diag(StartLoc, diag::err_invalid_use_of_array_type) |
| << SourceRange(StartLoc, EqualLoc); |
| } else if (const RecordType *RT = Ty->getAsRecordType()) { |
| RecordDecl *RD = RT->getDecl(); |
| // The type-specifier-seq shall not declare a new class... |
| if (RD->isDefinition() && |
| (RD->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(RD)))) |
| Diag(RD->getLocation(), diag::err_type_defined_in_condition); |
| } else if (const EnumType *ET = Ty->getAsEnumType()) { |
| EnumDecl *ED = ET->getDecl(); |
| // ...or enumeration. |
| if (ED->isDefinition() && |
| (ED->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(ED)))) |
| Diag(ED->getLocation(), diag::err_type_defined_in_condition); |
| } |
| |
| DeclPtrTy Dcl = ActOnDeclarator(S, D); |
| if (!Dcl) |
| return ExprError(); |
| AddInitializerToDecl(Dcl, move(AssignExprVal), /*DirectInit=*/false); |
| |
| // Mark this variable as one that is declared within a conditional. |
| // We know that the decl had to be a VarDecl because that is the only type of |
| // decl that can be assigned and the grammar requires an '='. |
| VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>()); |
| VD->setDeclaredInCondition(true); |
| return Owned(new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc, VD)); |
| } |
| |
| /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. |
| bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { |
| // C++ 6.4p4: |
| // The value of a condition that is an initialized declaration in a statement |
| // other than a switch statement is the value of the declared variable |
| // implicitly converted to type bool. If that conversion is ill-formed, the |
| // program is ill-formed. |
| // The value of a condition that is an expression is the value of the |
| // expression, implicitly converted to bool. |
| // |
| return PerformContextuallyConvertToBool(CondExpr); |
| } |
| |
| /// Helper function to determine whether this is the (deprecated) C++ |
| /// conversion from a string literal to a pointer to non-const char or |
| /// non-const wchar_t (for narrow and wide string literals, |
| /// respectively). |
| bool |
| Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { |
| // Look inside the implicit cast, if it exists. |
| if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) |
| From = Cast->getSubExpr(); |
| |
| // A string literal (2.13.4) that is not a wide string literal can |
| // be converted to an rvalue of type "pointer to char"; a wide |
| // string literal can be converted to an rvalue of type "pointer |
| // to wchar_t" (C++ 4.2p2). |
| if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From)) |
| if (const PointerType *ToPtrType = ToType->getAsPointerType()) |
| if (const BuiltinType *ToPointeeType |
| = ToPtrType->getPointeeType()->getAsBuiltinType()) { |
| // This conversion is considered only when there is an |
| // explicit appropriate pointer target type (C++ 4.2p2). |
| if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 && |
| ((StrLit->isWide() && ToPointeeType->isWideCharType()) || |
| (!StrLit->isWide() && |
| (ToPointeeType->getKind() == BuiltinType::Char_U || |
| ToPointeeType->getKind() == BuiltinType::Char_S)))) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType. Returns true if there was an |
| /// error, false otherwise. The expression From is replaced with the |
| /// converted expression. Flavor is the kind of conversion we're |
| /// performing, used in the error message. If @p AllowExplicit, |
| /// explicit user-defined conversions are permitted. @p Elidable should be true |
| /// when called for copies which may be elided (C++ 12.8p15). C++0x overload |
| /// resolution works differently in that case. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const char *Flavor, bool AllowExplicit, |
| bool Elidable) |
| { |
| ImplicitConversionSequence ICS; |
| ICS.ConversionKind = ImplicitConversionSequence::BadConversion; |
| if (Elidable && getLangOptions().CPlusPlus0x) { |
| ICS = TryImplicitConversion(From, ToType, /*SuppressUserConversions*/false, |
| AllowExplicit, /*ForceRValue*/true); |
| } |
| if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) { |
| ICS = TryImplicitConversion(From, ToType, false, AllowExplicit); |
| } |
| return PerformImplicitConversion(From, ToType, ICS, Flavor); |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType using the pre-computed implicit |
| /// conversion sequence ICS. Returns true if there was an error, false |
| /// otherwise. The expression From is replaced with the converted |
| /// expression. Flavor is the kind of conversion we're performing, |
| /// used in the error message. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const ImplicitConversionSequence &ICS, |
| const char* Flavor) { |
| switch (ICS.ConversionKind) { |
| case ImplicitConversionSequence::StandardConversion: |
| if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor)) |
| return true; |
| break; |
| |
| case ImplicitConversionSequence::UserDefinedConversion: |
| // FIXME: This is, of course, wrong. We'll need to actually call the |
| // constructor or conversion operator, and then cope with the standard |
| // conversions. |
| ImpCastExprToType(From, ToType.getNonReferenceType(), |
| ToType->isLValueReferenceType()); |
| return false; |
| |
| case ImplicitConversionSequence::EllipsisConversion: |
| assert(false && "Cannot perform an ellipsis conversion"); |
| return false; |
| |
| case ImplicitConversionSequence::BadConversion: |
| return true; |
| } |
| |
| // Everything went well. |
| return false; |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType by following the standard |
| /// conversion sequence SCS. Returns true if there was an error, false |
| /// otherwise. The expression From is replaced with the converted |
| /// expression. Flavor is the context in which we're performing this |
| /// conversion, for use in error messages. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const StandardConversionSequence& SCS, |
| const char *Flavor) { |
| // Overall FIXME: we are recomputing too many types here and doing far too |
| // much extra work. What this means is that we need to keep track of more |
| // information that is computed when we try the implicit conversion initially, |
| // so that we don't need to recompute anything here. |
| QualType FromType = From->getType(); |
| |
| if (SCS.CopyConstructor) { |
| // FIXME: When can ToType be a reference type? |
| assert(!ToType->isReferenceType()); |
| |
| // FIXME: Keep track of whether the copy constructor is elidable or not. |
| From = CXXConstructExpr::Create(Context, ToType, |
| SCS.CopyConstructor, false, &From, 1); |
| return false; |
| } |
| |
| // Perform the first implicit conversion. |
| switch (SCS.First) { |
| case ICK_Identity: |
| case ICK_Lvalue_To_Rvalue: |
| // Nothing to do. |
| break; |
| |
| case ICK_Array_To_Pointer: |
| FromType = Context.getArrayDecayedType(FromType); |
| ImpCastExprToType(From, FromType); |
| break; |
| |
| case ICK_Function_To_Pointer: |
| if (Context.getCanonicalType(FromType) == Context.OverloadTy) { |
| FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true); |
| if (!Fn) |
| return true; |
| |
| if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) |
| return true; |
| |
| FixOverloadedFunctionReference(From, Fn); |
| FromType = From->getType(); |
| } |
| FromType = Context.getPointerType(FromType); |
| ImpCastExprToType(From, FromType); |
| break; |
| |
| default: |
| assert(false && "Improper first standard conversion"); |
| break; |
| } |
| |
| // Perform the second implicit conversion |
| switch (SCS.Second) { |
| case ICK_Identity: |
| // Nothing to do. |
| break; |
| |
| case ICK_Integral_Promotion: |
| case ICK_Floating_Promotion: |
| case ICK_Complex_Promotion: |
| case ICK_Integral_Conversion: |
| case ICK_Floating_Conversion: |
| case ICK_Complex_Conversion: |
| case ICK_Floating_Integral: |
| case ICK_Complex_Real: |
| case ICK_Compatible_Conversion: |
| // FIXME: Go deeper to get the unqualified type! |
| FromType = ToType.getUnqualifiedType(); |
| ImpCastExprToType(From, FromType); |
| break; |
| |
| case ICK_Pointer_Conversion: |
| if (SCS.IncompatibleObjC) { |
| // Diagnose incompatible Objective-C conversions |
| Diag(From->getSourceRange().getBegin(), |
| diag::ext_typecheck_convert_incompatible_pointer) |
| << From->getType() << ToType << Flavor |
| << From->getSourceRange(); |
| } |
| |
| if (CheckPointerConversion(From, ToType)) |
| return true; |
| ImpCastExprToType(From, ToType); |
| break; |
| |
| case ICK_Pointer_Member: |
| if (CheckMemberPointerConversion(From, ToType)) |
| return true; |
| ImpCastExprToType(From, ToType); |
| break; |
| |
| case ICK_Boolean_Conversion: |
| FromType = Context.BoolTy; |
| ImpCastExprToType(From, FromType); |
| break; |
| |
| default: |
| assert(false && "Improper second standard conversion"); |
| break; |
| } |
| |
| switch (SCS.Third) { |
| case ICK_Identity: |
| // Nothing to do. |
| break; |
| |
| case ICK_Qualification: |
| // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue |
| // references. |
| ImpCastExprToType(From, ToType.getNonReferenceType(), |
| ToType->isLValueReferenceType()); |
| break; |
| |
| default: |
| assert(false && "Improper second standard conversion"); |
| break; |
| } |
| |
| return false; |
| } |
| |
| Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, |
| SourceLocation KWLoc, |
| SourceLocation LParen, |
| TypeTy *Ty, |
| SourceLocation RParen) { |
| // FIXME: Some of the type traits have requirements. Interestingly, only the |
| // __is_base_of requirement is explicitly stated to be diagnosed. Indeed, G++ |
| // accepts __is_pod(Incomplete) without complaints, and claims that the type |
| // is indeed a POD. |
| |
| // There is no point in eagerly computing the value. The traits are designed |
| // to be used from type trait templates, so Ty will be a template parameter |
| // 99% of the time. |
| return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, |
| QualType::getFromOpaquePtr(Ty), |
| RParen, Context.BoolTy)); |
| } |
| |
| QualType Sema::CheckPointerToMemberOperands( |
| Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) |
| { |
| const char *OpSpelling = isIndirect ? "->*" : ".*"; |
| // C++ 5.5p2 |
| // The binary operator .* [p3: ->*] binds its second operand, which shall |
| // be of type "pointer to member of T" (where T is a completely-defined |
| // class type) [...] |
| QualType RType = rex->getType(); |
| const MemberPointerType *MemPtr = RType->getAsMemberPointerType(); |
| if (!MemPtr) { |
| Diag(Loc, diag::err_bad_memptr_rhs) |
| << OpSpelling << RType << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| QualType Class(MemPtr->getClass(), 0); |
| |
| // C++ 5.5p2 |
| // [...] to its first operand, which shall be of class T or of a class of |
| // which T is an unambiguous and accessible base class. [p3: a pointer to |
| // such a class] |
| QualType LType = lex->getType(); |
| if (isIndirect) { |
| if (const PointerType *Ptr = LType->getAsPointerType()) |
| LType = Ptr->getPointeeType().getNonReferenceType(); |
| else { |
| Diag(Loc, diag::err_bad_memptr_lhs) |
| << OpSpelling << 1 << LType << lex->getSourceRange(); |
| return QualType(); |
| } |
| } |
| |
| if (Context.getCanonicalType(Class).getUnqualifiedType() != |
| Context.getCanonicalType(LType).getUnqualifiedType()) { |
| BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, |
| /*DetectVirtual=*/false); |
| // FIXME: Would it be useful to print full ambiguity paths, or is that |
| // overkill? |
| if (!IsDerivedFrom(LType, Class, Paths) || |
| Paths.isAmbiguous(Context.getCanonicalType(Class))) { |
| Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling |
| << (int)isIndirect << lex->getType() << lex->getSourceRange(); |
| return QualType(); |
| } |
| } |
| |
| // C++ 5.5p2 |
| // The result is an object or a function of the type specified by the |
| // second operand. |
| // The cv qualifiers are the union of those in the pointer and the left side, |
| // in accordance with 5.5p5 and 5.2.5. |
| // FIXME: This returns a dereferenced member function pointer as a normal |
| // function type. However, the only operation valid on such functions is |
| // calling them. There's also a GCC extension to get a function pointer to the |
| // thing, which is another complication, because this type - unlike the type |
| // that is the result of this expression - takes the class as the first |
| // argument. |
| // We probably need a "MemberFunctionClosureType" or something like that. |
| QualType Result = MemPtr->getPointeeType(); |
| if (LType.isConstQualified()) |
| Result.addConst(); |
| if (LType.isVolatileQualified()) |
| Result.addVolatile(); |
| return Result; |
| } |
| |
| /// \brief Get the target type of a standard or user-defined conversion. |
| static QualType TargetType(const ImplicitConversionSequence &ICS) { |
| assert((ICS.ConversionKind == |
| ImplicitConversionSequence::StandardConversion || |
| ICS.ConversionKind == |
| ImplicitConversionSequence::UserDefinedConversion) && |
| "function only valid for standard or user-defined conversions"); |
| if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion) |
| return QualType::getFromOpaquePtr(ICS.Standard.ToTypePtr); |
| return QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr); |
| } |
| |
| /// \brief Try to convert a type to another according to C++0x 5.16p3. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, the two operands are attempted to be |
| /// converted to each other. This function does the conversion in one direction. |
| /// It emits a diagnostic and returns true only if it finds an ambiguous |
| /// conversion. |
| static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, |
| SourceLocation QuestionLoc, |
| ImplicitConversionSequence &ICS) |
| { |
| // C++0x 5.16p3 |
| // The process for determining whether an operand expression E1 of type T1 |
| // can be converted to match an operand expression E2 of type T2 is defined |
| // as follows: |
| // -- If E2 is an lvalue: |
| if (To->isLvalue(Self.Context) == Expr::LV_Valid) { |
| // E1 can be converted to match E2 if E1 can be implicitly converted to |
| // type "lvalue reference to T2", subject to the constraint that in the |
| // conversion the reference must bind directly to E1. |
| if (!Self.CheckReferenceInit(From, |
| Self.Context.getLValueReferenceType(To->getType()), |
| &ICS)) |
| { |
| assert((ICS.ConversionKind == |
| ImplicitConversionSequence::StandardConversion || |
| ICS.ConversionKind == |
| ImplicitConversionSequence::UserDefinedConversion) && |
| "expected a definite conversion"); |
| bool DirectBinding = |
| ICS.ConversionKind == ImplicitConversionSequence::StandardConversion ? |
| ICS.Standard.DirectBinding : ICS.UserDefined.After.DirectBinding; |
| if (DirectBinding) |
| return false; |
| } |
| } |
| ICS.ConversionKind = ImplicitConversionSequence::BadConversion; |
| // -- If E2 is an rvalue, or if the conversion above cannot be done: |
| // -- if E1 and E2 have class type, and the underlying class types are |
| // the same or one is a base class of the other: |
| QualType FTy = From->getType(); |
| QualType TTy = To->getType(); |
| const RecordType *FRec = FTy->getAsRecordType(); |
| const RecordType *TRec = TTy->getAsRecordType(); |
| bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy); |
| if (FRec && TRec && (FRec == TRec || |
| FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { |
| // E1 can be converted to match E2 if the class of T2 is the |
| // same type as, or a base class of, the class of T1, and |
| // [cv2 > cv1]. |
| if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) { |
| // Could still fail if there's no copy constructor. |
| // FIXME: Is this a hard error then, or just a conversion failure? The |
| // standard doesn't say. |
| ICS = Self.TryCopyInitialization(From, TTy); |
| } |
| } else { |
| // -- Otherwise: E1 can be converted to match E2 if E1 can be |
| // implicitly converted to the type that expression E2 would have |
| // if E2 were converted to an rvalue. |
| // First find the decayed type. |
| if (TTy->isFunctionType()) |
| TTy = Self.Context.getPointerType(TTy); |
| else if(TTy->isArrayType()) |
| TTy = Self.Context.getArrayDecayedType(TTy); |
| |
| // Now try the implicit conversion. |
| // FIXME: This doesn't detect ambiguities. |
| ICS = Self.TryImplicitConversion(From, TTy); |
| } |
| return false; |
| } |
| |
| /// \brief Try to find a common type for two according to C++0x 5.16p5. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, overload resolution is used to find a |
| /// conversion to a common type. |
| static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, |
| SourceLocation Loc) { |
| Expr *Args[2] = { LHS, RHS }; |
| OverloadCandidateSet CandidateSet; |
| Self.AddBuiltinOperatorCandidates(OO_Conditional, Args, 2, CandidateSet); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (Self.BestViableFunction(CandidateSet, Loc, Best)) { |
| case Sema::OR_Success: |
| // We found a match. Perform the conversions on the arguments and move on. |
| if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], "converting") || |
| Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], "converting")) |
| break; |
| return false; |
| |
| case Sema::OR_No_Viable_Function: |
| Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return true; |
| |
| case Sema::OR_Ambiguous: |
| Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| // FIXME: Print the possible common types by printing the return types of |
| // the viable candidates. |
| break; |
| |
| case Sema::OR_Deleted: |
| assert(false && "Conditional operator has only built-in overloads"); |
| break; |
| } |
| return true; |
| } |
| |
| /// \brief Perform an "extended" implicit conversion as returned by |
| /// TryClassUnification. |
| /// |
| /// TryClassUnification generates ICSs that include reference bindings. |
| /// PerformImplicitConversion is not suitable for this; it chokes if the |
| /// second part of a standard conversion is ICK_DerivedToBase. This function |
| /// handles the reference binding specially. |
| static bool ConvertForConditional(Sema &Self, Expr *&E, |
| const ImplicitConversionSequence &ICS) |
| { |
| if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion && |
| ICS.Standard.ReferenceBinding) { |
| assert(ICS.Standard.DirectBinding && |
| "TryClassUnification should never generate indirect ref bindings"); |
| // FIXME: CheckReferenceInit should be able to reuse the ICS instead of |
| // redoing all the work. |
| return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( |
| TargetType(ICS))); |
| } |
| if (ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion && |
| ICS.UserDefined.After.ReferenceBinding) { |
| assert(ICS.UserDefined.After.DirectBinding && |
| "TryClassUnification should never generate indirect ref bindings"); |
| return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( |
| TargetType(ICS))); |
| } |
| if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, "converting")) |
| return true; |
| return false; |
| } |
| |
| /// \brief Check the operands of ?: under C++ semantics. |
| /// |
| /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y |
| /// extension. In this case, LHS == Cond. (But they're not aliases.) |
| QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, |
| SourceLocation QuestionLoc) { |
| // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ |
| // interface pointers. |
| |
| // C++0x 5.16p1 |
| // The first expression is contextually converted to bool. |
| if (!Cond->isTypeDependent()) { |
| if (CheckCXXBooleanCondition(Cond)) |
| return QualType(); |
| } |
| |
| // Either of the arguments dependent? |
| if (LHS->isTypeDependent() || RHS->isTypeDependent()) |
| return Context.DependentTy; |
| |
| // C++0x 5.16p2 |
| // If either the second or the third operand has type (cv) void, ... |
| QualType LTy = LHS->getType(); |
| QualType RTy = RHS->getType(); |
| bool LVoid = LTy->isVoidType(); |
| bool RVoid = RTy->isVoidType(); |
| if (LVoid || RVoid) { |
| // ... then the [l2r] conversions are performed on the second and third |
| // operands ... |
| DefaultFunctionArrayConversion(LHS); |
| DefaultFunctionArrayConversion(RHS); |
| LTy = LHS->getType(); |
| RTy = RHS->getType(); |
| |
| // ... and one of the following shall hold: |
| // -- The second or the third operand (but not both) is a throw- |
| // expression; the result is of the type of the other and is an rvalue. |
| bool LThrow = isa<CXXThrowExpr>(LHS); |
| bool RThrow = isa<CXXThrowExpr>(RHS); |
| if (LThrow && !RThrow) |
| return RTy; |
| if (RThrow && !LThrow) |
| return LTy; |
| |
| // -- Both the second and third operands have type void; the result is of |
| // type void and is an rvalue. |
| if (LVoid && RVoid) |
| return Context.VoidTy; |
| |
| // Neither holds, error. |
| Diag(QuestionLoc, diag::err_conditional_void_nonvoid) |
| << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Neither is void. |
| |
| // C++0x 5.16p3 |
| // Otherwise, if the second and third operand have different types, and |
| // either has (cv) class type, and attempt is made to convert each of those |
| // operands to the other. |
| if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) && |
| (LTy->isRecordType() || RTy->isRecordType())) { |
| ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; |
| // These return true if a single direction is already ambiguous. |
| if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight)) |
| return QualType(); |
| if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft)) |
| return QualType(); |
| |
| bool HaveL2R = ICSLeftToRight.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| bool HaveR2L = ICSRightToLeft.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| // If both can be converted, [...] the program is ill-formed. |
| if (HaveL2R && HaveR2L) { |
| Diag(QuestionLoc, diag::err_conditional_ambiguous) |
| << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| // If exactly one conversion is possible, that conversion is applied to |
| // the chosen operand and the converted operands are used in place of the |
| // original operands for the remainder of this section. |
| if (HaveL2R) { |
| if (ConvertForConditional(*this, LHS, ICSLeftToRight)) |
| return QualType(); |
| LTy = LHS->getType(); |
| } else if (HaveR2L) { |
| if (ConvertForConditional(*this, RHS, ICSRightToLeft)) |
| return QualType(); |
| RTy = RHS->getType(); |
| } |
| } |
| |
| // C++0x 5.16p4 |
| // If the second and third operands are lvalues and have the same type, |
| // the result is of that type [...] |
| bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy); |
| if (Same && LHS->isLvalue(Context) == Expr::LV_Valid && |
| RHS->isLvalue(Context) == Expr::LV_Valid) |
| return LTy; |
| |
| // C++0x 5.16p5 |
| // Otherwise, the result is an rvalue. If the second and third operands |
| // do not have the same type, and either has (cv) class type, ... |
| if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { |
| // ... overload resolution is used to determine the conversions (if any) |
| // to be applied to the operands. If the overload resolution fails, the |
| // program is ill-formed. |
| if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) |
| return QualType(); |
| } |
| |
| // C++0x 5.16p6 |
| // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard |
| // conversions are performed on the second and third operands. |
| DefaultFunctionArrayConversion(LHS); |
| DefaultFunctionArrayConversion(RHS); |
| LTy = LHS->getType(); |
| RTy = RHS->getType(); |
| |
| // After those conversions, one of the following shall hold: |
| // -- The second and third operands have the same type; the result |
| // is of that type. |
| if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) |
| return LTy; |
| |
| // -- The second and third operands have arithmetic or enumeration type; |
| // the usual arithmetic conversions are performed to bring them to a |
| // common type, and the result is of that type. |
| if (LTy->isArithmeticType() && RTy->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| return LHS->getType(); |
| } |
| |
| // -- The second and third operands have pointer type, or one has pointer |
| // type and the other is a null pointer constant; pointer conversions |
| // and qualification conversions are performed to bring them to their |
| // composite pointer type. The result is of the composite pointer type. |
| QualType Composite = FindCompositePointerType(LHS, RHS); |
| if (!Composite.isNull()) |
| return Composite; |
| |
| // Fourth bullet is same for pointers-to-member. However, the possible |
| // conversions are far more limited: we have null-to-pointer, upcast of |
| // containing class, and second-level cv-ness. |
| // cv-ness is not a union, but must match one of the two operands. (Which, |
| // frankly, is stupid.) |
| const MemberPointerType *LMemPtr = LTy->getAsMemberPointerType(); |
| const MemberPointerType *RMemPtr = RTy->getAsMemberPointerType(); |
| if (LMemPtr && RHS->isNullPointerConstant(Context)) { |
| ImpCastExprToType(RHS, LTy); |
| return LTy; |
| } |
| if (RMemPtr && LHS->isNullPointerConstant(Context)) { |
| ImpCastExprToType(LHS, RTy); |
| return RTy; |
| } |
| if (LMemPtr && RMemPtr) { |
| QualType LPointee = LMemPtr->getPointeeType(); |
| QualType RPointee = RMemPtr->getPointeeType(); |
| // First, we check that the unqualified pointee type is the same. If it's |
| // not, there's no conversion that will unify the two pointers. |
| if (Context.getCanonicalType(LPointee).getUnqualifiedType() == |
| Context.getCanonicalType(RPointee).getUnqualifiedType()) { |
| // Second, we take the greater of the two cv qualifications. If neither |
| // is greater than the other, the conversion is not possible. |
| unsigned Q = LPointee.getCVRQualifiers() | RPointee.getCVRQualifiers(); |
| if (Q == LPointee.getCVRQualifiers() || Q == RPointee.getCVRQualifiers()){ |
| // Third, we check if either of the container classes is derived from |
| // the other. |
| QualType LContainer(LMemPtr->getClass(), 0); |
| QualType RContainer(RMemPtr->getClass(), 0); |
| QualType MoreDerived; |
| if (Context.getCanonicalType(LContainer) == |
| Context.getCanonicalType(RContainer)) |
| MoreDerived = LContainer; |
| else if (IsDerivedFrom(LContainer, RContainer)) |
| MoreDerived = LContainer; |
| else if (IsDerivedFrom(RContainer, LContainer)) |
| MoreDerived = RContainer; |
| |
| if (!MoreDerived.isNull()) { |
| // The type 'Q Pointee (MoreDerived::*)' is the common type. |
| // We don't use ImpCastExprToType here because this could still fail |
| // for ambiguous or inaccessible conversions. |
| QualType Common = Context.getMemberPointerType( |
| LPointee.getQualifiedType(Q), MoreDerived.getTypePtr()); |
| if (PerformImplicitConversion(LHS, Common, "converting")) |
| return QualType(); |
| if (PerformImplicitConversion(RHS, Common, "converting")) |
| return QualType(); |
| return Common; |
| } |
| } |
| } |
| } |
| |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// \brief Find a merged pointer type and convert the two expressions to it. |
| /// |
| /// This finds the composite pointer type for @p E1 and @p E2 according to |
| /// C++0x 5.9p2. It converts both expressions to this type and returns it. |
| /// It does not emit diagnostics. |
| QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) { |
| assert(getLangOptions().CPlusPlus && "This function assumes C++"); |
| QualType T1 = E1->getType(), T2 = E2->getType(); |
| if(!T1->isPointerType() && !T2->isPointerType()) |
| return QualType(); |
| |
| // C++0x 5.9p2 |
| // Pointer conversions and qualification conversions are performed on |
| // pointer operands to bring them to their composite pointer type. If |
| // one operand is a null pointer constant, the composite pointer type is |
| // the type of the other operand. |
| if (E1->isNullPointerConstant(Context)) { |
| ImpCastExprToType(E1, T2); |
| return T2; |
| } |
| if (E2->isNullPointerConstant(Context)) { |
| ImpCastExprToType(E2, T1); |
| return T1; |
| } |
| // Now both have to be pointers. |
| if(!T1->isPointerType() || !T2->isPointerType()) |
| return QualType(); |
| |
| // Otherwise, of one of the operands has type "pointer to cv1 void," then |
| // the other has type "pointer to cv2 T" and the composite pointer type is |
| // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. |
| // Otherwise, the composite pointer type is a pointer type similar to the |
| // type of one of the operands, with a cv-qualification signature that is |
| // the union of the cv-qualification signatures of the operand types. |
| // In practice, the first part here is redundant; it's subsumed by the second. |
| // What we do here is, we build the two possible composite types, and try the |
| // conversions in both directions. If only one works, or if the two composite |
| // types are the same, we have succeeded. |
| llvm::SmallVector<unsigned, 4> QualifierUnion; |
| QualType Composite1 = T1, Composite2 = T2; |
| const PointerType *Ptr1, *Ptr2; |
| while ((Ptr1 = Composite1->getAsPointerType()) && |
| (Ptr2 = Composite2->getAsPointerType())) { |
| Composite1 = Ptr1->getPointeeType(); |
| Composite2 = Ptr2->getPointeeType(); |
| QualifierUnion.push_back( |
| Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| } |
| // Rewrap the composites as pointers with the union CVRs. |
| for (llvm::SmallVector<unsigned, 4>::iterator I = QualifierUnion.begin(), |
| E = QualifierUnion.end(); I != E; ++I) { |
| Composite1 = Context.getPointerType(Composite1.getQualifiedType(*I)); |
| Composite2 = Context.getPointerType(Composite2.getQualifiedType(*I)); |
| } |
| |
| ImplicitConversionSequence E1ToC1 = TryImplicitConversion(E1, Composite1); |
| ImplicitConversionSequence E2ToC1 = TryImplicitConversion(E2, Composite1); |
| ImplicitConversionSequence E1ToC2, E2ToC2; |
| E1ToC2.ConversionKind = ImplicitConversionSequence::BadConversion; |
| E2ToC2.ConversionKind = ImplicitConversionSequence::BadConversion; |
| if (Context.getCanonicalType(Composite1) != |
| Context.getCanonicalType(Composite2)) { |
| E1ToC2 = TryImplicitConversion(E1, Composite2); |
| E2ToC2 = TryImplicitConversion(E2, Composite2); |
| } |
| |
| bool ToC1Viable = E1ToC1.ConversionKind != |
| ImplicitConversionSequence::BadConversion |
| && E2ToC1.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| bool ToC2Viable = E1ToC2.ConversionKind != |
| ImplicitConversionSequence::BadConversion |
| && E2ToC2.ConversionKind != |
| ImplicitConversionSequence::BadConversion; |
| if (ToC1Viable && !ToC2Viable) { |
| if (!PerformImplicitConversion(E1, Composite1, E1ToC1, "converting") && |
| !PerformImplicitConversion(E2, Composite1, E2ToC1, "converting")) |
| return Composite1; |
| } |
| if (ToC2Viable && !ToC1Viable) { |
| if (!PerformImplicitConversion(E1, Composite2, E1ToC2, "converting") && |
| !PerformImplicitConversion(E2, Composite2, E2ToC2, "converting")) |
| return Composite2; |
| } |
| return QualType(); |
| } |
| |
| Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) { |
| const RecordType *RT = E->getType()->getAsRecordType(); |
| if (!RT) |
| return Owned(E); |
| |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasTrivialDestructor()) |
| return Owned(E); |
| |
| CXXTemporary *Temp = CXXTemporary::Create(Context, |
| RD->getDestructor(Context)); |
| ExprTemporaries.push_back(Temp); |
| |
| // FIXME: Add the temporary to the temporaries vector. |
| return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); |
| } |
| |
| // FIXME: This doesn't handle casts yet. |
| Expr *Sema::RemoveOutermostTemporaryBinding(Expr *E) { |
| const RecordType *RT = E->getType()->getAsRecordType(); |
| if (!RT) |
| return E; |
| |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasTrivialDestructor()) |
| return E; |
| |
| /// The expr passed in must be a CXXExprWithTemporaries. |
| CXXExprWithTemporaries *TempExpr = dyn_cast<CXXExprWithTemporaries>(E); |
| if (!TempExpr) |
| return E; |
| |
| Expr *SubExpr = TempExpr->getSubExpr(); |
| if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) { |
| assert(BE->getTemporary() == |
| TempExpr->getTemporary(TempExpr->getNumTemporaries() - 1) && |
| "Found temporary is not last in list!"); |
| |
| Expr *BindSubExpr = BE->getSubExpr(); |
| BE->setSubExpr(0); |
| |
| if (TempExpr->getNumTemporaries() == 1) { |
| // There's just one temporary left, so we don't need the TempExpr node. |
| TempExpr->Destroy(Context); |
| return BindSubExpr; |
| } else { |
| TempExpr->removeLastTemporary(); |
| TempExpr->setSubExpr(BindSubExpr); |
| BE->Destroy(Context); |
| } |
| |
| return E; |
| } |
| |
| // FIXME: We might need to handle other expressions here. |
| return E; |
| } |
| |
| Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr, |
| bool ShouldDestroyTemps) { |
| assert(SubExpr && "sub expression can't be null!"); |
| |
| if (ExprTemporaries.empty()) |
| return SubExpr; |
| |
| Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr, |
| &ExprTemporaries[0], |
| ExprTemporaries.size(), |
| ShouldDestroyTemps); |
| ExprTemporaries.clear(); |
| |
| return E; |
| } |
| |
| Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) { |
| Expr *FullExpr = Arg.takeAs<Expr>(); |
| if (FullExpr) |
| FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr, |
| /*ShouldDestroyTemps=*/true); |
| |
| return Owned(FullExpr); |
| } |