blob: 0f973d6d9ba3bf6eb6edcd1f5b859689d3893545 [file] [log] [blame]
//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for initializers. The main entry
// point is Sema::CheckInitList(), but all of the work is performed
// within the InitListChecker class.
//
// This file also implements Sema::CheckInitializerTypes.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/Parse/Designator.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include <map>
using namespace clang;
//===----------------------------------------------------------------------===//
// Sema Initialization Checking
//===----------------------------------------------------------------------===//
static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
const ArrayType *AT = Context.getAsArrayType(DeclType);
if (!AT) return 0;
if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
return 0;
// See if this is a string literal or @encode.
Init = Init->IgnoreParens();
// Handle @encode, which is a narrow string.
if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
return Init;
// Otherwise we can only handle string literals.
StringLiteral *SL = dyn_cast<StringLiteral>(Init);
if (SL == 0) return 0;
QualType ElemTy = Context.getCanonicalType(AT->getElementType());
// char array can be initialized with a narrow string.
// Only allow char x[] = "foo"; not char x[] = L"foo";
if (!SL->isWide())
return ElemTy->isCharType() ? Init : 0;
// wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
// correction from DR343): "An array with element type compatible with a
// qualified or unqualified version of wchar_t may be initialized by a wide
// string literal, optionally enclosed in braces."
if (Context.typesAreCompatible(Context.getWCharType(),
ElemTy.getUnqualifiedType()))
return Init;
return 0;
}
static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
bool DirectInit, Sema &S) {
// Get the type before calling CheckSingleAssignmentConstraints(), since
// it can promote the expression.
QualType InitType = Init->getType();
if (S.getLangOptions().CPlusPlus) {
// FIXME: I dislike this error message. A lot.
if (S.PerformImplicitConversion(Init, DeclType,
"initializing", DirectInit)) {
ImplicitConversionSequence ICS;
OverloadCandidateSet CandidateSet;
if (S.IsUserDefinedConversion(Init, DeclType, ICS.UserDefined,
CandidateSet,
true, false, false) != S.OR_Ambiguous)
return S.Diag(Init->getSourceRange().getBegin(),
diag::err_typecheck_convert_incompatible)
<< DeclType << Init->getType() << "initializing"
<< Init->getSourceRange();
S.Diag(Init->getSourceRange().getBegin(),
diag::err_typecheck_convert_ambiguous)
<< DeclType << Init->getType() << Init->getSourceRange();
S.PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
return true;
}
return false;
}
Sema::AssignConvertType ConvTy =
S.CheckSingleAssignmentConstraints(DeclType, Init);
return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
InitType, Init, "initializing");
}
static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
// Get the length of the string as parsed.
uint64_t StrLength =
cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
const ArrayType *AT = S.Context.getAsArrayType(DeclT);
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
// C99 6.7.8p14. We have an array of character type with unknown size
// being initialized to a string literal.
llvm::APSInt ConstVal(32);
ConstVal = StrLength;
// Return a new array type (C99 6.7.8p22).
DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
ConstVal,
ArrayType::Normal, 0);
return;
}
const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
// C99 6.7.8p14. We have an array of character type with known size. However,
// the size may be smaller or larger than the string we are initializing.
// FIXME: Avoid truncation for 64-bit length strings.
if (StrLength-1 > CAT->getSize().getZExtValue())
S.Diag(Str->getSourceRange().getBegin(),
diag::warn_initializer_string_for_char_array_too_long)
<< Str->getSourceRange();
// Set the type to the actual size that we are initializing. If we have
// something like:
// char x[1] = "foo";
// then this will set the string literal's type to char[1].
Str->setType(DeclT);
}
bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
SourceLocation InitLoc,
DeclarationName InitEntity, bool DirectInit) {
if (DeclType->isDependentType() ||
Init->isTypeDependent() || Init->isValueDependent())
return false;
// C++ [dcl.init.ref]p1:
// A variable declared to be a T& or T&&, that is "reference to type T"
// (8.3.2), shall be initialized by an object, or function, of
// type T or by an object that can be converted into a T.
if (DeclType->isReferenceType())
return CheckReferenceInit(Init, DeclType, InitLoc,
/*SuppressUserConversions=*/false,
/*AllowExplicit=*/DirectInit,
/*ForceRValue=*/false);
// C99 6.7.8p3: The type of the entity to be initialized shall be an array
// of unknown size ("[]") or an object type that is not a variable array type.
if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
return Diag(InitLoc, diag::err_variable_object_no_init)
<< VAT->getSizeExpr()->getSourceRange();
InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
if (!InitList) {
// FIXME: Handle wide strings
if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
CheckStringInit(Str, DeclType, *this);
return false;
}
// C++ [dcl.init]p14:
// -- If the destination type is a (possibly cv-qualified) class
// type:
if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
QualType DeclTypeC = Context.getCanonicalType(DeclType);
QualType InitTypeC = Context.getCanonicalType(Init->getType());
// -- If the initialization is direct-initialization, or if it is
// copy-initialization where the cv-unqualified version of the
// source type is the same class as, or a derived class of, the
// class of the destination, constructors are considered.
if ((DeclTypeC.getLocalUnqualifiedType()
== InitTypeC.getLocalUnqualifiedType()) ||
IsDerivedFrom(InitTypeC, DeclTypeC)) {
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(DeclType->getAs<RecordType>()->getDecl());
// No need to make a CXXConstructExpr if both the ctor and dtor are
// trivial.
if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor())
return false;
ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
CXXConstructorDecl *Constructor
= PerformInitializationByConstructor(DeclType,
MultiExprArg(*this,
(void **)&Init, 1),
InitLoc, Init->getSourceRange(),
InitEntity,
DirectInit? IK_Direct : IK_Copy,
ConstructorArgs);
if (!Constructor)
return true;
OwningExprResult InitResult =
BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
DeclType, Constructor,
move_arg(ConstructorArgs));
if (InitResult.isInvalid())
return true;
Init = InitResult.takeAs<Expr>();
return false;
}
// -- Otherwise (i.e., for the remaining copy-initialization
// cases), user-defined conversion sequences that can
// convert from the source type to the destination type or
// (when a conversion function is used) to a derived class
// thereof are enumerated as described in 13.3.1.4, and the
// best one is chosen through overload resolution
// (13.3). If the conversion cannot be done or is
// ambiguous, the initialization is ill-formed. The
// function selected is called with the initializer
// expression as its argument; if the function is a
// constructor, the call initializes a temporary of the
// destination type.
// FIXME: We're pretending to do copy elision here; return to this when we
// have ASTs for such things.
if (!PerformImplicitConversion(Init, DeclType, "initializing"))
return false;
if (InitEntity)
return Diag(InitLoc, diag::err_cannot_initialize_decl)
<< InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
<< Init->getType() << Init->getSourceRange();
return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
<< DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
<< Init->getType() << Init->getSourceRange();
}
// C99 6.7.8p16.
if (DeclType->isArrayType())
return Diag(Init->getLocStart(), diag::err_array_init_list_required)
<< Init->getSourceRange();
return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
}
bool hadError = CheckInitList(InitList, DeclType);
Init = InitList;
return hadError;
}
//===----------------------------------------------------------------------===//
// Semantic checking for initializer lists.
//===----------------------------------------------------------------------===//
/// @brief Semantic checking for initializer lists.
///
/// The InitListChecker class contains a set of routines that each
/// handle the initialization of a certain kind of entity, e.g.,
/// arrays, vectors, struct/union types, scalars, etc. The
/// InitListChecker itself performs a recursive walk of the subobject
/// structure of the type to be initialized, while stepping through
/// the initializer list one element at a time. The IList and Index
/// parameters to each of the Check* routines contain the active
/// (syntactic) initializer list and the index into that initializer
/// list that represents the current initializer. Each routine is
/// responsible for moving that Index forward as it consumes elements.
///
/// Each Check* routine also has a StructuredList/StructuredIndex
/// arguments, which contains the current the "structured" (semantic)
/// initializer list and the index into that initializer list where we
/// are copying initializers as we map them over to the semantic
/// list. Once we have completed our recursive walk of the subobject
/// structure, we will have constructed a full semantic initializer
/// list.
///
/// C99 designators cause changes in the initializer list traversal,
/// because they make the initialization "jump" into a specific
/// subobject and then continue the initialization from that
/// point. CheckDesignatedInitializer() recursively steps into the
/// designated subobject and manages backing out the recursion to
/// initialize the subobjects after the one designated.
namespace {
class InitListChecker {
Sema &SemaRef;
bool hadError;
std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
InitListExpr *FullyStructuredList;
void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
unsigned &Index, InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject = false);
void CheckExplicitInitList(InitListExpr *IList, QualType &T,
unsigned &Index, InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject = false);
void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
bool SubobjectIsDesignatorContext,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject = false);
void CheckSubElementType(InitListExpr *IList, QualType ElemType,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex);
void CheckScalarType(InitListExpr *IList, QualType DeclType,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex);
void CheckReferenceType(InitListExpr *IList, QualType DeclType,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex);
void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex);
void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
RecordDecl::field_iterator Field,
bool SubobjectIsDesignatorContext, unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject = false);
void CheckArrayType(InitListExpr *IList, QualType &DeclType,
llvm::APSInt elementIndex,
bool SubobjectIsDesignatorContext, unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex);
bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
unsigned DesigIdx,
QualType &CurrentObjectType,
RecordDecl::field_iterator *NextField,
llvm::APSInt *NextElementIndex,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool FinishSubobjectInit,
bool TopLevelObject);
InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
QualType CurrentObjectType,
InitListExpr *StructuredList,
unsigned StructuredIndex,
SourceRange InitRange);
void UpdateStructuredListElement(InitListExpr *StructuredList,
unsigned &StructuredIndex,
Expr *expr);
int numArrayElements(QualType DeclType);
int numStructUnionElements(QualType DeclType);
void FillInValueInitializations(InitListExpr *ILE);
public:
InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
bool HadError() { return hadError; }
// @brief Retrieves the fully-structured initializer list used for
// semantic analysis and code generation.
InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
};
} // end anonymous namespace
/// Recursively replaces NULL values within the given initializer list
/// with expressions that perform value-initialization of the
/// appropriate type.
void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
assert((ILE->getType() != SemaRef.Context.VoidTy) &&
"Should not have void type");
SourceLocation Loc = ILE->getSourceRange().getBegin();
if (ILE->getSyntacticForm())
Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
unsigned Init = 0, NumInits = ILE->getNumInits();
for (RecordDecl::field_iterator
Field = RType->getDecl()->field_begin(),
FieldEnd = RType->getDecl()->field_end();
Field != FieldEnd; ++Field) {
if (Field->isUnnamedBitfield())
continue;
if (Init >= NumInits || !ILE->getInit(Init)) {
if (Field->getType()->isReferenceType()) {
// C++ [dcl.init.aggr]p9:
// If an incomplete or empty initializer-list leaves a
// member of reference type uninitialized, the program is
// ill-formed.
SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
<< Field->getType()
<< ILE->getSyntacticForm()->getSourceRange();
SemaRef.Diag(Field->getLocation(),
diag::note_uninit_reference_member);
hadError = true;
return;
} else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
hadError = true;
return;
}
// FIXME: If value-initialization involves calling a constructor, should
// we make that call explicit in the representation (even when it means
// extending the initializer list)?
if (Init < NumInits && !hadError)
ILE->setInit(Init,
new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
} else if (InitListExpr *InnerILE
= dyn_cast<InitListExpr>(ILE->getInit(Init)))
FillInValueInitializations(InnerILE);
++Init;
// Only look at the first initialization of a union.
if (RType->getDecl()->isUnion())
break;
}
return;
}
QualType ElementType;
unsigned NumInits = ILE->getNumInits();
unsigned NumElements = NumInits;
if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
ElementType = AType->getElementType();
if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
NumElements = CAType->getSize().getZExtValue();
} else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
ElementType = VType->getElementType();
NumElements = VType->getNumElements();
} else
ElementType = ILE->getType();
for (unsigned Init = 0; Init != NumElements; ++Init) {
if (Init >= NumInits || !ILE->getInit(Init)) {
if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
hadError = true;
return;
}
// FIXME: If value-initialization involves calling a constructor, should
// we make that call explicit in the representation (even when it means
// extending the initializer list)?
if (Init < NumInits && !hadError)
ILE->setInit(Init,
new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
} else if (InitListExpr *InnerILE
= dyn_cast<InitListExpr>(ILE->getInit(Init)))
FillInValueInitializations(InnerILE);
}
}
InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
: SemaRef(S) {
hadError = false;
unsigned newIndex = 0;
unsigned newStructuredIndex = 0;
FullyStructuredList
= getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
/*TopLevelObject=*/true);
if (!hadError)
FillInValueInitializations(FullyStructuredList);
}
int InitListChecker::numArrayElements(QualType DeclType) {
// FIXME: use a proper constant
int maxElements = 0x7FFFFFFF;
if (const ConstantArrayType *CAT =
SemaRef.Context.getAsConstantArrayType(DeclType)) {
maxElements = static_cast<int>(CAT->getSize().getZExtValue());
}
return maxElements;
}
int InitListChecker::numStructUnionElements(QualType DeclType) {
RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
int InitializableMembers = 0;
for (RecordDecl::field_iterator
Field = structDecl->field_begin(),
FieldEnd = structDecl->field_end();
Field != FieldEnd; ++Field) {
if ((*Field)->getIdentifier() || !(*Field)->isBitField())
++InitializableMembers;
}
if (structDecl->isUnion())
return std::min(InitializableMembers, 1);
return InitializableMembers - structDecl->hasFlexibleArrayMember();
}
void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
QualType T, unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject) {
int maxElements = 0;
if (T->isArrayType())
maxElements = numArrayElements(T);
else if (T->isStructureType() || T->isUnionType())
maxElements = numStructUnionElements(T);
else if (T->isVectorType())
maxElements = T->getAs<VectorType>()->getNumElements();
else
assert(0 && "CheckImplicitInitList(): Illegal type");
if (maxElements == 0) {
SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
diag::err_implicit_empty_initializer);
++Index;
hadError = true;
return;
}
// Build a structured initializer list corresponding to this subobject.
InitListExpr *StructuredSubobjectInitList
= getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
StructuredIndex,
SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
ParentIList->getSourceRange().getEnd()));
unsigned StructuredSubobjectInitIndex = 0;
// Check the element types and build the structural subobject.
unsigned StartIndex = Index;
CheckListElementTypes(ParentIList, T, false, Index,
StructuredSubobjectInitList,
StructuredSubobjectInitIndex,
TopLevelObject);
unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
StructuredSubobjectInitList->setType(T);
// Update the structured sub-object initializer so that it's ending
// range corresponds with the end of the last initializer it used.
if (EndIndex < ParentIList->getNumInits()) {
SourceLocation EndLoc
= ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
StructuredSubobjectInitList->setRBraceLoc(EndLoc);
}
}
void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject) {
assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
SyntacticToSemantic[IList] = StructuredList;
StructuredList->setSyntacticForm(IList);
CheckListElementTypes(IList, T, true, Index, StructuredList,
StructuredIndex, TopLevelObject);
IList->setType(T);
StructuredList->setType(T);
if (hadError)
return;
if (Index < IList->getNumInits()) {
// We have leftover initializers
if (StructuredIndex == 1 &&
IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
if (SemaRef.getLangOptions().CPlusPlus) {
DK = diag::err_excess_initializers_in_char_array_initializer;
hadError = true;
}
// Special-case
SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
<< IList->getInit(Index)->getSourceRange();
} else if (!T->isIncompleteType()) {
// Don't complain for incomplete types, since we'll get an error
// elsewhere
QualType CurrentObjectType = StructuredList->getType();
int initKind =
CurrentObjectType->isArrayType()? 0 :
CurrentObjectType->isVectorType()? 1 :
CurrentObjectType->isScalarType()? 2 :
CurrentObjectType->isUnionType()? 3 :
4;
unsigned DK = diag::warn_excess_initializers;
if (SemaRef.getLangOptions().CPlusPlus) {
DK = diag::err_excess_initializers;
hadError = true;
}
if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
DK = diag::err_excess_initializers;
hadError = true;
}
SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
<< initKind << IList->getInit(Index)->getSourceRange();
}
}
if (T->isScalarType() && !TopLevelObject)
SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
<< IList->getSourceRange()
<< CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart()))
<< CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd()));
}
void InitListChecker::CheckListElementTypes(InitListExpr *IList,
QualType &DeclType,
bool SubobjectIsDesignatorContext,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject) {
if (DeclType->isScalarType()) {
CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
} else if (DeclType->isVectorType()) {
CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
} else if (DeclType->isAggregateType()) {
if (DeclType->isRecordType()) {
RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
CheckStructUnionTypes(IList, DeclType, RD->field_begin(),
SubobjectIsDesignatorContext, Index,
StructuredList, StructuredIndex,
TopLevelObject);
} else if (DeclType->isArrayType()) {
llvm::APSInt Zero(
SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
false);
CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
StructuredList, StructuredIndex);
} else
assert(0 && "Aggregate that isn't a structure or array?!");
} else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
// This type is invalid, issue a diagnostic.
++Index;
SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
<< DeclType;
hadError = true;
} else if (DeclType->isRecordType()) {
// C++ [dcl.init]p14:
// [...] If the class is an aggregate (8.5.1), and the initializer
// is a brace-enclosed list, see 8.5.1.
//
// Note: 8.5.1 is handled below; here, we diagnose the case where
// we have an initializer list and a destination type that is not
// an aggregate.
// FIXME: In C++0x, this is yet another form of initialization.
SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
<< DeclType << IList->getSourceRange();
hadError = true;
} else if (DeclType->isReferenceType()) {
CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
} else {
// In C, all types are either scalars or aggregates, but
// additional handling is needed here for C++ (and possibly others?).
assert(0 && "Unsupported initializer type");
}
}
void InitListChecker::CheckSubElementType(InitListExpr *IList,
QualType ElemType,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex) {
Expr *expr = IList->getInit(Index);
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
unsigned newIndex = 0;
unsigned newStructuredIndex = 0;
InitListExpr *newStructuredList
= getStructuredSubobjectInit(IList, Index, ElemType,
StructuredList, StructuredIndex,
SubInitList->getSourceRange());
CheckExplicitInitList(SubInitList, ElemType, newIndex,
newStructuredList, newStructuredIndex);
++StructuredIndex;
++Index;
} else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
CheckStringInit(Str, ElemType, SemaRef);
UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
++Index;
} else if (ElemType->isScalarType()) {
CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
} else if (ElemType->isReferenceType()) {
CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
} else {
if (SemaRef.getLangOptions().CPlusPlus) {
// C++ [dcl.init.aggr]p12:
// All implicit type conversions (clause 4) are considered when
// initializing the aggregate member with an ini- tializer from
// an initializer-list. If the initializer can initialize a
// member, the member is initialized. [...]
ImplicitConversionSequence ICS
= SemaRef.TryCopyInitialization(expr, ElemType,
/*SuppressUserConversions=*/false,
/*ForceRValue=*/false,
/*InOverloadResolution=*/false);
if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
"initializing"))
hadError = true;
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
++Index;
return;
}
// Fall through for subaggregate initialization
} else {
// C99 6.7.8p13:
//
// The initializer for a structure or union object that has
// automatic storage duration shall be either an initializer
// list as described below, or a single expression that has
// compatible structure or union type. In the latter case, the
// initial value of the object, including unnamed members, is
// that of the expression.
if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
++Index;
return;
}
// Fall through for subaggregate initialization
}
// C++ [dcl.init.aggr]p12:
//
// [...] Otherwise, if the member is itself a non-empty
// subaggregate, brace elision is assumed and the initializer is
// considered for the initialization of the first member of
// the subaggregate.
if (ElemType->isAggregateType() || ElemType->isVectorType()) {
CheckImplicitInitList(IList, ElemType, Index, StructuredList,
StructuredIndex);
++StructuredIndex;
} else {
// We cannot initialize this element, so let
// PerformCopyInitialization produce the appropriate diagnostic.
SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
hadError = true;
++Index;
++StructuredIndex;
}
}
}
void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex) {
if (Index < IList->getNumInits()) {
Expr *expr = IList->getInit(Index);
if (isa<InitListExpr>(expr)) {
SemaRef.Diag(IList->getLocStart(),
diag::err_many_braces_around_scalar_init)
<< IList->getSourceRange();
hadError = true;
++Index;
++StructuredIndex;
return;
} else if (isa<DesignatedInitExpr>(expr)) {
SemaRef.Diag(expr->getSourceRange().getBegin(),
diag::err_designator_for_scalar_init)
<< DeclType << expr->getSourceRange();
hadError = true;
++Index;
++StructuredIndex;
return;
}
Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
hadError = true; // types weren't compatible.
else if (savExpr != expr) {
// The type was promoted, update initializer list.
IList->setInit(Index, expr);
}
if (hadError)
++StructuredIndex;
else
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
++Index;
} else {
SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
<< IList->getSourceRange();
hadError = true;
++Index;
++StructuredIndex;
return;
}
}
void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex) {
if (Index < IList->getNumInits()) {
Expr *expr = IList->getInit(Index);
if (isa<InitListExpr>(expr)) {
SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
<< DeclType << IList->getSourceRange();
hadError = true;
++Index;
++StructuredIndex;
return;
}
Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
if (SemaRef.CheckReferenceInit(expr, DeclType,
/*FIXME:*/expr->getLocStart(),
/*SuppressUserConversions=*/false,
/*AllowExplicit=*/false,
/*ForceRValue=*/false))
hadError = true;
else if (savExpr != expr) {
// The type was promoted, update initializer list.
IList->setInit(Index, expr);
}
if (hadError)
++StructuredIndex;
else
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
++Index;
} else {
// FIXME: It would be wonderful if we could point at the actual member. In
// general, it would be useful to pass location information down the stack,
// so that we know the location (or decl) of the "current object" being
// initialized.
SemaRef.Diag(IList->getLocStart(),
diag::err_init_reference_member_uninitialized)
<< DeclType
<< IList->getSourceRange();
hadError = true;
++Index;
++StructuredIndex;
return;
}
}
void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex) {
if (Index < IList->getNumInits()) {
const VectorType *VT = DeclType->getAs<VectorType>();
unsigned maxElements = VT->getNumElements();
unsigned numEltsInit = 0;
QualType elementType = VT->getElementType();
if (!SemaRef.getLangOptions().OpenCL) {
for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
// Don't attempt to go past the end of the init list
if (Index >= IList->getNumInits())
break;
CheckSubElementType(IList, elementType, Index,
StructuredList, StructuredIndex);
}
} else {
// OpenCL initializers allows vectors to be constructed from vectors.
for (unsigned i = 0; i < maxElements; ++i) {
// Don't attempt to go past the end of the init list
if (Index >= IList->getNumInits())
break;
QualType IType = IList->getInit(Index)->getType();
if (!IType->isVectorType()) {
CheckSubElementType(IList, elementType, Index,
StructuredList, StructuredIndex);
++numEltsInit;
} else {
const VectorType *IVT = IType->getAs<VectorType>();
unsigned numIElts = IVT->getNumElements();
QualType VecType = SemaRef.Context.getExtVectorType(elementType,
numIElts);
CheckSubElementType(IList, VecType, Index,
StructuredList, StructuredIndex);
numEltsInit += numIElts;
}
}
}
// OpenCL & AltiVec require all elements to be initialized.
if (numEltsInit != maxElements)
if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
SemaRef.Diag(IList->getSourceRange().getBegin(),
diag::err_vector_incorrect_num_initializers)
<< (numEltsInit < maxElements) << maxElements << numEltsInit;
}
}
void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
llvm::APSInt elementIndex,
bool SubobjectIsDesignatorContext,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex) {
// Check for the special-case of initializing an array with a string.
if (Index < IList->getNumInits()) {
if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
SemaRef.Context)) {
CheckStringInit(Str, DeclType, SemaRef);
// We place the string literal directly into the resulting
// initializer list. This is the only place where the structure
// of the structured initializer list doesn't match exactly,
// because doing so would involve allocating one character
// constant for each string.
UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
++Index;
return;
}
}
if (const VariableArrayType *VAT =
SemaRef.Context.getAsVariableArrayType(DeclType)) {
// Check for VLAs; in standard C it would be possible to check this
// earlier, but I don't know where clang accepts VLAs (gcc accepts
// them in all sorts of strange places).
SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
diag::err_variable_object_no_init)
<< VAT->getSizeExpr()->getSourceRange();
hadError = true;
++Index;
++StructuredIndex;
return;
}
// We might know the maximum number of elements in advance.
llvm::APSInt maxElements(elementIndex.getBitWidth(),
elementIndex.isUnsigned());
bool maxElementsKnown = false;
if (const ConstantArrayType *CAT =
SemaRef.Context.getAsConstantArrayType(DeclType)) {
maxElements = CAT->getSize();
elementIndex.extOrTrunc(maxElements.getBitWidth());
elementIndex.setIsUnsigned(maxElements.isUnsigned());
maxElementsKnown = true;
}
QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
->getElementType();
while (Index < IList->getNumInits()) {
Expr *Init = IList->getInit(Index);
if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
// If we're not the subobject that matches up with the '{' for
// the designator, we shouldn't be handling the
// designator. Return immediately.
if (!SubobjectIsDesignatorContext)
return;
// Handle this designated initializer. elementIndex will be
// updated to be the next array element we'll initialize.
if (CheckDesignatedInitializer(IList, DIE, 0,
DeclType, 0, &elementIndex, Index,
StructuredList, StructuredIndex, true,
false)) {
hadError = true;
continue;
}
if (elementIndex.getBitWidth() > maxElements.getBitWidth())
maxElements.extend(elementIndex.getBitWidth());
else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
elementIndex.extend(maxElements.getBitWidth());
elementIndex.setIsUnsigned(maxElements.isUnsigned());
// If the array is of incomplete type, keep track of the number of
// elements in the initializer.
if (!maxElementsKnown && elementIndex > maxElements)
maxElements = elementIndex;
continue;
}
// If we know the maximum number of elements, and we've already
// hit it, stop consuming elements in the initializer list.
if (maxElementsKnown && elementIndex == maxElements)
break;
// Check this element.
CheckSubElementType(IList, elementType, Index,
StructuredList, StructuredIndex);
++elementIndex;
// If the array is of incomplete type, keep track of the number of
// elements in the initializer.
if (!maxElementsKnown && elementIndex > maxElements)
maxElements = elementIndex;
}
if (!hadError && DeclType->isIncompleteArrayType()) {
// If this is an incomplete array type, the actual type needs to
// be calculated here.
llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
if (maxElements == Zero) {
// Sizing an array implicitly to zero is not allowed by ISO C,
// but is supported by GNU.
SemaRef.Diag(IList->getLocStart(),
diag::ext_typecheck_zero_array_size);
}
DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
ArrayType::Normal, 0);
}
}
void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
QualType DeclType,
RecordDecl::field_iterator Field,
bool SubobjectIsDesignatorContext,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool TopLevelObject) {
RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
// If the record is invalid, some of it's members are invalid. To avoid
// confusion, we forgo checking the intializer for the entire record.
if (structDecl->isInvalidDecl()) {
hadError = true;
return;
}
if (DeclType->isUnionType() && IList->getNumInits() == 0) {
// Value-initialize the first named member of the union.
RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
for (RecordDecl::field_iterator FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Field->getDeclName()) {
StructuredList->setInitializedFieldInUnion(*Field);
break;
}
}
return;
}
// If structDecl is a forward declaration, this loop won't do
// anything except look at designated initializers; That's okay,
// because an error should get printed out elsewhere. It might be
// worthwhile to skip over the rest of the initializer, though.
RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
RecordDecl::field_iterator FieldEnd = RD->field_end();
bool InitializedSomething = false;
while (Index < IList->getNumInits()) {
Expr *Init = IList->getInit(Index);
if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
// If we're not the subobject that matches up with the '{' for
// the designator, we shouldn't be handling the
// designator. Return immediately.
if (!SubobjectIsDesignatorContext)
return;
// Handle this designated initializer. Field will be updated to
// the next field that we'll be initializing.
if (CheckDesignatedInitializer(IList, DIE, 0,
DeclType, &Field, 0, Index,
StructuredList, StructuredIndex,
true, TopLevelObject))
hadError = true;
InitializedSomething = true;
continue;
}
if (Field == FieldEnd) {
// We've run out of fields. We're done.
break;
}
// We've already initialized a member of a union. We're done.
if (InitializedSomething && DeclType->isUnionType())
break;
// If we've hit the flexible array member at the end, we're done.
if (Field->getType()->isIncompleteArrayType())
break;
if (Field->isUnnamedBitfield()) {
// Don't initialize unnamed bitfields, e.g. "int : 20;"
++Field;
continue;
}
CheckSubElementType(IList, Field->getType(), Index,
StructuredList, StructuredIndex);
InitializedSomething = true;
if (DeclType->isUnionType()) {
// Initialize the first field within the union.
StructuredList->setInitializedFieldInUnion(*Field);
}
++Field;
}
if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
Index >= IList->getNumInits())
return;
// Handle GNU flexible array initializers.
if (!TopLevelObject &&
(!isa<InitListExpr>(IList->getInit(Index)) ||
cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
diag::err_flexible_array_init_nonempty)
<< IList->getInit(Index)->getSourceRange().getBegin();
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
<< *Field;
hadError = true;
++Index;
return;
} else {
SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
diag::ext_flexible_array_init)
<< IList->getInit(Index)->getSourceRange().getBegin();
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
<< *Field;
}
if (isa<InitListExpr>(IList->getInit(Index)))
CheckSubElementType(IList, Field->getType(), Index, StructuredList,
StructuredIndex);
else
CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
StructuredIndex);
}
/// \brief Expand a field designator that refers to a member of an
/// anonymous struct or union into a series of field designators that
/// refers to the field within the appropriate subobject.
///
/// Field/FieldIndex will be updated to point to the (new)
/// currently-designated field.
static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
DesignatedInitExpr *DIE,
unsigned DesigIdx,
FieldDecl *Field,
RecordDecl::field_iterator &FieldIter,
unsigned &FieldIndex) {
typedef DesignatedInitExpr::Designator Designator;
// Build the path from the current object to the member of the
// anonymous struct/union (backwards).
llvm::SmallVector<FieldDecl *, 4> Path;
SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
// Build the replacement designators.
llvm::SmallVector<Designator, 4> Replacements;
for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
FI = Path.rbegin(), FIEnd = Path.rend();
FI != FIEnd; ++FI) {
if (FI + 1 == FIEnd)
Replacements.push_back(Designator((IdentifierInfo *)0,
DIE->getDesignator(DesigIdx)->getDotLoc(),
DIE->getDesignator(DesigIdx)->getFieldLoc()));
else
Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
SourceLocation()));
Replacements.back().setField(*FI);
}
// Expand the current designator into the set of replacement
// designators, so we have a full subobject path down to where the
// member of the anonymous struct/union is actually stored.
DIE->ExpandDesignator(DesigIdx, &Replacements[0],
&Replacements[0] + Replacements.size());
// Update FieldIter/FieldIndex;
RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
FieldIter = Record->field_begin();
FieldIndex = 0;
for (RecordDecl::field_iterator FEnd = Record->field_end();
FieldIter != FEnd; ++FieldIter) {
if (FieldIter->isUnnamedBitfield())
continue;
if (*FieldIter == Path.back())
return;
++FieldIndex;
}
assert(false && "Unable to find anonymous struct/union field");
}
/// @brief Check the well-formedness of a C99 designated initializer.
///
/// Determines whether the designated initializer @p DIE, which
/// resides at the given @p Index within the initializer list @p
/// IList, is well-formed for a current object of type @p DeclType
/// (C99 6.7.8). The actual subobject that this designator refers to
/// within the current subobject is returned in either
/// @p NextField or @p NextElementIndex (whichever is appropriate).
///
/// @param IList The initializer list in which this designated
/// initializer occurs.
///
/// @param DIE The designated initializer expression.
///
/// @param DesigIdx The index of the current designator.
///
/// @param DeclType The type of the "current object" (C99 6.7.8p17),
/// into which the designation in @p DIE should refer.
///
/// @param NextField If non-NULL and the first designator in @p DIE is
/// a field, this will be set to the field declaration corresponding
/// to the field named by the designator.
///
/// @param NextElementIndex If non-NULL and the first designator in @p
/// DIE is an array designator or GNU array-range designator, this
/// will be set to the last index initialized by this designator.
///
/// @param Index Index into @p IList where the designated initializer
/// @p DIE occurs.
///
/// @param StructuredList The initializer list expression that
/// describes all of the subobject initializers in the order they'll
/// actually be initialized.
///
/// @returns true if there was an error, false otherwise.
bool
InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
DesignatedInitExpr *DIE,
unsigned DesigIdx,
QualType &CurrentObjectType,
RecordDecl::field_iterator *NextField,
llvm::APSInt *NextElementIndex,
unsigned &Index,
InitListExpr *StructuredList,
unsigned &StructuredIndex,
bool FinishSubobjectInit,
bool TopLevelObject) {
if (DesigIdx == DIE->size()) {
// Check the actual initialization for the designated object type.
bool prevHadError = hadError;
// Temporarily remove the designator expression from the
// initializer list that the child calls see, so that we don't try
// to re-process the designator.
unsigned OldIndex = Index;
IList->setInit(OldIndex, DIE->getInit());
CheckSubElementType(IList, CurrentObjectType, Index,
StructuredList, StructuredIndex);
// Restore the designated initializer expression in the syntactic
// form of the initializer list.
if (IList->getInit(OldIndex) != DIE->getInit())
DIE->setInit(IList->getInit(OldIndex));
IList->setInit(OldIndex, DIE);
return hadError && !prevHadError;
}
bool IsFirstDesignator = (DesigIdx == 0);
assert((IsFirstDesignator || StructuredList) &&
"Need a non-designated initializer list to start from");
DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
// Determine the structural initializer list that corresponds to the
// current subobject.
StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
: getStructuredSubobjectInit(IList, Index, CurrentObjectType,
StructuredList, StructuredIndex,
SourceRange(D->getStartLocation(),
DIE->getSourceRange().getEnd()));
assert(StructuredList && "Expected a structured initializer list");
if (D->isFieldDesignator()) {
// C99 6.7.8p7:
//
// If a designator has the form
//
// . identifier
//
// then the current object (defined below) shall have
// structure or union type and the identifier shall be the
// name of a member of that type.
const RecordType *RT = CurrentObjectType->getAs<RecordType>();
if (!RT) {
SourceLocation Loc = D->getDotLoc();
if (Loc.isInvalid())
Loc = D->getFieldLoc();
SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
<< SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
++Index;
return true;
}
// Note: we perform a linear search of the fields here, despite
// the fact that we have a faster lookup method, because we always
// need to compute the field's index.
FieldDecl *KnownField = D->getField();
IdentifierInfo *FieldName = D->getFieldName();
unsigned FieldIndex = 0;
RecordDecl::field_iterator
Field = RT->getDecl()->field_begin(),
FieldEnd = RT->getDecl()->field_end();
for (; Field != FieldEnd; ++Field) {
if (Field->isUnnamedBitfield())
continue;
if (KnownField == *Field || Field->getIdentifier() == FieldName)
break;
++FieldIndex;
}
if (Field == FieldEnd) {
// There was no normal field in the struct with the designated
// name. Perform another lookup for this name, which may find
// something that we can't designate (e.g., a member function),
// may find nothing, or may find a member of an anonymous
// struct/union.
DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
if (Lookup.first == Lookup.second) {
// Name lookup didn't find anything.
SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
<< FieldName << CurrentObjectType;
++Index;
return true;
} else if (!KnownField && isa<FieldDecl>(*Lookup.first) &&
cast<RecordDecl>((*Lookup.first)->getDeclContext())
->isAnonymousStructOrUnion()) {
// Handle an field designator that refers to a member of an
// anonymous struct or union.
ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
cast<FieldDecl>(*Lookup.first),
Field, FieldIndex);
D = DIE->getDesignator(DesigIdx);
} else {
// Name lookup found something, but it wasn't a field.
SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
<< FieldName;
SemaRef.Diag((*Lookup.first)->getLocation(),
diag::note_field_designator_found);
++Index;
return true;
}
} else if (!KnownField &&
cast<RecordDecl>((*Field)->getDeclContext())
->isAnonymousStructOrUnion()) {
ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
Field, FieldIndex);
D = DIE->getDesignator(DesigIdx);
}
// All of the fields of a union are located at the same place in
// the initializer list.
if (RT->getDecl()->isUnion()) {
FieldIndex = 0;
StructuredList->setInitializedFieldInUnion(*Field);
}
// Update the designator with the field declaration.
D->setField(*Field);
// Make sure that our non-designated initializer list has space
// for a subobject corresponding to this field.
if (FieldIndex >= StructuredList->getNumInits())
StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
// This designator names a flexible array member.
if (Field->getType()->isIncompleteArrayType()) {
bool Invalid = false;
if ((DesigIdx + 1) != DIE->size()) {
// We can't designate an object within the flexible array
// member (because GCC doesn't allow it).
DesignatedInitExpr::Designator *NextD
= DIE->getDesignator(DesigIdx + 1);
SemaRef.Diag(NextD->getStartLocation(),
diag::err_designator_into_flexible_array_member)
<< SourceRange(NextD->getStartLocation(),
DIE->getSourceRange().getEnd());
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
<< *Field;
Invalid = true;
}
if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
// The initializer is not an initializer list.
SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
diag::err_flexible_array_init_needs_braces)
<< DIE->getInit()->getSourceRange();
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
<< *Field;
Invalid = true;
}
// Handle GNU flexible array initializers.
if (!Invalid && !TopLevelObject &&
cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
SemaRef.Diag(DIE->getSourceRange().getBegin(),
diag::err_flexible_array_init_nonempty)
<< DIE->getSourceRange().getBegin();
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
<< *Field;
Invalid = true;
}
if (Invalid) {
++Index;
return true;
}
// Initialize the array.
bool prevHadError = hadError;
unsigned newStructuredIndex = FieldIndex;
unsigned OldIndex = Index;
IList->setInit(Index, DIE->getInit());
CheckSubElementType(IList, Field->getType(), Index,
StructuredList, newStructuredIndex);
IList->setInit(OldIndex, DIE);
if (hadError && !prevHadError) {
++Field;
++FieldIndex;
if (NextField)
*NextField = Field;
StructuredIndex = FieldIndex;
return true;
}
} else {
// Recurse to check later designated subobjects.
QualType FieldType = (*Field)->getType();
unsigned newStructuredIndex = FieldIndex;
if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
Index, StructuredList, newStructuredIndex,
true, false))
return true;
}
// Find the position of the next field to be initialized in this
// subobject.
++Field;
++FieldIndex;
// If this the first designator, our caller will continue checking
// the rest of this struct/class/union subobject.
if (IsFirstDesignator) {
if (NextField)
*NextField = Field;
StructuredIndex = FieldIndex;
return false;
}
if (!FinishSubobjectInit)
return false;
// We've already initialized something in the union; we're done.
if (RT->getDecl()->isUnion())
return hadError;
// Check the remaining fields within this class/struct/union subobject.
bool prevHadError = hadError;
CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
StructuredList, FieldIndex);
return hadError && !prevHadError;
}
// C99 6.7.8p6:
//
// If a designator has the form
//
// [ constant-expression ]
//
// then the current object (defined below) shall have array
// type and the expression shall be an integer constant
// expression. If the array is of unknown size, any
// nonnegative value is valid.
//
// Additionally, cope with the GNU extension that permits
// designators of the form
//
// [ constant-expression ... constant-expression ]
const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
if (!AT) {
SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
<< CurrentObjectType;
++Index;
return true;
}
Expr *IndexExpr = 0;
llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
if (D->isArrayDesignator()) {
IndexExpr = DIE->getArrayIndex(*D);
DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
DesignatedEndIndex = DesignatedStartIndex;
} else {
assert(D->isArrayRangeDesignator() && "Need array-range designator");
DesignatedStartIndex =
DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
DesignatedEndIndex =
DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
IndexExpr = DIE->getArrayRangeEnd(*D);
if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
FullyStructuredList->sawArrayRangeDesignator();
}
if (isa<ConstantArrayType>(AT)) {
llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
if (DesignatedEndIndex >= MaxElements) {
SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
diag::err_array_designator_too_large)
<< DesignatedEndIndex.toString(10) << MaxElements.toString(10)
<< IndexExpr->getSourceRange();
++Index;
return true;
}
} else {
// Make sure the bit-widths and signedness match.
if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
else if (DesignatedStartIndex.getBitWidth() <
DesignatedEndIndex.getBitWidth())
DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
DesignatedStartIndex.setIsUnsigned(true);
DesignatedEndIndex.setIsUnsigned(true);
}
// Make sure that our non-designated initializer list has space
// for a subobject corresponding to this array element.
if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
StructuredList->resizeInits(SemaRef.Context,
DesignatedEndIndex.getZExtValue() + 1);
// Repeatedly perform subobject initializations in the range
// [DesignatedStartIndex, DesignatedEndIndex].
// Move to the next designator
unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
unsigned OldIndex = Index;
while (DesignatedStartIndex <= DesignatedEndIndex) {
// Recurse to check later designated subobjects.
QualType ElementType = AT->getElementType();
Index = OldIndex;
if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
Index, StructuredList, ElementIndex,
(DesignatedStartIndex == DesignatedEndIndex),
false))
return true;
// Move to the next index in the array that we'll be initializing.
++DesignatedStartIndex;
ElementIndex = DesignatedStartIndex.getZExtValue();
}
// If this the first designator, our caller will continue checking
// the rest of this array subobject.
if (IsFirstDesignator) {
if (NextElementIndex)
*NextElementIndex = DesignatedStartIndex;
StructuredIndex = ElementIndex;
return false;
}
if (!FinishSubobjectInit)
return false;
// Check the remaining elements within this array subobject.
bool prevHadError = hadError;
CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
StructuredList, ElementIndex);
return hadError && !prevHadError;
}
// Get the structured initializer list for a subobject of type
// @p CurrentObjectType.
InitListExpr *
InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
QualType CurrentObjectType,
InitListExpr *StructuredList,
unsigned StructuredIndex,
SourceRange InitRange) {
Expr *ExistingInit = 0;
if (!StructuredList)
ExistingInit = SyntacticToSemantic[IList];
else if (StructuredIndex < StructuredList->getNumInits())
ExistingInit = StructuredList->getInit(StructuredIndex);
if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
return Result;
if (ExistingInit) {
// We are creating an initializer list that initializes the
// subobjects of the current object, but there was already an
// initialization that completely initialized the current
// subobject, e.g., by a compound literal:
//
// struct X { int a, b; };
// struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
//
// Here, xs[0].a == 0 and xs[0].b == 3, since the second,
// designated initializer re-initializes the whole
// subobject [0], overwriting previous initializers.
SemaRef.Diag(InitRange.getBegin(),
diag::warn_subobject_initializer_overrides)
<< InitRange;
SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
diag::note_previous_initializer)
<< /*FIXME:has side effects=*/0
<< ExistingInit->getSourceRange();
}
InitListExpr *Result
= new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
InitRange.getEnd());
Result->setType(CurrentObjectType);
// Pre-allocate storage for the structured initializer list.
unsigned NumElements = 0;
unsigned NumInits = 0;
if (!StructuredList)
NumInits = IList->getNumInits();
else if (Index < IList->getNumInits()) {
if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
NumInits = SubList->getNumInits();
}
if (const ArrayType *AType
= SemaRef.Context.getAsArrayType(CurrentObjectType)) {
if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
NumElements = CAType->getSize().getZExtValue();
// Simple heuristic so that we don't allocate a very large
// initializer with many empty entries at the end.
if (NumInits && NumElements > NumInits)
NumElements = 0;
}
} else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
NumElements = VType->getNumElements();
else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
RecordDecl *RDecl = RType->getDecl();
if (RDecl->isUnion())
NumElements = 1;
else
NumElements = std::distance(RDecl->field_begin(),
RDecl->field_end());
}
if (NumElements < NumInits)
NumElements = IList->getNumInits();
Result->reserveInits(NumElements);
// Link this new initializer list into the structured initializer
// lists.
if (StructuredList)
StructuredList->updateInit(StructuredIndex, Result);
else {
Result->setSyntacticForm(IList);
SyntacticToSemantic[IList] = Result;
}
return Result;
}
/// Update the initializer at index @p StructuredIndex within the
/// structured initializer list to the value @p expr.
void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
unsigned &StructuredIndex,
Expr *expr) {
// No structured initializer list to update
if (!StructuredList)
return;
if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
// This initializer overwrites a previous initializer. Warn.
SemaRef.Diag(expr->getSourceRange().getBegin(),
diag::warn_initializer_overrides)
<< expr->getSourceRange();
SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
diag::note_previous_initializer)
<< /*FIXME:has side effects=*/0
<< PrevInit->getSourceRange();
}
++StructuredIndex;
}
/// Check that the given Index expression is a valid array designator
/// value. This is essentailly just a wrapper around
/// VerifyIntegerConstantExpression that also checks for negative values
/// and produces a reasonable diagnostic if there is a
/// failure. Returns true if there was an error, false otherwise. If
/// everything went okay, Value will receive the value of the constant
/// expression.
static bool
CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
SourceLocation Loc = Index->getSourceRange().getBegin();
// Make sure this is an integer constant expression.
if (S.VerifyIntegerConstantExpression(Index, &Value))
return true;
if (Value.isSigned() && Value.isNegative())
return S.Diag(Loc, diag::err_array_designator_negative)
<< Value.toString(10) << Index->getSourceRange();
Value.setIsUnsigned(true);
return false;
}
Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
SourceLocation Loc,
bool GNUSyntax,
OwningExprResult Init) {
typedef DesignatedInitExpr::Designator ASTDesignator;
bool Invalid = false;
llvm::SmallVector<ASTDesignator, 32> Designators;
llvm::SmallVector<Expr *, 32> InitExpressions;
// Build designators and check array designator expressions.
for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
const Designator &D = Desig.getDesignator(Idx);
switch (D.getKind()) {
case Designator::FieldDesignator:
Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
D.getFieldLoc()));
break;
case Designator::ArrayDesignator: {
Expr *Index = static_cast<Expr *>(D.getArrayIndex());
llvm::APSInt IndexValue;
if (!Index->isTypeDependent() &&
!Index->isValueDependent() &&
CheckArrayDesignatorExpr(*this, Index, IndexValue))
Invalid = true;
else {
Designators.push_back(ASTDesignator(InitExpressions.size(),
D.getLBracketLoc(),
D.getRBracketLoc()));
InitExpressions.push_back(Index);
}
break;
}
case Designator::ArrayRangeDesignator: {
Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
llvm::APSInt StartValue;
llvm::APSInt EndValue;
bool StartDependent = StartIndex->isTypeDependent() ||
StartIndex->isValueDependent();
bool EndDependent = EndIndex->isTypeDependent() ||
EndIndex->isValueDependent();
if ((!StartDependent &&
CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
(!EndDependent &&
CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
Invalid = true;
else {
// Make sure we're comparing values with the same bit width.
if (StartDependent || EndDependent) {
// Nothing to compute.
} else if (StartValue.getBitWidth() > EndValue.getBitWidth())
EndValue.extend(StartValue.getBitWidth());
else if (StartValue.getBitWidth() < EndValue.getBitWidth())
StartValue.extend(EndValue.getBitWidth());
if (!StartDependent && !EndDependent && EndValue < StartValue) {
Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
<< StartValue.toString(10) << EndValue.toString(10)
<< StartIndex->getSourceRange() << EndIndex->getSourceRange();
Invalid = true;
} else {
Designators.push_back(ASTDesignator(InitExpressions.size(),
D.getLBracketLoc(),
D.getEllipsisLoc(),
D.getRBracketLoc()));
InitExpressions.push_back(StartIndex);
InitExpressions.push_back(EndIndex);
}
}
break;
}
}
}
if (Invalid || Init.isInvalid())
return ExprError();
// Clear out the expressions within the designation.
Desig.ClearExprs(*this);
DesignatedInitExpr *DIE
= DesignatedInitExpr::Create(Context,
Designators.data(), Designators.size(),
InitExpressions.data(), InitExpressions.size(),
Loc, GNUSyntax, Init.takeAs<Expr>());
return Owned(DIE);
}
bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
InitListChecker CheckInitList(*this, InitList, DeclType);
if (!CheckInitList.HadError())
InitList = CheckInitList.getFullyStructuredList();
return CheckInitList.HadError();
}
/// \brief Diagnose any semantic errors with value-initialization of
/// the given type.
///
/// Value-initialization effectively zero-initializes any types
/// without user-declared constructors, and calls the default
/// constructor for a for any type that has a user-declared
/// constructor (C++ [dcl.init]p5). Value-initialization can fail when
/// a type with a user-declared constructor does not have an
/// accessible, non-deleted default constructor. In C, everything can
/// be value-initialized, which corresponds to C's notion of
/// initializing objects with static storage duration when no
/// initializer is provided for that object.
///
/// \returns true if there was an error, false otherwise.
bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
// C++ [dcl.init]p5:
//
// To value-initialize an object of type T means:
// -- if T is an array type, then each element is value-initialized;
if (const ArrayType *AT = Context.getAsArrayType(Type))
return CheckValueInitialization(AT->getElementType(), Loc);
if (const RecordType *RT = Type->getAs<RecordType>()) {
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
// -- if T is a class type (clause 9) with a user-declared
// constructor (12.1), then the default constructor for T is
// called (and the initialization is ill-formed if T has no
// accessible default constructor);
if (ClassDecl->hasUserDeclaredConstructor()) {
ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
CXXConstructorDecl *Constructor
= PerformInitializationByConstructor(Type,
MultiExprArg(*this, 0, 0),
Loc, SourceRange(Loc),
DeclarationName(),
IK_Direct,
ConstructorArgs);
if (!Constructor)
return true;
OwningExprResult Init
= BuildCXXConstructExpr(Loc, Type, Constructor,
move_arg(ConstructorArgs));
if (Init.isInvalid())
return true;
// FIXME: Actually perform the value-initialization!
return false;
}
}
}
if (Type->isReferenceType()) {
// C++ [dcl.init]p5:
// [...] A program that calls for default-initialization or
// value-initialization of an entity of reference type is
// ill-formed. [...]
// FIXME: Once we have code that goes through this path, add an actual
// diagnostic :)
}
return false;
}