| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/SourceManager.h" |
| // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's) |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <functional> |
| |
| using namespace clang; |
| |
| Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, Scope *S, |
| const CXXScopeSpec *SS) { |
| DeclContext *DC = 0; |
| |
| if (SS) { |
| if (SS->isInvalid()) |
| return 0; |
| DC = static_cast<DeclContext*>(SS->getScopeRep()); |
| } |
| Decl *IIDecl = 0; |
| |
| LookupResult Result = DC ? LookupDeclInContext(&II, Decl::IDNS_Ordinary, DC) : |
| LookupDeclInScope(&II, Decl::IDNS_Ordinary, S); |
| |
| switch (Result.getKind()) { |
| case LookupResult::NotFound: |
| case LookupResult::FoundOverloaded: |
| case LookupResult::AmbiguousBaseSubobjectTypes: |
| case LookupResult::AmbiguousBaseSubobjects: |
| // FIXME: In the event of an ambiguous lookup, we could visit all of |
| // the entities found to determine whether they are all types. This |
| // might provide better diagnostics. |
| return 0; |
| case LookupResult::Found: |
| IIDecl = Result.getAsDecl(); |
| break; |
| } |
| |
| if (IIDecl) { |
| if (isa<TypedefDecl>(IIDecl) || |
| isa<ObjCInterfaceDecl>(IIDecl) || |
| isa<TagDecl>(IIDecl) || |
| isa<TemplateTypeParmDecl>(IIDecl)) |
| return IIDecl; |
| } |
| return 0; |
| } |
| |
| DeclContext *Sema::getContainingDC(DeclContext *DC) { |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { |
| // A C++ out-of-line method will return to the file declaration context. |
| if (MD->isOutOfLineDefinition()) |
| return MD->getLexicalDeclContext(); |
| |
| // A C++ inline method is parsed *after* the topmost class it was declared in |
| // is fully parsed (it's "complete"). |
| // The parsing of a C++ inline method happens at the declaration context of |
| // the topmost (non-nested) class it is lexically declared in. |
| assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record."); |
| DC = MD->getParent(); |
| while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) |
| DC = RD; |
| |
| // Return the declaration context of the topmost class the inline method is |
| // declared in. |
| return DC; |
| } |
| |
| if (isa<ObjCMethodDecl>(DC)) |
| return Context.getTranslationUnitDecl(); |
| |
| if (Decl *D = dyn_cast<Decl>(DC)) |
| return D->getLexicalDeclContext(); |
| |
| return DC->getLexicalParent(); |
| } |
| |
| void Sema::PushDeclContext(Scope *S, DeclContext *DC) { |
| assert(getContainingDC(DC) == CurContext && |
| "The next DeclContext should be lexically contained in the current one."); |
| CurContext = DC; |
| S->setEntity(DC); |
| } |
| |
| void Sema::PopDeclContext() { |
| assert(CurContext && "DeclContext imbalance!"); |
| |
| CurContext = getContainingDC(CurContext); |
| } |
| |
| /// Add this decl to the scope shadowed decl chains. |
| void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) { |
| // Move up the scope chain until we find the nearest enclosing |
| // non-transparent context. The declaration will be introduced into this |
| // scope. |
| while (S->getEntity() && |
| ((DeclContext *)S->getEntity())->isTransparentContext()) |
| S = S->getParent(); |
| |
| S->AddDecl(D); |
| |
| // Add scoped declarations into their context, so that they can be |
| // found later. Declarations without a context won't be inserted |
| // into any context. |
| CurContext->addDecl(D); |
| |
| // C++ [basic.scope]p4: |
| // -- exactly one declaration shall declare a class name or |
| // enumeration name that is not a typedef name and the other |
| // declarations shall all refer to the same object or |
| // enumerator, or all refer to functions and function templates; |
| // in this case the class name or enumeration name is hidden. |
| if (TagDecl *TD = dyn_cast<TagDecl>(D)) { |
| // We are pushing the name of a tag (enum or class). |
| if (CurContext->getLookupContext() |
| == TD->getDeclContext()->getLookupContext()) { |
| // We're pushing the tag into the current context, which might |
| // require some reshuffling in the identifier resolver. |
| IdentifierResolver::iterator |
| I = IdResolver.begin(TD->getDeclName(), CurContext, |
| false/*LookInParentCtx*/), |
| IEnd = IdResolver.end(); |
| if (I != IEnd && isDeclInScope(*I, CurContext, S)) { |
| NamedDecl *PrevDecl = *I; |
| for (; I != IEnd && isDeclInScope(*I, CurContext, S); |
| PrevDecl = *I, ++I) { |
| if (TD->declarationReplaces(*I)) { |
| // This is a redeclaration. Remove it from the chain and |
| // break out, so that we'll add in the shadowed |
| // declaration. |
| S->RemoveDecl(*I); |
| if (PrevDecl == *I) { |
| IdResolver.RemoveDecl(*I); |
| IdResolver.AddDecl(TD); |
| return; |
| } else { |
| IdResolver.RemoveDecl(*I); |
| break; |
| } |
| } |
| } |
| |
| // There is already a declaration with the same name in the same |
| // scope, which is not a tag declaration. It must be found |
| // before we find the new declaration, so insert the new |
| // declaration at the end of the chain. |
| IdResolver.AddShadowedDecl(TD, PrevDecl); |
| |
| return; |
| } |
| } |
| } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) { |
| // We are pushing the name of a function, which might be an |
| // overloaded name. |
| FunctionDecl *FD = cast<FunctionDecl>(D); |
| DeclContext *DC = FD->getDeclContext()->getLookupContext(); |
| IdentifierResolver::iterator Redecl |
| = std::find_if(IdResolver.begin(FD->getDeclName(), DC, |
| false/*LookInParentCtx*/), |
| IdResolver.end(), |
| std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces), |
| FD)); |
| if (Redecl != IdResolver.end()) { |
| // There is already a declaration of a function on our |
| // IdResolver chain. Replace it with this declaration. |
| S->RemoveDecl(*Redecl); |
| IdResolver.RemoveDecl(*Redecl); |
| } |
| } |
| |
| IdResolver.AddDecl(D); |
| } |
| |
| void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
| if (S->decl_empty()) return; |
| assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && |
| "Scope shouldn't contain decls!"); |
| |
| for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); |
| I != E; ++I) { |
| Decl *TmpD = static_cast<Decl*>(*I); |
| assert(TmpD && "This decl didn't get pushed??"); |
| |
| assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); |
| NamedDecl *D = cast<NamedDecl>(TmpD); |
| |
| if (!D->getDeclName()) continue; |
| |
| // Remove this name from our lexical scope. |
| IdResolver.RemoveDecl(D); |
| } |
| } |
| |
| /// getObjCInterfaceDecl - Look up a for a class declaration in the scope. |
| /// return 0 if one not found. |
| ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) { |
| // The third "scope" argument is 0 since we aren't enabling lazy built-in |
| // creation from this context. |
| Decl *IDecl = LookupDeclInScope(Id, Decl::IDNS_Ordinary, 0); |
| |
| return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); |
| } |
| |
| /// getNonFieldDeclScope - Retrieves the innermost scope, starting |
| /// from S, where a non-field would be declared. This routine copes |
| /// with the difference between C and C++ scoping rules in structs and |
| /// unions. For example, the following code is well-formed in C but |
| /// ill-formed in C++: |
| /// @code |
| /// struct S6 { |
| /// enum { BAR } e; |
| /// }; |
| /// |
| /// void test_S6() { |
| /// struct S6 a; |
| /// a.e = BAR; |
| /// } |
| /// @endcode |
| /// For the declaration of BAR, this routine will return a different |
| /// scope. The scope S will be the scope of the unnamed enumeration |
| /// within S6. In C++, this routine will return the scope associated |
| /// with S6, because the enumeration's scope is a transparent |
| /// context but structures can contain non-field names. In C, this |
| /// routine will return the translation unit scope, since the |
| /// enumeration's scope is a transparent context and structures cannot |
| /// contain non-field names. |
| Scope *Sema::getNonFieldDeclScope(Scope *S) { |
| while (((S->getFlags() & Scope::DeclScope) == 0) || |
| (S->getEntity() && |
| ((DeclContext *)S->getEntity())->isTransparentContext()) || |
| (S->isClassScope() && !getLangOptions().CPlusPlus)) |
| S = S->getParent(); |
| return S; |
| } |
| |
| /// LookupDeclInScope - Look up the inner-most declaration in the specified |
| /// namespace. NamespaceNameOnly - during lookup only namespace names |
| /// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1 |
| /// 'When looking up a namespace-name in a using-directive or |
| /// namespace-alias-definition, only namespace names are considered.' |
| /// |
| /// Note: The use of this routine is deprecated. Please use |
| /// LookupName, LookupQualifiedName, or LookupParsedName instead. |
| Sema::LookupResult |
| Sema::LookupDeclInScope(DeclarationName Name, unsigned NSI, Scope *S, |
| bool LookInParent) { |
| if (getLangOptions().CPlusPlus) { |
| LookupCriteria::NameKind Kind; |
| if (NSI == Decl::IDNS_Ordinary) { |
| Kind = LookupCriteria::Ordinary; |
| } else if (NSI == Decl::IDNS_Tag) |
| Kind = LookupCriteria::Tag; |
| else { |
| assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument"); |
| Kind = LookupCriteria::Member; |
| } |
| // Unqualified lookup |
| return LookupName(S, Name, |
| LookupCriteria(Kind, !LookInParent, |
| getLangOptions().CPlusPlus)); |
| } |
| // Fast path for C/ObjC. |
| |
| // Unqualified name lookup in C/Objective-C is purely lexical, so |
| // search in the declarations attached to the name. |
| |
| // For the purposes of unqualified name lookup, structs and unions |
| // don't have scopes at all. For example: |
| // |
| // struct X { |
| // struct T { int i; } x; |
| // }; |
| // |
| // void f() { |
| // struct T t; // okay: T is defined lexically within X, but |
| // // semantically at global scope |
| // }; |
| // |
| // FIXME: Is there a better way to deal with this? |
| DeclContext *SearchCtx = CurContext; |
| while (isa<RecordDecl>(SearchCtx) || isa<EnumDecl>(SearchCtx)) |
| SearchCtx = SearchCtx->getParent(); |
| IdentifierResolver::iterator I |
| = IdResolver.begin(Name, SearchCtx, LookInParent); |
| |
| // Scan up the scope chain looking for a decl that matches this |
| // identifier that is in the appropriate namespace. This search |
| // should not take long, as shadowing of names is uncommon, and |
| // deep shadowing is extremely uncommon. |
| for (; I != IdResolver.end(); ++I) { |
| switch (NSI) { |
| case Decl::IDNS_Ordinary: |
| case Decl::IDNS_Tag: |
| case Decl::IDNS_Member: |
| if ((*I)->isInIdentifierNamespace(NSI)) |
| return LookupResult::CreateLookupResult(Context, *I); |
| break; |
| default: |
| assert(0 && "Unable to grok LookupDecl NSI argument"); |
| } |
| } |
| if (NSI == Decl::IDNS_Ordinary) { |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| if (II) { |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) |
| return LookupResult::CreateLookupResult(Context, |
| LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, |
| S)); |
| } |
| if (getLangOptions().ObjC1 && II) { |
| // @interface and @compatibility_alias introduce typedef-like names. |
| // Unlike typedef's, they can only be introduced at file-scope (and are |
| // therefore not scoped decls). They can, however, be shadowed by |
| // other names in IDNS_Ordinary. |
| ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II); |
| if (IDI != ObjCInterfaceDecls.end()) |
| return LookupResult::CreateLookupResult(Context, IDI->second); |
| ObjCAliasTy::iterator I = ObjCAliasDecls.find(II); |
| if (I != ObjCAliasDecls.end()) |
| return LookupResult::CreateLookupResult(Context, |
| I->second->getClassInterface()); |
| } |
| } |
| return LookupResult::CreateLookupResult(Context, 0); |
| } |
| |
| Sema::LookupResult |
| Sema::LookupDeclInContext(DeclarationName Name, unsigned NSI, |
| const DeclContext *LookupCtx, |
| bool LookInParent) { |
| assert(LookupCtx && "LookupDeclInContext(): Missing DeclContext"); |
| LookupCriteria::NameKind Kind; |
| if (NSI == Decl::IDNS_Ordinary) { |
| Kind = LookupCriteria::Ordinary; |
| } else if (NSI == Decl::IDNS_Tag) |
| Kind = LookupCriteria::Tag; |
| else { |
| assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument"); |
| Kind = LookupCriteria::Member; |
| } |
| return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name, |
| LookupCriteria(Kind, !LookInParent, |
| getLangOptions().CPlusPlus)); |
| } |
| |
| void Sema::InitBuiltinVaListType() { |
| if (!Context.getBuiltinVaListType().isNull()) |
| return; |
| |
| IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list"); |
| Decl *VaDecl = LookupDeclInScope(VaIdent, Decl::IDNS_Ordinary, TUScope); |
| TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl); |
| Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef)); |
| } |
| |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope. |
| /// lazily create a decl for it. |
| NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, |
| Scope *S) { |
| Builtin::ID BID = (Builtin::ID)bid; |
| |
| if (Context.BuiltinInfo.hasVAListUse(BID)) |
| InitBuiltinVaListType(); |
| |
| QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context); |
| FunctionDecl *New = FunctionDecl::Create(Context, |
| Context.getTranslationUnitDecl(), |
| SourceLocation(), II, R, |
| FunctionDecl::Extern, false); |
| |
| // Create Decl objects for each parameter, adding them to the |
| // FunctionDecl. |
| if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) { |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) |
| Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0, |
| FT->getArgType(i), VarDecl::None, 0)); |
| New->setParams(Context, &Params[0], Params.size()); |
| } |
| |
| |
| |
| // TUScope is the translation-unit scope to insert this function into. |
| // FIXME: This is hideous. We need to teach PushOnScopeChains to |
| // relate Scopes to DeclContexts, and probably eliminate CurContext |
| // entirely, but we're not there yet. |
| DeclContext *SavedContext = CurContext; |
| CurContext = Context.getTranslationUnitDecl(); |
| PushOnScopeChains(New, TUScope); |
| CurContext = SavedContext; |
| return New; |
| } |
| |
| /// GetStdNamespace - This method gets the C++ "std" namespace. This is where |
| /// everything from the standard library is defined. |
| NamespaceDecl *Sema::GetStdNamespace() { |
| if (!StdNamespace) { |
| IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std"); |
| DeclContext *Global = Context.getTranslationUnitDecl(); |
| Decl *Std = LookupDeclInContext(StdIdent, Decl::IDNS_Ordinary, Global); |
| StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std); |
| } |
| return StdNamespace; |
| } |
| |
| /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) { |
| bool objc_types = false; |
| // Allow multiple definitions for ObjC built-in typedefs. |
| // FIXME: Verify the underlying types are equivalent! |
| if (getLangOptions().ObjC1) { |
| const IdentifierInfo *TypeID = New->getIdentifier(); |
| switch (TypeID->getLength()) { |
| default: break; |
| case 2: |
| if (!TypeID->isStr("id")) |
| break; |
| Context.setObjCIdType(New); |
| objc_types = true; |
| break; |
| case 5: |
| if (!TypeID->isStr("Class")) |
| break; |
| Context.setObjCClassType(New); |
| objc_types = true; |
| return New; |
| case 3: |
| if (!TypeID->isStr("SEL")) |
| break; |
| Context.setObjCSelType(New); |
| objc_types = true; |
| return New; |
| case 8: |
| if (!TypeID->isStr("Protocol")) |
| break; |
| Context.setObjCProtoType(New->getUnderlyingType()); |
| objc_types = true; |
| return New; |
| } |
| // Fall through - the typedef name was not a builtin type. |
| } |
| // Verify the old decl was also a type. |
| TypeDecl *Old = dyn_cast<TypeDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| if (!objc_types) |
| Diag(OldD->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| |
| // Determine the "old" type we'll use for checking and diagnostics. |
| QualType OldType; |
| if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old)) |
| OldType = OldTypedef->getUnderlyingType(); |
| else |
| OldType = Context.getTypeDeclType(Old); |
| |
| // If the typedef types are not identical, reject them in all languages and |
| // with any extensions enabled. |
| |
| if (OldType != New->getUnderlyingType() && |
| Context.getCanonicalType(OldType) != |
| Context.getCanonicalType(New->getUnderlyingType())) { |
| Diag(New->getLocation(), diag::err_redefinition_different_typedef) |
| << New->getUnderlyingType() << OldType; |
| if (!objc_types) |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| if (objc_types) return New; |
| if (getLangOptions().Microsoft) return New; |
| |
| // C++ [dcl.typedef]p2: |
| // In a given non-class scope, a typedef specifier can be used to |
| // redefine the name of any type declared in that scope to refer |
| // to the type to which it already refers. |
| if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext)) |
| return New; |
| |
| // In C, redeclaration of a type is a constraint violation (6.7.2.3p1). |
| // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if |
| // *either* declaration is in a system header. The code below implements |
| // this adhoc compatibility rule. FIXME: The following code will not |
| // work properly when compiling ".i" files (containing preprocessed output). |
| if (PP.getDiagnostics().getSuppressSystemWarnings()) { |
| SourceManager &SrcMgr = Context.getSourceManager(); |
| if (SrcMgr.isInSystemHeader(Old->getLocation())) |
| return New; |
| if (SrcMgr.isInSystemHeader(New->getLocation())) |
| return New; |
| } |
| |
| Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| |
| /// DeclhasAttr - returns true if decl Declaration already has the target |
| /// attribute. |
| static bool DeclHasAttr(const Decl *decl, const Attr *target) { |
| for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext()) |
| if (attr->getKind() == target->getKind()) |
| return true; |
| |
| return false; |
| } |
| |
| /// MergeAttributes - append attributes from the Old decl to the New one. |
| static void MergeAttributes(Decl *New, Decl *Old) { |
| Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp; |
| |
| while (attr) { |
| tmp = attr; |
| attr = attr->getNext(); |
| |
| if (!DeclHasAttr(New, tmp)) { |
| tmp->setInherited(true); |
| New->addAttr(tmp); |
| } else { |
| tmp->setNext(0); |
| delete(tmp); |
| } |
| } |
| |
| Old->invalidateAttrs(); |
| } |
| |
| /// MergeFunctionDecl - We just parsed a function 'New' from |
| /// declarator D which has the same name and scope as a previous |
| /// declaration 'Old'. Figure out how to resolve this situation, |
| /// merging decls or emitting diagnostics as appropriate. |
| /// Redeclaration will be set true if this New is a redeclaration OldD. |
| /// |
| /// In C++, New and Old must be declarations that are not |
| /// overloaded. Use IsOverload to determine whether New and Old are |
| /// overloaded, and to select the Old declaration that New should be |
| /// merged with. |
| FunctionDecl * |
| Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) { |
| assert(!isa<OverloadedFunctionDecl>(OldD) && |
| "Cannot merge with an overloaded function declaration"); |
| |
| Redeclaration = false; |
| // Verify the old decl was also a function. |
| FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| Diag(OldD->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| |
| // Determine whether the previous declaration was a definition, |
| // implicit declaration, or a declaration. |
| diag::kind PrevDiag; |
| if (Old->isThisDeclarationADefinition()) |
| PrevDiag = diag::note_previous_definition; |
| else if (Old->isImplicit()) |
| PrevDiag = diag::note_previous_implicit_declaration; |
| else |
| PrevDiag = diag::note_previous_declaration; |
| |
| QualType OldQType = Context.getCanonicalType(Old->getType()); |
| QualType NewQType = Context.getCanonicalType(New->getType()); |
| |
| if (getLangOptions().CPlusPlus) { |
| // (C++98 13.1p2): |
| // Certain function declarations cannot be overloaded: |
| // -- Function declarations that differ only in the return type |
| // cannot be overloaded. |
| QualType OldReturnType |
| = cast<FunctionType>(OldQType.getTypePtr())->getResultType(); |
| QualType NewReturnType |
| = cast<FunctionType>(NewQType.getTypePtr())->getResultType(); |
| if (OldReturnType != NewReturnType) { |
| Diag(New->getLocation(), diag::err_ovl_diff_return_type); |
| Diag(Old->getLocation(), PrevDiag); |
| Redeclaration = true; |
| return New; |
| } |
| |
| const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); |
| const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); |
| if (OldMethod && NewMethod) { |
| // -- Member function declarations with the same name and the |
| // same parameter types cannot be overloaded if any of them |
| // is a static member function declaration. |
| if (OldMethod->isStatic() || NewMethod->isStatic()) { |
| Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); |
| Diag(Old->getLocation(), PrevDiag); |
| return New; |
| } |
| |
| // C++ [class.mem]p1: |
| // [...] A member shall not be declared twice in the |
| // member-specification, except that a nested class or member |
| // class template can be declared and then later defined. |
| if (OldMethod->getLexicalDeclContext() == |
| NewMethod->getLexicalDeclContext()) { |
| unsigned NewDiag; |
| if (isa<CXXConstructorDecl>(OldMethod)) |
| NewDiag = diag::err_constructor_redeclared; |
| else if (isa<CXXDestructorDecl>(NewMethod)) |
| NewDiag = diag::err_destructor_redeclared; |
| else if (isa<CXXConversionDecl>(NewMethod)) |
| NewDiag = diag::err_conv_function_redeclared; |
| else |
| NewDiag = diag::err_member_redeclared; |
| |
| Diag(New->getLocation(), NewDiag); |
| Diag(Old->getLocation(), PrevDiag); |
| } |
| } |
| |
| // (C++98 8.3.5p3): |
| // All declarations for a function shall agree exactly in both the |
| // return type and the parameter-type-list. |
| if (OldQType == NewQType) { |
| // We have a redeclaration. |
| MergeAttributes(New, Old); |
| Redeclaration = true; |
| return MergeCXXFunctionDecl(New, Old); |
| } |
| |
| // Fall through for conflicting redeclarations and redefinitions. |
| } |
| |
| // C: Function types need to be compatible, not identical. This handles |
| // duplicate function decls like "void f(int); void f(enum X);" properly. |
| if (!getLangOptions().CPlusPlus && |
| Context.typesAreCompatible(OldQType, NewQType)) { |
| MergeAttributes(New, Old); |
| Redeclaration = true; |
| return New; |
| } |
| |
| // A function that has already been declared has been redeclared or defined |
| // with a different type- show appropriate diagnostic |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); |
| Diag(Old->getLocation(), PrevDiag); |
| return New; |
| } |
| |
| /// Predicate for C "tentative" external object definitions (C99 6.9.2). |
| static bool isTentativeDefinition(VarDecl *VD) { |
| if (VD->isFileVarDecl()) |
| return (!VD->getInit() && |
| (VD->getStorageClass() == VarDecl::None || |
| VD->getStorageClass() == VarDecl::Static)); |
| return false; |
| } |
| |
| /// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors |
| /// when dealing with C "tentative" external object definitions (C99 6.9.2). |
| void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) { |
| bool VDIsTentative = isTentativeDefinition(VD); |
| bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType(); |
| |
| // FIXME: I don't think this will actually see all of the |
| // redefinitions. Can't we check this property on-the-fly? |
| for (IdentifierResolver::iterator |
| I = IdResolver.begin(VD->getIdentifier(), |
| VD->getDeclContext(), false/*LookInParentCtx*/), |
| E = IdResolver.end(); I != E; ++I) { |
| if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) { |
| VarDecl *OldDecl = dyn_cast<VarDecl>(*I); |
| |
| // Handle the following case: |
| // int a[10]; |
| // int a[]; - the code below makes sure we set the correct type. |
| // int a[11]; - this is an error, size isn't 10. |
| if (OldDecl && VDIsTentative && VDIsIncompleteArray && |
| OldDecl->getType()->isConstantArrayType()) |
| VD->setType(OldDecl->getType()); |
| |
| // Check for "tentative" definitions. We can't accomplish this in |
| // MergeVarDecl since the initializer hasn't been attached. |
| if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative) |
| continue; |
| |
| // Handle __private_extern__ just like extern. |
| if (OldDecl->getStorageClass() != VarDecl::Extern && |
| OldDecl->getStorageClass() != VarDecl::PrivateExtern && |
| VD->getStorageClass() != VarDecl::Extern && |
| VD->getStorageClass() != VarDecl::PrivateExtern) { |
| Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName(); |
| Diag(OldDecl->getLocation(), diag::note_previous_definition); |
| } |
| } |
| } |
| } |
| |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| /// Tentative definition rules (C99 6.9.2p2) are checked by |
| /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative |
| /// definitions here, since the initializer hasn't been attached. |
| /// |
| VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) { |
| // Verify the old decl was also a variable. |
| VarDecl *Old = dyn_cast<VarDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| Diag(OldD->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| |
| MergeAttributes(New, Old); |
| |
| // Merge the types |
| QualType MergedT = Context.mergeTypes(New->getType(), Old->getType()); |
| if (MergedT.isNull()) { |
| Diag(New->getLocation(), diag::err_redefinition_different_type) |
| << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| New->setType(MergedT); |
| // C99 6.2.2p4: Check if we have a static decl followed by a non-static. |
| if (New->getStorageClass() == VarDecl::Static && |
| (Old->getStorageClass() == VarDecl::None || |
| Old->getStorageClass() == VarDecl::Extern)) { |
| Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| // C99 6.2.2p4: Check if we have a non-static decl followed by a static. |
| if (New->getStorageClass() != VarDecl::Static && |
| Old->getStorageClass() == VarDecl::Static) { |
| Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| return New; |
| } |
| // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. |
| if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) { |
| Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| } |
| return New; |
| } |
| |
| /// CheckParmsForFunctionDef - Check that the parameters of the given |
| /// function are appropriate for the definition of a function. This |
| /// takes care of any checks that cannot be performed on the |
| /// declaration itself, e.g., that the types of each of the function |
| /// parameters are complete. |
| bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) { |
| bool HasInvalidParm = false; |
| for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| |
| // C99 6.7.5.3p4: the parameters in a parameter type list in a |
| // function declarator that is part of a function definition of |
| // that function shall not have incomplete type. |
| if (!Param->isInvalidDecl() && |
| DiagnoseIncompleteType(Param->getLocation(), Param->getType(), |
| diag::err_typecheck_decl_incomplete_type)) { |
| Param->setInvalidDecl(); |
| HasInvalidParm = true; |
| } |
| |
| // C99 6.9.1p5: If the declarator includes a parameter type list, the |
| // declaration of each parameter shall include an identifier. |
| if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus) |
| Diag(Param->getLocation(), diag::err_parameter_name_omitted); |
| } |
| |
| return HasInvalidParm; |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. |
| Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { |
| TagDecl *Tag |
| = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep())); |
| if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { |
| if (!Record->getDeclName() && Record->isDefinition() && |
| DS.getStorageClassSpec() != DeclSpec::SCS_typedef) |
| return BuildAnonymousStructOrUnion(S, DS, Record); |
| |
| // Microsoft allows unnamed struct/union fields. Don't complain |
| // about them. |
| // FIXME: Should we support Microsoft's extensions in this area? |
| if (Record->getDeclName() && getLangOptions().Microsoft) |
| return Tag; |
| } |
| |
| if (!DS.isMissingDeclaratorOk()) { |
| // Warn about typedefs of enums without names, since this is an |
| // extension in both Microsoft an GNU. |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef && |
| Tag && isa<EnumDecl>(Tag)) { |
| Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name) |
| << DS.getSourceRange(); |
| return Tag; |
| } |
| |
| // FIXME: This diagnostic is emitted even when various previous |
| // errors occurred (see e.g. test/Sema/decl-invalid.c). However, |
| // DeclSpec has no means of communicating this information, and the |
| // responsible parser functions are quite far apart. |
| Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators) |
| << DS.getSourceRange(); |
| return 0; |
| } |
| |
| return Tag; |
| } |
| |
| /// InjectAnonymousStructOrUnionMembers - Inject the members of the |
| /// anonymous struct or union AnonRecord into the owning context Owner |
| /// and scope S. This routine will be invoked just after we realize |
| /// that an unnamed union or struct is actually an anonymous union or |
| /// struct, e.g., |
| /// |
| /// @code |
| /// union { |
| /// int i; |
| /// float f; |
| /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and |
| /// // f into the surrounding scope.x |
| /// @endcode |
| /// |
| /// This routine is recursive, injecting the names of nested anonymous |
| /// structs/unions into the owning context and scope as well. |
| bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner, |
| RecordDecl *AnonRecord) { |
| bool Invalid = false; |
| for (RecordDecl::field_iterator F = AnonRecord->field_begin(), |
| FEnd = AnonRecord->field_end(); |
| F != FEnd; ++F) { |
| if ((*F)->getDeclName()) { |
| Decl *PrevDecl = LookupDeclInContext((*F)->getDeclName(), |
| Decl::IDNS_Ordinary, Owner, false); |
| if (PrevDecl && !isa<TagDecl>(PrevDecl)) { |
| // C++ [class.union]p2: |
| // The names of the members of an anonymous union shall be |
| // distinct from the names of any other entity in the |
| // scope in which the anonymous union is declared. |
| unsigned diagKind |
| = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl |
| : diag::err_anonymous_struct_member_redecl; |
| Diag((*F)->getLocation(), diagKind) |
| << (*F)->getDeclName(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| Invalid = true; |
| } else { |
| // C++ [class.union]p2: |
| // For the purpose of name lookup, after the anonymous union |
| // definition, the members of the anonymous union are |
| // considered to have been defined in the scope in which the |
| // anonymous union is declared. |
| Owner->makeDeclVisibleInContext(*F); |
| S->AddDecl(*F); |
| IdResolver.AddDecl(*F); |
| } |
| } else if (const RecordType *InnerRecordType |
| = (*F)->getType()->getAsRecordType()) { |
| RecordDecl *InnerRecord = InnerRecordType->getDecl(); |
| if (InnerRecord->isAnonymousStructOrUnion()) |
| Invalid = Invalid || |
| InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord); |
| } |
| } |
| |
| return Invalid; |
| } |
| |
| /// ActOnAnonymousStructOrUnion - Handle the declaration of an |
| /// anonymous structure or union. Anonymous unions are a C++ feature |
| /// (C++ [class.union]) and a GNU C extension; anonymous structures |
| /// are a GNU C and GNU C++ extension. |
| Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, |
| RecordDecl *Record) { |
| DeclContext *Owner = Record->getDeclContext(); |
| |
| // Diagnose whether this anonymous struct/union is an extension. |
| if (Record->isUnion() && !getLangOptions().CPlusPlus) |
| Diag(Record->getLocation(), diag::ext_anonymous_union); |
| else if (!Record->isUnion()) |
| Diag(Record->getLocation(), diag::ext_anonymous_struct); |
| |
| // C and C++ require different kinds of checks for anonymous |
| // structs/unions. |
| bool Invalid = false; |
| if (getLangOptions().CPlusPlus) { |
| const char* PrevSpec = 0; |
| // C++ [class.union]p3: |
| // Anonymous unions declared in a named namespace or in the |
| // global namespace shall be declared static. |
| if (DS.getStorageClassSpec() != DeclSpec::SCS_static && |
| (isa<TranslationUnitDecl>(Owner) || |
| (isa<NamespaceDecl>(Owner) && |
| cast<NamespaceDecl>(Owner)->getDeclName()))) { |
| Diag(Record->getLocation(), diag::err_anonymous_union_not_static); |
| Invalid = true; |
| |
| // Recover by adding 'static'. |
| DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec); |
| } |
| // C++ [class.union]p3: |
| // A storage class is not allowed in a declaration of an |
| // anonymous union in a class scope. |
| else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && |
| isa<RecordDecl>(Owner)) { |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_anonymous_union_with_storage_spec); |
| Invalid = true; |
| |
| // Recover by removing the storage specifier. |
| DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(), |
| PrevSpec); |
| } |
| |
| // C++ [class.union]p2: |
| // The member-specification of an anonymous union shall only |
| // define non-static data members. [Note: nested types and |
| // functions cannot be declared within an anonymous union. ] |
| for (DeclContext::decl_iterator Mem = Record->decls_begin(), |
| MemEnd = Record->decls_end(); |
| Mem != MemEnd; ++Mem) { |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) { |
| // C++ [class.union]p3: |
| // An anonymous union shall not have private or protected |
| // members (clause 11). |
| if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) { |
| Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) |
| << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); |
| Invalid = true; |
| } |
| } else if ((*Mem)->isImplicit()) { |
| // Any implicit members are fine. |
| } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) { |
| if (!MemRecord->isAnonymousStructOrUnion() && |
| MemRecord->getDeclName()) { |
| // This is a nested type declaration. |
| Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) |
| << (int)Record->isUnion(); |
| Invalid = true; |
| } |
| } else { |
| // We have something that isn't a non-static data |
| // member. Complain about it. |
| unsigned DK = diag::err_anonymous_record_bad_member; |
| if (isa<TypeDecl>(*Mem)) |
| DK = diag::err_anonymous_record_with_type; |
| else if (isa<FunctionDecl>(*Mem)) |
| DK = diag::err_anonymous_record_with_function; |
| else if (isa<VarDecl>(*Mem)) |
| DK = diag::err_anonymous_record_with_static; |
| Diag((*Mem)->getLocation(), DK) |
| << (int)Record->isUnion(); |
| Invalid = true; |
| } |
| } |
| } else { |
| // FIXME: Check GNU C semantics |
| if (Record->isUnion() && !Owner->isRecord()) { |
| Diag(Record->getLocation(), diag::err_anonymous_union_not_member) |
| << (int)getLangOptions().CPlusPlus; |
| Invalid = true; |
| } |
| } |
| |
| if (!Record->isUnion() && !Owner->isRecord()) { |
| Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) |
| << (int)getLangOptions().CPlusPlus; |
| Invalid = true; |
| } |
| |
| // Create a declaration for this anonymous struct/union. |
| NamedDecl *Anon = 0; |
| if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { |
| Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(), |
| /*IdentifierInfo=*/0, |
| Context.getTypeDeclType(Record), |
| /*BitWidth=*/0, /*Mutable=*/false); |
| Anon->setAccess(AS_public); |
| if (getLangOptions().CPlusPlus) |
| FieldCollector->Add(cast<FieldDecl>(Anon)); |
| } else { |
| VarDecl::StorageClass SC; |
| switch (DS.getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; |
| case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = VarDecl::Static; break; |
| case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; |
| case DeclSpec::SCS_register: SC = VarDecl::Register; break; |
| case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break; |
| case DeclSpec::SCS_mutable: |
| // mutable can only appear on non-static class members, so it's always |
| // an error here |
| Diag(Record->getLocation(), diag::err_mutable_nonmember); |
| Invalid = true; |
| SC = VarDecl::None; |
| break; |
| } |
| |
| Anon = VarDecl::Create(Context, Owner, Record->getLocation(), |
| /*IdentifierInfo=*/0, |
| Context.getTypeDeclType(Record), |
| SC, DS.getSourceRange().getBegin()); |
| } |
| Anon->setImplicit(); |
| |
| // Add the anonymous struct/union object to the current |
| // context. We'll be referencing this object when we refer to one of |
| // its members. |
| Owner->addDecl(Anon); |
| |
| // Inject the members of the anonymous struct/union into the owning |
| // context and into the identifier resolver chain for name lookup |
| // purposes. |
| if (InjectAnonymousStructOrUnionMembers(S, Owner, Record)) |
| Invalid = true; |
| |
| // Mark this as an anonymous struct/union type. Note that we do not |
| // do this until after we have already checked and injected the |
| // members of this anonymous struct/union type, because otherwise |
| // the members could be injected twice: once by DeclContext when it |
| // builds its lookup table, and once by |
| // InjectAnonymousStructOrUnionMembers. |
| Record->setAnonymousStructOrUnion(true); |
| |
| if (Invalid) |
| Anon->setInvalidDecl(); |
| |
| return Anon; |
| } |
| |
| bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType, |
| bool DirectInit) { |
| // Get the type before calling CheckSingleAssignmentConstraints(), since |
| // it can promote the expression. |
| QualType InitType = Init->getType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| // FIXME: I dislike this error message. A lot. |
| if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit)) |
| return Diag(Init->getSourceRange().getBegin(), |
| diag::err_typecheck_convert_incompatible) |
| << DeclType << Init->getType() << "initializing" |
| << Init->getSourceRange(); |
| |
| return false; |
| } |
| |
| AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init); |
| return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType, |
| InitType, Init, "initializing"); |
| } |
| |
| bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) { |
| const ArrayType *AT = Context.getAsArrayType(DeclT); |
| |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
| // C99 6.7.8p14. We have an array of character type with unknown size |
| // being initialized to a string literal. |
| llvm::APSInt ConstVal(32); |
| ConstVal = strLiteral->getByteLength() + 1; |
| // Return a new array type (C99 6.7.8p22). |
| DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal, |
| ArrayType::Normal, 0); |
| } else { |
| const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); |
| // C99 6.7.8p14. We have an array of character type with known size. |
| // FIXME: Avoid truncation for 64-bit length strings. |
| if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue()) |
| Diag(strLiteral->getSourceRange().getBegin(), |
| diag::warn_initializer_string_for_char_array_too_long) |
| << strLiteral->getSourceRange(); |
| } |
| // Set type from "char *" to "constant array of char". |
| strLiteral->setType(DeclT); |
| // For now, we always return false (meaning success). |
| return false; |
| } |
| |
| StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) { |
| const ArrayType *AT = Context.getAsArrayType(DeclType); |
| if (AT && AT->getElementType()->isCharType()) { |
| return dyn_cast<StringLiteral>(Init->IgnoreParens()); |
| } |
| return 0; |
| } |
| |
| bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType, |
| SourceLocation InitLoc, |
| DeclarationName InitEntity, |
| bool DirectInit) { |
| if (DeclType->isDependentType() || Init->isTypeDependent()) |
| return false; |
| |
| // C++ [dcl.init.ref]p1: |
| // A variable declared to be a T&, that is "reference to type T" |
| // (8.3.2), shall be initialized by an object, or function, of |
| // type T or by an object that can be converted into a T. |
| if (DeclType->isReferenceType()) |
| return CheckReferenceInit(Init, DeclType, 0, false, DirectInit); |
| |
| // C99 6.7.8p3: The type of the entity to be initialized shall be an array |
| // of unknown size ("[]") or an object type that is not a variable array type. |
| if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType)) |
| return Diag(InitLoc, diag::err_variable_object_no_init) |
| << VAT->getSizeExpr()->getSourceRange(); |
| |
| InitListExpr *InitList = dyn_cast<InitListExpr>(Init); |
| if (!InitList) { |
| // FIXME: Handle wide strings |
| if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType)) |
| return CheckStringLiteralInit(strLiteral, DeclType); |
| |
| // C++ [dcl.init]p14: |
| // -- If the destination type is a (possibly cv-qualified) class |
| // type: |
| if (getLangOptions().CPlusPlus && DeclType->isRecordType()) { |
| QualType DeclTypeC = Context.getCanonicalType(DeclType); |
| QualType InitTypeC = Context.getCanonicalType(Init->getType()); |
| |
| // -- If the initialization is direct-initialization, or if it is |
| // copy-initialization where the cv-unqualified version of the |
| // source type is the same class as, or a derived class of, the |
| // class of the destination, constructors are considered. |
| if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) || |
| IsDerivedFrom(InitTypeC, DeclTypeC)) { |
| CXXConstructorDecl *Constructor |
| = PerformInitializationByConstructor(DeclType, &Init, 1, |
| InitLoc, Init->getSourceRange(), |
| InitEntity, |
| DirectInit? IK_Direct : IK_Copy); |
| return Constructor == 0; |
| } |
| |
| // -- Otherwise (i.e., for the remaining copy-initialization |
| // cases), user-defined conversion sequences that can |
| // convert from the source type to the destination type or |
| // (when a conversion function is used) to a derived class |
| // thereof are enumerated as described in 13.3.1.4, and the |
| // best one is chosen through overload resolution |
| // (13.3). If the conversion cannot be done or is |
| // ambiguous, the initialization is ill-formed. The |
| // function selected is called with the initializer |
| // expression as its argument; if the function is a |
| // constructor, the call initializes a temporary of the |
| // destination type. |
| // FIXME: We're pretending to do copy elision here; return to |
| // this when we have ASTs for such things. |
| if (!PerformImplicitConversion(Init, DeclType, "initializing")) |
| return false; |
| |
| if (InitEntity) |
| return Diag(InitLoc, diag::err_cannot_initialize_decl) |
| << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid) |
| << Init->getType() << Init->getSourceRange(); |
| else |
| return Diag(InitLoc, diag::err_cannot_initialize_decl_noname) |
| << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid) |
| << Init->getType() << Init->getSourceRange(); |
| } |
| |
| // C99 6.7.8p16. |
| if (DeclType->isArrayType()) |
| return Diag(Init->getLocStart(), diag::err_array_init_list_required) |
| << Init->getSourceRange(); |
| |
| return CheckSingleInitializer(Init, DeclType, DirectInit); |
| } else if (getLangOptions().CPlusPlus) { |
| // C++ [dcl.init]p14: |
| // [...] If the class is an aggregate (8.5.1), and the initializer |
| // is a brace-enclosed list, see 8.5.1. |
| // |
| // Note: 8.5.1 is handled below; here, we diagnose the case where |
| // we have an initializer list and a destination type that is not |
| // an aggregate. |
| // FIXME: In C++0x, this is yet another form of initialization. |
| if (const RecordType *ClassRec = DeclType->getAsRecordType()) { |
| const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl()); |
| if (!ClassDecl->isAggregate()) |
| return Diag(InitLoc, diag::err_init_non_aggr_init_list) |
| << DeclType << Init->getSourceRange(); |
| } |
| } |
| |
| bool hadError = CheckInitList(InitList, DeclType); |
| Init = InitList; |
| return hadError; |
| } |
| |
| /// GetNameForDeclarator - Determine the full declaration name for the |
| /// given Declarator. |
| DeclarationName Sema::GetNameForDeclarator(Declarator &D) { |
| switch (D.getKind()) { |
| case Declarator::DK_Abstract: |
| assert(D.getIdentifier() == 0 && "abstract declarators have no name"); |
| return DeclarationName(); |
| |
| case Declarator::DK_Normal: |
| assert (D.getIdentifier() != 0 && "normal declarators have an identifier"); |
| return DeclarationName(D.getIdentifier()); |
| |
| case Declarator::DK_Constructor: { |
| QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType()); |
| Ty = Context.getCanonicalType(Ty); |
| return Context.DeclarationNames.getCXXConstructorName(Ty); |
| } |
| |
| case Declarator::DK_Destructor: { |
| QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType()); |
| Ty = Context.getCanonicalType(Ty); |
| return Context.DeclarationNames.getCXXDestructorName(Ty); |
| } |
| |
| case Declarator::DK_Conversion: { |
| QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); |
| Ty = Context.getCanonicalType(Ty); |
| return Context.DeclarationNames.getCXXConversionFunctionName(Ty); |
| } |
| |
| case Declarator::DK_Operator: |
| assert(D.getIdentifier() == 0 && "operator names have no identifier"); |
| return Context.DeclarationNames.getCXXOperatorName( |
| D.getOverloadedOperator()); |
| } |
| |
| assert(false && "Unknown name kind"); |
| return DeclarationName(); |
| } |
| |
| /// isNearlyMatchingMemberFunction - Determine whether the C++ member |
| /// functions Declaration and Definition are "nearly" matching. This |
| /// heuristic is used to improve diagnostics in the case where an |
| /// out-of-line member function definition doesn't match any |
| /// declaration within the class. |
| static bool isNearlyMatchingMemberFunction(ASTContext &Context, |
| FunctionDecl *Declaration, |
| FunctionDecl *Definition) { |
| if (Declaration->param_size() != Definition->param_size()) |
| return false; |
| for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { |
| QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); |
| QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); |
| |
| DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType()); |
| DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType()); |
| if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| Sema::DeclTy * |
| Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl, |
| bool IsFunctionDefinition) { |
| NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl); |
| DeclarationName Name = GetNameForDeclarator(D); |
| |
| // All of these full declarators require an identifier. If it doesn't have |
| // one, the ParsedFreeStandingDeclSpec action should be used. |
| if (!Name) { |
| if (!D.getInvalidType()) // Reject this if we think it is valid. |
| Diag(D.getDeclSpec().getSourceRange().getBegin(), |
| diag::err_declarator_need_ident) |
| << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
| return 0; |
| } |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0 || |
| (S->getFlags() & Scope::TemplateParamScope) != 0) |
| S = S->getParent(); |
| |
| DeclContext *DC; |
| Decl *PrevDecl; |
| NamedDecl *New; |
| bool InvalidDecl = false; |
| |
| // See if this is a redefinition of a variable in the same scope. |
| if (!D.getCXXScopeSpec().isSet()) { |
| DC = CurContext; |
| PrevDecl = LookupDeclInScope(Name, Decl::IDNS_Ordinary, S); |
| } else { // Something like "int foo::x;" |
| DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep()); |
| PrevDecl = DC ? LookupDeclInContext(Name, Decl::IDNS_Ordinary, DC) |
| : LookupDeclInScope(Name, Decl::IDNS_Ordinary, S); |
| |
| // C++ 7.3.1.2p2: |
| // Members (including explicit specializations of templates) of a named |
| // namespace can also be defined outside that namespace by explicit |
| // qualification of the name being defined, provided that the entity being |
| // defined was already declared in the namespace and the definition appears |
| // after the point of declaration in a namespace that encloses the |
| // declarations namespace. |
| // |
| // Note that we only check the context at this point. We don't yet |
| // have enough information to make sure that PrevDecl is actually |
| // the declaration we want to match. For example, given: |
| // |
| // class X { |
| // void f(); |
| // void f(float); |
| // }; |
| // |
| // void X::f(int) { } // ill-formed |
| // |
| // In this case, PrevDecl will point to the overload set |
| // containing the two f's declared in X, but neither of them |
| // matches. |
| if (!CurContext->Encloses(DC)) { |
| // The qualifying scope doesn't enclose the original declaration. |
| // Emit diagnostic based on current scope. |
| SourceLocation L = D.getIdentifierLoc(); |
| SourceRange R = D.getCXXScopeSpec().getRange(); |
| if (isa<FunctionDecl>(CurContext)) { |
| Diag(L, diag::err_invalid_declarator_in_function) << Name << R; |
| } else { |
| Diag(L, diag::err_invalid_declarator_scope) |
| << Name << cast<NamedDecl>(DC)->getDeclName() << R; |
| } |
| InvalidDecl = true; |
| } |
| } |
| |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| InvalidDecl = InvalidDecl |
| || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag && |
| D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) |
| PrevDecl = 0; |
| |
| QualType R = GetTypeForDeclarator(D, S); |
| assert(!R.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl, |
| InvalidDecl); |
| } else if (R.getTypePtr()->isFunctionType()) { |
| New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl, |
| IsFunctionDefinition, InvalidDecl); |
| } else { |
| New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl, |
| InvalidDecl); |
| } |
| |
| if (New == 0) |
| return 0; |
| |
| // Set the lexical context. If the declarator has a C++ scope specifier, the |
| // lexical context will be different from the semantic context. |
| New->setLexicalDeclContext(CurContext); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Name) |
| PushOnScopeChains(New, S); |
| // If any semantic error occurred, mark the decl as invalid. |
| if (D.getInvalidType() || InvalidDecl) |
| New->setInvalidDecl(); |
| |
| return New; |
| } |
| |
| NamedDecl* |
| Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
| QualType R, Decl* LastDeclarator, |
| Decl* PrevDecl, bool& InvalidDecl) { |
| // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| InvalidDecl = true; |
| // Pretend we didn't see the scope specifier. |
| DC = 0; |
| } |
| |
| // Check that there are no default arguments (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator); |
| if (!NewTD) return 0; |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(NewTD, D); |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) { |
| NewTD = MergeTypeDefDecl(NewTD, PrevDecl); |
| if (NewTD == 0) return 0; |
| } |
| |
| if (S->getFnParent() == 0) { |
| // C99 6.7.7p2: If a typedef name specifies a variably modified type |
| // then it shall have block scope. |
| if (NewTD->getUnderlyingType()->isVariablyModifiedType()) { |
| if (NewTD->getUnderlyingType()->isVariableArrayType()) |
| Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope); |
| else |
| Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope); |
| |
| InvalidDecl = true; |
| } |
| } |
| return NewTD; |
| } |
| |
| NamedDecl* |
| Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
| QualType R, Decl* LastDeclarator, |
| Decl* PrevDecl, bool& InvalidDecl) { |
| DeclarationName Name = GetNameForDeclarator(D); |
| |
| // Check that there are no default arguments (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| if (R.getTypePtr()->isObjCInterfaceType()) { |
| Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object) |
| << D.getIdentifier(); |
| InvalidDecl = true; |
| } |
| |
| VarDecl *NewVD; |
| VarDecl::StorageClass SC; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; |
| case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = VarDecl::Static; break; |
| case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; |
| case DeclSpec::SCS_register: SC = VarDecl::Register; break; |
| case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break; |
| case DeclSpec::SCS_mutable: |
| // mutable can only appear on non-static class members, so it's always |
| // an error here |
| Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); |
| InvalidDecl = true; |
| SC = VarDecl::None; |
| break; |
| } |
| |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| if (!II) { |
| Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) |
| << Name.getAsString(); |
| return 0; |
| } |
| |
| if (DC->isRecord()) { |
| // This is a static data member for a C++ class. |
| NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC), |
| D.getIdentifierLoc(), II, |
| R); |
| } else { |
| bool ThreadSpecified = D.getDeclSpec().isThreadSpecified(); |
| if (S->getFnParent() == 0) { |
| // C99 6.9p2: The storage-class specifiers auto and register shall not |
| // appear in the declaration specifiers in an external declaration. |
| if (SC == VarDecl::Auto || SC == VarDecl::Register) { |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); |
| InvalidDecl = true; |
| } |
| } |
| NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(), |
| II, R, SC, |
| // FIXME: Move to DeclGroup... |
| D.getDeclSpec().getSourceRange().getBegin()); |
| NewVD->setThreadSpecified(ThreadSpecified); |
| } |
| NewVD->setNextDeclarator(LastDeclarator); |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(NewVD, D); |
| |
| // Handle GNU asm-label extension (encoded as an attribute). |
| if (Expr *E = (Expr*) D.getAsmLabel()) { |
| // The parser guarantees this is a string. |
| StringLiteral *SE = cast<StringLiteral>(E); |
| NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(), |
| SE->getByteLength()))); |
| } |
| |
| // Emit an error if an address space was applied to decl with local storage. |
| // This includes arrays of objects with address space qualifiers, but not |
| // automatic variables that point to other address spaces. |
| // ISO/IEC TR 18037 S5.1.2 |
| if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) { |
| Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl); |
| InvalidDecl = true; |
| } |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) { |
| if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) { |
| // The user tried to define a non-static data member |
| // out-of-line (C++ [dcl.meaning]p1). |
| Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) |
| << D.getCXXScopeSpec().getRange(); |
| NewVD->Destroy(Context); |
| return 0; |
| } |
| |
| NewVD = MergeVarDecl(NewVD, PrevDecl); |
| if (NewVD == 0) return 0; |
| |
| if (D.getCXXScopeSpec().isSet()) { |
| // No previous declaration in the qualifying scope. |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member) |
| << Name << D.getCXXScopeSpec().getRange(); |
| InvalidDecl = true; |
| } |
| } |
| return NewVD; |
| } |
| |
| NamedDecl* |
| Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
| QualType R, Decl *LastDeclarator, |
| Decl* PrevDecl, bool IsFunctionDefinition, |
| bool& InvalidDecl) { |
| assert(R.getTypePtr()->isFunctionType()); |
| |
| DeclarationName Name = GetNameForDeclarator(D); |
| FunctionDecl::StorageClass SC = FunctionDecl::None; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_auto: |
| case DeclSpec::SCS_register: |
| case DeclSpec::SCS_mutable: |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func); |
| InvalidDecl = true; |
| break; |
| case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break; |
| case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = FunctionDecl::Static; break; |
| case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break; |
| } |
| |
| bool isInline = D.getDeclSpec().isInlineSpecified(); |
| // bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| bool isExplicit = D.getDeclSpec().isExplicitSpecified(); |
| |
| FunctionDecl *NewFD; |
| if (D.getKind() == Declarator::DK_Constructor) { |
| // This is a C++ constructor declaration. |
| assert(DC->isRecord() && |
| "Constructors can only be declared in a member context"); |
| |
| InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC); |
| |
| // Create the new declaration |
| NewFD = CXXConstructorDecl::Create(Context, |
| cast<CXXRecordDecl>(DC), |
| D.getIdentifierLoc(), Name, R, |
| isExplicit, isInline, |
| /*isImplicitlyDeclared=*/false); |
| |
| if (InvalidDecl) |
| NewFD->setInvalidDecl(); |
| } else if (D.getKind() == Declarator::DK_Destructor) { |
| // This is a C++ destructor declaration. |
| if (DC->isRecord()) { |
| InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC); |
| |
| NewFD = CXXDestructorDecl::Create(Context, |
| cast<CXXRecordDecl>(DC), |
| D.getIdentifierLoc(), Name, R, |
| isInline, |
| /*isImplicitlyDeclared=*/false); |
| |
| if (InvalidDecl) |
| NewFD->setInvalidDecl(); |
| } else { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); |
| |
| // Create a FunctionDecl to satisfy the function definition parsing |
| // code path. |
| NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(), |
| Name, R, SC, isInline, |
| // FIXME: Move to DeclGroup... |
| D.getDeclSpec().getSourceRange().getBegin()); |
| InvalidDecl = true; |
| NewFD->setInvalidDecl(); |
| } |
| } else if (D.getKind() == Declarator::DK_Conversion) { |
| if (!DC->isRecord()) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_conv_function_not_member); |
| return 0; |
| } else { |
| InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC); |
| |
| NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC), |
| D.getIdentifierLoc(), Name, R, |
| isInline, isExplicit); |
| |
| if (InvalidDecl) |
| NewFD->setInvalidDecl(); |
| } |
| } else if (DC->isRecord()) { |
| // This is a C++ method declaration. |
| NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC), |
| D.getIdentifierLoc(), Name, R, |
| (SC == FunctionDecl::Static), isInline); |
| } else { |
| NewFD = FunctionDecl::Create(Context, DC, |
| D.getIdentifierLoc(), |
| Name, R, SC, isInline, |
| // FIXME: Move to DeclGroup... |
| D.getDeclSpec().getSourceRange().getBegin()); |
| } |
| NewFD->setNextDeclarator(LastDeclarator); |
| |
| // Set the lexical context. If the declarator has a C++ |
| // scope specifier, the lexical context will be different |
| // from the semantic context. |
| NewFD->setLexicalDeclContext(CurContext); |
| |
| // Handle GNU asm-label extension (encoded as an attribute). |
| if (Expr *E = (Expr*) D.getAsmLabel()) { |
| // The parser guarantees this is a string. |
| StringLiteral *SE = cast<StringLiteral>(E); |
| NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(), |
| SE->getByteLength()))); |
| } |
| |
| // Copy the parameter declarations from the declarator D to |
| // the function declaration NewFD, if they are available. |
| if (D.getNumTypeObjects() > 0) { |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| // Create Decl objects for each parameter, adding them to the |
| // FunctionDecl. |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs |
| // function that takes no arguments, not a function that takes a |
| // single void argument. |
| // We let through "const void" here because Sema::GetTypeForDeclarator |
| // already checks for that case. |
| if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].Param && |
| ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) { |
| // empty arg list, don't push any params. |
| ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param; |
| |
| // In C++, the empty parameter-type-list must be spelled "void"; a |
| // typedef of void is not permitted. |
| if (getLangOptions().CPlusPlus && |
| Param->getType().getUnqualifiedType() != Context.VoidTy) { |
| Diag(Param->getLocation(), diag::ext_param_typedef_of_void); |
| } |
| } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) |
| Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param); |
| } |
| |
| NewFD->setParams(Context, &Params[0], Params.size()); |
| } else if (R->getAsTypedefType()) { |
| // When we're declaring a function with a typedef, as in the |
| // following example, we'll need to synthesize (unnamed) |
| // parameters for use in the declaration. |
| // |
| // @code |
| // typedef void fn(int); |
| // fn f; |
| // @endcode |
| const FunctionTypeProto *FT = R->getAsFunctionTypeProto(); |
| if (!FT) { |
| // This is a typedef of a function with no prototype, so we |
| // don't need to do anything. |
| } else if ((FT->getNumArgs() == 0) || |
| (FT->getNumArgs() == 1 && !FT->isVariadic() && |
| FT->getArgType(0)->isVoidType())) { |
| // This is a zero-argument function. We don't need to do anything. |
| } else { |
| // Synthesize a parameter for each argument type. |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin(); |
| ArgType != FT->arg_type_end(); ++ArgType) { |
| Params.push_back(ParmVarDecl::Create(Context, DC, |
| SourceLocation(), 0, |
| *ArgType, VarDecl::None, |
| 0)); |
| } |
| |
| NewFD->setParams(Context, &Params[0], Params.size()); |
| } |
| } |
| |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) |
| InvalidDecl = InvalidDecl || CheckConstructor(Constructor); |
| else if (isa<CXXDestructorDecl>(NewFD)) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent()); |
| Record->setUserDeclaredDestructor(true); |
| // C++ [class]p4: A POD-struct is an aggregate class that has [...] no |
| // user-defined destructor. |
| Record->setPOD(false); |
| } else if (CXXConversionDecl *Conversion = |
| dyn_cast<CXXConversionDecl>(NewFD)) |
| ActOnConversionDeclarator(Conversion); |
| |
| // Extra checking for C++ overloaded operators (C++ [over.oper]). |
| if (NewFD->isOverloadedOperator() && |
| CheckOverloadedOperatorDeclaration(NewFD)) |
| NewFD->setInvalidDecl(); |
| |
| // Merge the decl with the existing one if appropriate. Since C functions |
| // are in a flat namespace, make sure we consider decls in outer scopes. |
| if (PrevDecl && |
| (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) { |
| bool Redeclaration = false; |
| |
| // If C++, determine whether NewFD is an overload of PrevDecl or |
| // a declaration that requires merging. If it's an overload, |
| // there's no more work to do here; we'll just add the new |
| // function to the scope. |
| OverloadedFunctionDecl::function_iterator MatchedDecl; |
| if (!getLangOptions().CPlusPlus || |
| !IsOverload(NewFD, PrevDecl, MatchedDecl)) { |
| Decl *OldDecl = PrevDecl; |
| |
| // If PrevDecl was an overloaded function, extract the |
| // FunctionDecl that matched. |
| if (isa<OverloadedFunctionDecl>(PrevDecl)) |
| OldDecl = *MatchedDecl; |
| |
| // NewFD and PrevDecl represent declarations that need to be |
| // merged. |
| NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration); |
| |
| if (NewFD == 0) return 0; |
| if (Redeclaration) { |
| NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl)); |
| |
| // An out-of-line member function declaration must also be a |
| // definition (C++ [dcl.meaning]p1). |
| if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && |
| !InvalidDecl) { |
| Diag(NewFD->getLocation(), diag::err_out_of_line_declaration) |
| << D.getCXXScopeSpec().getRange(); |
| NewFD->setInvalidDecl(); |
| } |
| } |
| } |
| |
| if (!Redeclaration && D.getCXXScopeSpec().isSet()) { |
| // The user tried to provide an out-of-line definition for a |
| // member function, but there was no such member function |
| // declared (C++ [class.mfct]p2). For example: |
| // |
| // class X { |
| // void f() const; |
| // }; |
| // |
| // void X::f() { } // ill-formed |
| // |
| // Complain about this problem, and attempt to suggest close |
| // matches (e.g., those that differ only in cv-qualifiers and |
| // whether the parameter types are references). |
| Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match) |
| << cast<CXXRecordDecl>(DC)->getDeclName() |
| << D.getCXXScopeSpec().getRange(); |
| InvalidDecl = true; |
| |
| PrevDecl = LookupDeclInContext(Name, Decl::IDNS_Ordinary, DC); |
| if (!PrevDecl) { |
| // Nothing to suggest. |
| } else if (OverloadedFunctionDecl *Ovl |
| = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) { |
| for (OverloadedFunctionDecl::function_iterator |
| Func = Ovl->function_begin(), |
| FuncEnd = Ovl->function_end(); |
| Func != FuncEnd; ++Func) { |
| if (isNearlyMatchingMemberFunction(Context, *Func, NewFD)) |
| Diag((*Func)->getLocation(), diag::note_member_def_close_match); |
| |
| } |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) { |
| // Suggest this no matter how mismatched it is; it's the only |
| // thing we have. |
| unsigned diag; |
| if (isNearlyMatchingMemberFunction(Context, Method, NewFD)) |
| diag = diag::note_member_def_close_match; |
| else if (Method->getBody()) |
| diag = diag::note_previous_definition; |
| else |
| diag = diag::note_previous_declaration; |
| Diag(Method->getLocation(), diag); |
| } |
| |
| PrevDecl = 0; |
| } |
| } |
| // Handle attributes. We need to have merged decls when handling attributes |
| // (for example to check for conflicts, etc). |
| ProcessDeclAttributes(NewFD, D); |
| |
| if (getLangOptions().CPlusPlus) { |
| // In C++, check default arguments now that we have merged decls. |
| CheckCXXDefaultArguments(NewFD); |
| |
| // An out-of-line member function declaration must also be a |
| // definition (C++ [dcl.meaning]p1). |
| if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) { |
| Diag(NewFD->getLocation(), diag::err_out_of_line_declaration) |
| << D.getCXXScopeSpec().getRange(); |
| InvalidDecl = true; |
| } |
| } |
| return NewFD; |
| } |
| |
| void Sema::InitializerElementNotConstant(const Expr *Init) { |
| Diag(Init->getExprLoc(), diag::err_init_element_not_constant) |
| << Init->getSourceRange(); |
| } |
| |
| bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) { |
| switch (Init->getStmtClass()) { |
| default: |
| InitializerElementNotConstant(Init); |
| return true; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(Init); |
| return CheckAddressConstantExpressionLValue(PE->getSubExpr()); |
| } |
| case Expr::CompoundLiteralExprClass: |
| return cast<CompoundLiteralExpr>(Init)->isFileScope(); |
| case Expr::DeclRefExprClass: |
| case Expr::QualifiedDeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(Init)->getDecl(); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasGlobalStorage()) |
| return false; |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| if (isa<FunctionDecl>(D)) |
| return false; |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| case Expr::MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(Init); |
| if (M->isArrow()) |
| return CheckAddressConstantExpression(M->getBase()); |
| return CheckAddressConstantExpressionLValue(M->getBase()); |
| } |
| case Expr::ArraySubscriptExprClass: { |
| // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)? |
| const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init); |
| return CheckAddressConstantExpression(ASE->getBase()) || |
| CheckArithmeticConstantExpression(ASE->getIdx()); |
| } |
| case Expr::StringLiteralClass: |
| case Expr::PredefinedExprClass: |
| return false; |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(Init); |
| |
| // C99 6.6p9 |
| if (Exp->getOpcode() == UnaryOperator::Deref) |
| return CheckAddressConstantExpression(Exp->getSubExpr()); |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| } |
| } |
| |
| bool Sema::CheckAddressConstantExpression(const Expr* Init) { |
| switch (Init->getStmtClass()) { |
| default: |
| InitializerElementNotConstant(Init); |
| return true; |
| case Expr::ParenExprClass: |
| return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr()); |
| case Expr::StringLiteralClass: |
| case Expr::ObjCStringLiteralClass: |
| return false; |
| case Expr::CallExprClass: |
| case Expr::CXXOperatorCallExprClass: |
| // __builtin___CFStringMakeConstantString is a valid constant l-value. |
| if (cast<CallExpr>(Init)->isBuiltinCall() == |
| Builtin::BI__builtin___CFStringMakeConstantString) |
| return false; |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(Init); |
| |
| // C99 6.6p9 |
| if (Exp->getOpcode() == UnaryOperator::AddrOf) |
| return CheckAddressConstantExpressionLValue(Exp->getSubExpr()); |
| |
| if (Exp->getOpcode() == UnaryOperator::Extension) |
| return CheckAddressConstantExpression(Exp->getSubExpr()); |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| case Expr::BinaryOperatorClass: { |
| // FIXME: Should we pedwarn for expressions like "a + 1 + 2"? |
| const BinaryOperator *Exp = cast<BinaryOperator>(Init); |
| |
| Expr *PExp = Exp->getLHS(); |
| Expr *IExp = Exp->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| // FIXME: Should we pedwarn if IExp isn't an integer constant expression? |
| return CheckAddressConstantExpression(PExp) || |
| CheckArithmeticConstantExpression(IExp); |
| } |
| case Expr::ImplicitCastExprClass: |
| case Expr::CStyleCastExprClass: { |
| const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr(); |
| if (Init->getStmtClass() == Expr::ImplicitCastExprClass) { |
| // Check for implicit promotion |
| if (SubExpr->getType()->isFunctionType() || |
| SubExpr->getType()->isArrayType()) |
| return CheckAddressConstantExpressionLValue(SubExpr); |
| } |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) |
| return CheckAddressConstantExpression(SubExpr); |
| |
| if (SubExpr->getType()->isIntegralType()) { |
| // Check for the special-case of a pointer->int->pointer cast; |
| // this isn't standard, but some code requires it. See |
| // PR2720 for an example. |
| if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) { |
| if (SubCast->getSubExpr()->getType()->isPointerType()) { |
| unsigned IntWidth = Context.getIntWidth(SubCast->getType()); |
| unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy); |
| if (IntWidth >= PointerWidth) { |
| return CheckAddressConstantExpression(SubCast->getSubExpr()); |
| } |
| } |
| } |
| } |
| if (SubExpr->getType()->isArithmeticType()) { |
| return CheckArithmeticConstantExpression(SubExpr); |
| } |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| case Expr::ConditionalOperatorClass: { |
| // FIXME: Should we pedwarn here? |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(Init); |
| if (!Exp->getCond()->getType()->isArithmeticType()) { |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| if (CheckArithmeticConstantExpression(Exp->getCond())) |
| return true; |
| if (Exp->getLHS() && |
| CheckAddressConstantExpression(Exp->getLHS())) |
| return true; |
| return CheckAddressConstantExpression(Exp->getRHS()); |
| } |
| case Expr::AddrLabelExprClass: |
| return false; |
| } |
| } |
| |
| static const Expr* FindExpressionBaseAddress(const Expr* E); |
| |
| static const Expr* FindExpressionBaseAddressLValue(const Expr* E) { |
| switch (E->getStmtClass()) { |
| default: |
| return E; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(E); |
| return FindExpressionBaseAddressLValue(PE->getSubExpr()); |
| } |
| case Expr::MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(E); |
| if (M->isArrow()) |
| return FindExpressionBaseAddress(M->getBase()); |
| return FindExpressionBaseAddressLValue(M->getBase()); |
| } |
| case Expr::ArraySubscriptExprClass: { |
| const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E); |
| return FindExpressionBaseAddress(ASE->getBase()); |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| |
| if (Exp->getOpcode() == UnaryOperator::Deref) |
| return FindExpressionBaseAddress(Exp->getSubExpr()); |
| |
| return E; |
| } |
| } |
| } |
| |
| static const Expr* FindExpressionBaseAddress(const Expr* E) { |
| switch (E->getStmtClass()) { |
| default: |
| return E; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(E); |
| return FindExpressionBaseAddress(PE->getSubExpr()); |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| |
| // C99 6.6p9 |
| if (Exp->getOpcode() == UnaryOperator::AddrOf) |
| return FindExpressionBaseAddressLValue(Exp->getSubExpr()); |
| |
| if (Exp->getOpcode() == UnaryOperator::Extension) |
| return FindExpressionBaseAddress(Exp->getSubExpr()); |
| |
| return E; |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(E); |
| |
| Expr *PExp = Exp->getLHS(); |
| Expr *IExp = Exp->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| return FindExpressionBaseAddress(PExp); |
| } |
| case Expr::ImplicitCastExprClass: { |
| const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr(); |
| |
| // Check for implicit promotion |
| if (SubExpr->getType()->isFunctionType() || |
| SubExpr->getType()->isArrayType()) |
| return FindExpressionBaseAddressLValue(SubExpr); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) |
| return FindExpressionBaseAddress(SubExpr); |
| |
| // We assume that we have an arithmetic expression here; |
| // if we don't, we'll figure it out later |
| return 0; |
| } |
| case Expr::CStyleCastExprClass: { |
| const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) |
| return FindExpressionBaseAddress(SubExpr); |
| |
| // We assume that we have an arithmetic expression here; |
| // if we don't, we'll figure it out later |
| return 0; |
| } |
| } |
| } |
| |
| bool Sema::CheckArithmeticConstantExpression(const Expr* Init) { |
| switch (Init->getStmtClass()) { |
| default: |
| InitializerElementNotConstant(Init); |
| return true; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(Init); |
| return CheckArithmeticConstantExpression(PE->getSubExpr()); |
| } |
| case Expr::FloatingLiteralClass: |
| case Expr::IntegerLiteralClass: |
| case Expr::CharacterLiteralClass: |
| case Expr::ImaginaryLiteralClass: |
| case Expr::TypesCompatibleExprClass: |
| case Expr::CXXBoolLiteralExprClass: |
| return false; |
| case Expr::CallExprClass: |
| case Expr::CXXOperatorCallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(Init); |
| |
| // Allow any constant foldable calls to builtins. |
| if (CE->isBuiltinCall() && CE->isEvaluatable(Context)) |
| return false; |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| case Expr::DeclRefExprClass: |
| case Expr::QualifiedDeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(Init)->getDecl(); |
| if (isa<EnumConstantDecl>(D)) |
| return false; |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| case Expr::CompoundLiteralExprClass: |
| // Allow "(vector type){2,4}"; normal C constraints don't allow this, |
| // but vectors are allowed to be magic. |
| if (Init->getType()->isVectorType()) |
| return false; |
| InitializerElementNotConstant(Init); |
| return true; |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(Init); |
| |
| switch (Exp->getOpcode()) { |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| default: |
| InitializerElementNotConstant(Init); |
| return true; |
| case UnaryOperator::OffsetOf: |
| if (Exp->getSubExpr()->getType()->isConstantSizeType()) |
| return false; |
| InitializerElementNotConstant(Init); |
| return true; |
| case UnaryOperator::Extension: |
| case UnaryOperator::LNot: |
| case UnaryOperator::Plus: |
| case UnaryOperator::Minus: |
| case UnaryOperator::Not: |
| return CheckArithmeticConstantExpression(Exp->getSubExpr()); |
| } |
| } |
| case Expr::SizeOfAlignOfExprClass: { |
| const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init); |
| // Special check for void types, which are allowed as an extension |
| if (Exp->getTypeOfArgument()->isVoidType()) |
| return false; |
| // alignof always evaluates to a constant. |
| // FIXME: is sizeof(int[3.0]) a constant expression? |
| if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) { |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| return false; |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(Init); |
| |
| if (Exp->getLHS()->getType()->isArithmeticType() && |
| Exp->getRHS()->getType()->isArithmeticType()) { |
| return CheckArithmeticConstantExpression(Exp->getLHS()) || |
| CheckArithmeticConstantExpression(Exp->getRHS()); |
| } |
| |
| if (Exp->getLHS()->getType()->isPointerType() && |
| Exp->getRHS()->getType()->isPointerType()) { |
| const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS()); |
| const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS()); |
| |
| // Only allow a null (constant integer) base; we could |
| // allow some additional cases if necessary, but this |
| // is sufficient to cover offsetof-like constructs. |
| if (!LHSBase && !RHSBase) { |
| return CheckAddressConstantExpression(Exp->getLHS()) || |
| CheckAddressConstantExpression(Exp->getRHS()); |
| } |
| } |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| case Expr::ImplicitCastExprClass: |
| case Expr::CStyleCastExprClass: { |
| const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr(); |
| if (SubExpr->getType()->isArithmeticType()) |
| return CheckArithmeticConstantExpression(SubExpr); |
| |
| if (SubExpr->getType()->isPointerType()) { |
| const Expr* Base = FindExpressionBaseAddress(SubExpr); |
| // If the pointer has a null base, this is an offsetof-like construct |
| if (!Base) |
| return CheckAddressConstantExpression(SubExpr); |
| } |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(Init); |
| |
| // If GNU extensions are disabled, we require all operands to be arithmetic |
| // constant expressions. |
| if (getLangOptions().NoExtensions) { |
| return CheckArithmeticConstantExpression(Exp->getCond()) || |
| (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) || |
| CheckArithmeticConstantExpression(Exp->getRHS()); |
| } |
| |
| // Otherwise, we have to emulate some of the behavior of fold here. |
| // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant |
| // because it can constant fold things away. To retain compatibility with |
| // GCC code, we see if we can fold the condition to a constant (which we |
| // should always be able to do in theory). If so, we only require the |
| // specified arm of the conditional to be a constant. This is a horrible |
| // hack, but is require by real world code that uses __builtin_constant_p. |
| Expr::EvalResult EvalResult; |
| if (!Exp->getCond()->Evaluate(EvalResult, Context) || |
| EvalResult.HasSideEffects) { |
| // If Evaluate couldn't fold it, CheckArithmeticConstantExpression |
| // won't be able to either. Use it to emit the diagnostic though. |
| bool Res = CheckArithmeticConstantExpression(Exp->getCond()); |
| assert(Res && "Evaluate couldn't evaluate this constant?"); |
| return Res; |
| } |
| |
| // Verify that the side following the condition is also a constant. |
| const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS(); |
| if (EvalResult.Val.getInt() == 0) |
| std::swap(TrueSide, FalseSide); |
| |
| if (TrueSide && CheckArithmeticConstantExpression(TrueSide)) |
| return true; |
| |
| // Okay, the evaluated side evaluates to a constant, so we accept this. |
| // Check to see if the other side is obviously not a constant. If so, |
| // emit a warning that this is a GNU extension. |
| if (FalseSide && !FalseSide->isEvaluatable(Context)) |
| Diag(Init->getExprLoc(), |
| diag::ext_typecheck_expression_not_constant_but_accepted) |
| << FalseSide->getSourceRange(); |
| return false; |
| } |
| } |
| } |
| |
| bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { |
| if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) |
| Init = DIE->getInit(); |
| |
| Init = Init->IgnoreParens(); |
| |
| if (Init->isEvaluatable(Context)) |
| return false; |
| |
| // Look through CXXDefaultArgExprs; they have no meaning in this context. |
| if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init)) |
| return CheckForConstantInitializer(DAE->getExpr(), DclT); |
| |
| if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init)) |
| return CheckForConstantInitializer(e->getInitializer(), DclT); |
| |
| if (isa<ImplicitValueInitExpr>(Init)) { |
| // FIXME: In C++, check for non-POD types. |
| return false; |
| } |
| |
| if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) { |
| unsigned numInits = Exp->getNumInits(); |
| for (unsigned i = 0; i < numInits; i++) { |
| // FIXME: Need to get the type of the declaration for C++, |
| // because it could be a reference? |
| |
| if (CheckForConstantInitializer(Exp->getInit(i), |
| Exp->getInit(i)->getType())) |
| return true; |
| } |
| return false; |
| } |
| |
| // FIXME: We can probably remove some of this code below, now that |
| // Expr::Evaluate is doing the heavy lifting for scalars. |
| |
| if (Init->isNullPointerConstant(Context)) |
| return false; |
| if (Init->getType()->isArithmeticType()) { |
| QualType InitTy = Context.getCanonicalType(Init->getType()) |
| .getUnqualifiedType(); |
| if (InitTy == Context.BoolTy) { |
| // Special handling for pointers implicitly cast to bool; |
| // (e.g. "_Bool rr = &rr;"). This is only legal at the top level. |
| if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) { |
| Expr* SubE = ICE->getSubExpr(); |
| if (SubE->getType()->isPointerType() || |
| SubE->getType()->isArrayType() || |
| SubE->getType()->isFunctionType()) { |
| return CheckAddressConstantExpression(Init); |
| } |
| } |
| } else if (InitTy->isIntegralType()) { |
| Expr* SubE = 0; |
| if (CastExpr* CE = dyn_cast<CastExpr>(Init)) |
| SubE = CE->getSubExpr(); |
| // Special check for pointer cast to int; we allow as an extension |
| // an address constant cast to an integer if the integer |
| // is of an appropriate width (this sort of code is apparently used |
| // in some places). |
| // FIXME: Add pedwarn? |
| // FIXME: Don't allow bitfields here! Need the FieldDecl for that. |
| if (SubE && (SubE->getType()->isPointerType() || |
| SubE->getType()->isArrayType() || |
| SubE->getType()->isFunctionType())) { |
| unsigned IntWidth = Context.getTypeSize(Init->getType()); |
| unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy); |
| if (IntWidth >= PointerWidth) |
| return CheckAddressConstantExpression(Init); |
| } |
| } |
| |
| return CheckArithmeticConstantExpression(Init); |
| } |
| |
| if (Init->getType()->isPointerType()) |
| return CheckAddressConstantExpression(Init); |
| |
| // An array type at the top level that isn't an init-list must |
| // be a string literal |
| if (Init->getType()->isArrayType()) |
| return false; |
| |
| if (Init->getType()->isFunctionType()) |
| return false; |
| |
| // Allow block exprs at top level. |
| if (Init->getType()->isBlockPointerType()) |
| return false; |
| |
| // GCC cast to union extension |
| // note: the validity of the cast expr is checked by CheckCastTypes() |
| if (CastExpr *C = dyn_cast<CastExpr>(Init)) { |
| QualType T = C->getType(); |
| return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T); |
| } |
| |
| InitializerElementNotConstant(Init); |
| return true; |
| } |
| |
| void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) { |
| AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false); |
| } |
| |
| /// AddInitializerToDecl - Adds the initializer Init to the |
| /// declaration dcl. If DirectInit is true, this is C++ direct |
| /// initialization rather than copy initialization. |
| void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) { |
| Decl *RealDecl = static_cast<Decl *>(dcl); |
| Expr *Init = static_cast<Expr *>(init.release()); |
| assert(Init && "missing initializer"); |
| |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (RealDecl == 0) { |
| delete Init; |
| return; |
| } |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| // Get the decls type and save a reference for later, since |
| // CheckInitializerTypes may change it. |
| QualType DclT = VDecl->getType(), SavT = DclT; |
| if (VDecl->isBlockVarDecl()) { |
| VarDecl::StorageClass SC = VDecl->getStorageClass(); |
| if (SC == VarDecl::Extern) { // C99 6.7.8p5 |
| Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
| VDecl->setInvalidDecl(); |
| } else if (!VDecl->isInvalidDecl()) { |
| if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(), |
| VDecl->getDeclName(), DirectInit)) |
| VDecl->setInvalidDecl(); |
| |
| // C++ 3.6.2p2, allow dynamic initialization of static initializers. |
| if (!getLangOptions().CPlusPlus) { |
| if (SC == VarDecl::Static) // C99 6.7.8p4. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| } |
| } else if (VDecl->isFileVarDecl()) { |
| if (VDecl->getStorageClass() == VarDecl::Extern) |
| Diag(VDecl->getLocation(), diag::warn_extern_init); |
| if (!VDecl->isInvalidDecl()) |
| if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(), |
| VDecl->getDeclName(), DirectInit)) |
| VDecl->setInvalidDecl(); |
| |
| // C++ 3.6.2p2, allow dynamic initialization of static initializers. |
| if (!getLangOptions().CPlusPlus) { |
| // C99 6.7.8p4. All file scoped initializers need to be constant. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| } |
| // If the type changed, it means we had an incomplete type that was |
| // completed by the initializer. For example: |
| // int ary[] = { 1, 3, 5 }; |
| // "ary" transitions from a VariableArrayType to a ConstantArrayType. |
| if (!VDecl->isInvalidDecl() && (DclT != SavT)) { |
| VDecl->setType(DclT); |
| Init->setType(DclT); |
| } |
| |
| // Attach the initializer to the decl. |
| VDecl->setInit(Init); |
| return; |
| } |
| |
| void Sema::ActOnUninitializedDecl(DeclTy *dcl) { |
| Decl *RealDecl = static_cast<Decl *>(dcl); |
| |
| // If there is no declaration, there was an error parsing it. Just ignore it. |
| if (RealDecl == 0) |
| return; |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { |
| QualType Type = Var->getType(); |
| // C++ [dcl.init.ref]p3: |
| // The initializer can be omitted for a reference only in a |
| // parameter declaration (8.3.5), in the declaration of a |
| // function return type, in the declaration of a class member |
| // within its class declaration (9.2), and where the extern |
| // specifier is explicitly used. |
| if (Type->isReferenceType() && |
| Var->getStorageClass() != VarDecl::Extern && |
| Var->getStorageClass() != VarDecl::PrivateExtern) { |
| Diag(Var->getLocation(), diag::err_reference_var_requires_init) |
| << Var->getDeclName() |
| << SourceRange(Var->getLocation(), Var->getLocation()); |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| // C++ [dcl.init]p9: |
| // |
| // If no initializer is specified for an object, and the object |
| // is of (possibly cv-qualified) non-POD class type (or array |
| // thereof), the object shall be default-initialized; if the |
| // object is of const-qualified type, the underlying class type |
| // shall have a user-declared default constructor. |
| if (getLangOptions().CPlusPlus) { |
| QualType InitType = Type; |
| if (const ArrayType *Array = Context.getAsArrayType(Type)) |
| InitType = Array->getElementType(); |
| if (Var->getStorageClass() != VarDecl::Extern && |
| Var->getStorageClass() != VarDecl::PrivateExtern && |
| InitType->isRecordType()) { |
| const CXXConstructorDecl *Constructor |
| = PerformInitializationByConstructor(InitType, 0, 0, |
| Var->getLocation(), |
| SourceRange(Var->getLocation(), |
| Var->getLocation()), |
| Var->getDeclName(), |
| IK_Default); |
| if (!Constructor) |
| Var->setInvalidDecl(); |
| } |
| } |
| |
| #if 0 |
| // FIXME: Temporarily disabled because we are not properly parsing |
| // linkage specifications on declarations, e.g., |
| // |
| // extern "C" const CGPoint CGPointerZero; |
| // |
| // C++ [dcl.init]p9: |
| // |
| // If no initializer is specified for an object, and the |
| // object is of (possibly cv-qualified) non-POD class type (or |
| // array thereof), the object shall be default-initialized; if |
| // the object is of const-qualified type, the underlying class |
| // type shall have a user-declared default |
| // constructor. Otherwise, if no initializer is specified for |
| // an object, the object and its subobjects, if any, have an |
| // indeterminate initial value; if the object or any of its |
| // subobjects are of const-qualified type, the program is |
| // ill-formed. |
| // |
| // This isn't technically an error in C, so we don't diagnose it. |
| // |
| // FIXME: Actually perform the POD/user-defined default |
| // constructor check. |
| if (getLangOptions().CPlusPlus && |
| Context.getCanonicalType(Type).isConstQualified() && |
| Var->getStorageClass() != VarDecl::Extern) |
| Diag(Var->getLocation(), diag::err_const_var_requires_init) |
| << Var->getName() |
| << SourceRange(Var->getLocation(), Var->getLocation()); |
| #endif |
| } |
| } |
| |
| /// The declarators are chained together backwards, reverse the list. |
| Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) { |
| // Often we have single declarators, handle them quickly. |
| Decl *GroupDecl = static_cast<Decl*>(group); |
| if (GroupDecl == 0) |
| return 0; |
| |
| Decl *Group = dyn_cast<Decl>(GroupDecl); |
| Decl *NewGroup = 0; |
| if (Group->getNextDeclarator() == 0) |
| NewGroup = Group; |
| else { // reverse the list. |
| while (Group) { |
| Decl *Next = Group->getNextDeclarator(); |
| Group->setNextDeclarator(NewGroup); |
| NewGroup = Group; |
| Group = Next; |
| } |
| } |
| // Perform semantic analysis that depends on having fully processed both |
| // the declarator and initializer. |
| for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) { |
| VarDecl *IDecl = dyn_cast<VarDecl>(ID); |
| if (!IDecl) |
| continue; |
| QualType T = IDecl->getType(); |
| |
| if (T->isVariableArrayType()) { |
| const VariableArrayType *VAT = Context.getAsVariableArrayType(T); |
| |
| // FIXME: This won't give the correct result for |
| // int a[10][n]; |
| SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); |
| if (IDecl->isFileVarDecl()) { |
| Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) << |
| SizeRange; |
| |
| IDecl->setInvalidDecl(); |
| } else { |
| // C99 6.7.5.2p2: If an identifier is declared to be an object with |
| // static storage duration, it shall not have a variable length array. |
| if (IDecl->getStorageClass() == VarDecl::Static) { |
| Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage) |
| << SizeRange; |
| IDecl->setInvalidDecl(); |
| } else if (IDecl->getStorageClass() == VarDecl::Extern) { |
| Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage) |
| << SizeRange; |
| IDecl->setInvalidDecl(); |
| } |
| } |
| } else if (T->isVariablyModifiedType()) { |
| if (IDecl->isFileVarDecl()) { |
| Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope); |
| IDecl->setInvalidDecl(); |
| } else { |
| if (IDecl->getStorageClass() == VarDecl::Extern) { |
| Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| } |
| |
| // Block scope. C99 6.7p7: If an identifier for an object is declared with |
| // no linkage (C99 6.2.2p6), the type for the object shall be complete... |
| if (IDecl->isBlockVarDecl() && |
| IDecl->getStorageClass() != VarDecl::Extern) { |
| if (!IDecl->isInvalidDecl() && |
| DiagnoseIncompleteType(IDecl->getLocation(), T, |
| diag::err_typecheck_decl_incomplete_type)) |
| IDecl->setInvalidDecl(); |
| } |
| // File scope. C99 6.9.2p2: A declaration of an identifier for and |
| // object that has file scope without an initializer, and without a |
| // storage-class specifier or with the storage-class specifier "static", |
| // constitutes a tentative definition. Note: A tentative definition with |
| // external linkage is valid (C99 6.2.2p5). |
| if (isTentativeDefinition(IDecl)) { |
| if (T->isIncompleteArrayType()) { |
| // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete |
| // array to be completed. Don't issue a diagnostic. |
| } else if (!IDecl->isInvalidDecl() && |
| DiagnoseIncompleteType(IDecl->getLocation(), T, |
| diag::err_typecheck_decl_incomplete_type)) |
| // C99 6.9.2p3: If the declaration of an identifier for an object is |
| // a tentative definition and has internal linkage (C99 6.2.2p3), the |
| // declared type shall not be an incomplete type. |
| IDecl->setInvalidDecl(); |
| } |
| if (IDecl->isFileVarDecl()) |
| CheckForFileScopedRedefinitions(S, IDecl); |
| } |
| return NewGroup; |
| } |
| |
| /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() |
| /// to introduce parameters into function prototype scope. |
| Sema::DeclTy * |
| Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. |
| VarDecl::StorageClass StorageClass = VarDecl::None; |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
| StorageClass = VarDecl::Register; |
| } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_invalid_storage_class_in_func_decl); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| if (DS.isThreadSpecified()) { |
| Diag(DS.getThreadSpecLoc(), |
| diag::err_invalid_storage_class_in_func_decl); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| // Check that there are no default arguments inside the type of this |
| // parameter (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| // In this context, we *do not* check D.getInvalidType(). If the declarator |
| // type was invalid, GetTypeForDeclarator() still returns a "valid" type, |
| // though it will not reflect the user specified type. |
| QualType parmDeclType = GetTypeForDeclarator(D, S); |
| |
| assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // Can this happen for params? We already checked that they don't conflict |
| // among each other. Here they can only shadow globals, which is ok. |
| IdentifierInfo *II = D.getIdentifier(); |
| if (II) { |
| if (Decl *PrevDecl = LookupDeclInScope(II, Decl::IDNS_Ordinary, S)) { |
| if (PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } else if (S->isDeclScope(PrevDecl)) { |
| Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; |
| |
| // Recover by removing the name |
| II = 0; |
| D.SetIdentifier(0, D.getIdentifierLoc()); |
| } |
| } |
| } |
| |
| // Perform the default function/array conversion (C99 6.7.5.3p[7,8]). |
| // Doing the promotion here has a win and a loss. The win is the type for |
| // both Decl's and DeclRefExpr's will match (a convenient invariant for the |
| // code generator). The loss is the orginal type isn't preserved. For example: |
| // |
| // void func(int parmvardecl[5]) { // convert "int [5]" to "int *" |
| // int blockvardecl[5]; |
| // sizeof(parmvardecl); // size == 4 |
| // sizeof(blockvardecl); // size == 20 |
| // } |
| // |
| // For expressions, all implicit conversions are captured using the |
| // ImplicitCastExpr AST node (we have no such mechanism for Decl's). |
| // |
| // FIXME: If a source translation tool needs to see the original type, then |
| // we need to consider storing both types (in ParmVarDecl)... |
| // |
| if (parmDeclType->isArrayType()) { |
| // int x[restrict 4] -> int *restrict |
| parmDeclType = Context.getArrayDecayedType(parmDeclType); |
| } else if (parmDeclType->isFunctionType()) |
| parmDeclType = Context.getPointerType(parmDeclType); |
| |
| ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), II, |
| parmDeclType, StorageClass, |
| 0); |
| |
| if (D.getInvalidType()) |
| New->setInvalidDecl(); |
| |
| // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| New->setInvalidDecl(); |
| } |
| |
| // Add the parameter declaration into this scope. |
| S->AddDecl(New); |
| if (II) |
| IdResolver.AddDecl(New); |
| |
| ProcessDeclAttributes(New, D); |
| return New; |
| |
| } |
| |
| void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) { |
| assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' |
| // for a K&R function. |
| if (!FTI.hasPrototype) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { |
| if (FTI.ArgInfo[i].Param == 0) { |
| Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared) |
| << FTI.ArgInfo[i].Ident; |
| // Implicitly declare the argument as type 'int' for lack of a better |
| // type. |
| DeclSpec DS; |
| const char* PrevSpec; // unused |
| DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc, |
| PrevSpec); |
| Declarator ParamD(DS, Declarator::KNRTypeListContext); |
| ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc); |
| FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD); |
| } |
| } |
| } |
| } |
| |
| Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { |
| assert(getCurFunctionDecl() == 0 && "Function parsing confused"); |
| assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| if (FTI.hasPrototype) { |
| // FIXME: Diagnose arguments without names in C. |
| } |
| |
| Scope *ParentScope = FnBodyScope->getParent(); |
| |
| return ActOnStartOfFunctionDef(FnBodyScope, |
| ActOnDeclarator(ParentScope, D, 0, |
| /*IsFunctionDefinition=*/true)); |
| } |
| |
| Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) { |
| Decl *decl = static_cast<Decl*>(D); |
| FunctionDecl *FD = cast<FunctionDecl>(decl); |
| |
| // See if this is a redefinition. |
| const FunctionDecl *Definition; |
| if (FD->getBody(Definition)) { |
| Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); |
| Diag(Definition->getLocation(), diag::note_previous_definition); |
| } |
| |
| PushDeclContext(FnBodyScope, FD); |
| |
| // Check the validity of our function parameters |
| CheckParmsForFunctionDef(FD); |
| |
| // Introduce our parameters into the function scope |
| for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| Param->setOwningFunction(FD); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Param->getIdentifier()) |
| PushOnScopeChains(Param, FnBodyScope); |
| } |
| |
| // Checking attributes of current function definition |
| // dllimport attribute. |
| if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) { |
| // dllimport attribute cannot be applied to definition. |
| if (!(FD->getAttr<DLLImportAttr>())->isInherited()) { |
| Diag(FD->getLocation(), |
| diag::err_attribute_can_be_applied_only_to_symbol_declaration) |
| << "dllimport"; |
| FD->setInvalidDecl(); |
| return FD; |
| } else { |
| // If a symbol previously declared dllimport is later defined, the |
| // attribute is ignored in subsequent references, and a warning is |
| // emitted. |
| Diag(FD->getLocation(), |
| diag::warn_redeclaration_without_attribute_prev_attribute_ignored) |
| << FD->getNameAsCString() << "dllimport"; |
| } |
| } |
| return FD; |
| } |
| |
| Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) { |
| Decl *dcl = static_cast<Decl *>(D); |
| Stmt *Body = static_cast<Stmt*>(BodyArg.release()); |
| if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) { |
| FD->setBody(Body); |
| assert(FD == getCurFunctionDecl() && "Function parsing confused"); |
| } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { |
| MD->setBody((Stmt*)Body); |
| } else |
| return 0; |
| PopDeclContext(); |
| // Verify and clean out per-function state. |
| |
| // Check goto/label use. |
| for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator |
| I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) { |
| // Verify that we have no forward references left. If so, there was a goto |
| // or address of a label taken, but no definition of it. Label fwd |
| // definitions are indicated with a null substmt. |
| if (I->second->getSubStmt() == 0) { |
| LabelStmt *L = I->second; |
| // Emit error. |
| Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName(); |
| |
| // At this point, we have gotos that use the bogus label. Stitch it into |
| // the function body so that they aren't leaked and that the AST is well |
| // formed. |
| if (Body) { |
| L->setSubStmt(new NullStmt(L->getIdentLoc())); |
| cast<CompoundStmt>(Body)->push_back(L); |
| } else { |
| // The whole function wasn't parsed correctly, just delete this. |
| delete L; |
| } |
| } |
| } |
| LabelMap.clear(); |
| |
| return D; |
| } |
| |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
| NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
| IdentifierInfo &II, Scope *S) { |
| // Extension in C99. Legal in C90, but warn about it. |
| if (getLangOptions().C99) |
| Diag(Loc, diag::ext_implicit_function_decl) << &II; |
| else |
| Diag(Loc, diag::warn_implicit_function_decl) << &II; |
| |
| // FIXME: handle stuff like: |
| // void foo() { extern float X(); } |
| // void bar() { X(); } <-- implicit decl for X in another scope. |
| |
| // Set a Declarator for the implicit definition: int foo(); |
| const char *Dummy; |
| DeclSpec DS; |
| bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); |
| Error = Error; // Silence warning. |
| assert(!Error && "Error setting up implicit decl!"); |
| Declarator D(DS, Declarator::BlockContext); |
| D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D)); |
| D.SetIdentifier(&II, Loc); |
| |
| // Insert this function into translation-unit scope. |
| |
| DeclContext *PrevDC = CurContext; |
| CurContext = Context.getTranslationUnitDecl(); |
| |
| FunctionDecl *FD = |
| dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0))); |
| FD->setImplicit(); |
| |
| CurContext = PrevDC; |
| |
| return FD; |
| } |
| |
| |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, |
| Decl *LastDeclarator) { |
| assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| // Scope manipulation handled by caller. |
| TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), |
| D.getIdentifier(), |
| T); |
| NewTD->setNextDeclarator(LastDeclarator); |
| if (D.getInvalidType()) |
| NewTD->setInvalidDecl(); |
| return NewTD; |
| } |
| |
| /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the |
| /// former case, Name will be non-null. In the later case, Name will be null. |
| /// TagSpec indicates what kind of tag this is. TK indicates whether this is a |
| /// reference/declaration/definition of a tag. |
| Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK, |
| SourceLocation KWLoc, const CXXScopeSpec &SS, |
| IdentifierInfo *Name, SourceLocation NameLoc, |
| AttributeList *Attr, |
| MultiTemplateParamsArg TemplateParameterLists) { |
| // If this is not a definition, it must have a name. |
| assert((Name != 0 || TK == TK_Definition) && |
| "Nameless record must be a definition!"); |
| |
| TagDecl::TagKind Kind; |
| switch (TagSpec) { |
| default: assert(0 && "Unknown tag type!"); |
| case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; |
| case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; |
| case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; |
| case DeclSpec::TST_enum: Kind = TagDecl::TK_enum; break; |
| } |
| |
| DeclContext *SearchDC = CurContext; |
| DeclContext *DC = CurContext; |
| DeclContext *LexicalContext = CurContext; |
| Decl *PrevDecl = 0; |
| |
| bool Invalid = false; |
| |
| if (Name && SS.isNotEmpty()) { |
| // We have a nested-name tag ('struct foo::bar'). |
| |
| // Check for invalid 'foo::'. |
| if (SS.isInvalid()) { |
| Name = 0; |
| goto CreateNewDecl; |
| } |
| |
| DC = static_cast<DeclContext*>(SS.getScopeRep()); |
| // Look-up name inside 'foo::'. |
| PrevDecl = dyn_cast_or_null<TagDecl>( |
| LookupDeclInContext(Name, Decl::IDNS_Tag, DC).getAsDecl()); |
| |
| // A tag 'foo::bar' must already exist. |
| if (PrevDecl == 0) { |
| Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange(); |
| Name = 0; |
| goto CreateNewDecl; |
| } |
| } else if (Name) { |
| // If this is a named struct, check to see if there was a previous forward |
| // declaration or definition. |
| Decl *D = LookupDeclInScope(Name, Decl::IDNS_Tag, S); |
| PrevDecl = dyn_cast_or_null<NamedDecl>(D); |
| |
| if (!getLangOptions().CPlusPlus && TK != TK_Reference) { |
| // FIXME: This makes sure that we ignore the contexts associated |
| // with C structs, unions, and enums when looking for a matching |
| // tag declaration or definition. See the similar lookup tweak |
| // in Sema::LookupDecl; is there a better way to deal with this? |
| while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) |
| SearchDC = SearchDC->getParent(); |
| } |
| } |
| |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } |
| |
| if (PrevDecl) { |
| if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { |
| // If this is a use of a previous tag, or if the tag is already declared |
| // in the same scope (so that the definition/declaration completes or |
| // rementions the tag), reuse the decl. |
| if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) { |
| // Make sure that this wasn't declared as an enum and now used as a |
| // struct or something similar. |
| if (PrevTagDecl->getTagKind() != Kind) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; |
| Diag(PrevDecl->getLocation(), diag::note_previous_use); |
| // Recover by making this an anonymous redefinition. |
| Name = 0; |
| PrevDecl = 0; |
| Invalid = true; |
| } else { |
| // If this is a use, just return the declaration we found. |
| |
| // FIXME: In the future, return a variant or some other clue |
| // for the consumer of this Decl to know it doesn't own it. |
| // For our current ASTs this shouldn't be a problem, but will |
| // need to be changed with DeclGroups. |
| if (TK == TK_Reference) |
| return PrevDecl; |
| |
| // Diagnose attempts to redefine a tag. |
| if (TK == TK_Definition) { |
| if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) { |
| Diag(NameLoc, diag::err_redefinition) << Name; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| // If this is a redefinition, recover by making this |
| // struct be anonymous, which will make any later |
| // references get the previous definition. |
| Name = 0; |
| PrevDecl = 0; |
| Invalid = true; |
| } else { |
| // If the type is currently being defined, complain |
| // about a nested redefinition. |
| TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl)); |
| if (Tag->isBeingDefined()) { |
| Diag(NameLoc, diag::err_nested_redefinition) << Name; |
| Diag(PrevTagDecl->getLocation(), |
| diag::note_previous_definition); |
| Name = 0; |
| PrevDecl = 0; |
| Invalid = true; |
| } |
| } |
| |
| // Okay, this is definition of a previously declared or referenced |
| // tag PrevDecl. We're going to create a new Decl for it. |
| } |
| } |
| // If we get here we have (another) forward declaration or we |
| // have a definition. Just create a new decl. |
| } else { |
| // If we get here, this is a definition of a new tag type in a nested |
| // scope, e.g. "struct foo; void bar() { struct foo; }", just create a |
| // new decl/type. We set PrevDecl to NULL so that the entities |
| // have distinct types. |
| PrevDecl = 0; |
| } |
| // If we get here, we're going to create a new Decl. If PrevDecl |
| // is non-NULL, it's a definition of the tag declared by |
| // PrevDecl. If it's NULL, we have a new definition. |
| } else { |
| // PrevDecl is a namespace, template, or anything else |
| // that lives in the IDNS_Tag identifier namespace. |
| if (isDeclInScope(PrevDecl, SearchDC, S)) { |
| // The tag name clashes with a namespace name, issue an error and |
| // recover by making this tag be anonymous. |
| Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| Name = 0; |
| PrevDecl = 0; |
| Invalid = true; |
| } else { |
| // The existing declaration isn't relevant to us; we're in a |
| // new scope, so clear out the previous declaration. |
| PrevDecl = 0; |
| } |
| } |
| } else if (TK == TK_Reference && SS.isEmpty() && Name && |
| (Kind != TagDecl::TK_enum)) { |
| // C++ [basic.scope.pdecl]p5: |
| // -- for an elaborated-type-specifier of the form |
| // |
| // class-key identifier |
| // |
| // if the elaborated-type-specifier is used in the |
| // decl-specifier-seq or parameter-declaration-clause of a |
| // function defined in namespace scope, the identifier is |
| // declared as a class-name in the namespace that contains |
| // the declaration; otherwise, except as a friend |
| // declaration, the identifier is declared in the smallest |
| // non-class, non-function-prototype scope that contains the |
| // declaration. |
| // |
| // C99 6.7.2.3p8 has a similar (but not identical!) provision for |
| // C structs and unions. |
| |
| // Find the context where we'll be declaring the tag. |
| // FIXME: We would like to maintain the current DeclContext as the |
| // lexical context, |
| while (DC->isRecord()) |
| DC = DC->getParent(); |
| LexicalContext = DC; |
| |
| // Find the scope where we'll be declaring the tag. |
| while (S->isClassScope() || |
| (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) || |
| ((S->getFlags() & Scope::DeclScope) == 0) || |
| (S->getEntity() && |
| ((DeclContext *)S->getEntity())->isTransparentContext())) |
| S = S->getParent(); |
| } |
| |
| CreateNewDecl: |
| |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| |
| // Otherwise, create a new declaration. If there is a previous |
| // declaration of the same entity, the two will be linked via |
| // PrevDecl. |
| TagDecl *New; |
| |
| if (Kind == TagDecl::TK_enum) { |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // enum X { A, B, C } D; D should chain to X. |
| New = EnumDecl::Create(Context, DC, Loc, Name, |
| cast_or_null<EnumDecl>(PrevDecl)); |
| // If this is an undefined enum, warn. |
| if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum); |
| } else { |
| // struct/union/class |
| |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // struct X { int A; } D; D should chain to X. |
| if (getLangOptions().CPlusPlus) |
| // FIXME: Look for a way to use RecordDecl for simple structs. |
| New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name, |
| cast_or_null<CXXRecordDecl>(PrevDecl)); |
| else |
| New = RecordDecl::Create(Context, Kind, DC, Loc, Name, |
| cast_or_null<RecordDecl>(PrevDecl)); |
| } |
| |
| if (Kind != TagDecl::TK_enum) { |
| // Handle #pragma pack: if the #pragma pack stack has non-default |
| // alignment, make up a packed attribute for this decl. These |
| // attributes are checked when the ASTContext lays out the |
| // structure. |
| // |
| // It is important for implementing the correct semantics that this |
| // happen here (in act on tag decl). The #pragma pack stack is |
| // maintained as a result of parser callbacks which can occur at |
| // many points during the parsing of a struct declaration (because |
| // the #pragma tokens are effectively skipped over during the |
| // parsing of the struct). |
| if (unsigned Alignment = PackContext.getAlignment()) |
| New->addAttr(new PackedAttr(Alignment * 8)); |
| } |
| |
| if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) { |
| // C++ [dcl.typedef]p3: |
| // [...] Similarly, in a given scope, a class or enumeration |
| // shall not be declared with the same name as a typedef-name |
| // that is declared in that scope and refers to a type other |
| // than the class or enumeration itself. |
| LookupResult Lookup = LookupName(S, Name, |
| LookupCriteria(LookupCriteria::Ordinary, |
| true, true)); |
| TypedefDecl *PrevTypedef = 0; |
| if (Lookup.getKind() == LookupResult::Found) |
| PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl()); |
| |
| if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) && |
| Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) != |
| Context.getCanonicalType(Context.getTypeDeclType(New))) { |
| Diag(Loc, diag::err_tag_definition_of_typedef) |
| << Context.getTypeDeclType(New) |
| << PrevTypedef->getUnderlyingType(); |
| Diag(PrevTypedef->getLocation(), diag::note_previous_definition); |
| Invalid = true; |
| } |
| } |
| |
| if (Invalid) |
| New->setInvalidDecl(); |
| |
| if (Attr) |
| ProcessDeclAttributeList(New, Attr); |
| |
| // If we're declaring or defining a tag in function prototype scope |
| // in C, note that this type can only be used within the function. |
| if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus) |
| Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); |
| |
| // Set the lexical context. If the tag has a C++ scope specifier, the |
| // lexical context will be different from the semantic context. |
| New->setLexicalDeclContext(LexicalContext); |
| |
| if (TK == TK_Definition) |
| New->startDefinition(); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Name) { |
| S = getNonFieldDeclScope(S); |
| |
| // Add it to the decl chain. |
| if (LexicalContext != CurContext) { |
| // FIXME: PushOnScopeChains should not rely on CurContext! |
| DeclContext *OldContext = CurContext; |
| CurContext = LexicalContext; |
| PushOnScopeChains(New, S); |
| CurContext = OldContext; |
| } else |
| PushOnScopeChains(New, S); |
| } else { |
| LexicalContext->addDecl(New); |
| } |
| |
| return New; |
| } |
| |
| void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) { |
| TagDecl *Tag = cast<TagDecl>((Decl *)TagD); |
| |
| // Enter the tag context. |
| PushDeclContext(S, Tag); |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) { |
| FieldCollector->StartClass(); |
| |
| if (Record->getIdentifier()) { |
| // C++ [class]p2: |
| // [...] The class-name is also inserted into the scope of the |
| // class itself; this is known as the injected-class-name. For |
| // purposes of access checking, the injected-class-name is treated |
| // as if it were a public member name. |
| RecordDecl *InjectedClassName |
| = CXXRecordDecl::Create(Context, Record->getTagKind(), |
| CurContext, Record->getLocation(), |
| Record->getIdentifier(), Record); |
| InjectedClassName->setImplicit(); |
| PushOnScopeChains(InjectedClassName, S); |
| } |
| } |
| } |
| |
| void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) { |
| TagDecl *Tag = cast<TagDecl>((Decl *)TagD); |
| |
| if (isa<CXXRecordDecl>(Tag)) |
| FieldCollector->FinishClass(); |
| |
| // Exit this scope of this tag's definition. |
| PopDeclContext(); |
| |
| // Notify the consumer that we've defined a tag. |
| Consumer.HandleTagDeclDefinition(Tag); |
| } |
| |
| /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array |
| /// types into constant array types in certain situations which would otherwise |
| /// be errors (for GCC compatibility). |
| static QualType TryToFixInvalidVariablyModifiedType(QualType T, |
| ASTContext &Context) { |
| // This method tries to turn a variable array into a constant |
| // array even when the size isn't an ICE. This is necessary |
| // for compatibility with code that depends on gcc's buggy |
| // constant expression folding, like struct {char x[(int)(char*)2];} |
| const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); |
| if (!VLATy) return QualType(); |
| |
| Expr::EvalResult EvalResult; |
| if (!VLATy->getSizeExpr() || |
| !VLATy->getSizeExpr()->Evaluate(EvalResult, Context)) |
| return QualType(); |
| |
| assert(EvalResult.Val.isInt() && "Size expressions must be integers!"); |
| llvm::APSInt &Res = EvalResult.Val.getInt(); |
| if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) |
| return Context.getConstantArrayType(VLATy->getElementType(), |
| Res, ArrayType::Normal, 0); |
| return QualType(); |
| } |
| |
| bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, |
| QualType FieldTy, const Expr *BitWidth) { |
| // FIXME: 6.7.2.1p4 - verify the field type. |
| |
| llvm::APSInt Value; |
| if (VerifyIntegerConstantExpression(BitWidth, &Value)) |
| return true; |
| |
| // Zero-width bitfield is ok for anonymous field. |
| if (Value == 0 && FieldName) |
| return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; |
| |
| if (Value.isNegative()) |
| return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName; |
| |
| uint64_t TypeSize = Context.getTypeSize(FieldTy); |
| // FIXME: We won't need the 0 size once we check that the field type is valid. |
| if (TypeSize && Value.getZExtValue() > TypeSize) |
| return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) |
| << FieldName << (unsigned)TypeSize; |
| |
| return false; |
| } |
| |
| /// ActOnField - Each field of a struct/union/class is passed into this in order |
| /// to create a FieldDecl object for it. |
| Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth) { |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| RecordDecl *Record = (RecordDecl *)TagD; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| QualType T = GetTypeForDeclarator(D, S); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| bool InvalidDecl = false; |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (T->isVariablyModifiedType()) { |
| QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context); |
| if (!FixedTy.isNull()) { |
| Diag(Loc, diag::warn_illegal_constant_array_size); |
| T = FixedTy; |
| } else { |
| Diag(Loc, diag::err_typecheck_field_variable_size); |
| T = Context.IntTy; |
| InvalidDecl = true; |
| } |
| } |
| |
| if (BitWidth) { |
| if (VerifyBitField(Loc, II, T, BitWidth)) |
| InvalidDecl = true; |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| |
| // FIXME: Chain fielddecls together. |
| FieldDecl *NewFD; |
| |
| NewFD = FieldDecl::Create(Context, Record, |
| Loc, II, T, BitWidth, |
| D.getDeclSpec().getStorageClassSpec() == |
| DeclSpec::SCS_mutable); |
| |
| if (II) { |
| Decl *PrevDecl |
| = LookupDeclInScope(II, Decl::IDNS_Member, S, false); |
| if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S) |
| && !isa<TagDecl>(PrevDecl)) { |
| Diag(Loc, diag::err_duplicate_member) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| Record->setInvalidDecl(); |
| } |
| } |
| |
| if (getLangOptions().CPlusPlus) { |
| CheckExtraCXXDefaultArguments(D); |
| if (!T->isPODType()) |
| cast<CXXRecordDecl>(Record)->setPOD(false); |
| } |
| |
| ProcessDeclAttributes(NewFD, D); |
| |
| if (D.getInvalidType() || InvalidDecl) |
| NewFD->setInvalidDecl(); |
| |
| if (II) { |
| PushOnScopeChains(NewFD, S); |
| } else |
| Record->addDecl(NewFD); |
| |
| return NewFD; |
| } |
| |
| /// TranslateIvarVisibility - Translate visibility from a token ID to an |
| /// AST enum value. |
| static ObjCIvarDecl::AccessControl |
| TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
| switch (ivarVisibility) { |
| default: assert(0 && "Unknown visitibility kind"); |
| case tok::objc_private: return ObjCIvarDecl::Private; |
| case tok::objc_public: return ObjCIvarDecl::Public; |
| case tok::objc_protected: return ObjCIvarDecl::Protected; |
| case tok::objc_package: return ObjCIvarDecl::Package; |
| } |
| } |
| |
| /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
| /// in order to create an IvarDecl object for it. |
| Sema::DeclTy *Sema::ActOnIvar(Scope *S, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth, |
| tok::ObjCKeywordKind Visibility) { |
| |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| QualType T = GetTypeForDeclarator(D, S); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| bool InvalidDecl = false; |
| |
| if (BitWidth) { |
| // TODO: Validate. |
| //printf("WARNING: BITFIELDS IGNORED!\n"); |
| |
| // 6.7.2.1p3 |
| // 6.7.2.1p4 |
| |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (T->isVariablyModifiedType()) { |
| Diag(Loc, diag::err_typecheck_ivar_variable_size); |
| InvalidDecl = true; |
| } |
| |
| // Get the visibility (access control) for this ivar. |
| ObjCIvarDecl::AccessControl ac = |
| Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) |
| : ObjCIvarDecl::None; |
| |
| // Construct the decl. |
| ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac, |
| (Expr *)BitfieldWidth); |
| |
| if (II) { |
| Decl *PrevDecl = LookupDeclInScope(II, Decl::IDNS_Member, S, false); |
| if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S) |
| && !isa<TagDecl>(PrevDecl)) { |
| Diag(Loc, diag::err_duplicate_member) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| NewID->setInvalidDecl(); |
| } |
| } |
| |
| // Process attributes attached to the ivar. |
| ProcessDeclAttributes(NewID, D); |
| |
| if (D.getInvalidType() || InvalidDecl) |
| NewID->setInvalidDecl(); |
| |
| if (II) { |
| // FIXME: When interfaces are DeclContexts, we'll need to add |
| // these to the interface. |
| S->AddDecl(NewID); |
| IdResolver.AddDecl(NewID); |
| } |
| |
| return NewID; |
| } |
| |
| void Sema::ActOnFields(Scope* S, |
| SourceLocation RecLoc, DeclTy *RecDecl, |
| DeclTy **Fields, unsigned NumFields, |
| SourceLocation LBrac, SourceLocation RBrac, |
| AttributeList *Attr) { |
| Decl *EnclosingDecl = static_cast<Decl*>(RecDecl); |
| assert(EnclosingDecl && "missing record or interface decl"); |
| RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); |
| |
| // Verify that all the fields are okay. |
| unsigned NumNamedMembers = 0; |
| llvm::SmallVector<FieldDecl*, 32> RecFields; |
| |
| for (unsigned i = 0; i != NumFields; ++i) { |
| FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i])); |
| assert(FD && "missing field decl"); |
| |
| // Get the type for the field. |
| Type *FDTy = FD->getType().getTypePtr(); |
| |
| if (!FD->isAnonymousStructOrUnion()) { |
| // Remember all fields written by the user. |
| RecFields.push_back(FD); |
| } |
| |
| // C99 6.7.2.1p2 - A field may not be a function type. |
| if (FDTy->isFunctionType()) { |
| Diag(FD->getLocation(), diag::err_field_declared_as_function) |
| << FD->getDeclName(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // C99 6.7.2.1p2 - A field may not be an incomplete type except... |
| if (FDTy->isIncompleteType()) { |
| if (!Record) { // Incomplete ivar type is always an error. |
| DiagnoseIncompleteType(FD->getLocation(), FD->getType(), |
| diag::err_field_incomplete); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (i != NumFields-1 || // ... that the last member ... |
| !Record->isStruct() || // ... of a structure ... |
| !FDTy->isArrayType()) { //... may have incomplete array type. |
| DiagnoseIncompleteType(FD->getLocation(), FD->getType(), |
| diag::err_field_incomplete); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (NumNamedMembers < 1) { //... must have more than named member ... |
| Diag(FD->getLocation(), diag::err_flexible_array_empty_struct) |
| << FD->getDeclName(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Okay, we have a legal flexible array member at the end of the struct. |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the |
| /// field of another structure or the element of an array. |
| if (const RecordType *FDTTy = FDTy->getAsRecordType()) { |
| if (FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| // If this is a member of a union, then entire union becomes "flexible". |
| if (Record && Record->isUnion()) { |
| Record->setHasFlexibleArrayMember(true); |
| } else { |
| // If this is a struct/class and this is not the last element, reject |
| // it. Note that GCC supports variable sized arrays in the middle of |
| // structures. |
| if (i != NumFields-1) { |
| Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct) |
| << FD->getDeclName(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // We support flexible arrays at the end of structs in other structs |
| // as an extension. |
| Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) |
| << FD->getDeclName(); |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| } |
| } |
| /// A field cannot be an Objective-c object |
| if (FDTy->isObjCInterfaceType()) { |
| Diag(FD->getLocation(), diag::err_statically_allocated_object) |
| << FD->getDeclName(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Keep track of the number of named members. |
| if (FD->getIdentifier()) |
| ++NumNamedMembers; |
| } |
| |
| // Okay, we successfully defined 'Record'. |
| if (Record) { |
| Record->completeDefinition(Context); |
| } else { |
| ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]); |
| if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { |
| ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac); |
| // Must enforce the rule that ivars in the base classes may not be |
| // duplicates. |
| if (ID->getSuperClass()) { |
| for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), |
| IVE = ID->ivar_end(); IVI != IVE; ++IVI) { |
| ObjCIvarDecl* Ivar = (*IVI); |
| IdentifierInfo *II = Ivar->getIdentifier(); |
| ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II); |
| if (prevIvar) { |
| Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; |
| Diag(prevIvar->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| } |
| } |
| else if (ObjCImplementationDecl *IMPDecl = |
| dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
| assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); |
| IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size()); |
| CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); |
| } |
| } |
| |
| if (Attr) |
| ProcessDeclAttributeList(Record, Attr); |
| } |
| |
| Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl, |
| DeclTy *lastEnumConst, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| SourceLocation EqualLoc, ExprTy *val) { |
| EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl)); |
| EnumConstantDecl *LastEnumConst = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst)); |
| Expr *Val = static_cast<Expr*>(val); |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| S = getNonFieldDeclScope(S); |
| |
| // Verify that there isn't already something declared with this name in this |
| // scope. |
| Decl *PrevDecl = LookupDeclInScope(Id, Decl::IDNS_Ordinary, S); |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } |
| |
| if (PrevDecl) { |
| // When in C++, we may get a TagDecl with the same name; in this case the |
| // enum constant will 'hide' the tag. |
| assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) && |
| "Received TagDecl when not in C++!"); |
| if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { |
| if (isa<EnumConstantDecl>(PrevDecl)) |
| Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; |
| else |
| Diag(IdLoc, diag::err_redefinition) << Id; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| delete Val; |
| return 0; |
| } |
| } |
| |
| llvm::APSInt EnumVal(32); |
| QualType EltTy; |
| if (Val) { |
| // Make sure to promote the operand type to int. |
| UsualUnaryConversions(Val); |
| |
| // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
| SourceLocation ExpLoc; |
| if (VerifyIntegerConstantExpression(Val, &EnumVal)) { |
| delete Val; |
| Val = 0; // Just forget about it. |
| } else { |
| EltTy = Val->getType(); |
| } |
| } |
| |
| if (!Val) { |
| if (LastEnumConst) { |
| // Assign the last value + 1. |
| EnumVal = LastEnumConst->getInitVal(); |
| ++EnumVal; |
| |
| // Check for overflow on increment. |
| if (EnumVal < LastEnumConst->getInitVal()) |
| Diag(IdLoc, diag::warn_enum_value_overflow); |
| |
| EltTy = LastEnumConst->getType(); |
| } else { |
| // First value, set to zero. |
| EltTy = Context.IntTy; |
| EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy))); |
| } |
| } |
| |
| EnumConstantDecl *New = |
| EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy, |
| Val, EnumVal); |
| |
| // Register this decl in the current scope stack. |
| PushOnScopeChains(New, S); |
| |
| return New; |
| } |
| |
| // FIXME: For consistency with ActOnFields(), we should have the parser |
| // pass in the source location for the left/right braces. |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX, |
| DeclTy **Elements, unsigned NumElements) { |
| EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX)); |
| QualType EnumType = Context.getTypeDeclType(Enum); |
| |
| // TODO: If the result value doesn't fit in an int, it must be a long or long |
| // long value. ISO C does not support this, but GCC does as an extension, |
| // emit a warning. |
| unsigned IntWidth = Context.Target.getIntWidth(); |
| |
| // Verify that all the values are okay, compute the size of the values, and |
| // reverse the list. |
| unsigned NumNegativeBits = 0; |
| unsigned NumPositiveBits = 0; |
| |
| // Keep track of whether all elements have type int. |
| bool AllElementsInt = true; |
| |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // If the enum value doesn't fit in an int, emit an extension warning. |
| const llvm::APSInt &InitVal = ECD->getInitVal(); |
| assert(InitVal.getBitWidth() >= IntWidth && |
| "Should have promoted value to int"); |
| if (InitVal.getBitWidth() > IntWidth) { |
| llvm::APSInt V(InitVal); |
| V.trunc(IntWidth); |
| V.extend(InitVal.getBitWidth()); |
| if (V != InitVal) |
| Diag(ECD->getLocation(), diag::ext_enum_value_not_int) |
| << InitVal.toString(10); |
| } |
| |
| // Keep track of the size of positive and negative values. |
| if (InitVal.isUnsigned() || InitVal.isNonNegative()) |
| NumPositiveBits = std::max(NumPositiveBits, |
| (unsigned)InitVal.getActiveBits()); |
| else |
| NumNegativeBits = std::max(NumNegativeBits, |
| (unsigned)InitVal.getMinSignedBits()); |
| |
| // Keep track of whether every enum element has type int (very commmon). |
| if (AllElementsInt) |
| AllElementsInt = ECD->getType() == Context.IntTy; |
| } |
| |
| // Figure out the type that should be used for this enum. |
| // FIXME: Support attribute(packed) on enums and -fshort-enums. |
| QualType BestType; |
| unsigned BestWidth; |
| |
| if (NumNegativeBits) { |
| // If there is a negative value, figure out the smallest integer type (of |
| // int/long/longlong) that fits. |
| if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
| BestType = Context.IntTy; |
| BestWidth = IntWidth; |
| } else { |
| BestWidth = Context.Target.getLongWidth(); |
| |
| if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) |
| BestType = Context.LongTy; |
| else { |
| BestWidth = Context.Target.getLongLongWidth(); |
| |
| if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
| Diag(Enum->getLocation(), diag::warn_enum_too_large); |
| BestType = Context.LongLongTy; |
| } |
| } |
| } else { |
| // If there is no negative value, figure out which of uint, ulong, ulonglong |
| // fits. |
| if (NumPositiveBits <= IntWidth) { |
| BestType = Context.UnsignedIntTy; |
| BestWidth = IntWidth; |
| } else if (NumPositiveBits <= |
| (BestWidth = Context.Target.getLongWidth())) { |
| BestType = Context.UnsignedLongTy; |
| } else { |
| BestWidth = Context.Target.getLongLongWidth(); |
| assert(NumPositiveBits <= BestWidth && |
| "How could an initializer get larger than ULL?"); |
| BestType = Context.UnsignedLongLongTy; |
| } |
| } |
| |
| // Loop over all of the enumerator constants, changing their types to match |
| // the type of the enum if needed. |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // Standard C says the enumerators have int type, but we allow, as an |
| // extension, the enumerators to be larger than int size. If each |
| // enumerator value fits in an int, type it as an int, otherwise type it the |
| // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
| // that X has type 'int', not 'unsigned'. |
| if (ECD->getType() == Context.IntTy) { |
| // Make sure the init value is signed. |
| llvm::APSInt IV = ECD->getInitVal(); |
| IV.setIsSigned(true); |
| ECD->setInitVal(IV); |
| |
| if (getLangOptions().CPlusPlus) |
| // C++ [dcl.enum]p4: Following the closing brace of an |
| // enum-specifier, each enumerator has the type of its |
| // enumeration. |
| ECD->setType(EnumType); |
| continue; // Already int type. |
| } |
| |
| // Determine whether the value fits into an int. |
| llvm::APSInt InitVal = ECD->getInitVal(); |
| bool FitsInInt; |
| if (InitVal.isUnsigned() || !InitVal.isNegative()) |
| FitsInInt = InitVal.getActiveBits() < IntWidth; |
| else |
| FitsInInt = InitVal.getMinSignedBits() <= IntWidth; |
| |
| // If it fits into an integer type, force it. Otherwise force it to match |
| // the enum decl type. |
| QualType NewTy; |
| unsigned NewWidth; |
| bool NewSign; |
| if (FitsInInt) { |
| NewTy = Context.IntTy; |
| NewWidth = IntWidth; |
| NewSign = true; |
| } else if (ECD->getType() == BestType) { |
| // Already the right type! |
| if (getLangOptions().CPlusPlus) |
| // C++ [dcl.enum]p4: Following the closing brace of an |
| // enum-specifier, each enumerator has the type of its |
| // enumeration. |
| ECD->setType(EnumType); |
| continue; |
| } else { |
| NewTy = BestType; |
| NewWidth = BestWidth; |
| NewSign = BestType->isSignedIntegerType(); |
| } |
| |
| // Adjust the APSInt value. |
| InitVal.extOrTrunc(NewWidth); |
| InitVal.setIsSigned(NewSign); |
| ECD->setInitVal(InitVal); |
| |
| // Adjust the Expr initializer and type. |
| if (ECD->getInitExpr()) |
| ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(), |
| /*isLvalue=*/false)); |
| if (getLangOptions().CPlusPlus) |
| // C++ [dcl.enum]p4: Following the closing brace of an |
| // enum-specifier, each enumerator has the type of its |
| // enumeration. |
| ECD->setType(EnumType); |
| else |
| ECD->setType(NewTy); |
| } |
| |
| Enum->completeDefinition(Context, BestType); |
| } |
| |
| Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, |
| ExprArg expr) { |
| StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release()); |
| |
| return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString); |
| } |
| |
| |
| void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name, |
| ExprTy *alignment, SourceLocation PragmaLoc, |
| SourceLocation LParenLoc, SourceLocation RParenLoc) { |
| Expr *Alignment = static_cast<Expr *>(alignment); |
| |
| // If specified then alignment must be a "small" power of two. |
| unsigned AlignmentVal = 0; |
| if (Alignment) { |
| llvm::APSInt Val; |
| if (!Alignment->isIntegerConstantExpr(Val, Context) || |
| !Val.isPowerOf2() || |
| Val.getZExtValue() > 16) { |
| Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment); |
| delete Alignment; |
| return; // Ignore |
| } |
| |
| AlignmentVal = (unsigned) Val.getZExtValue(); |
| } |
| |
| switch (Kind) { |
| case Action::PPK_Default: // pack([n]) |
| PackContext.setAlignment(AlignmentVal); |
| break; |
| |
| case Action::PPK_Show: // pack(show) |
| // Show the current alignment, making sure to show the right value |
| // for the default. |
| AlignmentVal = PackContext.getAlignment(); |
| // FIXME: This should come from the target. |
| if (AlignmentVal == 0) |
| AlignmentVal = 8; |
| Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal; |
| break; |
| |
| case Action::PPK_Push: // pack(push [, id] [, [n]) |
| PackContext.push(Name); |
| // Set the new alignment if specified. |
| if (Alignment) |
| PackContext.setAlignment(AlignmentVal); |
| break; |
| |
| case Action::PPK_Pop: // pack(pop [, id] [, n]) |
| // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack: |
| // "#pragma pack(pop, identifier, n) is undefined" |
| if (Alignment && Name) |
| Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment); |
| |
| // Do the pop. |
| if (!PackContext.pop(Name)) { |
| // If a name was specified then failure indicates the name |
| // wasn't found. Otherwise failure indicates the stack was |
| // empty. |
| Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed) |
| << (Name ? "no record matching name" : "stack empty"); |
| |
| // FIXME: Warn about popping named records as MSVC does. |
| } else { |
| // Pop succeeded, set the new alignment if specified. |
| if (Alignment) |
| PackContext.setAlignment(AlignmentVal); |
| } |
| break; |
| |
| default: |
| assert(0 && "Invalid #pragma pack kind."); |
| } |
| } |
| |
| bool PragmaPackStack::pop(IdentifierInfo *Name) { |
| if (Stack.empty()) |
| return false; |
| |
| // If name is empty just pop top. |
| if (!Name) { |
| Alignment = Stack.back().first; |
| Stack.pop_back(); |
| return true; |
| } |
| |
| // Otherwise, find the named record. |
| for (unsigned i = Stack.size(); i != 0; ) { |
| --i; |
| if (Stack[i].second == Name) { |
| // Found it, pop up to and including this record. |
| Alignment = Stack[i].first; |
| Stack.erase(Stack.begin() + i, Stack.end()); |
| return true; |
| } |
| } |
| |
| return false; |
| } |