| //= GRState*cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SymbolID, ExprBindKey, and GRState* |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/PathSensitive/GRStateTrait.h" |
| #include "clang/Analysis/PathSensitive/GRState.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "clang/Analysis/PathSensitive/GRTransferFuncs.h" |
| |
| using namespace clang; |
| |
| GRStateManager::~GRStateManager() { |
| for (std::vector<GRState::Printer*>::iterator I=Printers.begin(), |
| E=Printers.end(); I!=E; ++I) |
| delete *I; |
| |
| for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); |
| I!=E; ++I) |
| I->second.second(I->second.first); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Basic symbolic analysis. This will eventually be refactored into a |
| // separate component. |
| //===----------------------------------------------------------------------===// |
| |
| typedef llvm::ImmutableMap<SymbolID,GRState::IntSetTy> ConstNotEqTy; |
| typedef llvm::ImmutableMap<SymbolID,const llvm::APSInt*> ConstEqTy; |
| |
| static int ConstEqTyIndex = 0; |
| static int ConstNotEqTyIndex = 0; |
| |
| namespace clang { |
| template<> |
| struct GRStateTrait<ConstNotEqTy> : public GRStatePartialTrait<ConstNotEqTy> { |
| static inline void* GDMIndex() { return &ConstNotEqTyIndex; } |
| }; |
| |
| template<> |
| struct GRStateTrait<ConstEqTy> : public GRStatePartialTrait<ConstEqTy> { |
| static inline void* GDMIndex() { return &ConstEqTyIndex; } |
| }; |
| } |
| |
| bool GRState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const { |
| |
| // Retrieve the NE-set associated with the given symbol. |
| const ConstNotEqTy::data_type* T = get<ConstNotEqTy>(sym); |
| |
| // See if V is present in the NE-set. |
| return T ? T->contains(&V) : false; |
| } |
| |
| bool GRState::isEqual(SymbolID sym, const llvm::APSInt& V) const { |
| // Retrieve the EQ-set associated with the given symbol. |
| const ConstEqTy::data_type* T = get<ConstEqTy>(sym); |
| // See if V is present in the EQ-set. |
| return T ? **T == V : false; |
| } |
| |
| const llvm::APSInt* GRState::getSymVal(SymbolID sym) const { |
| const ConstEqTy::data_type* T = get<ConstEqTy>(sym); |
| return T ? *T : NULL; |
| } |
| |
| const GRState* |
| GRStateManager::RemoveDeadBindings(const GRState* St, Stmt* Loc, |
| const LiveVariables& Liveness, |
| DeadSymbolsTy& DSymbols) { |
| |
| // This code essentially performs a "mark-and-sweep" of the VariableBindings. |
| // The roots are any Block-level exprs and Decls that our liveness algorithm |
| // tells us are live. We then see what Decls they may reference, and keep |
| // those around. This code more than likely can be made faster, and the |
| // frequency of which this method is called should be experimented with |
| // for optimum performance. |
| DRoots.clear(); |
| StoreManager::LiveSymbolsTy LSymbols; |
| |
| GRState NewSt = *St; |
| |
| // FIXME: Put this in environment. |
| // Clean up the environment. |
| |
| // Drop bindings for subexpressions. |
| NewSt.Env = EnvMgr.RemoveSubExprBindings(NewSt.Env); |
| |
| // Iterate over the block-expr bindings. |
| |
| for (GRState::beb_iterator I = St->beb_begin(), E = St->beb_end(); |
| I!=E ; ++I) { |
| Expr* BlkExpr = I.getKey(); |
| |
| if (Liveness.isLive(Loc, BlkExpr)) { |
| RVal X = I.getData(); |
| |
| if (isa<lval::DeclVal>(X)) { |
| lval::DeclVal LV = cast<lval::DeclVal>(X); |
| DRoots.push_back(LV.getDecl()); |
| } |
| |
| for (RVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); |
| SI != SE; ++SI) { |
| LSymbols.insert(*SI); |
| } |
| } |
| else { |
| RVal X = I.getData(); |
| |
| if (X.isUndef() && cast<UndefinedVal>(X).getData()) |
| continue; |
| |
| NewSt.Env = EnvMgr.RemoveBlkExpr(NewSt.Env, BlkExpr); |
| } |
| } |
| |
| // Clean up the store. |
| DSymbols.clear(); |
| NewSt.St = StMgr->RemoveDeadBindings(St->getStore(), Loc, Liveness, DRoots, |
| LSymbols, DSymbols); |
| |
| |
| GRStateRef state(getPersistentState(NewSt), *this); |
| |
| // Remove the dead symbols from the symbol tracker. |
| // FIXME: Refactor into something else that manages symbol values. |
| |
| ConstEqTy CE = state.get<ConstEqTy>(); |
| ConstEqTy::Factory& CEFactory = state.get_context<ConstEqTy>(); |
| |
| for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) { |
| SymbolID sym = I.getKey(); |
| if (!LSymbols.count(sym)) { |
| DSymbols.insert(sym); |
| CE = CEFactory.Remove(CE, sym); |
| } |
| } |
| |
| ConstNotEqTy CNE = state.get<ConstNotEqTy>(); |
| ConstNotEqTy::Factory& CNEFactory = state.get_context<ConstNotEqTy>(); |
| |
| for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) { |
| SymbolID sym = I.getKey(); |
| if (!LSymbols.count(sym)) { |
| DSymbols.insert(sym); |
| CNE = CNEFactory.Remove(CNE, sym); |
| } |
| } |
| |
| return state.set<ConstNotEqTy>(CNE); |
| } |
| |
| const GRState* GRStateManager::SetRVal(const GRState* St, LVal LV, |
| RVal V) { |
| |
| Store OldStore = St->getStore(); |
| Store NewStore = StMgr->SetRVal(OldStore, LV, V); |
| |
| if (NewStore == OldStore) |
| return St; |
| |
| GRState NewSt = *St; |
| NewSt.St = NewStore; |
| return getPersistentState(NewSt); |
| } |
| |
| const GRState* GRStateManager::Unbind(const GRState* St, LVal LV) { |
| Store OldStore = St->getStore(); |
| Store NewStore = StMgr->Remove(OldStore, LV); |
| |
| if (NewStore == OldStore) |
| return St; |
| |
| GRState NewSt = *St; |
| NewSt.St = NewStore; |
| return getPersistentState(NewSt); |
| } |
| |
| |
| const GRState* GRStateManager::AddNE(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V) { |
| |
| GRStateRef state(St, *this); |
| |
| // First, retrieve the NE-set associated with the given symbol. |
| ConstNotEqTy::data_type* T = state.get<ConstNotEqTy>(sym); |
| GRState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet(); |
| |
| // Now add V to the NE set. |
| S = ISetFactory.Add(S, &V); |
| |
| // Create a new state with the old binding replaced. |
| return state.set<ConstNotEqTy>(sym, S); |
| } |
| |
| const GRState* GRStateManager::AddEQ(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V) { |
| // Create a new state with the old binding replaced. |
| GRStateRef state(St, *this); |
| return state.set<ConstEqTy>(sym, &V); |
| } |
| |
| const GRState* GRStateManager::getInitialState() { |
| |
| GRState StateImpl(EnvMgr.getInitialEnvironment(), |
| StMgr->getInitialStore(*this), |
| GDMFactory.GetEmptyMap()); |
| |
| return getPersistentState(StateImpl); |
| } |
| |
| const GRState* GRStateManager::getPersistentState(GRState& State) { |
| |
| llvm::FoldingSetNodeID ID; |
| State.Profile(ID); |
| void* InsertPos; |
| |
| if (GRState* I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) |
| return I; |
| |
| GRState* I = (GRState*) Alloc.Allocate<GRState>(); |
| new (I) GRState(State); |
| StateSet.InsertNode(I, InsertPos); |
| return I; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // State pretty-printing. |
| //===----------------------------------------------------------------------===// |
| |
| void GRState::print(std::ostream& Out, StoreManager& StoreMgr, |
| Printer** Beg, Printer** End, |
| const char* nl, const char* sep) const { |
| |
| // Print the store. |
| StoreMgr.print(getStore(), Out, nl, sep); |
| |
| // Print Subexpression bindings. |
| bool isFirst = true; |
| |
| for (seb_iterator I = seb_begin(), E = seb_end(); I != E; ++I) { |
| |
| if (isFirst) { |
| Out << nl << nl << "Sub-Expressions:" << nl; |
| isFirst = false; |
| } |
| else { Out << nl; } |
| |
| Out << " (" << (void*) I.getKey() << ") "; |
| I.getKey()->printPretty(Out); |
| Out << " : "; |
| I.getData().print(Out); |
| } |
| |
| // Print block-expression bindings. |
| isFirst = true; |
| |
| for (beb_iterator I = beb_begin(), E = beb_end(); I != E; ++I) { |
| |
| if (isFirst) { |
| Out << nl << nl << "Block-level Expressions:" << nl; |
| isFirst = false; |
| } |
| else { Out << nl; } |
| |
| Out << " (" << (void*) I.getKey() << ") "; |
| I.getKey()->printPretty(Out); |
| Out << " : "; |
| I.getData().print(Out); |
| } |
| |
| // Print equality constraints. |
| // FIXME: Make just another printer do this. |
| ConstEqTy CE = get<ConstEqTy>(); |
| |
| if (!CE.isEmpty()) { |
| Out << nl << sep << "'==' constraints:"; |
| |
| for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) |
| Out << nl << " $" << I.getKey() |
| << " : " << *I.getData(); |
| } |
| |
| // Print != constraints. |
| // FIXME: Make just another printer do this. |
| |
| ConstNotEqTy CNE = get<ConstNotEqTy>(); |
| |
| if (!CNE.isEmpty()) { |
| Out << nl << sep << "'!=' constraints:"; |
| |
| for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) { |
| Out << nl << " $" << I.getKey() << " : "; |
| isFirst = true; |
| |
| IntSetTy::iterator J = I.getData().begin(), EJ = I.getData().end(); |
| |
| for ( ; J != EJ; ++J) { |
| if (isFirst) isFirst = false; |
| else Out << ", "; |
| |
| Out << *J; |
| } |
| } |
| } |
| |
| // Print checker-specific data. |
| for ( ; Beg != End ; ++Beg) (*Beg)->Print(Out, this, nl, sep); |
| } |
| |
| void GRStateRef::printDOT(std::ostream& Out) const { |
| print(Out, "\\l", "\\|"); |
| } |
| |
| void GRStateRef::printStdErr() const { |
| print(*llvm::cerr); |
| } |
| |
| void GRStateRef::print(std::ostream& Out, const char* nl, const char* sep)const{ |
| GRState::Printer **beg = Mgr->Printers.empty() ? 0 : &Mgr->Printers[0]; |
| GRState::Printer **end = !beg ? 0 : beg + Mgr->Printers.size(); |
| St->print(Out, *Mgr->StMgr, beg, end, nl, sep); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Data Map. |
| //===----------------------------------------------------------------------===// |
| |
| void* const* GRState::FindGDM(void* K) const { |
| return GDM.lookup(K); |
| } |
| |
| void* |
| GRStateManager::FindGDMContext(void* K, |
| void* (*CreateContext)(llvm::BumpPtrAllocator&), |
| void (*DeleteContext)(void*)) { |
| |
| std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; |
| if (!p.first) { |
| p.first = CreateContext(Alloc); |
| p.second = DeleteContext; |
| } |
| |
| return p.first; |
| } |
| |
| const GRState* GRStateManager::addGDM(const GRState* St, void* Key, void* Data){ |
| GRState::GenericDataMap M1 = St->getGDM(); |
| GRState::GenericDataMap M2 = GDMFactory.Add(M1, Key, Data); |
| |
| if (M1 == M2) |
| return St; |
| |
| GRState NewSt = *St; |
| NewSt.GDM = M2; |
| return getPersistentState(NewSt); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Queries. |
| //===----------------------------------------------------------------------===// |
| |
| bool GRStateManager::isEqual(const GRState* state, Expr* Ex, |
| const llvm::APSInt& Y) { |
| |
| RVal V = GetRVal(state, Ex); |
| |
| if (lval::ConcreteInt* X = dyn_cast<lval::ConcreteInt>(&V)) |
| return X->getValue() == Y; |
| |
| if (nonlval::ConcreteInt* X = dyn_cast<nonlval::ConcreteInt>(&V)) |
| return X->getValue() == Y; |
| |
| if (nonlval::SymbolVal* X = dyn_cast<nonlval::SymbolVal>(&V)) |
| return state->isEqual(X->getSymbol(), Y); |
| |
| if (lval::SymbolVal* X = dyn_cast<lval::SymbolVal>(&V)) |
| return state->isEqual(X->getSymbol(), Y); |
| |
| return false; |
| } |
| |
| bool GRStateManager::isEqual(const GRState* state, Expr* Ex, uint64_t x) { |
| return isEqual(state, Ex, BasicVals.getValue(x, Ex->getType())); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Assume" logic. |
| //===----------------------------------------------------------------------===// |
| |
| const GRState* GRStateManager::Assume(const GRState* St, LVal Cond, |
| bool Assumption, bool& isFeasible) { |
| |
| St = AssumeAux(St, Cond, Assumption, isFeasible); |
| |
| return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible) |
| : St; |
| } |
| |
| const GRState* GRStateManager::AssumeAux(const GRState* St, LVal Cond, |
| bool Assumption, bool& isFeasible) { |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert (false && "'Assume' not implemented for this LVal."); |
| return St; |
| |
| case lval::SymbolValKind: |
| if (Assumption) |
| return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(), |
| BasicVals.getZeroWithPtrWidth(), isFeasible); |
| else |
| return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(), |
| BasicVals.getZeroWithPtrWidth(), isFeasible); |
| |
| case lval::DeclValKind: |
| case lval::FuncValKind: |
| case lval::GotoLabelKind: |
| case lval::StringLiteralValKind: |
| isFeasible = Assumption; |
| return St; |
| |
| case lval::FieldOffsetKind: |
| return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(), |
| Assumption, isFeasible); |
| |
| case lval::ArrayOffsetKind: |
| return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(), |
| Assumption, isFeasible); |
| |
| case lval::ConcreteIntKind: { |
| bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0; |
| isFeasible = b ? Assumption : !Assumption; |
| return St; |
| } |
| } |
| } |
| |
| const GRState* GRStateManager::Assume(const GRState* St, NonLVal Cond, |
| bool Assumption, bool& isFeasible) { |
| |
| St = AssumeAux(St, Cond, Assumption, isFeasible); |
| |
| return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible) |
| : St; |
| } |
| |
| const GRState* GRStateManager::AssumeAux(const GRState* St, NonLVal Cond, |
| bool Assumption, bool& isFeasible) { |
| switch (Cond.getSubKind()) { |
| default: |
| assert (false && "'Assume' not implemented for this NonLVal."); |
| return St; |
| |
| |
| case nonlval::SymbolValKind: { |
| nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond); |
| SymbolID sym = SV.getSymbol(); |
| |
| if (Assumption) |
| return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)), |
| isFeasible); |
| else |
| return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)), |
| isFeasible); |
| } |
| |
| case nonlval::SymIntConstraintValKind: |
| return |
| AssumeSymInt(St, Assumption, |
| cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(), |
| isFeasible); |
| |
| case nonlval::ConcreteIntKind: { |
| bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0; |
| isFeasible = b ? Assumption : !Assumption; |
| return St; |
| } |
| |
| case nonlval::LValAsIntegerKind: { |
| return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(), |
| Assumption, isFeasible); |
| } |
| } |
| } |
| |
| |
| |
| const GRState* GRStateManager::AssumeSymInt(const GRState* St, |
| bool Assumption, |
| const SymIntConstraint& C, |
| bool& isFeasible) { |
| |
| switch (C.getOpcode()) { |
| default: |
| // No logic yet for other operators. |
| isFeasible = true; |
| return St; |
| |
| case BinaryOperator::EQ: |
| if (Assumption) |
| return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::NE: |
| if (Assumption) |
| return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::GE: |
| if (Assumption) |
| return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible); |
| |
| case BinaryOperator::LE: |
| if (Assumption) |
| return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible); |
| else |
| return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FIXME: This should go into a plug-in constraint engine. |
| //===----------------------------------------------------------------------===// |
| |
| const GRState* |
| GRStateManager::AssumeSymNE(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // First, determine if sym == X, where X != V. |
| if (const llvm::APSInt* X = St->getSymVal(sym)) { |
| isFeasible = *X != V; |
| return St; |
| } |
| |
| // Second, determine if sym != V. |
| if (St->isNotEqual(sym, V)) { |
| isFeasible = true; |
| return St; |
| } |
| |
| // If we reach here, sym is not a constant and we don't know if it is != V. |
| // Make that assumption. |
| |
| isFeasible = true; |
| return AddNE(St, sym, V); |
| } |
| |
| const GRState* |
| GRStateManager::AssumeSymEQ(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // First, determine if sym == X, where X != V. |
| if (const llvm::APSInt* X = St->getSymVal(sym)) { |
| isFeasible = *X == V; |
| return St; |
| } |
| |
| // Second, determine if sym != V. |
| if (St->isNotEqual(sym, V)) { |
| isFeasible = false; |
| return St; |
| } |
| |
| // If we reach here, sym is not a constant and we don't know if it is == V. |
| // Make that assumption. |
| |
| isFeasible = true; |
| return AddEQ(St, sym, V); |
| } |
| |
| const GRState* |
| GRStateManager::AssumeSymLT(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // FIXME: For now have assuming x < y be the same as assuming sym != V; |
| return AssumeSymNE(St, sym, V, isFeasible); |
| } |
| |
| const GRState* |
| GRStateManager::AssumeSymGT(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // FIXME: For now have assuming x > y be the same as assuming sym != V; |
| return AssumeSymNE(St, sym, V, isFeasible); |
| } |
| |
| const GRState* |
| GRStateManager::AssumeSymGE(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // FIXME: Primitive logic for now. Only reject a path if the value of |
| // sym is a constant X and !(X >= V). |
| |
| if (const llvm::APSInt* X = St->getSymVal(sym)) { |
| isFeasible = *X >= V; |
| return St; |
| } |
| |
| isFeasible = true; |
| return St; |
| } |
| |
| const GRState* |
| GRStateManager::AssumeSymLE(const GRState* St, SymbolID sym, |
| const llvm::APSInt& V, bool& isFeasible) { |
| |
| // FIXME: Primitive logic for now. Only reject a path if the value of |
| // sym is a constant X and !(X <= V). |
| |
| if (const llvm::APSInt* X = St->getSymVal(sym)) { |
| isFeasible = *X <= V; |
| return St; |
| } |
| |
| isFeasible = true; |
| return St; |
| } |
| |