| //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the code for emitting atomic operations. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenFunction.h" | 
 | #include "CGCall.h" | 
 | #include "CodeGenModule.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 | #include "llvm/IR/Operator.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | // The ABI values for various atomic memory orderings. | 
 | enum AtomicOrderingKind { | 
 |   AO_ABI_memory_order_relaxed = 0, | 
 |   AO_ABI_memory_order_consume = 1, | 
 |   AO_ABI_memory_order_acquire = 2, | 
 |   AO_ABI_memory_order_release = 3, | 
 |   AO_ABI_memory_order_acq_rel = 4, | 
 |   AO_ABI_memory_order_seq_cst = 5 | 
 | }; | 
 |  | 
 | namespace { | 
 |   class AtomicInfo { | 
 |     CodeGenFunction &CGF; | 
 |     QualType AtomicTy; | 
 |     QualType ValueTy; | 
 |     uint64_t AtomicSizeInBits; | 
 |     uint64_t ValueSizeInBits; | 
 |     CharUnits AtomicAlign; | 
 |     CharUnits ValueAlign; | 
 |     CharUnits LValueAlign; | 
 |     TypeEvaluationKind EvaluationKind; | 
 |     bool UseLibcall; | 
 |   public: | 
 |     AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) { | 
 |       assert(lvalue.isSimple()); | 
 |  | 
 |       AtomicTy = lvalue.getType(); | 
 |       ValueTy = AtomicTy->castAs<AtomicType>()->getValueType(); | 
 |       EvaluationKind = CGF.getEvaluationKind(ValueTy); | 
 |  | 
 |       ASTContext &C = CGF.getContext(); | 
 |  | 
 |       uint64_t valueAlignInBits; | 
 |       llvm::tie(ValueSizeInBits, valueAlignInBits) = C.getTypeInfo(ValueTy); | 
 |  | 
 |       uint64_t atomicAlignInBits; | 
 |       llvm::tie(AtomicSizeInBits, atomicAlignInBits) = C.getTypeInfo(AtomicTy); | 
 |  | 
 |       assert(ValueSizeInBits <= AtomicSizeInBits); | 
 |       assert(valueAlignInBits <= atomicAlignInBits); | 
 |  | 
 |       AtomicAlign = C.toCharUnitsFromBits(atomicAlignInBits); | 
 |       ValueAlign = C.toCharUnitsFromBits(valueAlignInBits); | 
 |       if (lvalue.getAlignment().isZero()) | 
 |         lvalue.setAlignment(AtomicAlign); | 
 |  | 
 |       UseLibcall = | 
 |         (AtomicSizeInBits > uint64_t(C.toBits(lvalue.getAlignment())) || | 
 |          AtomicSizeInBits > C.getTargetInfo().getMaxAtomicInlineWidth()); | 
 |     } | 
 |  | 
 |     QualType getAtomicType() const { return AtomicTy; } | 
 |     QualType getValueType() const { return ValueTy; } | 
 |     CharUnits getAtomicAlignment() const { return AtomicAlign; } | 
 |     CharUnits getValueAlignment() const { return ValueAlign; } | 
 |     uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } | 
 |     uint64_t getValueSizeInBits() const { return AtomicSizeInBits; } | 
 |     TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } | 
 |     bool shouldUseLibcall() const { return UseLibcall; } | 
 |  | 
 |     /// Is the atomic size larger than the underlying value type? | 
 |     /// | 
 |     /// Note that the absence of padding does not mean that atomic | 
 |     /// objects are completely interchangeable with non-atomic | 
 |     /// objects: we might have promoted the alignment of a type | 
 |     /// without making it bigger. | 
 |     bool hasPadding() const { | 
 |       return (ValueSizeInBits != AtomicSizeInBits); | 
 |     } | 
 |  | 
 |     void emitMemSetZeroIfNecessary(LValue dest) const; | 
 |  | 
 |     llvm::Value *getAtomicSizeValue() const { | 
 |       CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); | 
 |       return CGF.CGM.getSize(size); | 
 |     } | 
 |  | 
 |     /// Cast the given pointer to an integer pointer suitable for | 
 |     /// atomic operations. | 
 |     llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const; | 
 |  | 
 |     /// Turn an atomic-layout object into an r-value. | 
 |     RValue convertTempToRValue(llvm::Value *addr, | 
 |                                AggValueSlot resultSlot) const; | 
 |  | 
 |     /// Copy an atomic r-value into atomic-layout memory. | 
 |     void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const; | 
 |  | 
 |     /// Project an l-value down to the value field. | 
 |     LValue projectValue(LValue lvalue) const { | 
 |       llvm::Value *addr = lvalue.getAddress(); | 
 |       if (hasPadding()) | 
 |         addr = CGF.Builder.CreateStructGEP(addr, 0); | 
 |  | 
 |       return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(), | 
 |                               CGF.getContext(), lvalue.getTBAAInfo()); | 
 |     } | 
 |  | 
 |     /// Materialize an atomic r-value in atomic-layout memory. | 
 |     llvm::Value *materializeRValue(RValue rvalue) const; | 
 |  | 
 |   private: | 
 |     bool requiresMemSetZero(llvm::Type *type) const; | 
 |   }; | 
 | } | 
 |  | 
 | static RValue emitAtomicLibcall(CodeGenFunction &CGF, | 
 |                                 StringRef fnName, | 
 |                                 QualType resultType, | 
 |                                 CallArgList &args) { | 
 |   const CGFunctionInfo &fnInfo = | 
 |     CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args, | 
 |             FunctionType::ExtInfo(), RequiredArgs::All); | 
 |   llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); | 
 |   llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); | 
 |   return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args); | 
 | } | 
 |  | 
 | /// Does a store of the given IR type modify the full expected width? | 
 | static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, | 
 |                            uint64_t expectedSize) { | 
 |   return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); | 
 | } | 
 |  | 
 | /// Does the atomic type require memsetting to zero before initialization? | 
 | /// | 
 | /// The IR type is provided as a way of making certain queries faster. | 
 | bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { | 
 |   // If the atomic type has size padding, we definitely need a memset. | 
 |   if (hasPadding()) return true; | 
 |  | 
 |   // Otherwise, do some simple heuristics to try to avoid it: | 
 |   switch (getEvaluationKind()) { | 
 |   // For scalars and complexes, check whether the store size of the | 
 |   // type uses the full size. | 
 |   case TEK_Scalar: | 
 |     return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); | 
 |   case TEK_Complex: | 
 |     return !isFullSizeType(CGF.CGM, type->getStructElementType(0), | 
 |                            AtomicSizeInBits / 2); | 
 |  | 
 |   // Just be pessimistic about aggregates. | 
 |   case TEK_Aggregate: | 
 |     return true; | 
 |   } | 
 |   llvm_unreachable("bad evaluation kind"); | 
 | } | 
 |  | 
 | void AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const { | 
 |   llvm::Value *addr = dest.getAddress(); | 
 |   if (!requiresMemSetZero(addr->getType()->getPointerElementType())) | 
 |     return; | 
 |  | 
 |   CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), | 
 |                            AtomicSizeInBits / 8, | 
 |                            dest.getAlignment().getQuantity()); | 
 | } | 
 |  | 
 | static void | 
 | EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, | 
 |              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, | 
 |              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { | 
 |   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; | 
 |   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; | 
 |  | 
 |   switch (E->getOp()) { | 
 |   case AtomicExpr::AO__c11_atomic_init: | 
 |     llvm_unreachable("Already handled!"); | 
 |  | 
 |   case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
 |   case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
 |   case AtomicExpr::AO__atomic_compare_exchange: | 
 |   case AtomicExpr::AO__atomic_compare_exchange_n: { | 
 |     // Note that cmpxchg only supports specifying one ordering and | 
 |     // doesn't support weak cmpxchg, at least at the moment. | 
 |     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); | 
 |     LoadVal1->setAlignment(Align); | 
 |     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); | 
 |     LoadVal2->setAlignment(Align); | 
 |     llvm::AtomicCmpXchgInst *CXI = | 
 |         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); | 
 |     CXI->setVolatile(E->isVolatile()); | 
 |     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); | 
 |     StoreVal1->setAlignment(Align); | 
 |     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); | 
 |     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); | 
 |     return; | 
 |   } | 
 |  | 
 |   case AtomicExpr::AO__c11_atomic_load: | 
 |   case AtomicExpr::AO__atomic_load_n: | 
 |   case AtomicExpr::AO__atomic_load: { | 
 |     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); | 
 |     Load->setAtomic(Order); | 
 |     Load->setAlignment(Size); | 
 |     Load->setVolatile(E->isVolatile()); | 
 |     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); | 
 |     StoreDest->setAlignment(Align); | 
 |     return; | 
 |   } | 
 |  | 
 |   case AtomicExpr::AO__c11_atomic_store: | 
 |   case AtomicExpr::AO__atomic_store: | 
 |   case AtomicExpr::AO__atomic_store_n: { | 
 |     assert(!Dest && "Store does not return a value"); | 
 |     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); | 
 |     LoadVal1->setAlignment(Align); | 
 |     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); | 
 |     Store->setAtomic(Order); | 
 |     Store->setAlignment(Size); | 
 |     Store->setVolatile(E->isVolatile()); | 
 |     return; | 
 |   } | 
 |  | 
 |   case AtomicExpr::AO__c11_atomic_exchange: | 
 |   case AtomicExpr::AO__atomic_exchange_n: | 
 |   case AtomicExpr::AO__atomic_exchange: | 
 |     Op = llvm::AtomicRMWInst::Xchg; | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_add_fetch: | 
 |     PostOp = llvm::Instruction::Add; | 
 |     // Fall through. | 
 |   case AtomicExpr::AO__c11_atomic_fetch_add: | 
 |   case AtomicExpr::AO__atomic_fetch_add: | 
 |     Op = llvm::AtomicRMWInst::Add; | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_sub_fetch: | 
 |     PostOp = llvm::Instruction::Sub; | 
 |     // Fall through. | 
 |   case AtomicExpr::AO__c11_atomic_fetch_sub: | 
 |   case AtomicExpr::AO__atomic_fetch_sub: | 
 |     Op = llvm::AtomicRMWInst::Sub; | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_and_fetch: | 
 |     PostOp = llvm::Instruction::And; | 
 |     // Fall through. | 
 |   case AtomicExpr::AO__c11_atomic_fetch_and: | 
 |   case AtomicExpr::AO__atomic_fetch_and: | 
 |     Op = llvm::AtomicRMWInst::And; | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_or_fetch: | 
 |     PostOp = llvm::Instruction::Or; | 
 |     // Fall through. | 
 |   case AtomicExpr::AO__c11_atomic_fetch_or: | 
 |   case AtomicExpr::AO__atomic_fetch_or: | 
 |     Op = llvm::AtomicRMWInst::Or; | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_xor_fetch: | 
 |     PostOp = llvm::Instruction::Xor; | 
 |     // Fall through. | 
 |   case AtomicExpr::AO__c11_atomic_fetch_xor: | 
 |   case AtomicExpr::AO__atomic_fetch_xor: | 
 |     Op = llvm::AtomicRMWInst::Xor; | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_nand_fetch: | 
 |     PostOp = llvm::Instruction::And; | 
 |     // Fall through. | 
 |   case AtomicExpr::AO__atomic_fetch_nand: | 
 |     Op = llvm::AtomicRMWInst::Nand; | 
 |     break; | 
 |   } | 
 |  | 
 |   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); | 
 |   LoadVal1->setAlignment(Align); | 
 |   llvm::AtomicRMWInst *RMWI = | 
 |       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); | 
 |   RMWI->setVolatile(E->isVolatile()); | 
 |  | 
 |   // For __atomic_*_fetch operations, perform the operation again to | 
 |   // determine the value which was written. | 
 |   llvm::Value *Result = RMWI; | 
 |   if (PostOp) | 
 |     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); | 
 |   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) | 
 |     Result = CGF.Builder.CreateNot(Result); | 
 |   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); | 
 |   StoreDest->setAlignment(Align); | 
 | } | 
 |  | 
 | // This function emits any expression (scalar, complex, or aggregate) | 
 | // into a temporary alloca. | 
 | static llvm::Value * | 
 | EmitValToTemp(CodeGenFunction &CGF, Expr *E) { | 
 |   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); | 
 |   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), | 
 |                        /*Init*/ true); | 
 |   return DeclPtr; | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { | 
 |   QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); | 
 |   QualType MemTy = AtomicTy; | 
 |   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) | 
 |     MemTy = AT->getValueType(); | 
 |   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); | 
 |   uint64_t Size = sizeChars.getQuantity(); | 
 |   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); | 
 |   unsigned Align = alignChars.getQuantity(); | 
 |   unsigned MaxInlineWidthInBits = | 
 |     getContext().getTargetInfo().getMaxAtomicInlineWidth(); | 
 |   bool UseLibcall = (Size != Align || | 
 |                      getContext().toBits(sizeChars) > MaxInlineWidthInBits); | 
 |  | 
 |   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; | 
 |   Ptr = EmitScalarExpr(E->getPtr()); | 
 |  | 
 |   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { | 
 |     assert(!Dest && "Init does not return a value"); | 
 |     LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext()); | 
 |     EmitAtomicInit(E->getVal1(), lvalue); | 
 |     return RValue::get(0); | 
 |   } | 
 |  | 
 |   Order = EmitScalarExpr(E->getOrder()); | 
 |  | 
 |   switch (E->getOp()) { | 
 |   case AtomicExpr::AO__c11_atomic_init: | 
 |     llvm_unreachable("Already handled!"); | 
 |  | 
 |   case AtomicExpr::AO__c11_atomic_load: | 
 |   case AtomicExpr::AO__atomic_load_n: | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_load: | 
 |     Dest = EmitScalarExpr(E->getVal1()); | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_store: | 
 |     Val1 = EmitScalarExpr(E->getVal1()); | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__atomic_exchange: | 
 |     Val1 = EmitScalarExpr(E->getVal1()); | 
 |     Dest = EmitScalarExpr(E->getVal2()); | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
 |   case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
 |   case AtomicExpr::AO__atomic_compare_exchange_n: | 
 |   case AtomicExpr::AO__atomic_compare_exchange: | 
 |     Val1 = EmitScalarExpr(E->getVal1()); | 
 |     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) | 
 |       Val2 = EmitScalarExpr(E->getVal2()); | 
 |     else | 
 |       Val2 = EmitValToTemp(*this, E->getVal2()); | 
 |     OrderFail = EmitScalarExpr(E->getOrderFail()); | 
 |     // Evaluate and discard the 'weak' argument. | 
 |     if (E->getNumSubExprs() == 6) | 
 |       EmitScalarExpr(E->getWeak()); | 
 |     break; | 
 |  | 
 |   case AtomicExpr::AO__c11_atomic_fetch_add: | 
 |   case AtomicExpr::AO__c11_atomic_fetch_sub: | 
 |     if (MemTy->isPointerType()) { | 
 |       // For pointer arithmetic, we're required to do a bit of math: | 
 |       // adding 1 to an int* is not the same as adding 1 to a uintptr_t. | 
 |       // ... but only for the C11 builtins. The GNU builtins expect the | 
 |       // user to multiply by sizeof(T). | 
 |       QualType Val1Ty = E->getVal1()->getType(); | 
 |       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); | 
 |       CharUnits PointeeIncAmt = | 
 |           getContext().getTypeSizeInChars(MemTy->getPointeeType()); | 
 |       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); | 
 |       Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); | 
 |       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); | 
 |       break; | 
 |     } | 
 |     // Fall through. | 
 |   case AtomicExpr::AO__atomic_fetch_add: | 
 |   case AtomicExpr::AO__atomic_fetch_sub: | 
 |   case AtomicExpr::AO__atomic_add_fetch: | 
 |   case AtomicExpr::AO__atomic_sub_fetch: | 
 |   case AtomicExpr::AO__c11_atomic_store: | 
 |   case AtomicExpr::AO__c11_atomic_exchange: | 
 |   case AtomicExpr::AO__atomic_store_n: | 
 |   case AtomicExpr::AO__atomic_exchange_n: | 
 |   case AtomicExpr::AO__c11_atomic_fetch_and: | 
 |   case AtomicExpr::AO__c11_atomic_fetch_or: | 
 |   case AtomicExpr::AO__c11_atomic_fetch_xor: | 
 |   case AtomicExpr::AO__atomic_fetch_and: | 
 |   case AtomicExpr::AO__atomic_fetch_or: | 
 |   case AtomicExpr::AO__atomic_fetch_xor: | 
 |   case AtomicExpr::AO__atomic_fetch_nand: | 
 |   case AtomicExpr::AO__atomic_and_fetch: | 
 |   case AtomicExpr::AO__atomic_or_fetch: | 
 |   case AtomicExpr::AO__atomic_xor_fetch: | 
 |   case AtomicExpr::AO__atomic_nand_fetch: | 
 |     Val1 = EmitValToTemp(*this, E->getVal1()); | 
 |     break; | 
 |   } | 
 |  | 
 |   if (!E->getType()->isVoidType() && !Dest) | 
 |     Dest = CreateMemTemp(E->getType(), ".atomicdst"); | 
 |  | 
 |   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . | 
 |   if (UseLibcall) { | 
 |  | 
 |     SmallVector<QualType, 5> Params; | 
 |     CallArgList Args; | 
 |     // Size is always the first parameter | 
 |     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), | 
 |              getContext().getSizeType()); | 
 |     // Atomic address is always the second parameter | 
 |     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), | 
 |              getContext().VoidPtrTy); | 
 |  | 
 |     const char* LibCallName; | 
 |     QualType RetTy = getContext().VoidTy; | 
 |     switch (E->getOp()) { | 
 |     // There is only one libcall for compare an exchange, because there is no | 
 |     // optimisation benefit possible from a libcall version of a weak compare | 
 |     // and exchange. | 
 |     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, | 
 |     //                                void *desired, int success, int failure) | 
 |     case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
 |     case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
 |     case AtomicExpr::AO__atomic_compare_exchange: | 
 |     case AtomicExpr::AO__atomic_compare_exchange_n: | 
 |       LibCallName = "__atomic_compare_exchange"; | 
 |       RetTy = getContext().BoolTy; | 
 |       Args.add(RValue::get(EmitCastToVoidPtr(Val1)), | 
 |                getContext().VoidPtrTy); | 
 |       Args.add(RValue::get(EmitCastToVoidPtr(Val2)), | 
 |                getContext().VoidPtrTy); | 
 |       Args.add(RValue::get(Order), | 
 |                getContext().IntTy); | 
 |       Order = OrderFail; | 
 |       break; | 
 |     // void __atomic_exchange(size_t size, void *mem, void *val, void *return, | 
 |     //                        int order) | 
 |     case AtomicExpr::AO__c11_atomic_exchange: | 
 |     case AtomicExpr::AO__atomic_exchange_n: | 
 |     case AtomicExpr::AO__atomic_exchange: | 
 |       LibCallName = "__atomic_exchange"; | 
 |       Args.add(RValue::get(EmitCastToVoidPtr(Val1)), | 
 |                getContext().VoidPtrTy); | 
 |       Args.add(RValue::get(EmitCastToVoidPtr(Dest)), | 
 |                getContext().VoidPtrTy); | 
 |       break; | 
 |     // void __atomic_store(size_t size, void *mem, void *val, int order) | 
 |     case AtomicExpr::AO__c11_atomic_store: | 
 |     case AtomicExpr::AO__atomic_store: | 
 |     case AtomicExpr::AO__atomic_store_n: | 
 |       LibCallName = "__atomic_store"; | 
 |       Args.add(RValue::get(EmitCastToVoidPtr(Val1)), | 
 |                getContext().VoidPtrTy); | 
 |       break; | 
 |     // void __atomic_load(size_t size, void *mem, void *return, int order) | 
 |     case AtomicExpr::AO__c11_atomic_load: | 
 |     case AtomicExpr::AO__atomic_load: | 
 |     case AtomicExpr::AO__atomic_load_n: | 
 |       LibCallName = "__atomic_load"; | 
 |       Args.add(RValue::get(EmitCastToVoidPtr(Dest)), | 
 |                getContext().VoidPtrTy); | 
 |       break; | 
 | #if 0 | 
 |     // These are only defined for 1-16 byte integers.  It is not clear what | 
 |     // their semantics would be on anything else... | 
 |     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break; | 
 |     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break; | 
 |     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break; | 
 |     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break; | 
 |     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break; | 
 | #endif | 
 |     default: return EmitUnsupportedRValue(E, "atomic library call"); | 
 |     } | 
 |     // order is always the last parameter | 
 |     Args.add(RValue::get(Order), | 
 |              getContext().IntTy); | 
 |  | 
 |     const CGFunctionInfo &FuncInfo = | 
 |         CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, | 
 |             FunctionType::ExtInfo(), RequiredArgs::All); | 
 |     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); | 
 |     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); | 
 |     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); | 
 |     if (E->isCmpXChg()) | 
 |       return Res; | 
 |     if (E->getType()->isVoidType()) | 
 |       return RValue::get(0); | 
 |     return convertTempToRValue(Dest, E->getType()); | 
 |   } | 
 |  | 
 |   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || | 
 |                  E->getOp() == AtomicExpr::AO__atomic_store || | 
 |                  E->getOp() == AtomicExpr::AO__atomic_store_n; | 
 |   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || | 
 |                 E->getOp() == AtomicExpr::AO__atomic_load || | 
 |                 E->getOp() == AtomicExpr::AO__atomic_load_n; | 
 |  | 
 |   llvm::Type *IPtrTy = | 
 |       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); | 
 |   llvm::Value *OrigDest = Dest; | 
 |   Ptr = Builder.CreateBitCast(Ptr, IPtrTy); | 
 |   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); | 
 |   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); | 
 |   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); | 
 |  | 
 |   if (isa<llvm::ConstantInt>(Order)) { | 
 |     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); | 
 |     switch (ord) { | 
 |     case AO_ABI_memory_order_relaxed: | 
 |       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                    llvm::Monotonic); | 
 |       break; | 
 |     case AO_ABI_memory_order_consume: | 
 |     case AO_ABI_memory_order_acquire: | 
 |       if (IsStore) | 
 |         break; // Avoid crashing on code with undefined behavior | 
 |       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                    llvm::Acquire); | 
 |       break; | 
 |     case AO_ABI_memory_order_release: | 
 |       if (IsLoad) | 
 |         break; // Avoid crashing on code with undefined behavior | 
 |       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                    llvm::Release); | 
 |       break; | 
 |     case AO_ABI_memory_order_acq_rel: | 
 |       if (IsLoad || IsStore) | 
 |         break; // Avoid crashing on code with undefined behavior | 
 |       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                    llvm::AcquireRelease); | 
 |       break; | 
 |     case AO_ABI_memory_order_seq_cst: | 
 |       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                    llvm::SequentiallyConsistent); | 
 |       break; | 
 |     default: // invalid order | 
 |       // We should not ever get here normally, but it's hard to | 
 |       // enforce that in general. | 
 |       break; | 
 |     } | 
 |     if (E->getType()->isVoidType()) | 
 |       return RValue::get(0); | 
 |     return convertTempToRValue(OrigDest, E->getType()); | 
 |   } | 
 |  | 
 |   // Long case, when Order isn't obviously constant. | 
 |  | 
 |   // Create all the relevant BB's | 
 |   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, | 
 |                    *AcqRelBB = 0, *SeqCstBB = 0; | 
 |   MonotonicBB = createBasicBlock("monotonic", CurFn); | 
 |   if (!IsStore) | 
 |     AcquireBB = createBasicBlock("acquire", CurFn); | 
 |   if (!IsLoad) | 
 |     ReleaseBB = createBasicBlock("release", CurFn); | 
 |   if (!IsLoad && !IsStore) | 
 |     AcqRelBB = createBasicBlock("acqrel", CurFn); | 
 |   SeqCstBB = createBasicBlock("seqcst", CurFn); | 
 |   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); | 
 |  | 
 |   // Create the switch for the split | 
 |   // MonotonicBB is arbitrarily chosen as the default case; in practice, this | 
 |   // doesn't matter unless someone is crazy enough to use something that | 
 |   // doesn't fold to a constant for the ordering. | 
 |   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); | 
 |   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); | 
 |  | 
 |   // Emit all the different atomics | 
 |   Builder.SetInsertPoint(MonotonicBB); | 
 |   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                llvm::Monotonic); | 
 |   Builder.CreateBr(ContBB); | 
 |   if (!IsStore) { | 
 |     Builder.SetInsertPoint(AcquireBB); | 
 |     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                  llvm::Acquire); | 
 |     Builder.CreateBr(ContBB); | 
 |     SI->addCase(Builder.getInt32(1), AcquireBB); | 
 |     SI->addCase(Builder.getInt32(2), AcquireBB); | 
 |   } | 
 |   if (!IsLoad) { | 
 |     Builder.SetInsertPoint(ReleaseBB); | 
 |     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                  llvm::Release); | 
 |     Builder.CreateBr(ContBB); | 
 |     SI->addCase(Builder.getInt32(3), ReleaseBB); | 
 |   } | 
 |   if (!IsLoad && !IsStore) { | 
 |     Builder.SetInsertPoint(AcqRelBB); | 
 |     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                  llvm::AcquireRelease); | 
 |     Builder.CreateBr(ContBB); | 
 |     SI->addCase(Builder.getInt32(4), AcqRelBB); | 
 |   } | 
 |   Builder.SetInsertPoint(SeqCstBB); | 
 |   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, | 
 |                llvm::SequentiallyConsistent); | 
 |   Builder.CreateBr(ContBB); | 
 |   SI->addCase(Builder.getInt32(5), SeqCstBB); | 
 |  | 
 |   // Cleanup and return | 
 |   Builder.SetInsertPoint(ContBB); | 
 |   if (E->getType()->isVoidType()) | 
 |     return RValue::get(0); | 
 |   return convertTempToRValue(OrigDest, E->getType()); | 
 | } | 
 |  | 
 | llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const { | 
 |   unsigned addrspace = | 
 |     cast<llvm::PointerType>(addr->getType())->getAddressSpace(); | 
 |   llvm::IntegerType *ty = | 
 |     llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); | 
 |   return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); | 
 | } | 
 |  | 
 | RValue AtomicInfo::convertTempToRValue(llvm::Value *addr, | 
 |                                        AggValueSlot resultSlot) const { | 
 |   if (EvaluationKind == TEK_Aggregate) { | 
 |     // Nothing to do if the result is ignored. | 
 |     if (resultSlot.isIgnored()) return resultSlot.asRValue(); | 
 |  | 
 |     assert(resultSlot.getAddr() == addr || hasPadding()); | 
 |  | 
 |     // In these cases, we should have emitted directly into the result slot. | 
 |     if (!hasPadding() || resultSlot.isValueOfAtomic()) | 
 |       return resultSlot.asRValue(); | 
 |  | 
 |     // Otherwise, fall into the common path. | 
 |   } | 
 |  | 
 |   // Drill into the padding structure if we have one. | 
 |   if (hasPadding()) | 
 |     addr = CGF.Builder.CreateStructGEP(addr, 0); | 
 |  | 
 |   // If we're emitting to an aggregate, copy into the result slot. | 
 |   if (EvaluationKind == TEK_Aggregate) { | 
 |     CGF.EmitAggregateCopy(resultSlot.getAddr(), addr, getValueType(), | 
 |                           resultSlot.isVolatile()); | 
 |     return resultSlot.asRValue(); | 
 |   } | 
 |  | 
 |   // Otherwise, just convert the temporary to an r-value using the | 
 |   // normal conversion routine. | 
 |   return CGF.convertTempToRValue(addr, getValueType()); | 
 | } | 
 |  | 
 | /// Emit a load from an l-value of atomic type.  Note that the r-value | 
 | /// we produce is an r-value of the atomic *value* type. | 
 | RValue CodeGenFunction::EmitAtomicLoad(LValue src, AggValueSlot resultSlot) { | 
 |   AtomicInfo atomics(*this, src); | 
 |  | 
 |   // Check whether we should use a library call. | 
 |   if (atomics.shouldUseLibcall()) { | 
 |     llvm::Value *tempAddr; | 
 |     if (resultSlot.isValueOfAtomic()) { | 
 |       assert(atomics.getEvaluationKind() == TEK_Aggregate); | 
 |       tempAddr = resultSlot.getPaddedAtomicAddr(); | 
 |     } else if (!resultSlot.isIgnored() && !atomics.hasPadding()) { | 
 |       assert(atomics.getEvaluationKind() == TEK_Aggregate); | 
 |       tempAddr = resultSlot.getAddr(); | 
 |     } else { | 
 |       tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp"); | 
 |     } | 
 |  | 
 |     // void __atomic_load(size_t size, void *mem, void *return, int order); | 
 |     CallArgList args; | 
 |     args.add(RValue::get(atomics.getAtomicSizeValue()), | 
 |              getContext().getSizeType()); | 
 |     args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())), | 
 |              getContext().VoidPtrTy); | 
 |     args.add(RValue::get(EmitCastToVoidPtr(tempAddr)), | 
 |              getContext().VoidPtrTy); | 
 |     args.add(RValue::get(llvm::ConstantInt::get(IntTy, | 
 |                                                 AO_ABI_memory_order_seq_cst)), | 
 |              getContext().IntTy); | 
 |     emitAtomicLibcall(*this, "__atomic_load", getContext().VoidTy, args); | 
 |  | 
 |     // Produce the r-value. | 
 |     return atomics.convertTempToRValue(tempAddr, resultSlot); | 
 |   } | 
 |  | 
 |   // Okay, we're doing this natively. | 
 |   llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress()); | 
 |   llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load"); | 
 |   load->setAtomic(llvm::SequentiallyConsistent); | 
 |  | 
 |   // Other decoration. | 
 |   load->setAlignment(src.getAlignment().getQuantity()); | 
 |   if (src.isVolatileQualified()) | 
 |     load->setVolatile(true); | 
 |   if (src.getTBAAInfo()) | 
 |     CGM.DecorateInstruction(load, src.getTBAAInfo()); | 
 |  | 
 |   // Okay, turn that back into the original value type. | 
 |   QualType valueType = atomics.getValueType(); | 
 |   llvm::Value *result = load; | 
 |  | 
 |   // If we're ignoring an aggregate return, don't do anything. | 
 |   if (atomics.getEvaluationKind() == TEK_Aggregate && resultSlot.isIgnored()) | 
 |     return RValue::getAggregate(0, false); | 
 |  | 
 |   // The easiest way to do this this is to go through memory, but we | 
 |   // try not to in some easy cases. | 
 |   if (atomics.getEvaluationKind() == TEK_Scalar && !atomics.hasPadding()) { | 
 |     llvm::Type *resultTy = CGM.getTypes().ConvertTypeForMem(valueType); | 
 |     if (isa<llvm::IntegerType>(resultTy)) { | 
 |       assert(result->getType() == resultTy); | 
 |       result = EmitFromMemory(result, valueType); | 
 |     } else if (isa<llvm::PointerType>(resultTy)) { | 
 |       result = Builder.CreateIntToPtr(result, resultTy); | 
 |     } else { | 
 |       result = Builder.CreateBitCast(result, resultTy); | 
 |     } | 
 |     return RValue::get(result); | 
 |   } | 
 |  | 
 |   // Create a temporary.  This needs to be big enough to hold the | 
 |   // atomic integer. | 
 |   llvm::Value *temp; | 
 |   bool tempIsVolatile = false; | 
 |   CharUnits tempAlignment; | 
 |   if (atomics.getEvaluationKind() == TEK_Aggregate && | 
 |       (!atomics.hasPadding() || resultSlot.isValueOfAtomic())) { | 
 |     assert(!resultSlot.isIgnored()); | 
 |     if (resultSlot.isValueOfAtomic()) { | 
 |       temp = resultSlot.getPaddedAtomicAddr(); | 
 |       tempAlignment = atomics.getAtomicAlignment(); | 
 |     } else { | 
 |       temp = resultSlot.getAddr(); | 
 |       tempAlignment = atomics.getValueAlignment(); | 
 |     } | 
 |     tempIsVolatile = resultSlot.isVolatile(); | 
 |   } else { | 
 |     temp = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp"); | 
 |     tempAlignment = atomics.getAtomicAlignment(); | 
 |   } | 
 |  | 
 |   // Slam the integer into the temporary. | 
 |   llvm::Value *castTemp = atomics.emitCastToAtomicIntPointer(temp); | 
 |   Builder.CreateAlignedStore(result, castTemp, tempAlignment.getQuantity()) | 
 |     ->setVolatile(tempIsVolatile); | 
 |  | 
 |   return atomics.convertTempToRValue(temp, resultSlot); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// Copy an r-value into memory as part of storing to an atomic type. | 
 | /// This needs to create a bit-pattern suitable for atomic operations. | 
 | void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const { | 
 |   // If we have an r-value, the rvalue should be of the atomic type, | 
 |   // which means that the caller is responsible for having zeroed | 
 |   // any padding.  Just do an aggregate copy of that type. | 
 |   if (rvalue.isAggregate()) { | 
 |     CGF.EmitAggregateCopy(dest.getAddress(), | 
 |                           rvalue.getAggregateAddr(), | 
 |                           getAtomicType(), | 
 |                           (rvalue.isVolatileQualified() | 
 |                            || dest.isVolatileQualified()), | 
 |                           dest.getAlignment()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay, otherwise we're copying stuff. | 
 |  | 
 |   // Zero out the buffer if necessary. | 
 |   emitMemSetZeroIfNecessary(dest); | 
 |  | 
 |   // Drill past the padding if present. | 
 |   dest = projectValue(dest); | 
 |  | 
 |   // Okay, store the rvalue in. | 
 |   if (rvalue.isScalar()) { | 
 |     CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true); | 
 |   } else { | 
 |     CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// Materialize an r-value into memory for the purposes of storing it | 
 | /// to an atomic type. | 
 | llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const { | 
 |   // Aggregate r-values are already in memory, and EmitAtomicStore | 
 |   // requires them to be values of the atomic type. | 
 |   if (rvalue.isAggregate()) | 
 |     return rvalue.getAggregateAddr(); | 
 |  | 
 |   // Otherwise, make a temporary and materialize into it. | 
 |   llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp"); | 
 |   LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment()); | 
 |   emitCopyIntoMemory(rvalue, tempLV); | 
 |   return temp; | 
 | } | 
 |  | 
 | /// Emit a store to an l-value of atomic type. | 
 | /// | 
 | /// Note that the r-value is expected to be an r-value *of the atomic | 
 | /// type*; this means that for aggregate r-values, it should include | 
 | /// storage for any padding that was necessary. | 
 | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, | 
 |                                       bool isInit) { | 
 |   // If this is an aggregate r-value, it should agree in type except | 
 |   // maybe for address-space qualification. | 
 |   assert(!rvalue.isAggregate() || | 
 |          rvalue.getAggregateAddr()->getType()->getPointerElementType() | 
 |            == dest.getAddress()->getType()->getPointerElementType()); | 
 |  | 
 |   AtomicInfo atomics(*this, dest); | 
 |  | 
 |   // If this is an initialization, just put the value there normally. | 
 |   if (isInit) { | 
 |     atomics.emitCopyIntoMemory(rvalue, dest); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check whether we should use a library call. | 
 |   if (atomics.shouldUseLibcall()) { | 
 |     // Produce a source address. | 
 |     llvm::Value *srcAddr = atomics.materializeRValue(rvalue); | 
 |  | 
 |     // void __atomic_store(size_t size, void *mem, void *val, int order) | 
 |     CallArgList args; | 
 |     args.add(RValue::get(atomics.getAtomicSizeValue()), | 
 |              getContext().getSizeType()); | 
 |     args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())), | 
 |              getContext().VoidPtrTy); | 
 |     args.add(RValue::get(EmitCastToVoidPtr(srcAddr)), | 
 |              getContext().VoidPtrTy); | 
 |     args.add(RValue::get(llvm::ConstantInt::get(IntTy, | 
 |                                                 AO_ABI_memory_order_seq_cst)), | 
 |              getContext().IntTy); | 
 |     emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay, we're doing this natively. | 
 |   llvm::Value *intValue; | 
 |  | 
 |   // If we've got a scalar value of the right size, try to avoid going | 
 |   // through memory. | 
 |   if (rvalue.isScalar() && !atomics.hasPadding()) { | 
 |     llvm::Value *value = rvalue.getScalarVal(); | 
 |     if (isa<llvm::IntegerType>(value->getType())) { | 
 |       intValue = value; | 
 |     } else { | 
 |       llvm::IntegerType *inputIntTy = | 
 |         llvm::IntegerType::get(getLLVMContext(), atomics.getValueSizeInBits()); | 
 |       if (isa<llvm::PointerType>(value->getType())) { | 
 |         intValue = Builder.CreatePtrToInt(value, inputIntTy); | 
 |       } else { | 
 |         intValue = Builder.CreateBitCast(value, inputIntTy); | 
 |       } | 
 |     } | 
 |  | 
 |   // Otherwise, we need to go through memory. | 
 |   } else { | 
 |     // Put the r-value in memory. | 
 |     llvm::Value *addr = atomics.materializeRValue(rvalue); | 
 |  | 
 |     // Cast the temporary to the atomic int type and pull a value out. | 
 |     addr = atomics.emitCastToAtomicIntPointer(addr); | 
 |     intValue = Builder.CreateAlignedLoad(addr, | 
 |                                  atomics.getAtomicAlignment().getQuantity()); | 
 |   } | 
 |  | 
 |   // Do the atomic store. | 
 |   llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress()); | 
 |   llvm::StoreInst *store = Builder.CreateStore(intValue, addr); | 
 |  | 
 |   // Initializations don't need to be atomic. | 
 |   if (!isInit) store->setAtomic(llvm::SequentiallyConsistent); | 
 |  | 
 |   // Other decoration. | 
 |   store->setAlignment(dest.getAlignment().getQuantity()); | 
 |   if (dest.isVolatileQualified()) | 
 |     store->setVolatile(true); | 
 |   if (dest.getTBAAInfo()) | 
 |     CGM.DecorateInstruction(store, dest.getTBAAInfo()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { | 
 |   AtomicInfo atomics(*this, dest); | 
 |  | 
 |   switch (atomics.getEvaluationKind()) { | 
 |   case TEK_Scalar: { | 
 |     llvm::Value *value = EmitScalarExpr(init); | 
 |     atomics.emitCopyIntoMemory(RValue::get(value), dest); | 
 |     return; | 
 |   } | 
 |  | 
 |   case TEK_Complex: { | 
 |     ComplexPairTy value = EmitComplexExpr(init); | 
 |     atomics.emitCopyIntoMemory(RValue::getComplex(value), dest); | 
 |     return; | 
 |   } | 
 |  | 
 |   case TEK_Aggregate: { | 
 |     // Memset the buffer first if there's any possibility of | 
 |     // uninitialized internal bits. | 
 |     atomics.emitMemSetZeroIfNecessary(dest); | 
 |  | 
 |     // HACK: whether the initializer actually has an atomic type | 
 |     // doesn't really seem reliable right now. | 
 |     if (!init->getType()->isAtomicType()) { | 
 |       dest = atomics.projectValue(dest); | 
 |     } | 
 |  | 
 |     // Evaluate the expression directly into the destination. | 
 |     AggValueSlot slot = AggValueSlot::forLValue(dest, | 
 |                                         AggValueSlot::IsNotDestructed, | 
 |                                         AggValueSlot::DoesNotNeedGCBarriers, | 
 |                                         AggValueSlot::IsNotAliased); | 
 |     EmitAggExpr(init, slot); | 
 |     return; | 
 |   } | 
 |   } | 
 |   llvm_unreachable("bad evaluation kind"); | 
 | } |