blob: b27f11b77ca2d3615685cd692efc3dd6dce7c8e0 [file] [log] [blame]
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_SEMA_H
#define LLVM_CLANG_AST_SEMA_H
#include "IdentifierResolver.h"
#include "CXXFieldCollector.h"
#include "SemaOverload.h"
#include "clang/AST/DeclBase.h"
#include "clang/Parse/Action.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/OwningPtr.h"
#include <string>
#include <vector>
namespace llvm {
class APSInt;
}
namespace clang {
class ASTContext;
class ASTConsumer;
class Preprocessor;
class Decl;
class DeclContext;
class DeclSpec;
class NamedDecl;
class Stmt;
class Expr;
class InitListExpr;
class DesignatedInitExpr;
class CallExpr;
class DeclRefExpr;
class VarDecl;
class ParmVarDecl;
class TypedefDecl;
class FunctionDecl;
class QualType;
struct LangOptions;
class Token;
class IntegerLiteral;
class StringLiteral;
class ArrayType;
class LabelStmt;
class SwitchStmt;
class ExtVectorType;
class TypedefDecl;
class TemplateDecl;
class ObjCInterfaceDecl;
class ObjCCompatibleAliasDecl;
class ObjCProtocolDecl;
class ObjCImplementationDecl;
class ObjCCategoryImplDecl;
class ObjCCategoryDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ObjCContainerDecl;
struct BlockSemaInfo;
class BasePaths;
class MemberLookupCriteria;
/// PragmaPackStack - Simple class to wrap the stack used by #pragma
/// pack.
class PragmaPackStack {
typedef std::vector< std::pair<unsigned, IdentifierInfo*> > stack_ty;
/// Alignment - The current user specified alignment.
unsigned Alignment;
/// Stack - Entries in the #pragma pack stack, consisting of saved
/// alignments and optional names.
stack_ty Stack;
public:
PragmaPackStack(unsigned A) : Alignment(A) {}
void setAlignment(unsigned A) { Alignment = A; }
unsigned getAlignment() { return Alignment; }
/// push - Push the current alignment onto the stack, optionally
/// using the given \arg Name for the record, if non-zero.
void push(IdentifierInfo *Name) {
Stack.push_back(std::make_pair(Alignment, Name));
}
/// pop - Pop a record from the stack and restore the current
/// alignment to the previous value. If \arg Name is non-zero then
/// the first such named record is popped, otherwise the top record
/// is popped. Returns true if the pop succeeded.
bool pop(IdentifierInfo *Name);
};
/// Sema - This implements semantic analysis and AST building for C.
class Sema : public Action {
public:
const LangOptions &LangOpts;
Preprocessor &PP;
ASTContext &Context;
ASTConsumer &Consumer;
Diagnostic &Diags;
SourceManager &SourceMgr;
/// CurContext - This is the current declaration context of parsing.
DeclContext *CurContext;
/// PreDeclaratorDC - Keeps the declaration context before switching to the
/// context of a declarator's nested-name-specifier.
DeclContext *PreDeclaratorDC;
/// CurBlock - If inside of a block definition, this contains a pointer to
/// the active block object that represents it.
BlockSemaInfo *CurBlock;
/// PackContext - Manages the stack for #pragma pack. An alignment
/// of 0 indicates default alignment.
PragmaPackStack PackContext;
/// LabelMap - This is a mapping from label identifiers to the LabelStmt for
/// it (which acts like the label decl in some ways). Forward referenced
/// labels have a LabelStmt created for them with a null location & SubStmt.
llvm::DenseMap<IdentifierInfo*, LabelStmt*> LabelMap;
llvm::SmallVector<SwitchStmt*, 8> SwitchStack;
/// ExtVectorDecls - This is a list all the extended vector types. This allows
/// us to associate a raw vector type with one of the ext_vector type names.
/// This is only necessary for issuing pretty diagnostics.
llvm::SmallVector<TypedefDecl*, 24> ExtVectorDecls;
/// ObjCImplementations - Keep track of all class @implementations
/// so we can emit errors on duplicates.
llvm::DenseMap<IdentifierInfo*, ObjCImplementationDecl*> ObjCImplementations;
/// ObjCCategoryImpls - Maintain a list of category implementations so
/// we can check for duplicates and find local method declarations.
llvm::SmallVector<ObjCCategoryImplDecl*, 8> ObjCCategoryImpls;
/// ObjCProtocols - Keep track of all protocol declarations declared
/// with @protocol keyword, so that we can emit errors on duplicates and
/// find the declarations when needed.
llvm::DenseMap<IdentifierInfo*, ObjCProtocolDecl*> ObjCProtocols;
/// ObjCInterfaceDecls - Keep track of all class declarations declared
/// with @interface, so that we can emit errors on duplicates and
/// find the declarations when needed.
typedef llvm::DenseMap<const IdentifierInfo*,
ObjCInterfaceDecl*> ObjCInterfaceDeclsTy;
ObjCInterfaceDeclsTy ObjCInterfaceDecls;
/// ObjCAliasDecls - Keep track of all class declarations declared
/// with @compatibility_alias, so that we can emit errors on duplicates and
/// find the declarations when needed. This construct is ancient and will
/// likely never be seen. Nevertheless, it is here for compatibility.
typedef llvm::DenseMap<const IdentifierInfo*,
ObjCCompatibleAliasDecl*> ObjCAliasTy;
ObjCAliasTy ObjCAliasDecls;
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
llvm::OwningPtr<CXXFieldCollector> FieldCollector;
IdentifierResolver IdResolver;
// Enum values used by KnownFunctionIDs (see below).
enum {
id_NSLog,
id_asprintf,
id_fprintf,
id_printf,
id_snprintf,
id_snprintf_chk,
id_sprintf,
id_sprintf_chk,
id_vasprintf,
id_vfprintf,
id_vsnprintf,
id_vsnprintf_chk,
id_vsprintf,
id_vsprintf_chk,
id_vprintf,
id_num_known_functions
};
/// KnownFunctionIDs - This is a list of IdentifierInfo objects to a set
/// of known functions used by the semantic analysis to do various
/// kinds of checking (e.g. checking format string errors in printf calls).
/// This list is populated upon the creation of a Sema object.
IdentifierInfo* KnownFunctionIDs[id_num_known_functions];
/// Translation Unit Scope - useful to Objective-C actions that need
/// to lookup file scope declarations in the "ordinary" C decl namespace.
/// For example, user-defined classes, built-in "id" type, etc.
Scope *TUScope;
/// The C++ "std" namespace, where the standard library resides. Cached here
/// by GetStdNamespace
NamespaceDecl *StdNamespace;
/// A flag to remember whether the implicit forms of operator new and delete
/// have been declared.
bool GlobalNewDeleteDeclared;
/// ObjCMethodList - a linked list of methods with different signatures.
struct ObjCMethodList {
ObjCMethodDecl *Method;
ObjCMethodList *Next;
ObjCMethodList() {
Method = 0;
Next = 0;
}
ObjCMethodList(ObjCMethodDecl *M, ObjCMethodList *C) {
Method = M;
Next = C;
}
};
/// Instance/Factory Method Pools - allows efficient lookup when typechecking
/// messages to "id". We need to maintain a list, since selectors can have
/// differing signatures across classes. In Cocoa, this happens to be
/// extremely uncommon (only 1% of selectors are "overloaded").
llvm::DenseMap<Selector, ObjCMethodList> InstanceMethodPool;
llvm::DenseMap<Selector, ObjCMethodList> FactoryMethodPool;
public:
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer);
const LangOptions &getLangOptions() const { return LangOpts; }
Diagnostic &getDiagnostics() const { return Diags; }
SourceManager &getSourceManager() const { return SourceMgr; }
/// The primitive diagnostic helpers.
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(FullSourceLoc(Loc, SourceMgr), DiagID);
}
virtual void DeleteExpr(ExprTy *E);
virtual void DeleteStmt(StmtTy *S);
OwningExprResult Owned(Expr* E) { return OwningExprResult(*this, E); }
OwningExprResult Owned(ExprResult R) {
if (R.isInvalid())
return ExprError();
return OwningExprResult(*this, R.get());
}
OwningStmtResult Owned(Stmt* S) { return OwningStmtResult(*this, S); }
virtual void ActOnEndOfTranslationUnit();
//===--------------------------------------------------------------------===//
// Type Analysis / Processing: SemaType.cpp.
//
QualType ConvertDeclSpecToType(const DeclSpec &DS);
void ProcessTypeAttributeList(QualType &Result, const AttributeList *AL);
QualType GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip = 0);
DeclarationName GetNameForDeclarator(Declarator &D);
QualType ObjCGetTypeForMethodDefinition(DeclTy *D);
bool UnwrapSimilarPointerTypes(QualType& T1, QualType& T2);
virtual TypeResult ActOnTypeName(Scope *S, Declarator &D);
bool DiagnoseIncompleteType(SourceLocation Loc, QualType T, unsigned diag,
SourceRange Range1 = SourceRange(),
SourceRange Range2 = SourceRange(),
QualType PrintType = QualType());
//===--------------------------------------------------------------------===//
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
//
virtual TypeTy *getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, const CXXScopeSpec *SS);
virtual DeclTy *ActOnDeclarator(Scope *S, Declarator &D, DeclTy *LastInGroup) {
return ActOnDeclarator(S, D, LastInGroup, false);
}
DeclTy *ActOnDeclarator(Scope *S, Declarator &D, DeclTy *LastInGroup,
bool IsFunctionDefinition);
NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, Decl* LastDeclarator,
Decl* PrevDecl, bool& InvalidDecl);
NamedDecl* ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, Decl* LastDeclarator,
Decl* PrevDecl, bool& InvalidDecl);
NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, Decl *LastDeclarator,
Decl* PrevDecl, bool IsFunctionDefinition,
bool& InvalidDecl);
virtual DeclTy *ActOnParamDeclarator(Scope *S, Declarator &D);
virtual void ActOnParamDefaultArgument(DeclTy *param,
SourceLocation EqualLoc,
ExprTy *defarg);
virtual void ActOnParamUnparsedDefaultArgument(DeclTy *param,
SourceLocation EqualLoc);
virtual void ActOnParamDefaultArgumentError(DeclTy *param);
virtual void AddInitializerToDecl(DeclTy *dcl, ExprArg init);
void AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit);
void ActOnUninitializedDecl(DeclTy *dcl);
virtual DeclTy *FinalizeDeclaratorGroup(Scope *S, DeclTy *Group);
virtual void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D);
virtual DeclTy *ActOnStartOfFunctionDef(Scope *S, Declarator &D);
virtual DeclTy *ActOnStartOfFunctionDef(Scope *S, DeclTy *D);
virtual void ObjCActOnStartOfMethodDef(Scope *S, DeclTy *D);
virtual DeclTy *ActOnFinishFunctionBody(DeclTy *Decl, StmtArg Body);
virtual DeclTy *ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr);
/// Scope actions.
virtual void ActOnPopScope(SourceLocation Loc, Scope *S);
virtual void ActOnTranslationUnitScope(SourceLocation Loc, Scope *S);
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
virtual DeclTy *ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS);
bool InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
RecordDecl *AnonRecord);
virtual DeclTy *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
RecordDecl *Record);
virtual DeclTy *ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
SourceLocation KWLoc, const CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
MultiTemplateParamsArg TemplateParameterLists);
virtual void ActOnDefs(Scope *S, DeclTy *TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
llvm::SmallVectorImpl<DeclTy*> &Decls);
virtual DeclTy *ActOnField(Scope *S, DeclTy *TagD, SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth);
virtual DeclTy *ActOnIvar(Scope *S, SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth,
tok::ObjCKeywordKind visibility);
// This is used for both record definitions and ObjC interface declarations.
virtual void ActOnFields(Scope* S,
SourceLocation RecLoc, DeclTy *TagDecl,
DeclTy **Fields, unsigned NumFields,
SourceLocation LBrac, SourceLocation RBrac,
AttributeList *AttrList);
/// ActOnTagStartDefinition - Invoked when we have entered the
/// scope of a tag's definition (e.g., for an enumeration, class,
/// struct, or union).
virtual void ActOnTagStartDefinition(Scope *S, DeclTy *TagDecl);
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
/// the definition of a tag (enumeration, class, struct, or union).
virtual void ActOnTagFinishDefinition(Scope *S, DeclTy *TagDecl);
virtual DeclTy *ActOnEnumConstant(Scope *S, DeclTy *EnumDecl,
DeclTy *LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *Val);
virtual void ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDecl,
DeclTy **Elements, unsigned NumElements);
DeclContext *getContainingDC(DeclContext *DC);
/// Set the current declaration context until it gets popped.
void PushDeclContext(Scope *S, DeclContext *DC);
void PopDeclContext();
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *getCurFunctionDecl();
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
/// the method decl for the method being parsed. If we're currently
/// in a 'block', this returns the containing context.
ObjCMethodDecl *getCurMethodDecl();
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
/// or C function we're in, otherwise return null. If we're currently
/// in a 'block', this returns the containing context.
NamedDecl *getCurFunctionOrMethodDecl();
/// Add this decl to the scope shadowed decl chains.
void PushOnScopeChains(NamedDecl *D, Scope *S);
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
/// true if 'D' belongs to the given declaration context.
bool isDeclInScope(Decl *D, DeclContext *Ctx, Scope *S = 0) {
return IdResolver.isDeclInScope(D, Ctx, Context, S);
}
/// Subroutines of ActOnDeclarator().
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
Decl *LastDecl);
TypedefDecl *MergeTypeDefDecl(TypedefDecl *New, Decl *Old);
FunctionDecl *MergeFunctionDecl(FunctionDecl *New, Decl *Old,
bool &Redeclaration);
VarDecl *MergeVarDecl(VarDecl *New, Decl *Old);
FunctionDecl *MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old);
void CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD);
/// C++ Overloading.
bool IsOverload(FunctionDecl *New, Decl* OldD,
OverloadedFunctionDecl::function_iterator &MatchedDecl);
ImplicitConversionSequence
TryImplicitConversion(Expr* From, QualType ToType,
bool SuppressUserConversions = false,
bool AllowExplicit = false);
bool IsStandardConversion(Expr *From, QualType ToType,
StandardConversionSequence& SCS);
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType, bool &IncompatibleObjC);
bool CheckPointerConversion(Expr *From, QualType ToType);
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
QualType &ConvertedType);
bool CheckMemberPointerConversion(Expr *From, QualType ToType);
bool IsQualificationConversion(QualType FromType, QualType ToType);
bool IsUserDefinedConversion(Expr *From, QualType ToType,
UserDefinedConversionSequence& User,
bool AllowConversionFunctions,
bool AllowExplicit);
ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
const ImplicitConversionSequence& ICS2);
ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
const StandardConversionSequence& SCS2);
ImplicitConversionSequence::CompareKind
CompareQualificationConversions(const StandardConversionSequence& SCS1,
const StandardConversionSequence& SCS2);
ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
const StandardConversionSequence& SCS2);
ImplicitConversionSequence
TryCopyInitialization(Expr* From, QualType ToType,
bool SuppressUserConversions = false);
bool PerformCopyInitialization(Expr *&From, QualType ToType,
const char *Flavor);
ImplicitConversionSequence
TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method);
bool PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method);
ImplicitConversionSequence TryContextuallyConvertToBool(Expr *From);
bool PerformContextuallyConvertToBool(Expr *&From);
/// OverloadingResult - Capture the result of performing overload
/// resolution.
enum OverloadingResult {
OR_Success, ///< Overload resolution succeeded.
OR_No_Viable_Function, ///< No viable function found.
OR_Ambiguous ///< Ambiguous candidates found.
};
void AddOverloadCandidate(FunctionDecl *Function,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false);
void AddMethodCandidate(CXXMethodDecl *Method,
Expr *Object, Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false);
void AddConversionCandidate(CXXConversionDecl *Conversion,
Expr *From, QualType ToType,
OverloadCandidateSet& CandidateSet);
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
const FunctionTypeProto *Proto,
Expr *Object, Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
bool AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
SourceLocation OpLoc,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
SourceRange OpRange = SourceRange());
void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool IsAssignmentOperator = false,
unsigned NumContextualBoolArguments = 0);
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
void AddArgumentDependentLookupCandidates(DeclarationName Name,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
bool isBetterOverloadCandidate(const OverloadCandidate& Cand1,
const OverloadCandidate& Cand2);
OverloadingResult BestViableFunction(OverloadCandidateSet& CandidateSet,
OverloadCandidateSet::iterator& Best);
void PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
bool OnlyViable);
FunctionDecl *ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
bool Complain);
void FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn);
FunctionDecl *ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
DeclarationName UnqualifiedName,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc,
bool &ArgumentDependentLookup);
ExprResult
BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
SourceLocation LParenLoc, Expr **Args,
unsigned NumArgs, SourceLocation *CommaLocs,
SourceLocation RParenLoc);
ExprResult
BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
SourceLocation MemberLoc,
IdentifierInfo &Member);
/// Helpers for dealing with function parameters.
bool CheckParmsForFunctionDef(FunctionDecl *FD);
void CheckCXXDefaultArguments(FunctionDecl *FD);
void CheckExtraCXXDefaultArguments(Declarator &D);
Scope *getNonFieldDeclScope(Scope *S);
/// \name Name lookup
///
/// These routines provide name lookup that is used during semantic
/// analysis to resolve the various kinds of names (identifiers,
/// overloaded operator names, constructor names, etc.) into zero or
/// more declarations within a particular scope. The major entry
/// points are LookupName, which performs unqualified name lookup,
/// and LookupQualifiedName, which performs qualified name lookup.
///
/// All name lookup is performed based on some specific criteria,
/// which specify what names will be visible to name lookup and how
/// far name lookup should work. These criteria are important both
/// for capturing language semantics (certain lookups will ignore
/// certain names, for example) and for performance, since name
/// lookup is often a bottleneck in the compilation of C++. Name
/// lookup criteria is specified via the LookupCriteria enumeration.
///
/// The results of name lookup can vary based on the kind of name
/// lookup performed, the current language, and the translation
/// unit. In C, for example, name lookup will either return nothing
/// (no entity found) or a single declaration. In C++, name lookup
/// can additionally refer to a set of overloaded functions or
/// result in an ambiguity. All of the possible results of name
/// lookup are captured by the LookupResult class, which provides
/// the ability to distinguish among them.
//@{
/// @brief Describes the kind of name lookup to perform.
enum LookupNameKind {
/// Ordinary name lookup, which finds ordinary names (functions,
/// variables, typedefs, etc.) in C and most kinds of names
/// (functions, variables, members, types, etc.) in C++.
LookupOrdinaryName = 0,
/// Tag name lookup, which finds the names of enums, classes,
/// structs, and unions.
LookupTagName,
/// Member name lookup, which finds the names of
/// class/struct/union members.
LookupMemberName,
// Look up of an operator name (e.g., operator+) for use with
// operator overloading. This lookup is similar to ordinary name
// lookup, but will ignore any declarations that are class
// members.
LookupOperatorName,
/// Look up of a name that precedes the '::' scope resolution
/// operator in C++. This lookup completely ignores operator,
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
LookupNestedNameSpecifierName,
/// Look up a namespace name within a C++ using directive or
/// namespace alias definition, ignoring non-namespace names (C++
/// [basic.lookup.udir]p1).
LookupNamespaceName
};
/// @brief Represents the results of name lookup.
///
/// An instance of the LookupResult class captures the results of a
/// single name lookup, which can return no result (nothing found),
/// a single declaration, a set of overloaded functions, or an
/// ambiguity. Use the getKind() method to determine which of these
/// results occurred for a given lookup.
///
/// Any non-ambiguous lookup can be converted into a single
/// (possibly NULL) @c NamedDecl* via a conversion function or the
/// getAsDecl() method. This conversion permits the common-case
/// usage in C and Objective-C where name lookup will always return
/// a single declaration.
struct LookupResult {
/// The kind of entity that is actually stored within the
/// LookupResult object.
enum {
/// First is a single declaration (a NamedDecl*), which may be NULL.
SingleDecl,
/// First is a single declaration (an OverloadedFunctionDecl*).
OverloadedDeclSingleDecl,
/// [First, Last) is an iterator range represented as opaque
/// pointers used to reconstruct IdentifierResolver::iterators.
OverloadedDeclFromIdResolver,
/// [First, Last) is an iterator range represented as opaque
/// pointers used to reconstruct DeclContext::lookup_iterators.
OverloadedDeclFromDeclContext,
/// First is a pointer to a BasePaths structure, which is owned
/// by the LookupResult. Last is non-zero to indicate that the
/// ambiguity is caused by two names found in base class
/// subobjects of different types.
AmbiguousLookupStoresBasePaths,
/// [First, Last) is an iterator range represented as opaque
/// pointers used to reconstruct new'ed Decl*[] array containing
/// found ambiguous decls. LookupResult is owner of this array.
AmbiguousLookupStoresDecls
} StoredKind;
/// The first lookup result, whose contents depend on the kind of
/// lookup result. This may be a NamedDecl* (if StoredKind ==
/// SingleDecl), OverloadedFunctionDecl* (if StoredKind ==
/// OverloadedDeclSingleDecl), the opaque pointer from an
/// IdentifierResolver::iterator (if StoredKind ==
/// OverloadedDeclFromIdResolver), a DeclContext::lookup_iterator
/// (if StoredKind == OverloadedDeclFromDeclContext), or a
/// BasePaths pointer (if StoredKind == AmbiguousLookupStoresBasePaths).
mutable uintptr_t First;
/// The last lookup result, whose contents depend on the kind of
/// lookup result. This may be unused (if StoredKind ==
/// SingleDecl), it may have the same type as First (for
/// overloaded function declarations), or is may be used as a
/// Boolean value (if StoredKind == AmbiguousLookupStoresBasePaths).
mutable uintptr_t Last;
/// Context - The context in which we will build any
/// OverloadedFunctionDecl nodes needed by the conversion to
/// Decl*.
ASTContext *Context;
/// @brief The kind of entity found by name lookup.
enum LookupKind {
/// @brief No entity found met the criteria.
NotFound = 0,
/// @brief Name lookup found a single declaration that met the
/// criteria. getAsDecl will return this declaration.
Found,
/// @brief Name lookup found a set of overloaded functions that
/// met the criteria. getAsDecl will turn this set of overloaded
/// functions into an OverloadedFunctionDecl.
FoundOverloaded,
/// Name lookup results in an ambiguity because multiple
/// entities that meet the lookup criteria were found in
/// subobjects of different types. For example:
/// @code
/// struct A { void f(int); }
/// struct B { void f(double); }
/// struct C : A, B { };
/// void test(C c) {
/// c.f(0); // error: A::f and B::f come from subobjects of different
/// // types. overload resolution is not performed.
/// }
/// @endcode
AmbiguousBaseSubobjectTypes,
/// Name lookup results in an ambiguity because multiple
/// nonstatic entities that meet the lookup criteria were found
/// in different subobjects of the same type. For example:
/// @code
/// struct A { int x; };
/// struct B : A { };
/// struct C : A { };
/// struct D : B, C { };
/// int test(D d) {
/// return d.x; // error: 'x' is found in two A subobjects (of B and C)
/// }
/// @endcode
AmbiguousBaseSubobjects,
/// Name lookup results in an ambiguity because multiple definitions
/// of entity that meet the lookup criteria were found in different
/// declaration contexts.
/// @code
/// namespace A {
/// int i;
/// namespace B { int i; }
/// int test() {
/// using namespace B;
/// return i; // error 'i' is found in namespace A and A::B
/// }
/// }
/// @endcode
AmbiguousReference
};
static LookupResult CreateLookupResult(ASTContext &Context, NamedDecl *D);
static LookupResult CreateLookupResult(ASTContext &Context,
IdentifierResolver::iterator F,
IdentifierResolver::iterator L);
static LookupResult CreateLookupResult(ASTContext &Context,
DeclContext::lookup_iterator F,
DeclContext::lookup_iterator L);
static LookupResult CreateLookupResult(ASTContext &Context, BasePaths *Paths,
bool DifferentSubobjectTypes) {
LookupResult Result;
Result.StoredKind = AmbiguousLookupStoresBasePaths;
Result.First = reinterpret_cast<uintptr_t>(Paths);
Result.Last = DifferentSubobjectTypes? 1 : 0;
Result.Context = &Context;
return Result;
}
template <typename Iterator>
static LookupResult CreateLookupResult(ASTContext &Context,
Iterator B, std::size_t Len) {
NamedDecl ** Array = new NamedDecl*[Len];
for (std::size_t Idx = 0; Idx < Len; ++Idx, ++B)
Array[Idx] = *B;
LookupResult Result;
Result.StoredKind = AmbiguousLookupStoresDecls;
Result.First = reinterpret_cast<uintptr_t>(Array);
Result.Last = reinterpret_cast<uintptr_t>(Array + Len);
Result.Context = &Context;
return Result;
}
LookupKind getKind() const;
/// @brief Determine whether name look found something.
operator bool() const { return getKind() != NotFound; }
/// @brief Determines whether the lookup resulted in an ambiguity.
bool isAmbiguous() const {
return StoredKind == AmbiguousLookupStoresBasePaths ||
StoredKind == AmbiguousLookupStoresDecls;
}
/// @brief Allows conversion of a lookup result into a
/// declaration, with the same behavior as getAsDecl.
operator NamedDecl*() const { return getAsDecl(); }
NamedDecl* getAsDecl() const;
BasePaths *getBasePaths() const;
/// \brief Iterate over the results of name lookup.
///
/// The @c iterator class provides iteration over the results of a
/// non-ambiguous name lookup.
class iterator {
/// The LookupResult structure we're iterating through.
LookupResult *Result;
/// The current position of this iterator within the sequence of
/// results. This value will have the same representation as the
/// @c First field in the LookupResult structure.
mutable uintptr_t Current;
public:
typedef NamedDecl * value_type;
typedef NamedDecl * reference;
typedef NamedDecl * pointer;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
iterator() : Result(0), Current(0) { }
iterator(LookupResult *Res, uintptr_t Cur) : Result(Res), Current(Cur) { }
reference operator*() const;
pointer operator->() const { return **this; }
iterator &operator++();
iterator operator++(int) {
iterator tmp(*this);
++(*this);
return tmp;
}
friend inline bool operator==(iterator const& x, iterator const& y) {
return x.Current == y.Current;
}
friend inline bool operator!=(iterator const& x, iterator const& y) {
return x.Current != y.Current;
}
};
friend class iterator;
iterator begin();
iterator end();
};
private:
typedef llvm::SmallVector<LookupResult, 3> LookupResultsVecTy;
std::pair<bool, LookupResult> CppLookupName(Scope *S, DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly);
public:
/// Determines whether D is a suitable lookup result according to the
/// lookup criteria.
bool isAcceptableLookupResult(Decl *D, LookupNameKind NameKind,
unsigned IDNS) const {
switch (NameKind) {
case Sema::LookupOrdinaryName:
case Sema::LookupTagName:
case Sema::LookupMemberName:
return D->isInIdentifierNamespace(IDNS);
case Sema::LookupOperatorName:
return D->isInIdentifierNamespace(IDNS) &&
!D->getDeclContext()->isRecord();
case Sema::LookupNestedNameSpecifierName:
return isa<TypedefDecl>(D) || D->isInIdentifierNamespace(Decl::IDNS_Tag);
case Sema::LookupNamespaceName:
return isa<NamespaceDecl>(D);
}
assert(false &&
"isNameAcceptableLookupResult always returns before this point");
return false;
}
LookupResult LookupName(Scope *S, DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly = false);
LookupResult LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly = false);
LookupResult LookupParsedName(Scope *S, const CXXScopeSpec *SS,
DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly = false);
typedef llvm::SmallPtrSet<NamespaceDecl *, 16> AssociatedNamespaceSet;
typedef llvm::SmallPtrSet<CXXRecordDecl *, 16> AssociatedClassSet;
void FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
AssociatedNamespaceSet &AssociatedNamespaces,
AssociatedClassSet &AssociatedClasses);
bool DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
SourceLocation NameLoc,
SourceRange LookupRange = SourceRange());
//@}
ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *Id);
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
Scope *S);
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
// More parsing and symbol table subroutines.
// Decl attributes - this routine is the top level dispatcher.
void ProcessDeclAttributes(Decl *D, const Declarator &PD);
void ProcessDeclAttributeList(Decl *D, const AttributeList *AttrList);
void WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
bool &IncompleteImpl);
void WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethod,
ObjCMethodDecl *IntfMethod);
NamespaceDecl *GetStdNamespace();
bool isPropertyReadonly(ObjCPropertyDecl *PropertyDecl,
ObjCInterfaceDecl *IDecl) const;
/// CheckProtocolMethodDefs - This routine checks unimplemented
/// methods declared in protocol, and those referenced by it.
/// \param IDecl - Used for checking for methods which may have been
/// inherited.
void CheckProtocolMethodDefs(SourceLocation ImpLoc,
ObjCProtocolDecl *PDecl,
bool& IncompleteImpl,
const llvm::DenseSet<Selector> &InsMap,
const llvm::DenseSet<Selector> &ClsMap,
ObjCInterfaceDecl *IDecl);
/// CheckImplementationIvars - This routine checks if the instance variables
/// listed in the implelementation match those listed in the interface.
void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **Fields, unsigned nIvars,
SourceLocation Loc);
/// ImplMethodsVsClassMethods - This is main routine to warn if any method
/// remains unimplemented in the @implementation class.
void ImplMethodsVsClassMethods(ObjCImplementationDecl* IMPDecl,
ObjCInterfaceDecl* IDecl);
/// ImplCategoryMethodsVsIntfMethods - Checks that methods declared in the
/// category interface is implemented in the category @implementation.
void ImplCategoryMethodsVsIntfMethods(ObjCCategoryImplDecl *CatImplDecl,
ObjCCategoryDecl *CatClassDecl);
/// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
/// true, or false, accordingly.
bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
const ObjCMethodDecl *PrevMethod,
bool matchBasedOnSizeAndAlignment = false);
/// AddInstanceMethodToGlobalPool - All instance methods in a translation
/// unit are added to a global pool. This allows us to efficiently associate
/// a selector with a method declaraation for purposes of typechecking
/// messages sent to "id" (where the class of the object is unknown).
void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method);
/// LookupInstanceMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R);
/// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method);
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks: SemaStmt.cpp.
public:
virtual OwningStmtResult ActOnExprStmt(ExprArg Expr);
virtual OwningStmtResult ActOnNullStmt(SourceLocation SemiLoc);
virtual OwningStmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
MultiStmtArg Elts,
bool isStmtExpr);
virtual OwningStmtResult ActOnDeclStmt(DeclTy *Decl, SourceLocation StartLoc,
SourceLocation EndLoc);
virtual OwningStmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprArg LHSVal,
SourceLocation DotDotDotLoc, ExprArg RHSVal,
SourceLocation ColonLoc, StmtArg SubStmt);
virtual OwningStmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
StmtArg SubStmt, Scope *CurScope);
virtual OwningStmtResult ActOnLabelStmt(SourceLocation IdentLoc,
IdentifierInfo *II,
SourceLocation ColonLoc,
StmtArg SubStmt);
virtual OwningStmtResult ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal,
StmtArg ThenVal, SourceLocation ElseLoc,
StmtArg ElseVal);
virtual OwningStmtResult ActOnStartOfSwitchStmt(ExprArg Cond);
virtual OwningStmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
StmtArg Switch, StmtArg Body);
virtual OwningStmtResult ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond,
StmtArg Body);
virtual OwningStmtResult ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
SourceLocation WhileLoc, ExprArg Cond);
virtual OwningStmtResult ActOnForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
StmtArg First, ExprArg Second,
ExprArg Third, SourceLocation RParenLoc,
StmtArg Body);
virtual OwningStmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
SourceLocation LParenLoc,
StmtArg First, ExprArg Second,
SourceLocation RParenLoc, StmtArg Body);
virtual OwningStmtResult ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
IdentifierInfo *LabelII);
virtual OwningStmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
ExprArg DestExp);
virtual OwningStmtResult ActOnContinueStmt(SourceLocation ContinueLoc,
Scope *CurScope);
virtual OwningStmtResult ActOnBreakStmt(SourceLocation GotoLoc,
Scope *CurScope);
virtual OwningStmtResult ActOnReturnStmt(SourceLocation ReturnLoc,
ExprArg RetValExp);
OwningStmtResult ActOnBlockReturnStmt(SourceLocation ReturnLoc,
Expr *RetValExp);
virtual OwningStmtResult ActOnAsmStmt(SourceLocation AsmLoc,
bool IsSimple,
bool IsVolatile,
unsigned NumOutputs,
unsigned NumInputs,
std::string *Names,
MultiExprArg Constraints,
MultiExprArg Exprs,
ExprArg AsmString,
MultiExprArg Clobbers,
SourceLocation RParenLoc);
virtual OwningStmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParen,
StmtArg Parm, StmtArg Body,
StmtArg CatchList);
virtual OwningStmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc,
StmtArg Body);
virtual OwningStmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc,
StmtArg Try,
StmtArg Catch, StmtArg Finally);
virtual OwningStmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc,
ExprArg Throw);
virtual OwningStmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
ExprArg SynchExpr,
StmtArg SynchBody);
virtual DeclTy *ActOnExceptionDeclarator(Scope *S, Declarator &D);
virtual OwningStmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
DeclTy *ExDecl,
StmtArg HandlerBlock);
virtual OwningStmtResult ActOnCXXTryBlock(SourceLocation TryLoc,
StmtArg TryBlock,
MultiStmtArg Handlers);
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks: SemaExpr.cpp.
// Primary Expressions.
virtual OwningExprResult ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen,
const CXXScopeSpec *SS = 0,
bool isAddressOfOperand = false);
virtual OwningExprResult ActOnCXXOperatorFunctionIdExpr(Scope *S,
SourceLocation OperatorLoc,
OverloadedOperatorKind Op,
bool HasTrailingLParen,
const CXXScopeSpec &SS,
bool isAddressOfOperand);
virtual OwningExprResult ActOnCXXConversionFunctionExpr(Scope *S,
SourceLocation OperatorLoc,
TypeTy *Ty,
bool HasTrailingLParen,
const CXXScopeSpec &SS,
bool isAddressOfOperand);
DeclRefExpr *BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
bool TypeDependent, bool ValueDependent,
const CXXScopeSpec *SS = 0);
OwningExprResult
BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
FieldDecl *Field,
Expr *BaseObjectExpr = 0,
SourceLocation OpLoc = SourceLocation());
OwningExprResult ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
DeclarationName Name,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand = false);
virtual OwningExprResult ActOnPredefinedExpr(SourceLocation Loc,
tok::TokenKind Kind);
virtual OwningExprResult ActOnNumericConstant(const Token &);
virtual OwningExprResult ActOnCharacterConstant(const Token &);
virtual OwningExprResult ActOnParenExpr(SourceLocation L, SourceLocation R,
ExprArg Val);
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
virtual OwningExprResult ActOnStringLiteral(const Token *Toks,
unsigned NumToks);
// Binary/Unary Operators. 'Tok' is the token for the operator.
virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg Input);
virtual OwningExprResult
ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange);
bool CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, const SourceRange &R);
bool CheckSizeOfAlignOfOperand(QualType type, SourceLocation OpLoc,
const SourceRange &R, bool isSizeof);
virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprArg Input);
virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base,
SourceLocation LLoc,
ExprArg Idx,
SourceLocation RLoc);
virtual OwningExprResult ActOnMemberReferenceExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member);
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionTypeProto *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
virtual OwningExprResult ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprArg Op);
virtual OwningExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc,
ExprArg Op);
virtual OwningExprResult ActOnInitList(SourceLocation LParenLoc,
MultiExprArg InitList,
InitListDesignations &Designators,
SourceLocation RParenLoc);
virtual OwningExprResult ActOnDesignatedInitializer(Designation &Desig,
SourceLocation Loc,
bool UsedColonSyntax,
OwningExprResult Init);
virtual OwningExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
ExprArg LHS, ExprArg RHS);
OwningExprResult CreateBuiltinBinOp(SourceLocation TokLoc,
unsigned Opc, Expr *lhs, Expr *rhs);
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
virtual OwningExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprArg Cond, ExprArg LHS,
ExprArg RHS);
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
virtual ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
IdentifierInfo *LabelII);
virtual ExprResult ActOnStmtExpr(SourceLocation LPLoc, StmtTy *SubStmt,
SourceLocation RPLoc); // "({..})"
/// __builtin_offsetof(type, a.b[123][456].c)
virtual ExprResult ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc, TypeTy *Arg1,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc);
// __builtin_types_compatible_p(type1, type2)
virtual ExprResult ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1, TypeTy *arg2,
SourceLocation RPLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
virtual ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
ExprTy *cond, ExprTy *expr1, ExprTy *expr2,
SourceLocation RPLoc);
// __builtin_overload(...)
virtual ExprResult ActOnOverloadExpr(ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
// __builtin_va_arg(expr, type)
virtual ExprResult ActOnVAArg(SourceLocation BuiltinLoc,
ExprTy *expr, TypeTy *type,
SourceLocation RPLoc);
// __null
virtual ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
//===------------------------- "Block" Extension ------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is
/// started.
virtual void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockArguments - This callback allows processing of block arguments.
/// If there are no arguments, this is still invoked.
virtual void ActOnBlockArguments(Declarator &ParamInfo);
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
virtual void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
virtual ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *Body,
Scope *CurScope);
// Act on C++ namespaces
virtual DeclTy *ActOnStartNamespaceDef(Scope *S, SourceLocation IdentLoc,
IdentifierInfo *Ident,
SourceLocation LBrace);
virtual void ActOnFinishNamespaceDef(DeclTy *Dcl, SourceLocation RBrace);
virtual DeclTy *ActOnUsingDirective(Scope *CurScope,
SourceLocation UsingLoc,
SourceLocation NamespcLoc,
const CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
AttributeList *AttrList);
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
/// AddCXXDirectInitializerToDecl - This action is called immediately after
/// ActOnDeclarator, when a C++ direct initializer is present.
/// e.g: "int x(1);"
virtual void AddCXXDirectInitializerToDecl(DeclTy *Dcl,
SourceLocation LParenLoc,
ExprTy **Exprs, unsigned NumExprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
/// InitializationKind - Represents which kind of C++ initialization
/// [dcl.init] a routine is to perform.
enum InitializationKind {
IK_Direct, ///< Direct initialization
IK_Copy, ///< Copy initialization
IK_Default ///< Default initialization
};
CXXConstructorDecl *
PerformInitializationByConstructor(QualType ClassType,
Expr **Args, unsigned NumArgs,
SourceLocation Loc, SourceRange Range,
DeclarationName InitEntity,
InitializationKind Kind);
/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
virtual ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
SourceLocation LAngleBracketLoc, TypeTy *Ty,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc, ExprTy *E,
SourceLocation RParenLoc);
/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
virtual ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr, SourceLocation RParenLoc);
//// ActOnCXXThis - Parse 'this' pointer.
virtual ExprResult ActOnCXXThis(SourceLocation ThisLoc);
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
virtual ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc,
tok::TokenKind Kind);
//// ActOnCXXThrow - Parse throw expressions.
virtual ExprResult ActOnCXXThrow(SourceLocation OpLoc,
ExprTy *expr);
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
virtual ExprResult ActOnCXXTypeConstructExpr(SourceRange TypeRange,
TypeTy *TypeRep,
SourceLocation LParenLoc,
ExprTy **Exprs,
unsigned NumExprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
/// ActOnCXXNew - Parsed a C++ 'new' expression.
virtual ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
ExprTy **PlacementArgs, unsigned NumPlaceArgs,
SourceLocation PlacementRParen,
bool ParenTypeId, Declarator &D,
SourceLocation ConstructorLParen,
ExprTy **ConstructorArgs, unsigned NumConsArgs,
SourceLocation ConstructorRParen);
bool CheckAllocatedType(QualType AllocType, const Declarator &D);
bool FindAllocationFunctions(SourceLocation StartLoc, bool UseGlobal,
QualType AllocType, bool IsArray,
Expr **PlaceArgs, unsigned NumPlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete);
bool FindAllocationOverload(SourceLocation StartLoc, DeclarationName Name,
Expr** Args, unsigned NumArgs, DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator);
void DeclareGlobalNewDelete();
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
QualType Argument);
/// ActOnCXXDelete - Parsed a C++ 'delete' expression
virtual ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
bool ArrayForm, ExprTy *Operand);
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
/// C++ if/switch/while/for statement.
/// e.g: "if (int x = f()) {...}"
virtual ExprResult ActOnCXXConditionDeclarationExpr(Scope *S,
SourceLocation StartLoc,
Declarator &D,
SourceLocation EqualLoc,
ExprTy *AssignExprVal);
/// ActOnUnaryTypeTrait - Parsed one of the unary type trait support
/// pseudo-functions.
virtual OwningExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
SourceLocation KWLoc,
SourceLocation LParen,
TypeTy *Ty,
SourceLocation RParen);
/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
/// global scope ('::').
virtual CXXScopeTy *ActOnCXXGlobalScopeSpecifier(Scope *S,
SourceLocation CCLoc);
/// ActOnCXXNestedNameSpecifier - Called during parsing of a
/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
/// we want to resolve "bar::". 'SS' is empty or the previously parsed
/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
/// Returns a CXXScopeTy* object representing the C++ scope.
virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S,
const CXXScopeSpec &SS,
SourceLocation IdLoc,
SourceLocation CCLoc,
IdentifierInfo &II);
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
virtual void ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
virtual void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
// ParseObjCStringLiteral - Parse Objective-C string literals.
virtual ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
ExprTy **Strings,
unsigned NumStrings);
virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc);
// ParseObjCSelectorExpression - Build selector expression for @selector
virtual ExprResult ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
// ParseObjCProtocolExpression - Build protocol expression for @protocol
virtual ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
//===--------------------------------------------------------------------===//
// C++ Declarations
//
virtual DeclTy *ActOnStartLinkageSpecification(Scope *S,
SourceLocation ExternLoc,
SourceLocation LangLoc,
const char *Lang,
unsigned StrSize,
SourceLocation LBraceLoc);
virtual DeclTy *ActOnFinishLinkageSpecification(Scope *S,
DeclTy *LinkageSpec,
SourceLocation RBraceLoc);
//===--------------------------------------------------------------------===//
// C++ Classes
//
virtual bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS);
virtual DeclTy *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
Declarator &D, ExprTy *BitfieldWidth,
ExprTy *Init, DeclTy *LastInGroup);
virtual MemInitResult ActOnMemInitializer(DeclTy *ConstructorD,
Scope *S,
IdentifierInfo *MemberOrBase,
SourceLocation IdLoc,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
virtual void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
DeclTy *TagDecl,
SourceLocation LBrac,
SourceLocation RBrac);
virtual void ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method);
virtual void ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *Param);
virtual void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method);
bool CheckConstructorDeclarator(Declarator &D, QualType &R,
FunctionDecl::StorageClass& SC);
bool CheckConstructor(CXXConstructorDecl *Constructor);
bool CheckDestructorDeclarator(Declarator &D, QualType &R,
FunctionDecl::StorageClass& SC);
bool CheckConversionDeclarator(Declarator &D, QualType &R,
FunctionDecl::StorageClass& SC);
DeclTy *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
//===--------------------------------------------------------------------===//
// C++ Derived Classes
//
/// ActOnBaseSpecifier - Parsed a base specifier
virtual BaseResult ActOnBaseSpecifier(DeclTy *classdecl,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeTy *basetype, SourceLocation BaseLoc);
virtual void ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
unsigned NumBases);
bool IsDerivedFrom(QualType Derived, QualType Base);
bool IsDerivedFrom(QualType Derived, QualType Base, BasePaths &Paths);
bool LookupInBases(CXXRecordDecl *Class, const MemberLookupCriteria& Criteria,
BasePaths &Paths);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
SourceLocation Loc, SourceRange Range);
std::string getAmbiguousPathsDisplayString(BasePaths &Paths);
//===--------------------------------------------------------------------===//
// C++ Overloaded Operators [C++ 13.5]
//
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
//===--------------------------------------------------------------------===//
// C++ Templates [C++ 14]
//
virtual DeclTy *isTemplateName(IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS = 0);
bool DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
TemplateDecl *AdjustDeclIfTemplate(DeclTy *&Decl);
virtual DeclTy *ActOnTypeParameter(Scope *S, bool Typename,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth, unsigned Position);
virtual DeclTy *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth,
unsigned Position);
virtual DeclTy *ActOnTemplateTemplateParameter(Scope *S,
SourceLocation TmpLoc,
TemplateParamsTy *Params,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth,
unsigned Position);
virtual TemplateParamsTy *
ActOnTemplateParameterList(unsigned Depth,
SourceLocation ExportLoc,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
DeclTy **Params, unsigned NumParams,
SourceLocation RAngleLoc);
// Objective-C declarations.
virtual DeclTy *ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
DeclTy * const *ProtoRefs,
unsigned NumProtoRefs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
virtual DeclTy *ActOnCompatiblityAlias(
SourceLocation AtCompatibilityAliasLoc,
IdentifierInfo *AliasName, SourceLocation AliasLocation,
IdentifierInfo *ClassName, SourceLocation ClassLocation);
virtual DeclTy *ActOnStartProtocolInterface(
SourceLocation AtProtoInterfaceLoc,
IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc,
DeclTy * const *ProtoRefNames, unsigned NumProtoRefs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
virtual DeclTy *ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CategoryName,
SourceLocation CategoryLoc,
DeclTy * const *ProtoRefs,
unsigned NumProtoRefs,
SourceLocation EndProtoLoc);
virtual DeclTy *ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc);
virtual DeclTy *ActOnStartCategoryImplementation(
SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CatName,
SourceLocation CatLoc);
virtual DeclTy *ActOnForwardClassDeclaration(SourceLocation Loc,
IdentifierInfo **IdentList,
unsigned NumElts);
virtual DeclTy *ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
const IdentifierLocPair *IdentList,
unsigned NumElts,
AttributeList *attrList);
virtual void FindProtocolDeclaration(bool WarnOnDeclarations,
const IdentifierLocPair *ProtocolId,
unsigned NumProtocols,
llvm::SmallVectorImpl<DeclTy *> &Protocols);
/// Ensure attributes are consistent with type.
/// \param [in, out] Attributes The attributes to check; they will
/// be modified to be consistent with \arg PropertyTy.
void CheckObjCPropertyAttributes(QualType PropertyTy,
SourceLocation Loc,
unsigned &Attributes);
void ProcessPropertyDecl(ObjCPropertyDecl *property, ObjCContainerDecl *DC);
void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
ObjCPropertyDecl *SuperProperty,
const IdentifierInfo *Name);
void ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl);
void MergeProtocolPropertiesIntoClass(Decl *CDecl,
DeclTy *MergeProtocols);
void MergeOneProtocolPropertiesIntoClass(Decl *CDecl,
ObjCProtocolDecl *PDecl);
virtual void ActOnAtEnd(SourceLocation AtEndLoc, DeclTy *classDecl,
DeclTy **allMethods = 0, unsigned allNum = 0,
DeclTy **allProperties = 0, unsigned pNum = 0);
virtual DeclTy *ActOnProperty(Scope *S, SourceLocation AtLoc,
FieldDeclarator &FD, ObjCDeclSpec &ODS,
Selector GetterSel, Selector SetterSel,
DeclTy *ClassCategory, bool *OverridingProperty,
tok::ObjCKeywordKind MethodImplKind);
virtual DeclTy *ActOnPropertyImplDecl(SourceLocation AtLoc,
SourceLocation PropertyLoc,
bool ImplKind, DeclTy *ClassImplDecl,
IdentifierInfo *PropertyId,
IdentifierInfo *PropertyIvar);
virtual DeclTy *ActOnMethodDeclaration(
SourceLocation BeginLoc, // location of the + or -.
SourceLocation EndLoc, // location of the ; or {.
tok::TokenKind MethodType,
DeclTy *ClassDecl, ObjCDeclSpec &ReturnQT, TypeTy *ReturnType,
Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
ObjCDeclSpec *ArgQT, TypeTy **ArgTypes, IdentifierInfo **ArgNames,
llvm::SmallVectorImpl<Declarator> &Cdecls,
AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind,
bool isVariadic = false);
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from NumArgs.
virtual ExprResult ActOnClassMessage(
Scope *S,
IdentifierInfo *receivingClassName, Selector Sel,
SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation rbrac,
ExprTy **ArgExprs, unsigned NumArgs);
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from NumArgs.
virtual ExprResult ActOnInstanceMessage(
ExprTy *receiver, Selector Sel,
SourceLocation lbrac, SourceLocation rbrac,
ExprTy **ArgExprs, unsigned NumArgs);
/// ActOnPragmaPack - Called on well formed #pragma pack(...).
virtual void ActOnPragmaPack(PragmaPackKind Kind,
IdentifierInfo *Name,
ExprTy *Alignment,
SourceLocation PragmaLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
/// cast. If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
void ImpCastExprToType(Expr *&Expr, QualType Type, bool isLvalue = false);
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
// functions and arrays to their respective pointers (C99 6.3.2.1).
Expr *UsualUnaryConversions(Expr *&expr);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
void DefaultFunctionArrayConversion(Expr *&expr);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
void DefaultArgumentPromotion(Expr *&Expr);
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
enum VariadicCallType {
VariadicFunction,
VariadicBlock,
VariadicMethod
};
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will warn if the resulting type is not a POD type.
void DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(Expr *&lExpr, Expr *&rExpr,
bool isCompAssign = false);
/// UsualArithmeticConversionsType - handles the various conversions
/// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
/// and returns the result type of that conversion.
QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
/// AssignConvertType - All of the 'assignment' semantic checks return this
/// enum to indicate whether the assignment was allowed. These checks are
/// done for simple assignments, as well as initialization, return from
/// function, argument passing, etc. The query is phrased in terms of a
/// source and destination type.
enum AssignConvertType {
/// Compatible - the types are compatible according to the standard.
Compatible,
/// PointerToInt - The assignment converts a pointer to an int, which we
/// accept as an extension.
PointerToInt,
/// IntToPointer - The assignment converts an int to a pointer, which we
/// accept as an extension.
IntToPointer,
/// FunctionVoidPointer - The assignment is between a function pointer and
/// void*, which the standard doesn't allow, but we accept as an extension.
FunctionVoidPointer,
/// IncompatiblePointer - The assignment is between two pointers types that
/// are not compatible, but we accept them as an extension.
IncompatiblePointer,
/// CompatiblePointerDiscardsQualifiers - The assignment discards
/// c/v/r qualifiers, which we accept as an extension.
CompatiblePointerDiscardsQualifiers,
/// IncompatibleVectors - The assignment is between two vector types that
/// have the same size, which we accept as an extension.
IncompatibleVectors,
/// IntToBlockPointer - The assignment converts an int to a block
/// pointer. We disallow this.
IntToBlockPointer,
/// IncompatibleBlockPointer - The assignment is between two block
/// pointers types that are not compatible.
IncompatibleBlockPointer,
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
/// id type and something else (that is incompatible with it). For example,
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
IncompatibleObjCQualifiedId,
/// Incompatible - We reject this conversion outright, it is invalid to
/// represent it in the AST.
Incompatible
};
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
/// assignment conversion type specified by ConvTy. This returns true if the
/// conversion was invalid or false if the conversion was accepted.
bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, const char *Flavor);
/// CheckAssignmentConstraints - Perform type checking for assignment,
/// argument passing, variable initialization, and function return values.
/// This routine is only used by the following two methods. C99 6.5.16.
AssignConvertType CheckAssignmentConstraints(QualType lhs, QualType rhs);
// CheckSingleAssignmentConstraints - Currently used by ActOnCallExpr,
// CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking,
// this routine performs the default function/array converions.
AssignConvertType CheckSingleAssignmentConstraints(QualType lhs,
Expr *&rExpr);
// CheckCompoundAssignmentConstraints - Type check without performing any
// conversions. For compound assignments, the "Check...Operands" methods
// perform the necessary conversions.
AssignConvertType CheckCompoundAssignmentConstraints(QualType lhs,
QualType rhs);
// Helper function for CheckAssignmentConstraints (C99 6.5.16.1p1)
AssignConvertType CheckPointerTypesForAssignment(QualType lhsType,
QualType rhsType);
// Helper function for CheckAssignmentConstraints involving two
// blcok pointer types.
AssignConvertType CheckBlockPointerTypesForAssignment(QualType lhsType,
QualType rhsType);
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
bool PerformImplicitConversion(Expr *&From, QualType ToType,
const char *Flavor, bool AllowExplicit = false);
bool PerformImplicitConversion(Expr *&From, QualType ToType,
const ImplicitConversionSequence& ICS,
const char *Flavor);
bool PerformImplicitConversion(Expr *&From, QualType ToType,
const StandardConversionSequence& SCS,
const char *Flavor);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of ActOnBinOp).
inline QualType InvalidOperands(SourceLocation l, Expr *&lex, Expr *&rex);
inline QualType CheckMultiplyDivideOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckRemainderOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckSubtractionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckShiftOperands( // C99 6.5.7
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckCompareOperands( // C99 6.5.8/9
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isRelational);
inline QualType CheckBitwiseOperands( // C99 6.5.[10...12]
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation OpLoc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
inline QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *lex, Expr *&rex, SourceLocation OpLoc, QualType convertedType);
inline QualType CheckCommaOperands( // C99 6.5.17
Expr *lex, Expr *&rex, SourceLocation OpLoc);
inline QualType CheckConditionalOperands( // C99 6.5.15
Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc);
/// type checking for vector binary operators.
inline QualType CheckVectorOperands(SourceLocation l, Expr *&lex, Expr *&rex);
inline QualType CheckVectorCompareOperands(Expr *&lex, Expr *&rx,
SourceLocation l, bool isRel);
/// type checking unary operators (subroutines of ActOnUnaryOp).
/// C99 6.5.3.1, 6.5.3.2, 6.5.3.4
QualType CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc,
bool isInc);
QualType CheckAddressOfOperand(Expr *op, SourceLocation OpLoc);
QualType CheckIndirectionOperand(Expr *op, SourceLocation OpLoc);
QualType CheckRealImagOperand(Expr *&Op, SourceLocation OpLoc);
/// type checking primary expressions.
QualType CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
IdentifierInfo &Comp, SourceLocation CmpLoc);
/// type checking declaration initializers (C99 6.7.8)
friend class InitListChecker;
bool CheckInitializerTypes(Expr *&simpleInit_or_initList, QualType &declType,
SourceLocation InitLoc,DeclarationName InitEntity,
bool DirectInit);
bool CheckInitList(InitListExpr *&InitList, QualType &DeclType);
bool CheckSingleInitializer(Expr *&simpleInit, QualType declType,
bool DirectInit);
bool CheckForConstantInitializer(Expr *e, QualType t);
bool CheckArithmeticConstantExpression(const Expr* e);
bool CheckAddressConstantExpression(const Expr* e);
bool CheckAddressConstantExpressionLValue(const Expr* e);
void InitializerElementNotConstant(const Expr *e);
StringLiteral *IsStringLiteralInit(Expr *Init, QualType DeclType);
bool CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT);
bool CheckValueInitialization(QualType Type, SourceLocation Loc);
// type checking C++ declaration initializers (C++ [dcl.init]).
/// ReferenceCompareResult - Expresses the result of comparing two
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
enum ReferenceCompareResult {
/// Ref_Incompatible - The two types are incompatible, so direct
/// reference binding is not possible.
Ref_Incompatible = 0,
/// Ref_Related - The two types are reference-related, which means
/// that their unqualified forms (T1 and T2) are either the same
/// or T1 is a base class of T2.
Ref_Related,
/// Ref_Compatible_With_Added_Qualification - The two types are
/// reference-compatible with added qualification, meaning that
/// they are reference-compatible and the qualifiers on T1 (cv1)
/// are greater than the qualifiers on T2 (cv2).
Ref_Compatible_With_Added_Qualification,
/// Ref_Compatible - The two types are reference-compatible and
/// have equivalent qualifiers (cv1 == cv2).
Ref_Compatible
};
ReferenceCompareResult CompareReferenceRelationship(QualType T1, QualType T2,
bool& DerivedToBase);
bool CheckReferenceInit(Expr *&simpleInit_or_initList, QualType &declType,
ImplicitConversionSequence *ICS = 0,
bool SuppressUserConversions = false,
bool AllowExplicit = false);
/// CheckCastTypes - Check type constraints for casting between types.
bool CheckCastTypes(SourceRange TyRange, QualType CastTy, Expr *&CastExpr);
// CheckVectorCast - check type constraints for vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size.
// returns true if the cast is invalid
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty);
/// CheckMessageArgumentTypes - Check types in an Obj-C message send.
/// \param Method - May be null.
/// \param [out] ReturnType - The return type of the send.
/// \return true iff there were any incompatible types.
bool CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs, Selector Sel,
ObjCMethodDecl *Method, bool isClassMessage,
SourceLocation lbrac, SourceLocation rbrac,
QualType &ReturnType);
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
bool CheckCXXBooleanCondition(Expr *&CondExpr);
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
unsigned NewWidth, bool NewSign,
SourceLocation Loc, unsigned DiagID);
bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
bool ForCompare);
/// Checks that the Objective-C declaration is declared in the global scope.
/// Emits an error and marks the declaration as invalid if it's not declared
/// in the global scope.
bool CheckObjCDeclScope(Decl *D);
void InitBuiltinVaListType();
/// VerifyIntegerConstantExpression - verifies that an expression is an ICE,
/// and reports the appropriate diagnostics. Returns false on success.
/// Can optionally return the value of the expression.
bool VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result = 0);
/// VerifyBitField - verifies that a bit field expression is an ICE and has
/// the correct width, and that the field type is valid.
/// Returns false on success.
bool VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
QualType FieldTy, const Expr *BitWidth);
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
private:
Action::OwningExprResult CheckFunctionCall(FunctionDecl *FDecl,
CallExpr *TheCall);
bool CheckBuiltinCFStringArgument(Expr* Arg);
bool SemaBuiltinVAStart(CallExpr *TheCall);
bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
bool SemaBuiltinStackAddress(CallExpr *TheCall);
Action::OwningExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
bool SemaBuiltinPrefetch(CallExpr *TheCall);
bool SemaBuiltinObjectSize(CallExpr *TheCall);
bool SemaCheckStringLiteral(Expr *E, CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx);
void CheckPrintfString(StringLiteral *FExpr, Expr *OrigFormatExpr,
CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx);
void CheckPrintfArguments(CallExpr *TheCall,
bool HasVAListArg, unsigned format_idx);
void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc);
void CheckFloatComparison(SourceLocation loc, Expr* lex, Expr* rex);
};
/// BlockSemaInfo - When a block is being parsed, this contains information
/// about the block. It is pointed to from Sema::CurBlock.
struct BlockSemaInfo {
llvm::SmallVector<ParmVarDecl*, 8> Params;
bool hasPrototype;
bool isVariadic;
BlockDecl *TheDecl;
/// TheScope - This is the scope for the block itself, which contains
/// arguments etc.
Scope *TheScope;
/// ReturnType - This will get set to block result type, by looking at
/// return types, if any, in the block body.
Type *ReturnType;
/// PrevBlockInfo - If this is nested inside another block, this points
/// to the outer block.
BlockSemaInfo *PrevBlockInfo;
};
} // end namespace clang
#endif