| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/AnalysisBasedWarnings.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/Template.h" |
| using namespace clang; |
| using namespace sema; |
| |
| |
| /// \brief Determine whether the use of this declaration is valid, and |
| /// emit any corresponding diagnostics. |
| /// |
| /// This routine diagnoses various problems with referencing |
| /// declarations that can occur when using a declaration. For example, |
| /// it might warn if a deprecated or unavailable declaration is being |
| /// used, or produce an error (and return true) if a C++0x deleted |
| /// function is being used. |
| /// |
| /// If IgnoreDeprecated is set to true, this should not warn about deprecated |
| /// decls. |
| /// |
| /// \returns true if there was an error (this declaration cannot be |
| /// referenced), false otherwise. |
| /// |
| bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc, |
| const ObjCInterfaceDecl *UnknownObjCClass) { |
| if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) { |
| // If there were any diagnostics suppressed by template argument deduction, |
| // emit them now. |
| llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator |
| Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); |
| if (Pos != SuppressedDiagnostics.end()) { |
| llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second; |
| for (unsigned I = 0, N = Suppressed.size(); I != N; ++I) |
| Diag(Suppressed[I].first, Suppressed[I].second); |
| |
| // Clear out the list of suppressed diagnostics, so that we don't emit |
| // them again for this specialization. However, we don't obsolete this |
| // entry from the table, because we want to avoid ever emitting these |
| // diagnostics again. |
| Suppressed.clear(); |
| } |
| } |
| |
| // See if this is an auto-typed variable whose initializer we are parsing. |
| if (ParsingInitForAutoVars.count(D)) { |
| Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) |
| << D->getDeclName(); |
| return true; |
| } |
| |
| // See if this is a deleted function. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isDeleted()) { |
| Diag(Loc, diag::err_deleted_function_use); |
| Diag(D->getLocation(), diag::note_unavailable_here) << true; |
| return true; |
| } |
| } |
| |
| // See if this declaration is unavailable or deprecated. |
| std::string Message; |
| switch (D->getAvailability(&Message)) { |
| case AR_Available: |
| case AR_NotYetIntroduced: |
| break; |
| |
| case AR_Deprecated: |
| EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass); |
| break; |
| |
| case AR_Unavailable: |
| if (Message.empty()) { |
| if (!UnknownObjCClass) |
| Diag(Loc, diag::err_unavailable) << D->getDeclName(); |
| else |
| Diag(Loc, diag::warn_unavailable_fwdclass_message) |
| << D->getDeclName(); |
| } |
| else |
| Diag(Loc, diag::err_unavailable_message) |
| << D->getDeclName() << Message; |
| Diag(D->getLocation(), diag::note_unavailable_here) << 0; |
| break; |
| } |
| |
| // Warn if this is used but marked unused. |
| if (D->hasAttr<UnusedAttr>()) |
| Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName(); |
| |
| return false; |
| } |
| |
| /// \brief Retrieve the message suffix that should be added to a |
| /// diagnostic complaining about the given function being deleted or |
| /// unavailable. |
| std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) { |
| // FIXME: C++0x implicitly-deleted special member functions could be |
| // detected here so that we could improve diagnostics to say, e.g., |
| // "base class 'A' had a deleted copy constructor". |
| if (FD->isDeleted()) |
| return std::string(); |
| |
| std::string Message; |
| if (FD->getAvailability(&Message)) |
| return ": " + Message; |
| |
| return std::string(); |
| } |
| |
| /// DiagnoseSentinelCalls - This routine checks on method dispatch calls |
| /// (and other functions in future), which have been declared with sentinel |
| /// attribute. It warns if call does not have the sentinel argument. |
| /// |
| void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, |
| Expr **Args, unsigned NumArgs) { |
| const SentinelAttr *attr = D->getAttr<SentinelAttr>(); |
| if (!attr) |
| return; |
| |
| // FIXME: In C++0x, if any of the arguments are parameter pack |
| // expansions, we can't check for the sentinel now. |
| int sentinelPos = attr->getSentinel(); |
| int nullPos = attr->getNullPos(); |
| |
| // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common |
| // base class. Then we won't be needing two versions of the same code. |
| unsigned int i = 0; |
| bool warnNotEnoughArgs = false; |
| int isMethod = 0; |
| if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| // skip over named parameters. |
| ObjCMethodDecl::param_iterator P, E = MD->param_end(); |
| for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) { |
| if (nullPos) |
| --nullPos; |
| else |
| ++i; |
| } |
| warnNotEnoughArgs = (P != E || i >= NumArgs); |
| isMethod = 1; |
| } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // skip over named parameters. |
| ObjCMethodDecl::param_iterator P, E = FD->param_end(); |
| for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) { |
| if (nullPos) |
| --nullPos; |
| else |
| ++i; |
| } |
| warnNotEnoughArgs = (P != E || i >= NumArgs); |
| } else if (VarDecl *V = dyn_cast<VarDecl>(D)) { |
| // block or function pointer call. |
| QualType Ty = V->getType(); |
| if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { |
| const FunctionType *FT = Ty->isFunctionPointerType() |
| ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>() |
| : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); |
| if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) { |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| unsigned k; |
| for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) { |
| if (nullPos) |
| --nullPos; |
| else |
| ++i; |
| } |
| warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs); |
| } |
| if (Ty->isBlockPointerType()) |
| isMethod = 2; |
| } else |
| return; |
| } else |
| return; |
| |
| if (warnNotEnoughArgs) { |
| Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); |
| Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; |
| return; |
| } |
| int sentinel = i; |
| while (sentinelPos > 0 && i < NumArgs-1) { |
| --sentinelPos; |
| ++i; |
| } |
| if (sentinelPos > 0) { |
| Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); |
| Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; |
| return; |
| } |
| while (i < NumArgs-1) { |
| ++i; |
| ++sentinel; |
| } |
| Expr *sentinelExpr = Args[sentinel]; |
| if (!sentinelExpr) return; |
| if (sentinelExpr->isTypeDependent()) return; |
| if (sentinelExpr->isValueDependent()) return; |
| |
| // nullptr_t is always treated as null. |
| if (sentinelExpr->getType()->isNullPtrType()) return; |
| |
| if (sentinelExpr->getType()->isAnyPointerType() && |
| sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return; |
| |
| // Unfortunately, __null has type 'int'. |
| if (isa<GNUNullExpr>(sentinelExpr)) return; |
| |
| Diag(Loc, diag::warn_missing_sentinel) << isMethod; |
| Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; |
| } |
| |
| SourceRange Sema::getExprRange(ExprTy *E) const { |
| Expr *Ex = (Expr *)E; |
| return Ex? Ex->getSourceRange() : SourceRange(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Standard Promotions and Conversions |
| //===----------------------------------------------------------------------===// |
| |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
| ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) { |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); |
| |
| if (Ty->isFunctionType()) |
| E = ImpCastExprToType(E, Context.getPointerType(Ty), |
| CK_FunctionToPointerDecay).take(); |
| else if (Ty->isArrayType()) { |
| // In C90 mode, arrays only promote to pointers if the array expression is |
| // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has |
| // type 'array of type' is converted to an expression that has type 'pointer |
| // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression |
| // that has type 'array of type' ...". The relevant change is "an lvalue" |
| // (C90) to "an expression" (C99). |
| // |
| // C++ 4.2p1: |
| // An lvalue or rvalue of type "array of N T" or "array of unknown bound of |
| // T" can be converted to an rvalue of type "pointer to T". |
| // |
| if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue()) |
| E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), |
| CK_ArrayToPointerDecay).take(); |
| } |
| return Owned(E); |
| } |
| |
| ExprResult Sema::DefaultLvalueConversion(Expr *E) { |
| // C++ [conv.lval]p1: |
| // A glvalue of a non-function, non-array type T can be |
| // converted to a prvalue. |
| if (!E->isGLValue()) return Owned(E); |
| |
| QualType T = E->getType(); |
| assert(!T.isNull() && "r-value conversion on typeless expression?"); |
| |
| // Create a load out of an ObjCProperty l-value, if necessary. |
| if (E->getObjectKind() == OK_ObjCProperty) { |
| ExprResult Res = ConvertPropertyForRValue(E); |
| if (Res.isInvalid()) |
| return Owned(E); |
| E = Res.take(); |
| if (!E->isGLValue()) |
| return Owned(E); |
| } |
| |
| // We don't want to throw lvalue-to-rvalue casts on top of |
| // expressions of certain types in C++. |
| if (getLangOptions().CPlusPlus && |
| (E->getType() == Context.OverloadTy || |
| T->isDependentType() || |
| T->isRecordType())) |
| return Owned(E); |
| |
| // The C standard is actually really unclear on this point, and |
| // DR106 tells us what the result should be but not why. It's |
| // generally best to say that void types just doesn't undergo |
| // lvalue-to-rvalue at all. Note that expressions of unqualified |
| // 'void' type are never l-values, but qualified void can be. |
| if (T->isVoidType()) |
| return Owned(E); |
| |
| // C++ [conv.lval]p1: |
| // [...] If T is a non-class type, the type of the prvalue is the |
| // cv-unqualified version of T. Otherwise, the type of the |
| // rvalue is T. |
| // |
| // C99 6.3.2.1p2: |
| // If the lvalue has qualified type, the value has the unqualified |
| // version of the type of the lvalue; otherwise, the value has the |
| // type of the lvalue. |
| if (T.hasQualifiers()) |
| T = T.getUnqualifiedType(); |
| |
| CheckArrayAccess(E); |
| |
| return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, |
| E, 0, VK_RValue)); |
| } |
| |
| ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) { |
| ExprResult Res = DefaultFunctionArrayConversion(E); |
| if (Res.isInvalid()) |
| return ExprError(); |
| Res = DefaultLvalueConversion(Res.take()); |
| if (Res.isInvalid()) |
| return ExprError(); |
| return move(Res); |
| } |
| |
| |
| /// UsualUnaryConversions - Performs various conversions that are common to most |
| /// operators (C99 6.3). The conversions of array and function types are |
| /// sometimes suppressed. For example, the array->pointer conversion doesn't |
| /// apply if the array is an argument to the sizeof or address (&) operators. |
| /// In these instances, this routine should *not* be called. |
| ExprResult Sema::UsualUnaryConversions(Expr *E) { |
| // First, convert to an r-value. |
| ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
| if (Res.isInvalid()) |
| return Owned(E); |
| E = Res.take(); |
| |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); |
| |
| // Try to perform integral promotions if the object has a theoretically |
| // promotable type. |
| if (Ty->isIntegralOrUnscopedEnumerationType()) { |
| // C99 6.3.1.1p2: |
| // |
| // The following may be used in an expression wherever an int or |
| // unsigned int may be used: |
| // - an object or expression with an integer type whose integer |
| // conversion rank is less than or equal to the rank of int |
| // and unsigned int. |
| // - A bit-field of type _Bool, int, signed int, or unsigned int. |
| // |
| // If an int can represent all values of the original type, the |
| // value is converted to an int; otherwise, it is converted to an |
| // unsigned int. These are called the integer promotions. All |
| // other types are unchanged by the integer promotions. |
| |
| QualType PTy = Context.isPromotableBitField(E); |
| if (!PTy.isNull()) { |
| E = ImpCastExprToType(E, PTy, CK_IntegralCast).take(); |
| return Owned(E); |
| } |
| if (Ty->isPromotableIntegerType()) { |
| QualType PT = Context.getPromotedIntegerType(Ty); |
| E = ImpCastExprToType(E, PT, CK_IntegralCast).take(); |
| return Owned(E); |
| } |
| } |
| return Owned(E); |
| } |
| |
| /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that |
| /// do not have a prototype. Arguments that have type float are promoted to |
| /// double. All other argument types are converted by UsualUnaryConversions(). |
| ExprResult Sema::DefaultArgumentPromotion(Expr *E) { |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); |
| |
| ExprResult Res = UsualUnaryConversions(E); |
| if (Res.isInvalid()) |
| return Owned(E); |
| E = Res.take(); |
| |
| // If this is a 'float' (CVR qualified or typedef) promote to double. |
| if (Ty->isSpecificBuiltinType(BuiltinType::Float)) |
| E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take(); |
| |
| return Owned(E); |
| } |
| |
| /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but |
| /// will warn if the resulting type is not a POD type, and rejects ObjC |
| /// interfaces passed by value. |
| ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, |
| FunctionDecl *FDecl) { |
| ExprResult ExprRes = DefaultArgumentPromotion(E); |
| if (ExprRes.isInvalid()) |
| return ExprError(); |
| E = ExprRes.take(); |
| |
| // __builtin_va_start takes the second argument as a "varargs" argument, but |
| // it doesn't actually do anything with it. It doesn't need to be non-pod |
| // etc. |
| if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start) |
| return Owned(E); |
| |
| if (E->getType()->isObjCObjectType() && |
| DiagRuntimeBehavior(E->getLocStart(), 0, |
| PDiag(diag::err_cannot_pass_objc_interface_to_vararg) |
| << E->getType() << CT)) |
| return ExprError(); |
| |
| if (!E->getType()->isPODType() && |
| DiagRuntimeBehavior(E->getLocStart(), 0, |
| PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) |
| << E->getType() << CT)) |
| return ExprError(); |
| |
| return Owned(E); |
| } |
| |
| /// UsualArithmeticConversions - Performs various conversions that are common to |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
| /// routine returns the first non-arithmetic type found. The client is |
| /// responsible for emitting appropriate error diagnostics. |
| /// FIXME: verify the conversion rules for "complex int" are consistent with |
| /// GCC. |
| QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr, |
| bool isCompAssign) { |
| if (!isCompAssign) { |
| lhsExpr = UsualUnaryConversions(lhsExpr.take()); |
| if (lhsExpr.isInvalid()) |
| return QualType(); |
| } |
| |
| rhsExpr = UsualUnaryConversions(rhsExpr.take()); |
| if (rhsExpr.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType lhs = |
| Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType(); |
| QualType rhs = |
| Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (lhs == rhs) |
| return lhs; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) |
| return lhs; |
| |
| // Apply unary and bitfield promotions to the LHS's type. |
| QualType lhs_unpromoted = lhs; |
| if (lhs->isPromotableIntegerType()) |
| lhs = Context.getPromotedIntegerType(lhs); |
| QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get()); |
| if (!LHSBitfieldPromoteTy.isNull()) |
| lhs = LHSBitfieldPromoteTy; |
| if (lhs != lhs_unpromoted && !isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast); |
| |
| // If both types are identical, no conversion is needed. |
| if (lhs == rhs) |
| return lhs; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| bool LHSComplexFloat = lhs->isComplexType(); |
| bool RHSComplexFloat = rhs->isComplexType(); |
| if (LHSComplexFloat || RHSComplexFloat) { |
| // if we have an integer operand, the result is the complex type. |
| |
| if (!RHSComplexFloat && !rhs->isRealFloatingType()) { |
| if (rhs->isIntegerType()) { |
| QualType fp = cast<ComplexType>(lhs)->getElementType(); |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating); |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex); |
| } else { |
| assert(rhs->isComplexIntegerType()); |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex); |
| } |
| return lhs; |
| } |
| |
| if (!LHSComplexFloat && !lhs->isRealFloatingType()) { |
| if (!isCompAssign) { |
| // int -> float -> _Complex float |
| if (lhs->isIntegerType()) { |
| QualType fp = cast<ComplexType>(rhs)->getElementType(); |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating); |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex); |
| } else { |
| assert(lhs->isComplexIntegerType()); |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex); |
| } |
| } |
| return rhs; |
| } |
| |
| // This handles complex/complex, complex/float, or float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| int order = Context.getFloatingTypeOrder(lhs, rhs); |
| |
| // If both are complex, just cast to the more precise type. |
| if (LHSComplexFloat && RHSComplexFloat) { |
| if (order > 0) { |
| // _Complex float -> _Complex double |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast); |
| return lhs; |
| |
| } else if (order < 0) { |
| // _Complex float -> _Complex double |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast); |
| return rhs; |
| } |
| return lhs; |
| } |
| |
| // If just the LHS is complex, the RHS needs to be converted, |
| // and the LHS might need to be promoted. |
| if (LHSComplexFloat) { |
| if (order > 0) { // LHS is wider |
| // float -> _Complex double |
| QualType fp = cast<ComplexType>(lhs)->getElementType(); |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast); |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex); |
| return lhs; |
| } |
| |
| // RHS is at least as wide. Find its corresponding complex type. |
| QualType result = (order == 0 ? lhs : Context.getComplexType(rhs)); |
| |
| // double -> _Complex double |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex); |
| |
| // _Complex float -> _Complex double |
| if (!isCompAssign && order < 0) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast); |
| |
| return result; |
| } |
| |
| // Just the RHS is complex, so the LHS needs to be converted |
| // and the RHS might need to be promoted. |
| assert(RHSComplexFloat); |
| |
| if (order < 0) { // RHS is wider |
| // float -> _Complex double |
| if (!isCompAssign) { |
| QualType fp = cast<ComplexType>(rhs)->getElementType(); |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast); |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex); |
| } |
| return rhs; |
| } |
| |
| // LHS is at least as wide. Find its corresponding complex type. |
| QualType result = (order == 0 ? rhs : Context.getComplexType(lhs)); |
| |
| // double -> _Complex double |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex); |
| |
| // _Complex float -> _Complex double |
| if (order > 0) |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast); |
| |
| return result; |
| } |
| |
| // Now handle "real" floating types (i.e. float, double, long double). |
| bool LHSFloat = lhs->isRealFloatingType(); |
| bool RHSFloat = rhs->isRealFloatingType(); |
| if (LHSFloat || RHSFloat) { |
| // If we have two real floating types, convert the smaller operand |
| // to the bigger result. |
| if (LHSFloat && RHSFloat) { |
| int order = Context.getFloatingTypeOrder(lhs, rhs); |
| if (order > 0) { |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast); |
| return lhs; |
| } |
| |
| assert(order < 0 && "illegal float comparison"); |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast); |
| return rhs; |
| } |
| |
| // If we have an integer operand, the result is the real floating type. |
| if (LHSFloat) { |
| if (rhs->isIntegerType()) { |
| // Convert rhs to the lhs floating point type. |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating); |
| return lhs; |
| } |
| |
| // Convert both sides to the appropriate complex float. |
| assert(rhs->isComplexIntegerType()); |
| QualType result = Context.getComplexType(lhs); |
| |
| // _Complex int -> _Complex float |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex); |
| |
| // float -> _Complex float |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex); |
| |
| return result; |
| } |
| |
| assert(RHSFloat); |
| if (lhs->isIntegerType()) { |
| // Convert lhs to the rhs floating point type. |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating); |
| return rhs; |
| } |
| |
| // Convert both sides to the appropriate complex float. |
| assert(lhs->isComplexIntegerType()); |
| QualType result = Context.getComplexType(rhs); |
| |
| // _Complex int -> _Complex float |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex); |
| |
| // float -> _Complex float |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex); |
| |
| return result; |
| } |
| |
| // Handle GCC complex int extension. |
| // FIXME: if the operands are (int, _Complex long), we currently |
| // don't promote the complex. Also, signedness? |
| const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); |
| const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); |
| if (lhsComplexInt && rhsComplexInt) { |
| int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), |
| rhsComplexInt->getElementType()); |
| assert(order && "inequal types with equal element ordering"); |
| if (order > 0) { |
| // _Complex int -> _Complex long |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast); |
| return lhs; |
| } |
| |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast); |
| return rhs; |
| } else if (lhsComplexInt) { |
| // int -> _Complex int |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex); |
| return lhs; |
| } else if (rhsComplexInt) { |
| // int -> _Complex int |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex); |
| return rhs; |
| } |
| |
| // Finally, we have two differing integer types. |
| // The rules for this case are in C99 6.3.1.8 |
| int compare = Context.getIntegerTypeOrder(lhs, rhs); |
| bool lhsSigned = lhs->hasSignedIntegerRepresentation(), |
| rhsSigned = rhs->hasSignedIntegerRepresentation(); |
| if (lhsSigned == rhsSigned) { |
| // Same signedness; use the higher-ranked type |
| if (compare >= 0) { |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast); |
| return lhs; |
| } else if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast); |
| return rhs; |
| } else if (compare != (lhsSigned ? 1 : -1)) { |
| // The unsigned type has greater than or equal rank to the |
| // signed type, so use the unsigned type |
| if (rhsSigned) { |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast); |
| return lhs; |
| } else if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast); |
| return rhs; |
| } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) { |
| // The two types are different widths; if we are here, that |
| // means the signed type is larger than the unsigned type, so |
| // use the signed type. |
| if (lhsSigned) { |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast); |
| return lhs; |
| } else if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast); |
| return rhs; |
| } else { |
| // The signed type is higher-ranked than the unsigned type, |
| // but isn't actually any bigger (like unsigned int and long |
| // on most 32-bit systems). Use the unsigned type corresponding |
| // to the signed type. |
| QualType result = |
| Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs); |
| rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast); |
| if (!isCompAssign) |
| lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast); |
| return result; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic Analysis for various Expression Types |
| //===----------------------------------------------------------------------===// |
| |
| |
| ExprResult |
| Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| MultiTypeArg types, |
| MultiExprArg exprs) { |
| unsigned NumAssocs = types.size(); |
| assert(NumAssocs == exprs.size()); |
| |
| ParsedType *ParsedTypes = types.release(); |
| Expr **Exprs = exprs.release(); |
| |
| TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (ParsedTypes[i]) |
| (void) GetTypeFromParser(ParsedTypes[i], &Types[i]); |
| else |
| Types[i] = 0; |
| } |
| |
| ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| ControllingExpr, Types, Exprs, |
| NumAssocs); |
| delete [] Types; |
| return ER; |
| } |
| |
| ExprResult |
| Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| TypeSourceInfo **Types, |
| Expr **Exprs, |
| unsigned NumAssocs) { |
| bool TypeErrorFound = false, |
| IsResultDependent = ControllingExpr->isTypeDependent(), |
| ContainsUnexpandedParameterPack |
| = ControllingExpr->containsUnexpandedParameterPack(); |
| |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (Exprs[i]->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]) { |
| if (Types[i]->getType()->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]->getType()->isDependentType()) { |
| IsResultDependent = true; |
| } else { |
| // C1X 6.5.1.1p2 "The type name in a generic association shall specify a |
| // complete object type other than a variably modified type." |
| unsigned D = 0; |
| if (Types[i]->getType()->isIncompleteType()) |
| D = diag::err_assoc_type_incomplete; |
| else if (!Types[i]->getType()->isObjectType()) |
| D = diag::err_assoc_type_nonobject; |
| else if (Types[i]->getType()->isVariablyModifiedType()) |
| D = diag::err_assoc_type_variably_modified; |
| |
| if (D != 0) { |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), D) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| |
| // C1X 6.5.1.1p2 "No two generic associations in the same generic |
| // selection shall specify compatible types." |
| for (unsigned j = i+1; j < NumAssocs; ++j) |
| if (Types[j] && !Types[j]->getType()->isDependentType() && |
| Context.typesAreCompatible(Types[i]->getType(), |
| Types[j]->getType())) { |
| Diag(Types[j]->getTypeLoc().getBeginLoc(), |
| diag::err_assoc_compatible_types) |
| << Types[j]->getTypeLoc().getSourceRange() |
| << Types[j]->getType() |
| << Types[i]->getType(); |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| } |
| } |
| } |
| if (TypeErrorFound) |
| return ExprError(); |
| |
| // If we determined that the generic selection is result-dependent, don't |
| // try to compute the result expression. |
| if (IsResultDependent) |
| return Owned(new (Context) GenericSelectionExpr( |
| Context, KeyLoc, ControllingExpr, |
| Types, Exprs, NumAssocs, DefaultLoc, |
| RParenLoc, ContainsUnexpandedParameterPack)); |
| |
| llvm::SmallVector<unsigned, 1> CompatIndices; |
| unsigned DefaultIndex = -1U; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (!Types[i]) |
| DefaultIndex = i; |
| else if (Context.typesAreCompatible(ControllingExpr->getType(), |
| Types[i]->getType())) |
| CompatIndices.push_back(i); |
| } |
| |
| // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have |
| // type compatible with at most one of the types named in its generic |
| // association list." |
| if (CompatIndices.size() > 1) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType() |
| << (unsigned) CompatIndices.size(); |
| for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(), |
| E = CompatIndices.end(); I != E; ++I) { |
| Diag(Types[*I]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[*I]->getTypeLoc().getSourceRange() |
| << Types[*I]->getType(); |
| } |
| return ExprError(); |
| } |
| |
| // C1X 6.5.1.1p2 "If a generic selection has no default generic association, |
| // its controlling expression shall have type compatible with exactly one of |
| // the types named in its generic association list." |
| if (DefaultIndex == -1U && CompatIndices.size() == 0) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType(); |
| return ExprError(); |
| } |
| |
| // C1X 6.5.1.1p3 "If a generic selection has a generic association with a |
| // type name that is compatible with the type of the controlling expression, |
| // then the result expression of the generic selection is the expression |
| // in that generic association. Otherwise, the result expression of the |
| // generic selection is the expression in the default generic association." |
| unsigned ResultIndex = |
| CompatIndices.size() ? CompatIndices[0] : DefaultIndex; |
| |
| return Owned(new (Context) GenericSelectionExpr( |
| Context, KeyLoc, ControllingExpr, |
| Types, Exprs, NumAssocs, DefaultLoc, |
| RParenLoc, ContainsUnexpandedParameterPack, |
| ResultIndex)); |
| } |
| |
| /// ActOnStringLiteral - The specified tokens were lexed as pasted string |
| /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
| /// multiple tokens. However, the common case is that StringToks points to one |
| /// string. |
| /// |
| ExprResult |
| Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { |
| assert(NumStringToks && "Must have at least one string!"); |
| |
| StringLiteralParser Literal(StringToks, NumStringToks, PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| llvm::SmallVector<SourceLocation, 4> StringTokLocs; |
| for (unsigned i = 0; i != NumStringToks; ++i) |
| StringTokLocs.push_back(StringToks[i].getLocation()); |
| |
| QualType StrTy = Context.CharTy; |
| if (Literal.AnyWide) |
| StrTy = Context.getWCharType(); |
| else if (Literal.Pascal) |
| StrTy = Context.UnsignedCharTy; |
| |
| // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
| if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings) |
| StrTy.addConst(); |
| |
| // Get an array type for the string, according to C99 6.4.5. This includes |
| // the nul terminator character as well as the string length for pascal |
| // strings. |
| StrTy = Context.getConstantArrayType(StrTy, |
| llvm::APInt(32, Literal.GetNumStringChars()+1), |
| ArrayType::Normal, 0); |
| |
| // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
| return Owned(StringLiteral::Create(Context, Literal.GetString(), |
| Literal.GetStringLength(), |
| Literal.AnyWide, Literal.Pascal, StrTy, |
| &StringTokLocs[0], |
| StringTokLocs.size())); |
| } |
| |
| enum CaptureResult { |
| /// No capture is required. |
| CR_NoCapture, |
| |
| /// A capture is required. |
| CR_Capture, |
| |
| /// A by-ref capture is required. |
| CR_CaptureByRef, |
| |
| /// An error occurred when trying to capture the given variable. |
| CR_Error |
| }; |
| |
| /// Diagnose an uncapturable value reference. |
| /// |
| /// \param var - the variable referenced |
| /// \param DC - the context which we couldn't capture through |
| static CaptureResult |
| diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, |
| VarDecl *var, DeclContext *DC) { |
| switch (S.ExprEvalContexts.back().Context) { |
| case Sema::Unevaluated: |
| // The argument will never be evaluated, so don't complain. |
| return CR_NoCapture; |
| |
| case Sema::PotentiallyEvaluated: |
| case Sema::PotentiallyEvaluatedIfUsed: |
| break; |
| |
| case Sema::PotentiallyPotentiallyEvaluated: |
| // FIXME: delay these! |
| break; |
| } |
| |
| // Don't diagnose about capture if we're not actually in code right |
| // now; in general, there are more appropriate places that will |
| // diagnose this. |
| if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture; |
| |
| // Certain madnesses can happen with parameter declarations, which |
| // we want to ignore. |
| if (isa<ParmVarDecl>(var)) { |
| // - If the parameter still belongs to the translation unit, then |
| // we're actually just using one parameter in the declaration of |
| // the next. This is useful in e.g. VLAs. |
| if (isa<TranslationUnitDecl>(var->getDeclContext())) |
| return CR_NoCapture; |
| |
| // - This particular madness can happen in ill-formed default |
| // arguments; claim it's okay and let downstream code handle it. |
| if (S.CurContext == var->getDeclContext()->getParent()) |
| return CR_NoCapture; |
| } |
| |
| DeclarationName functionName; |
| if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext())) |
| functionName = fn->getDeclName(); |
| // FIXME: variable from enclosing block that we couldn't capture from! |
| |
| S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function) |
| << var->getIdentifier() << functionName; |
| S.Diag(var->getLocation(), diag::note_local_variable_declared_here) |
| << var->getIdentifier(); |
| |
| return CR_Error; |
| } |
| |
| /// There is a well-formed capture at a particular scope level; |
| /// propagate it through all the nested blocks. |
| static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex, |
| const BlockDecl::Capture &capture) { |
| VarDecl *var = capture.getVariable(); |
| |
| // Update all the inner blocks with the capture information. |
| for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size(); |
| i != e; ++i) { |
| BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]); |
| innerBlock->Captures.push_back( |
| BlockDecl::Capture(capture.getVariable(), capture.isByRef(), |
| /*nested*/ true, capture.getCopyExpr())); |
| innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1 |
| } |
| |
| return capture.isByRef() ? CR_CaptureByRef : CR_Capture; |
| } |
| |
| /// shouldCaptureValueReference - Determine if a reference to the |
| /// given value in the current context requires a variable capture. |
| /// |
| /// This also keeps the captures set in the BlockScopeInfo records |
| /// up-to-date. |
| static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc, |
| ValueDecl *value) { |
| // Only variables ever require capture. |
| VarDecl *var = dyn_cast<VarDecl>(value); |
| if (!var) return CR_NoCapture; |
| |
| // Fast path: variables from the current context never require capture. |
| DeclContext *DC = S.CurContext; |
| if (var->getDeclContext() == DC) return CR_NoCapture; |
| |
| // Only variables with local storage require capture. |
| // FIXME: What about 'const' variables in C++? |
| if (!var->hasLocalStorage()) return CR_NoCapture; |
| |
| // Otherwise, we need to capture. |
| |
| unsigned functionScopesIndex = S.FunctionScopes.size() - 1; |
| do { |
| // Only blocks (and eventually C++0x closures) can capture; other |
| // scopes don't work. |
| if (!isa<BlockDecl>(DC)) |
| return diagnoseUncapturableValueReference(S, loc, var, DC); |
| |
| BlockScopeInfo *blockScope = |
| cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]); |
| assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC)); |
| |
| // Check whether we've already captured it in this block. If so, |
| // we're done. |
| if (unsigned indexPlus1 = blockScope->CaptureMap[var]) |
| return propagateCapture(S, functionScopesIndex, |
| blockScope->Captures[indexPlus1 - 1]); |
| |
| functionScopesIndex--; |
| DC = cast<BlockDecl>(DC)->getDeclContext(); |
| } while (var->getDeclContext() != DC); |
| |
| // Okay, we descended all the way to the block that defines the variable. |
| // Actually try to capture it. |
| QualType type = var->getType(); |
| |
| // Prohibit variably-modified types. |
| if (type->isVariablyModifiedType()) { |
| S.Diag(loc, diag::err_ref_vm_type); |
| S.Diag(var->getLocation(), diag::note_declared_at); |
| return CR_Error; |
| } |
| |
| // Prohibit arrays, even in __block variables, but not references to |
| // them. |
| if (type->isArrayType()) { |
| S.Diag(loc, diag::err_ref_array_type); |
| S.Diag(var->getLocation(), diag::note_declared_at); |
| return CR_Error; |
| } |
| |
| S.MarkDeclarationReferenced(loc, var); |
| |
| // The BlocksAttr indicates the variable is bound by-reference. |
| bool byRef = var->hasAttr<BlocksAttr>(); |
| |
| // Build a copy expression. |
| Expr *copyExpr = 0; |
| if (!byRef && S.getLangOptions().CPlusPlus && |
| !type->isDependentType() && type->isStructureOrClassType()) { |
| // According to the blocks spec, the capture of a variable from |
| // the stack requires a const copy constructor. This is not true |
| // of the copy/move done to move a __block variable to the heap. |
| type.addConst(); |
| |
| Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc); |
| ExprResult result = |
| S.PerformCopyInitialization( |
| InitializedEntity::InitializeBlock(var->getLocation(), |
| type, false), |
| loc, S.Owned(declRef)); |
| |
| // Build a full-expression copy expression if initialization |
| // succeeded and used a non-trivial constructor. Recover from |
| // errors by pretending that the copy isn't necessary. |
| if (!result.isInvalid() && |
| !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) { |
| result = S.MaybeCreateExprWithCleanups(result); |
| copyExpr = result.take(); |
| } |
| } |
| |
| // We're currently at the declarer; go back to the closure. |
| functionScopesIndex++; |
| BlockScopeInfo *blockScope = |
| cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]); |
| |
| // Build a valid capture in this scope. |
| blockScope->Captures.push_back( |
| BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr)); |
| blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1 |
| |
| // Propagate that to inner captures if necessary. |
| return propagateCapture(S, functionScopesIndex, |
| blockScope->Captures.back()); |
| } |
| |
| static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd, |
| const DeclarationNameInfo &NameInfo, |
| bool byRef) { |
| assert(isa<VarDecl>(vd) && "capturing non-variable"); |
| |
| VarDecl *var = cast<VarDecl>(vd); |
| assert(var->hasLocalStorage() && "capturing non-local"); |
| assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong"); |
| |
| QualType exprType = var->getType().getNonReferenceType(); |
| |
| BlockDeclRefExpr *BDRE; |
| if (!byRef) { |
| // The variable will be bound by copy; make it const within the |
| // closure, but record that this was done in the expression. |
| bool constAdded = !exprType.isConstQualified(); |
| exprType.addConst(); |
| |
| BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, |
| NameInfo.getLoc(), false, |
| constAdded); |
| } else { |
| BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, |
| NameInfo.getLoc(), true); |
| } |
| |
| return S.Owned(BDRE); |
| } |
| |
| ExprResult |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| SourceLocation Loc, |
| const CXXScopeSpec *SS) { |
| DeclarationNameInfo NameInfo(D->getDeclName(), Loc); |
| return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); |
| } |
| |
| /// BuildDeclRefExpr - Build an expression that references a |
| /// declaration that does not require a closure capture. |
| ExprResult |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| const DeclarationNameInfo &NameInfo, |
| const CXXScopeSpec *SS) { |
| MarkDeclarationReferenced(NameInfo.getLoc(), D); |
| |
| Expr *E = DeclRefExpr::Create(Context, |
| SS? SS->getWithLocInContext(Context) |
| : NestedNameSpecifierLoc(), |
| D, NameInfo, Ty, VK); |
| |
| // Just in case we're building an illegal pointer-to-member. |
| if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth()) |
| E->setObjectKind(OK_BitField); |
| |
| return Owned(E); |
| } |
| |
| static ExprResult |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, |
| const CXXScopeSpec &SS, FieldDecl *Field, |
| DeclAccessPair FoundDecl, |
| const DeclarationNameInfo &MemberNameInfo); |
| |
| ExprResult |
| Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, |
| SourceLocation loc, |
| IndirectFieldDecl *indirectField, |
| Expr *baseObjectExpr, |
| SourceLocation opLoc) { |
| // First, build the expression that refers to the base object. |
| |
| bool baseObjectIsPointer = false; |
| Qualifiers baseQuals; |
| |
| // Case 1: the base of the indirect field is not a field. |
| VarDecl *baseVariable = indirectField->getVarDecl(); |
| CXXScopeSpec EmptySS; |
| if (baseVariable) { |
| assert(baseVariable->getType()->isRecordType()); |
| |
| // In principle we could have a member access expression that |
| // accesses an anonymous struct/union that's a static member of |
| // the base object's class. However, under the current standard, |
| // static data members cannot be anonymous structs or unions. |
| // Supporting this is as easy as building a MemberExpr here. |
| assert(!baseObjectExpr && "anonymous struct/union is static data member?"); |
| |
| DeclarationNameInfo baseNameInfo(DeclarationName(), loc); |
| |
| ExprResult result = |
| BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); |
| if (result.isInvalid()) return ExprError(); |
| |
| baseObjectExpr = result.take(); |
| baseObjectIsPointer = false; |
| baseQuals = baseObjectExpr->getType().getQualifiers(); |
| |
| // Case 2: the base of the indirect field is a field and the user |
| // wrote a member expression. |
| } else if (baseObjectExpr) { |
| // The caller provided the base object expression. Determine |
| // whether its a pointer and whether it adds any qualifiers to the |
| // anonymous struct/union fields we're looking into. |
| QualType objectType = baseObjectExpr->getType(); |
| |
| if (const PointerType *ptr = objectType->getAs<PointerType>()) { |
| baseObjectIsPointer = true; |
| objectType = ptr->getPointeeType(); |
| } else { |
| baseObjectIsPointer = false; |
| } |
| baseQuals = objectType.getQualifiers(); |
| |
| // Case 3: the base of the indirect field is a field and we should |
| // build an implicit member access. |
| } else { |
| // We've found a member of an anonymous struct/union that is |
| // inside a non-anonymous struct/union, so in a well-formed |
| // program our base object expression is "this". |
| CXXMethodDecl *method = tryCaptureCXXThis(); |
| if (!method) { |
| Diag(loc, diag::err_invalid_member_use_in_static_method) |
| << indirectField->getDeclName(); |
| return ExprError(); |
| } |
| |
| // Our base object expression is "this". |
| baseObjectExpr = |
| new (Context) CXXThisExpr(loc, method->getThisType(Context), |
| /*isImplicit=*/ true); |
| baseObjectIsPointer = true; |
| baseQuals = Qualifiers::fromCVRMask(method->getTypeQualifiers()); |
| } |
| |
| // Build the implicit member references to the field of the |
| // anonymous struct/union. |
| Expr *result = baseObjectExpr; |
| IndirectFieldDecl::chain_iterator |
| FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); |
| |
| // Build the first member access in the chain with full information. |
| if (!baseVariable) { |
| FieldDecl *field = cast<FieldDecl>(*FI); |
| |
| // FIXME: use the real found-decl info! |
| DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess()); |
| |
| // Make a nameInfo that properly uses the anonymous name. |
| DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); |
| |
| result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer, |
| EmptySS, field, foundDecl, |
| memberNameInfo).take(); |
| baseObjectIsPointer = false; |
| |
| // FIXME: check qualified member access |
| } |
| |
| // In all cases, we should now skip the first declaration in the chain. |
| ++FI; |
| |
| while (FI != FEnd) { |
| FieldDecl *field = cast<FieldDecl>(*FI++); |
| |
| // FIXME: these are somewhat meaningless |
| DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); |
| DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess()); |
| |
| result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false, |
| (FI == FEnd? SS : EmptySS), field, |
| foundDecl, memberNameInfo) |
| .take(); |
| } |
| |
| return Owned(result); |
| } |
| |
| /// Decomposes the given name into a DeclarationNameInfo, its location, and |
| /// possibly a list of template arguments. |
| /// |
| /// If this produces template arguments, it is permitted to call |
| /// DecomposeTemplateName. |
| /// |
| /// This actually loses a lot of source location information for |
| /// non-standard name kinds; we should consider preserving that in |
| /// some way. |
| static void DecomposeUnqualifiedId(Sema &SemaRef, |
| const UnqualifiedId &Id, |
| TemplateArgumentListInfo &Buffer, |
| DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *&TemplateArgs) { |
| if (Id.getKind() == UnqualifiedId::IK_TemplateId) { |
| Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); |
| Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); |
| |
| ASTTemplateArgsPtr TemplateArgsPtr(SemaRef, |
| Id.TemplateId->getTemplateArgs(), |
| Id.TemplateId->NumArgs); |
| SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer); |
| TemplateArgsPtr.release(); |
| |
| TemplateName TName = Id.TemplateId->Template.get(); |
| SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; |
| NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc); |
| TemplateArgs = &Buffer; |
| } else { |
| NameInfo = SemaRef.GetNameFromUnqualifiedId(Id); |
| TemplateArgs = 0; |
| } |
| } |
| |
| /// Determines if the given class is provably not derived from all of |
| /// the prospective base classes. |
| static bool IsProvablyNotDerivedFrom(Sema &SemaRef, |
| CXXRecordDecl *Record, |
| const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) { |
| if (Bases.count(Record->getCanonicalDecl())) |
| return false; |
| |
| RecordDecl *RD = Record->getDefinition(); |
| if (!RD) return false; |
| Record = cast<CXXRecordDecl>(RD); |
| |
| for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(), |
| E = Record->bases_end(); I != E; ++I) { |
| CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType()); |
| CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>(); |
| if (!BaseRT) return false; |
| |
| CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl()); |
| if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| enum IMAKind { |
| /// The reference is definitely not an instance member access. |
| IMA_Static, |
| |
| /// The reference may be an implicit instance member access. |
| IMA_Mixed, |
| |
| /// The reference may be to an instance member, but it is invalid if |
| /// so, because the context is not an instance method. |
| IMA_Mixed_StaticContext, |
| |
| /// The reference may be to an instance member, but it is invalid if |
| /// so, because the context is from an unrelated class. |
| IMA_Mixed_Unrelated, |
| |
| /// The reference is definitely an implicit instance member access. |
| IMA_Instance, |
| |
| /// The reference may be to an unresolved using declaration. |
| IMA_Unresolved, |
| |
| /// The reference may be to an unresolved using declaration and the |
| /// context is not an instance method. |
| IMA_Unresolved_StaticContext, |
| |
| /// All possible referrents are instance members and the current |
| /// context is not an instance method. |
| IMA_Error_StaticContext, |
| |
| /// All possible referrents are instance members of an unrelated |
| /// class. |
| IMA_Error_Unrelated |
| }; |
| |
| /// The given lookup names class member(s) and is not being used for |
| /// an address-of-member expression. Classify the type of access |
| /// according to whether it's possible that this reference names an |
| /// instance member. This is best-effort; it is okay to |
| /// conservatively answer "yes", in which case some errors will simply |
| /// not be caught until template-instantiation. |
| static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, |
| const LookupResult &R) { |
| assert(!R.empty() && (*R.begin())->isCXXClassMember()); |
| |
| DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); |
| bool isStaticContext = |
| (!isa<CXXMethodDecl>(DC) || |
| cast<CXXMethodDecl>(DC)->isStatic()); |
| |
| if (R.isUnresolvableResult()) |
| return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; |
| |
| // Collect all the declaring classes of instance members we find. |
| bool hasNonInstance = false; |
| bool hasField = false; |
| llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes; |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| |
| if (D->isCXXInstanceMember()) { |
| if (dyn_cast<FieldDecl>(D)) |
| hasField = true; |
| |
| CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); |
| Classes.insert(R->getCanonicalDecl()); |
| } |
| else |
| hasNonInstance = true; |
| } |
| |
| // If we didn't find any instance members, it can't be an implicit |
| // member reference. |
| if (Classes.empty()) |
| return IMA_Static; |
| |
| // If the current context is not an instance method, it can't be |
| // an implicit member reference. |
| if (isStaticContext) { |
| if (hasNonInstance) |
| return IMA_Mixed_StaticContext; |
| |
| if (SemaRef.getLangOptions().CPlusPlus0x && hasField) { |
| // C++0x [expr.prim.general]p10: |
| // An id-expression that denotes a non-static data member or non-static |
| // member function of a class can only be used: |
| // (...) |
| // - if that id-expression denotes a non-static data member and it appears in an unevaluated operand. |
| const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back(); |
| bool isUnevaluatedExpression = record.Context == Sema::Unevaluated; |
| if (isUnevaluatedExpression) |
| return IMA_Mixed_StaticContext; |
| } |
| |
| return IMA_Error_StaticContext; |
| } |
| |
| CXXRecordDecl * |
| contextClass = cast<CXXMethodDecl>(DC)->getParent()->getCanonicalDecl(); |
| |
| // [class.mfct.non-static]p3: |
| // ...is used in the body of a non-static member function of class X, |
| // if name lookup (3.4.1) resolves the name in the id-expression to a |
| // non-static non-type member of some class C [...] |
| // ...if C is not X or a base class of X, the class member access expression |
| // is ill-formed. |
| if (R.getNamingClass() && |
| contextClass != R.getNamingClass()->getCanonicalDecl() && |
| contextClass->isProvablyNotDerivedFrom(R.getNamingClass())) |
| return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated); |
| |
| // If we can prove that the current context is unrelated to all the |
| // declaring classes, it can't be an implicit member reference (in |
| // which case it's an error if any of those members are selected). |
| if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) |
| return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated); |
| |
| return (hasNonInstance ? IMA_Mixed : IMA_Instance); |
| } |
| |
| /// Diagnose a reference to a field with no object available. |
| static void DiagnoseInstanceReference(Sema &SemaRef, |
| const CXXScopeSpec &SS, |
| NamedDecl *rep, |
| const DeclarationNameInfo &nameInfo) { |
| SourceLocation Loc = nameInfo.getLoc(); |
| SourceRange Range(Loc); |
| if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); |
| |
| if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) { |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) { |
| if (MD->isStatic()) { |
| // "invalid use of member 'x' in static member function" |
| SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) |
| << Range << nameInfo.getName(); |
| return; |
| } |
| } |
| |
| SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) |
| << nameInfo.getName() << Range; |
| return; |
| } |
| |
| SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range; |
| } |
| |
| /// Diagnose an empty lookup. |
| /// |
| /// \return false if new lookup candidates were found |
| bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, |
| CorrectTypoContext CTC) { |
| DeclarationName Name = R.getLookupName(); |
| |
| unsigned diagnostic = diag::err_undeclared_var_use; |
| unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; |
| if (Name.getNameKind() == DeclarationName::CXXOperatorName || |
| Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || |
| Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
| diagnostic = diag::err_undeclared_use; |
| diagnostic_suggest = diag::err_undeclared_use_suggest; |
| } |
| |
| // If the original lookup was an unqualified lookup, fake an |
| // unqualified lookup. This is useful when (for example) the |
| // original lookup would not have found something because it was a |
| // dependent name. |
| for (DeclContext *DC = SS.isEmpty() ? CurContext : 0; |
| DC; DC = DC->getParent()) { |
| if (isa<CXXRecordDecl>(DC)) { |
| LookupQualifiedName(R, DC); |
| |
| if (!R.empty()) { |
| // Don't give errors about ambiguities in this lookup. |
| R.suppressDiagnostics(); |
| |
| CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); |
| bool isInstance = CurMethod && |
| CurMethod->isInstance() && |
| DC == CurMethod->getParent(); |
| |
| // Give a code modification hint to insert 'this->'. |
| // TODO: fixit for inserting 'Base<T>::' in the other cases. |
| // Actually quite difficult! |
| if (isInstance) { |
| UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>( |
| CallsUndergoingInstantiation.back()->getCallee()); |
| CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>( |
| CurMethod->getInstantiatedFromMemberFunction()); |
| if (DepMethod) { |
| Diag(R.getNameLoc(), diagnostic) << Name |
| << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); |
| QualType DepThisType = DepMethod->getThisType(Context); |
| CXXThisExpr *DepThis = new (Context) CXXThisExpr( |
| R.getNameLoc(), DepThisType, false); |
| TemplateArgumentListInfo TList; |
| if (ULE->hasExplicitTemplateArgs()) |
| ULE->copyTemplateArgumentsInto(TList); |
| |
| CXXScopeSpec SS; |
| SS.Adopt(ULE->getQualifierLoc()); |
| CXXDependentScopeMemberExpr *DepExpr = |
| CXXDependentScopeMemberExpr::Create( |
| Context, DepThis, DepThisType, true, SourceLocation(), |
| SS.getWithLocInContext(Context), NULL, |
| R.getLookupNameInfo(), &TList); |
| CallsUndergoingInstantiation.back()->setCallee(DepExpr); |
| } else { |
| // FIXME: we should be able to handle this case too. It is correct |
| // to add this-> here. This is a workaround for PR7947. |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| } |
| } else { |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| } |
| |
| // Do we really want to note all of these? |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| Diag((*I)->getLocation(), diag::note_dependent_var_use); |
| |
| // Tell the callee to try to recover. |
| return false; |
| } |
| |
| R.clear(); |
| } |
| } |
| |
| // We didn't find anything, so try to correct for a typo. |
| DeclarationName Corrected; |
| if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) { |
| if (!R.empty()) { |
| if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) { |
| if (SS.isEmpty()) |
| Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName() |
| << FixItHint::CreateReplacement(R.getNameLoc(), |
| R.getLookupName().getAsString()); |
| else |
| Diag(R.getNameLoc(), diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) << R.getLookupName() |
| << SS.getRange() |
| << FixItHint::CreateReplacement(R.getNameLoc(), |
| R.getLookupName().getAsString()); |
| if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) |
| Diag(ND->getLocation(), diag::note_previous_decl) |
| << ND->getDeclName(); |
| |
| // Tell the callee to try to recover. |
| return false; |
| } |
| |
| if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) { |
| // FIXME: If we ended up with a typo for a type name or |
| // Objective-C class name, we're in trouble because the parser |
| // is in the wrong place to recover. Suggest the typo |
| // correction, but don't make it a fix-it since we're not going |
| // to recover well anyway. |
| if (SS.isEmpty()) |
| Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName(); |
| else |
| Diag(R.getNameLoc(), diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) << R.getLookupName() |
| << SS.getRange(); |
| |
| // Don't try to recover; it won't work. |
| return true; |
| } |
| } else { |
| // FIXME: We found a keyword. Suggest it, but don't provide a fix-it |
| // because we aren't able to recover. |
| if (SS.isEmpty()) |
| Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected; |
| else |
| Diag(R.getNameLoc(), diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) << Corrected |
| << SS.getRange(); |
| return true; |
| } |
| R.clear(); |
| } |
| |
| // Emit a special diagnostic for failed member lookups. |
| // FIXME: computing the declaration context might fail here (?) |
| if (!SS.isEmpty()) { |
| Diag(R.getNameLoc(), diag::err_no_member) |
| << Name << computeDeclContext(SS, false) |
| << SS.getRange(); |
| return true; |
| } |
| |
| // Give up, we can't recover. |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| return true; |
| } |
| |
| ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) { |
| ObjCMethodDecl *CurMeth = getCurMethodDecl(); |
| ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); |
| if (!IDecl) |
| return 0; |
| ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); |
| if (!ClassImpDecl) |
| return 0; |
| ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II); |
| if (!property) |
| return 0; |
| if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) |
| if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic || |
| PIDecl->getPropertyIvarDecl()) |
| return 0; |
| return property; |
| } |
| |
| bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) { |
| ObjCMethodDecl *CurMeth = getCurMethodDecl(); |
| ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); |
| if (!IDecl) |
| return false; |
| ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); |
| if (!ClassImpDecl) |
| return false; |
| if (ObjCPropertyImplDecl *PIDecl |
| = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier())) |
| if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic || |
| PIDecl->getPropertyIvarDecl()) |
| return false; |
| |
| return true; |
| } |
| |
| ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup, |
| IdentifierInfo *II, |
| SourceLocation NameLoc) { |
| ObjCMethodDecl *CurMeth = getCurMethodDecl(); |
| bool LookForIvars; |
| if (Lookup.empty()) |
| LookForIvars = true; |
| else if (CurMeth->isClassMethod()) |
| LookForIvars = false; |
| else |
| LookForIvars = (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() && |
| (Lookup.getAsSingle<VarDecl>() != 0)); |
| if (!LookForIvars) |
| return 0; |
| |
| ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); |
| if (!IDecl) |
| return 0; |
| ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); |
| if (!ClassImpDecl) |
| return 0; |
| bool DynamicImplSeen = false; |
| ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II); |
| if (!property) |
| return 0; |
| if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) { |
| DynamicImplSeen = |
| (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); |
| // property implementation has a designated ivar. No need to assume a new |
| // one. |
| if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl()) |
| return 0; |
| } |
| if (!DynamicImplSeen) { |
| QualType PropType = Context.getCanonicalType(property->getType()); |
| ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl, |
| NameLoc, NameLoc, |
| II, PropType, /*Dinfo=*/0, |
| ObjCIvarDecl::Private, |
| (Expr *)0, true); |
| ClassImpDecl->addDecl(Ivar); |
| IDecl->makeDeclVisibleInContext(Ivar, false); |
| property->setPropertyIvarDecl(Ivar); |
| return Ivar; |
| } |
| return 0; |
| } |
| |
| ExprResult Sema::ActOnIdExpression(Scope *S, |
| CXXScopeSpec &SS, |
| UnqualifiedId &Id, |
| bool HasTrailingLParen, |
| bool isAddressOfOperand) { |
| assert(!(isAddressOfOperand && HasTrailingLParen) && |
| "cannot be direct & operand and have a trailing lparen"); |
| |
| if (SS.isInvalid()) |
| return ExprError(); |
| |
| TemplateArgumentListInfo TemplateArgsBuffer; |
| |
| // Decompose the UnqualifiedId into the following data. |
| DeclarationNameInfo NameInfo; |
| const TemplateArgumentListInfo *TemplateArgs; |
| DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs); |
| |
| DeclarationName Name = NameInfo.getName(); |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| SourceLocation NameLoc = NameInfo.getLoc(); |
| |
| // C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // -- an identifier that was declared with a dependent type, |
| // (note: handled after lookup) |
| // -- a template-id that is dependent, |
| // (note: handled in BuildTemplateIdExpr) |
| // -- a conversion-function-id that specifies a dependent type, |
| // -- a nested-name-specifier that contains a class-name that |
| // names a dependent type. |
| // Determine whether this is a member of an unknown specialization; |
| // we need to handle these differently. |
| bool DependentID = false; |
| if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| Name.getCXXNameType()->isDependentType()) { |
| DependentID = true; |
| } else if (SS.isSet()) { |
| if (DeclContext *DC = computeDeclContext(SS, false)) { |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| } else { |
| DependentID = true; |
| } |
| } |
| |
| if (DependentID) |
| return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, |
| TemplateArgs); |
| |
| bool IvarLookupFollowUp = false; |
| // Perform the required lookup. |
| LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| if (TemplateArgs) { |
| // Lookup the template name again to correctly establish the context in |
| // which it was found. This is really unfortunate as we already did the |
| // lookup to determine that it was a template name in the first place. If |
| // this becomes a performance hit, we can work harder to preserve those |
| // results until we get here but it's likely not worth it. |
| bool MemberOfUnknownSpecialization; |
| LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, |
| MemberOfUnknownSpecialization); |
| |
| if (MemberOfUnknownSpecialization || |
| (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) |
| return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, |
| TemplateArgs); |
| } else { |
| IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl()); |
| LookupParsedName(R, S, &SS, !IvarLookupFollowUp); |
| |
| // If the result might be in a dependent base class, this is a dependent |
| // id-expression. |
| if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
| return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, |
| TemplateArgs); |
| |
| // If this reference is in an Objective-C method, then we need to do |
| // some special Objective-C lookup, too. |
| if (IvarLookupFollowUp) { |
| ExprResult E(LookupInObjCMethod(R, S, II, true)); |
| if (E.isInvalid()) |
| return ExprError(); |
| |
| if (Expr *Ex = E.takeAs<Expr>()) |
| return Owned(Ex); |
| |
| // Synthesize ivars lazily. |
| if (getLangOptions().ObjCDefaultSynthProperties && |
| getLangOptions().ObjCNonFragileABI2) { |
| if (SynthesizeProvisionalIvar(R, II, NameLoc)) { |
| if (const ObjCPropertyDecl *Property = |
| canSynthesizeProvisionalIvar(II)) { |
| Diag(NameLoc, diag::warn_synthesized_ivar_access) << II; |
| Diag(Property->getLocation(), diag::note_property_declare); |
| } |
| return ActOnIdExpression(S, SS, Id, HasTrailingLParen, |
| isAddressOfOperand); |
| } |
| } |
| // for further use, this must be set to false if in class method. |
| IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod(); |
| } |
| } |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| // Determine whether this name might be a candidate for |
| // argument-dependent lookup. |
| bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); |
| |
| if (R.empty() && !ADL) { |
| // Otherwise, this could be an implicitly declared function reference (legal |
| // in C90, extension in C99, forbidden in C++). |
| if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) { |
| NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); |
| if (D) R.addDecl(D); |
| } |
| |
| // If this name wasn't predeclared and if this is not a function |
| // call, diagnose the problem. |
| if (R.empty()) { |
| if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown)) |
| return ExprError(); |
| |
| assert(!R.empty() && |
| "DiagnoseEmptyLookup returned false but added no results"); |
| |
| // If we found an Objective-C instance variable, let |
| // LookupInObjCMethod build the appropriate expression to |
| // reference the ivar. |
| if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { |
| R.clear(); |
| ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); |
| assert(E.isInvalid() || E.get()); |
| return move(E); |
| } |
| } |
| } |
| |
| // This is guaranteed from this point on. |
| assert(!R.empty() || ADL); |
| |
| // Check whether this might be a C++ implicit instance member access. |
| // C++ [class.mfct.non-static]p3: |
| // When an id-expression that is not part of a class member access |
| // syntax and not used to form a pointer to member is used in the |
| // body of a non-static member function of class X, if name lookup |
| // resolves the name in the id-expression to a non-static non-type |
| // member of some class C, the id-expression is transformed into a |
| // class member access expression using (*this) as the |
| // postfix-expression to the left of the . operator. |
| // |
| // But we don't actually need to do this for '&' operands if R |
| // resolved to a function or overloaded function set, because the |
| // expression is ill-formed if it actually works out to be a |
| // non-static member function: |
| // |
| // C++ [expr.ref]p4: |
| // Otherwise, if E1.E2 refers to a non-static member function. . . |
| // [t]he expression can be used only as the left-hand operand of a |
| // member function call. |
| // |
| // There are other safeguards against such uses, but it's important |
| // to get this right here so that we don't end up making a |
| // spuriously dependent expression if we're inside a dependent |
| // instance method. |
| if (!R.empty() && (*R.begin())->isCXXClassMember()) { |
| bool MightBeImplicitMember; |
| if (!isAddressOfOperand) |
| MightBeImplicitMember = true; |
| else if (!SS.isEmpty()) |
| MightBeImplicitMember = false; |
| else if (R.isOverloadedResult()) |
| MightBeImplicitMember = false; |
| else if (R.isUnresolvableResult()) |
| MightBeImplicitMember = true; |
| else |
| MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || |
| isa<IndirectFieldDecl>(R.getFoundDecl()); |
| |
| if (MightBeImplicitMember) |
| return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs); |
| } |
| |
| if (TemplateArgs) |
| return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs); |
| |
| return BuildDeclarationNameExpr(SS, R, ADL); |
| } |
| |
| /// Builds an expression which might be an implicit member expression. |
| ExprResult |
| Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| switch (ClassifyImplicitMemberAccess(*this, R)) { |
| case IMA_Instance: |
| return BuildImplicitMemberExpr(SS, R, TemplateArgs, true); |
| |
| case IMA_Mixed: |
| case IMA_Mixed_Unrelated: |
| case IMA_Unresolved: |
| return BuildImplicitMemberExpr(SS, R, TemplateArgs, false); |
| |
| case IMA_Static: |
| case IMA_Mixed_StaticContext: |
| case IMA_Unresolved_StaticContext: |
| if (TemplateArgs) |
| return BuildTemplateIdExpr(SS, R, false, *TemplateArgs); |
| return BuildDeclarationNameExpr(SS, R, false); |
| |
| case IMA_Error_StaticContext: |
| case IMA_Error_Unrelated: |
| DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), |
| R.getLookupNameInfo()); |
| return ExprError(); |
| } |
| |
| llvm_unreachable("unexpected instance member access kind"); |
| return ExprError(); |
| } |
| |
| /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified |
| /// declaration name, generally during template instantiation. |
| /// There's a large number of things which don't need to be done along |
| /// this path. |
| ExprResult |
| Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, |
| const DeclarationNameInfo &NameInfo) { |
| DeclContext *DC; |
| if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext()) |
| return BuildDependentDeclRefExpr(SS, NameInfo, 0); |
| |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| |
| LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| LookupQualifiedName(R, DC); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.empty()) { |
| Diag(NameInfo.getLoc(), diag::err_no_member) |
| << NameInfo.getName() << DC << SS.getRange(); |
| return ExprError(); |
| } |
| |
| return BuildDeclarationNameExpr(SS, R, /*ADL*/ false); |
| } |
| |
| /// LookupInObjCMethod - The parser has read a name in, and Sema has |
| /// detected that we're currently inside an ObjC method. Perform some |
| /// additional lookup. |
| /// |
| /// Ideally, most of this would be done by lookup, but there's |
| /// actually quite a lot of extra work involved. |
| /// |
| /// Returns a null sentinel to indicate trivial success. |
| ExprResult |
| Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, |
| IdentifierInfo *II, bool AllowBuiltinCreation) { |
| SourceLocation Loc = Lookup.getNameLoc(); |
| ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
| |
| // There are two cases to handle here. 1) scoped lookup could have failed, |
| // in which case we should look for an ivar. 2) scoped lookup could have |
| // found a decl, but that decl is outside the current instance method (i.e. |
| // a global variable). In these two cases, we do a lookup for an ivar with |
| // this name, if the lookup sucedes, we replace it our current decl. |
| |
| // If we're in a class method, we don't normally want to look for |
| // ivars. But if we don't find anything else, and there's an |
| // ivar, that's an error. |
| bool IsClassMethod = CurMethod->isClassMethod(); |
| |
| bool LookForIvars; |
| if (Lookup.empty()) |
| LookForIvars = true; |
| else if (IsClassMethod) |
| LookForIvars = false; |
| else |
| LookForIvars = (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); |
| ObjCInterfaceDecl *IFace = 0; |
| if (LookForIvars) { |
| IFace = CurMethod->getClassInterface(); |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { |
| // Diagnose using an ivar in a class method. |
| if (IsClassMethod) |
| return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) |
| << IV->getDeclName()); |
| |
| // If we're referencing an invalid decl, just return this as a silent |
| // error node. The error diagnostic was already emitted on the decl. |
| if (IV->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check if referencing a field with __attribute__((deprecated)). |
| if (DiagnoseUseOfDecl(IV, Loc)) |
| return ExprError(); |
| |
| // Diagnose the use of an ivar outside of the declaring class. |
| if (IV->getAccessControl() == ObjCIvarDecl::Private && |
| ClassDeclared != IFace) |
| Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName(); |
| |
| // FIXME: This should use a new expr for a direct reference, don't |
| // turn this into Self->ivar, just return a BareIVarExpr or something. |
| IdentifierInfo &II = Context.Idents.get("self"); |
| UnqualifiedId SelfName; |
| SelfName.setIdentifier(&II, SourceLocation()); |
| CXXScopeSpec SelfScopeSpec; |
| ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, |
| SelfName, false, false); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| SelfExpr = DefaultLvalueConversion(SelfExpr.take()); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| MarkDeclarationReferenced(Loc, IV); |
| Expr *base = SelfExpr.take(); |
| base = base->IgnoreParenImpCasts(); |
| if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(base)) { |
| const NamedDecl *ND = DE->getDecl(); |
| if (!isa<ImplicitParamDecl>(ND)) { |
| // relax the rule such that it is allowed to have a shadow 'self' |
| // where stand-alone ivar can be found in this 'self' object. |
| // This is to match gcc's behavior. |
| ObjCInterfaceDecl *selfIFace = 0; |
| if (const ObjCObjectPointerType *OPT = |
| base->getType()->getAsObjCInterfacePointerType()) |
| selfIFace = OPT->getInterfaceDecl(); |
| if (!selfIFace || |
| !selfIFace->lookupInstanceVariable(IV->getIdentifier())) { |
| Diag(Loc, diag::error_implicit_ivar_access) |
| << IV->getDeclName(); |
| Diag(ND->getLocation(), diag::note_declared_at); |
| return ExprError(); |
| } |
| } |
| } |
| return Owned(new (Context) |
| ObjCIvarRefExpr(IV, IV->getType(), Loc, |
| SelfExpr.take(), true, true)); |
| } |
| } else if (CurMethod->isInstanceMethod()) { |
| // We should warn if a local variable hides an ivar. |
| ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { |
| if (IV->getAccessControl() != ObjCIvarDecl::Private || |
| IFace == ClassDeclared) |
| Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); |
| } |
| } |
| |
| if (Lookup.empty() && II && AllowBuiltinCreation) { |
| // FIXME. Consolidate this with similar code in LookupName. |
| if (unsigned BuiltinID = II->getBuiltinID()) { |
| if (!(getLangOptions().CPlusPlus && |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) { |
| NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, |
| S, Lookup.isForRedeclaration(), |
| Lookup.getNameLoc()); |
| if (D) Lookup.addDecl(D); |
| } |
| } |
| } |
| // Sentinel value saying that we didn't do anything special. |
| return Owned((Expr*) 0); |
| } |
| |
| /// \brief Cast a base object to a member's actual type. |
| /// |
| /// Logically this happens in three phases: |
| /// |
| /// * First we cast from the base type to the naming class. |
| /// The naming class is the class into which we were looking |
| /// when we found the member; it's the qualifier type if a |
| /// qualifier was provided, and otherwise it's the base type. |
| /// |
| /// * Next we cast from the naming class to the declaring class. |
| /// If the member we found was brought into a class's scope by |
| /// a using declaration, this is that class; otherwise it's |
| /// the class declaring the member. |
| /// |
| /// * Finally we cast from the declaring class to the "true" |
| /// declaring class of the member. This conversion does not |
| /// obey access control. |
| ExprResult |
| Sema::PerformObjectMemberConversion(Expr *From, |
| NestedNameSpecifier *Qualifier, |
| NamedDecl *FoundDecl, |
| NamedDecl *Member) { |
| CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); |
| if (!RD) |
| return Owned(From); |
| |
| QualType DestRecordType; |
| QualType DestType; |
| QualType FromRecordType; |
| QualType FromType = From->getType(); |
| bool PointerConversions = false; |
| if (isa<FieldDecl>(Member)) { |
| DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); |
| |
| if (FromType->getAs<PointerType>()) { |
| DestType = Context.getPointerType(DestRecordType); |
| FromRecordType = FromType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| DestType = DestRecordType; |
| FromRecordType = FromType; |
| } |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { |
| if (Method->isStatic()) |
| return Owned(From); |
| |
| DestType = Method->getThisType(Context); |
| DestRecordType = DestType->getPointeeType(); |
| |
| if (FromType->getAs<PointerType>()) { |
| FromRecordType = FromType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| FromRecordType = FromType; |
| DestType = DestRecordType; |
| } |
| } else { |
| // No conversion necessary. |
| return Owned(From); |
| } |
| |
| if (DestType->isDependentType() || FromType->isDependentType()) |
| return Owned(From); |
| |
| // If the unqualified types are the same, no conversion is necessary. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return Owned(From); |
| |
| SourceRange FromRange = From->getSourceRange(); |
| SourceLocation FromLoc = FromRange.getBegin(); |
| |
| ExprValueKind VK = CastCategory(From); |
| |
| // C++ [class.member.lookup]p8: |
| // [...] Ambiguities can often be resolved by qualifying a name with its |
| // class name. |
| // |
| // If the member was a qualified name and the qualified referred to a |
| // specific base subobject type, we'll cast to that intermediate type |
| // first and then to the object in which the member is declared. That allows |
| // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: |
| // |
| // class Base { public: int x; }; |
| // class Derived1 : public Base { }; |
| // class Derived2 : public Base { }; |
| // class VeryDerived : public Derived1, public Derived2 { void f(); }; |
| // |
| // void VeryDerived::f() { |
| // x = 17; // error: ambiguous base subobjects |
| // Derived1::x = 17; // okay, pick the Base subobject of Derived1 |
| // } |
| if (Qualifier) { |
| QualType QType = QualType(Qualifier->getAsType(), 0); |
| assert(!QType.isNull() && "lookup done with dependent qualifier?"); |
| assert(QType->isRecordType() && "lookup done with non-record type"); |
| |
| QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); |
| |
| // In C++98, the qualifier type doesn't actually have to be a base |
| // type of the object type, in which case we just ignore it. |
| // Otherwise build the appropriate casts. |
| if (IsDerivedFrom(FromRecordType, QRecordType)) { |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, |
| FromLoc, FromRange, &BasePath)) |
| return ExprError(); |
| |
| if (PointerConversions) |
| QType = Context.getPointerType(QType); |
| From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, |
| VK, &BasePath).take(); |
| |
| FromType = QType; |
| FromRecordType = QRecordType; |
| |
| // If the qualifier type was the same as the destination type, |
| // we're done. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return Owned(From); |
| } |
| } |
| |
| bool IgnoreAccess = false; |
| |
| // If we actually found the member through a using declaration, cast |
| // down to the using declaration's type. |
| // |
| // Pointer equality is fine here because only one declaration of a |
| // class ever has member declarations. |
| if (FoundDecl->getDeclContext() != Member->getDeclContext()) { |
| assert(isa<UsingShadowDecl>(FoundDecl)); |
| QualType URecordType = Context.getTypeDeclType( |
| cast<CXXRecordDecl>(FoundDecl->getDeclContext())); |
| |
| // We only need to do this if the naming-class to declaring-class |
| // conversion is non-trivial. |
| if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { |
| assert(IsDerivedFrom(FromRecordType, URecordType)); |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, URecordType, |
| FromLoc, FromRange, &BasePath)) |
| return ExprError(); |
| |
| QualType UType = URecordType; |
| if (PointerConversions) |
| UType = Context.getPointerType(UType); |
| From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase, |
| VK, &BasePath).take(); |
| FromType = UType; |
| FromRecordType = URecordType; |
| } |
| |
| // We don't do access control for the conversion from the |
| // declaring class to the true declaring class. |
| IgnoreAccess = true; |
| } |
| |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, |
| FromLoc, FromRange, &BasePath, |
| IgnoreAccess)) |
| return ExprError(); |
| |
| return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, |
| VK, &BasePath); |
| } |
| |
| /// \brief Build a MemberExpr AST node. |
| static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow, |
| const CXXScopeSpec &SS, ValueDecl *Member, |
| DeclAccessPair FoundDecl, |
| const DeclarationNameInfo &MemberNameInfo, |
| QualType Ty, |
| ExprValueKind VK, ExprObjectKind OK, |
| const TemplateArgumentListInfo *TemplateArgs = 0) { |
| return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C), |
| Member, FoundDecl, MemberNameInfo, |
| TemplateArgs, Ty, VK, OK); |
| } |
| |
| static ExprResult |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, |
| const CXXScopeSpec &SS, FieldDecl *Field, |
| DeclAccessPair FoundDecl, |
| const DeclarationNameInfo &MemberNameInfo) { |
| // x.a is an l-value if 'a' has a reference type. Otherwise: |
| // x.a is an l-value/x-value/pr-value if the base is (and note |
| // that *x is always an l-value), except that if the base isn't |
| // an ordinary object then we must have an rvalue. |
| ExprValueKind VK = VK_LValue; |
| ExprObjectKind OK = OK_Ordinary; |
| if (!IsArrow) { |
| if (BaseExpr->getObjectKind() == OK_Ordinary) |
| VK = BaseExpr->getValueKind(); |
| else |
| VK = VK_RValue; |
| } |
| if (VK != VK_RValue && Field->isBitField()) |
| OK = OK_BitField; |
| |
| // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] |
| QualType MemberType = Field->getType(); |
| if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { |
| MemberType = Ref->getPointeeType(); |
| VK = VK_LValue; |
| } else { |
| QualType BaseType = BaseExpr->getType(); |
| if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType(); |
| |
| Qualifiers BaseQuals = BaseType.getQualifiers(); |
| |
| // GC attributes are never picked up by members. |
| BaseQuals.removeObjCGCAttr(); |
| |
| // CVR attributes from the base are picked up by members, |
| // except that 'mutable' members don't pick up 'const'. |
| if (Field->isMutable()) BaseQuals.removeConst(); |
| |
| Qualifiers MemberQuals |
| = S.Context.getCanonicalType(MemberType).getQualifiers(); |
| |
| // TR 18037 does not allow fields to be declared with address spaces. |
| assert(!MemberQuals.hasAddressSpace()); |
| |
| Qualifiers Combined = BaseQuals + MemberQuals; |
| if (Combined != MemberQuals) |
| MemberType = S.Context.getQualifiedType(MemberType, Combined); |
| } |
| |
| S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field); |
| ExprResult Base = |
| S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), |
| FoundDecl, Field); |
| if (Base.isInvalid()) |
| return ExprError(); |
| return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS, |
| Field, FoundDecl, MemberNameInfo, |
| MemberType, VK, OK)); |
| } |
| |
| /// Builds an implicit member access expression. The current context |
| /// is known to be an instance method, and the given unqualified lookup |
| /// set is known to contain only instance members, at least one of which |
| /// is from an appropriate type. |
| ExprResult |
| Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs, |
| bool IsKnownInstance) { |
| assert(!R.empty() && !R.isAmbiguous()); |
| |
| SourceLocation loc = R.getNameLoc(); |
| |
| // We may have found a field within an anonymous union or struct |
| // (C++ [class.union]). |
| // FIXME: template-ids inside anonymous structs? |
| if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>()) |
| return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD); |
| |
| // If this is known to be an instance access, go ahead and build an |
| // implicit 'this' expression now. |
| // 'this' expression now. |
| CXXMethodDecl *method = tryCaptureCXXThis(); |
| assert(method && "didn't correctly pre-flight capture of 'this'"); |
| |
| QualType thisType = method->getThisType(Context); |
| Expr *baseExpr = 0; // null signifies implicit access |
| if (IsKnownInstance) { |
| SourceLocation Loc = R.getNameLoc(); |
| if (SS.getRange().isValid()) |
| Loc = SS.getRange().getBegin(); |
| baseExpr = new (Context) CXXThisExpr(loc, thisType, /*isImplicit=*/true); |
| } |
| |
| return BuildMemberReferenceExpr(baseExpr, thisType, |
| /*OpLoc*/ SourceLocation(), |
| /*IsArrow*/ true, |
| SS, |
| /*FirstQualifierInScope*/ 0, |
| R, TemplateArgs); |
| } |
| |
| bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, |
| const LookupResult &R, |
| bool HasTrailingLParen) { |
| // Only when used directly as the postfix-expression of a call. |
| if (!HasTrailingLParen) |
| return false; |
| |
| // Never if a scope specifier was provided. |
| if (SS.isSet()) |
| return false; |
| |
| // Only in C++ or ObjC++. |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| // Turn off ADL when we find certain kinds of declarations during |
| // normal lookup: |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration of a class member |
| // Since using decls preserve this property, we check this on the |
| // original decl. |
| if (D->isCXXClassMember()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a block-scope function declaration that is not a |
| // using-declaration |
| // NOTE: we also trigger this for function templates (in fact, we |
| // don't check the decl type at all, since all other decl types |
| // turn off ADL anyway). |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| else if (D->getDeclContext()->isFunctionOrMethod()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration that is neither a function or a function |
| // template |
| // And also for builtin functions. |
| if (isa<FunctionDecl>(D)) { |
| FunctionDecl *FDecl = cast<FunctionDecl>(D); |
| |
| // But also builtin functions. |
| if (FDecl->getBuiltinID() && FDecl->isImplicit()) |
| return false; |
| } else if (!isa<FunctionTemplateDecl>(D)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /// Diagnoses obvious problems with the use of the given declaration |
| /// as an expression. This is only actually called for lookups that |
| /// were not overloaded, and it doesn't promise that the declaration |
| /// will in fact be used. |
| static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { |
| if (isa<TypedefNameDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<ObjCInterfaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<NamespaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| ExprResult |
| Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| bool NeedsADL) { |
| // If this is a single, fully-resolved result and we don't need ADL, |
| // just build an ordinary singleton decl ref. |
| if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>()) |
| return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), |
| R.getFoundDecl()); |
| |
| // We only need to check the declaration if there's exactly one |
| // result, because in the overloaded case the results can only be |
| // functions and function templates. |
| if (R.isSingleResult() && |
| CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) |
| return ExprError(); |
| |
| // Otherwise, just build an unresolved lookup expression. Suppress |
| // any lookup-related diagnostics; we'll hash these out later, when |
| // we've picked a target. |
| R.suppressDiagnostics(); |
| |
| UnresolvedLookupExpr *ULE |
| = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), |
| SS.getWithLocInContext(Context), |
| R.getLookupNameInfo(), |
| NeedsADL, R.isOverloadedResult(), |
| R.begin(), R.end()); |
| |
| return Owned(ULE); |
| } |
| |
| /// \brief Complete semantic analysis for a reference to the given declaration. |
| ExprResult |
| Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| const DeclarationNameInfo &NameInfo, |
| NamedDecl *D) { |
| assert(D && "Cannot refer to a NULL declaration"); |
| assert(!isa<FunctionTemplateDecl>(D) && |
| "Cannot refer unambiguously to a function template"); |
| |
| SourceLocation Loc = NameInfo.getLoc(); |
| if (CheckDeclInExpr(*this, Loc, D)) |
| return ExprError(); |
| |
| if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { |
| // Specifically diagnose references to class templates that are missing |
| // a template argument list. |
| Diag(Loc, diag::err_template_decl_ref) |
| << Template << SS.getRange(); |
| Diag(Template->getLocation(), diag::note_template_decl_here); |
| return ExprError(); |
| } |
| |
| // Make sure that we're referring to a value. |
| ValueDecl *VD = dyn_cast<ValueDecl>(D); |
| if (!VD) { |
| Diag(Loc, diag::err_ref_non_value) |
| << D << SS.getRange(); |
| Diag(D->getLocation(), diag::note_declared_at); |
| return ExprError(); |
| } |
| |
| // Check whether this declaration can be used. Note that we suppress |
| // this check when we're going to perform argument-dependent lookup |
| // on this function name, because this might not be the function |
| // that overload resolution actually selects. |
| if (DiagnoseUseOfDecl(VD, Loc)) |
| return ExprError(); |
| |
| // Only create DeclRefExpr's for valid Decl's. |
| if (VD->isInvalidDecl()) |
| return ExprError(); |
| |
| // Handle members of anonymous structs and unions. If we got here, |
| // and the reference is to a class member indirect field, then this |
| // must be the subject of a pointer-to-member expression. |
| if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) |
| if (!indirectField->isCXXClassMember()) |
| return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), |
| indirectField); |
| |
| // If the identifier reference is inside a block, and it refers to a value |
| // that is outside the block, create a BlockDeclRefExpr instead of a |
| // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when |
| // the block is formed. |
| // |
| // We do not do this for things like enum constants, global variables, etc, |
| // as they do not get snapshotted. |
| // |
| switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) { |
| case CR_Error: |
| return ExprError(); |
| |
| case CR_Capture: |
| assert(!SS.isSet() && "referenced local variable with scope specifier?"); |
| return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false); |
| |
| case CR_CaptureByRef: |
| assert(!SS.isSet() && "referenced local variable with scope specifier?"); |
| return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true); |
| |
| case CR_NoCapture: { |
| // If this reference is not in a block or if the referenced |
| // variable is within the block, create a normal DeclRefExpr. |
| |
| QualType type = VD->getType(); |
| ExprValueKind valueKind = VK_RValue; |
| |
| switch (D->getKind()) { |
| // Ignore all the non-ValueDecl kinds. |
| #define ABSTRACT_DECL(kind) |
| #define VALUE(type, base) |
| #define DECL(type, base) \ |
| case Decl::type: |
| #include "clang/AST/DeclNodes.inc" |
| llvm_unreachable("invalid value decl kind"); |
| return ExprError(); |
| |
| // These shouldn't make it here. |
| case Decl::ObjCAtDefsField: |
| case Decl::ObjCIvar: |
| llvm_unreachable("forming non-member reference to ivar?"); |
| return ExprError(); |
| |
| // Enum constants are always r-values and never references. |
| // Unresolved using declarations are dependent. |
| case Decl::EnumConstant: |
| case Decl::UnresolvedUsingValue: |
| valueKind = VK_RValue; |
| break; |
| |
| // Fields and indirect fields that got here must be for |
| // pointer-to-member expressions; we just call them l-values for |
| // internal consistency, because this subexpression doesn't really |
| // exist in the high-level semantics. |
| case Decl::Field: |
| case Decl::IndirectField: |
| assert(getLangOptions().CPlusPlus && |
| "building reference to field in C?"); |
| |
| // These can't have reference type in well-formed programs, but |
| // for internal consistency we do this anyway. |
| type = type.getNonReferenceType(); |
| valueKind = VK_LValue; |
| break; |
| |
| // Non-type template parameters are either l-values or r-values |
| // depending on the type. |
| case Decl::NonTypeTemplateParm: { |
| if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { |
| type = reftype->getPointeeType(); |
| valueKind = VK_LValue; // even if the parameter is an r-value reference |
| break; |
| } |
| |
| // For non-references, we need to strip qualifiers just in case |
| // the template parameter was declared as 'const int' or whatever. |
| valueKind = VK_RValue; |
| type = type.getUnqualifiedType(); |
| break; |
| } |
| |
| case Decl::Var: |
| // In C, "extern void blah;" is valid and is an r-value. |
| if (!getLangOptions().CPlusPlus && |
| !type.hasQualifiers() && |
| type->isVoidType()) { |
| valueKind = VK_RValue; |
| break; |
| } |
| // fallthrough |
| |
| case Decl::ImplicitParam: |
| case Decl::ParmVar: |
| // These are always l-values. |
| valueKind = VK_LValue; |
| type = type.getNonReferenceType(); |
| break; |
| |
| case Decl::Function: { |
| const FunctionType *fty = type->castAs<FunctionType>(); |
| |
| // If we're referring to a function with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| if (fty->getResultType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| // Functions are l-values in C++. |
| if (getLangOptions().CPlusPlus) { |
| valueKind = VK_LValue; |
| break; |
| } |
| |
| // C99 DR 316 says that, if a function type comes from a |
| // function definition (without a prototype), that type is only |
| // used for checking compatibility. Therefore, when referencing |
| // the function, we pretend that we don't have the full function |
| // type. |
| if (!cast<FunctionDecl>(VD)->hasPrototype() && |
| isa<FunctionProtoType>(fty)) |
| type = Context.getFunctionNoProtoType(fty->getResultType(), |
| fty->getExtInfo()); |
| |
| // Functions are r-values in C. |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| case Decl::CXXMethod: |
| // If we're referring to a method with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| // This should only be possible with a type written directly. |
| if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType())) |
| if (proto->getResultType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| // C++ methods are l-values if static, r-values if non-static. |
| if (cast<CXXMethodDecl>(VD)->isStatic()) { |
| valueKind = VK_LValue; |
| break; |
| } |
| // fallthrough |
| |
| case Decl::CXXConversion: |
| case Decl::CXXDestructor: |
| case Decl::CXXConstructor: |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS); |
| } |
| |
| } |
| |
| llvm_unreachable("unknown capture result"); |
| return ExprError(); |
| } |
| |
| ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { |
| PredefinedExpr::IdentType IT; |
| |
| switch (Kind) { |
| default: assert(0 && "Unknown simple primary expr!"); |
| case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] |
| case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; |
| case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; |
| } |
| |
| // Pre-defined identifiers are of type char[x], where x is the length of the |
| // string. |
| |
| Decl *currentDecl = getCurFunctionOrMethodDecl(); |
| if (!currentDecl && getCurBlock()) |
| currentDecl = getCurBlock()->TheDecl; |
| if (!currentDecl) { |
| Diag(Loc, diag::ext_predef_outside_function); |
| currentDecl = Context.getTranslationUnitDecl(); |
| } |
| |
| QualType ResTy; |
| if (cast<DeclContext>(currentDecl)->isDependentContext()) { |
| ResTy = Context.DependentTy; |
| } else { |
| unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length(); |
| |
| llvm::APInt LengthI(32, Length + 1); |
| ResTy = Context.CharTy.withConst(); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); |
| } |
| return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); |
| } |
| |
| ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { |
| llvm::SmallString<16> CharBuffer; |
| bool Invalid = false; |
| llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), |
| PP); |
| if (Literal.hadError()) |
| return ExprError(); |
| |
| QualType Ty; |
| if (!getLangOptions().CPlusPlus) |
| Ty = Context.IntTy; // 'x' and L'x' -> int in C. |
| else if (Literal.isWide()) |
| Ty = Context.WCharTy; // L'x' -> wchar_t in C++. |
| else if (Literal.isMultiChar()) |
| Ty = Context.IntTy; // 'wxyz' -> int in C++. |
| else |
| Ty = Context.CharTy; // 'x' -> char in C++ |
| |
| return Owned(new (Context) CharacterLiteral(Literal.getValue(), |
| Literal.isWide(), |
| Ty, Tok.getLocation())); |
| } |
| |
| ExprResult Sema::ActOnNumericConstant(const Token &Tok) { |
| // Fast path for a single digit (which is quite common). A single digit |
| // cannot have a trigraph, escaped newline, radix prefix, or type suffix. |
| if (Tok.getLength() == 1) { |
| const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); |
| unsigned IntSize = Context.Target.getIntWidth(); |
| return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'), |
| Context.IntTy, Tok.getLocation())); |
| } |
| |
| llvm::SmallString<512> IntegerBuffer; |
| // Add padding so that NumericLiteralParser can overread by one character. |
| IntegerBuffer.resize(Tok.getLength()+1); |
| const char *ThisTokBegin = &IntegerBuffer[0]; |
| |
| // Get the spelling of the token, which eliminates trigraphs, etc. |
| bool Invalid = false; |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| Expr *Res; |
| |
| if (Literal.isFloatingLiteral()) { |
| QualType Ty; |
| if (Literal.isFloat) |
| Ty = Context.FloatTy; |
| else if (!Literal.isLong) |
| Ty = Context.DoubleTy; |
| else |
| Ty = Context.LongDoubleTy; |
| |
| const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); |
| |
| using llvm::APFloat; |
| APFloat Val(Format); |
| |
| APFloat::opStatus result = Literal.GetFloatValue(Val); |
| |
| // Overflow is always an error, but underflow is only an error if |
| // we underflowed to zero (APFloat reports denormals as underflow). |
| if ((result & APFloat::opOverflow) || |
| ((result & APFloat::opUnderflow) && Val.isZero())) { |
| unsigned diagnostic; |
| llvm::SmallString<20> buffer; |
| if (result & APFloat::opOverflow) { |
| diagnostic = diag::warn_float_overflow; |
| APFloat::getLargest(Format).toString(buffer); |
| } else { |
| diagnostic = diag::warn_float_underflow; |
| APFloat::getSmallest(Format).toString(buffer); |
| } |
| |
| Diag(Tok.getLocation(), diagnostic) |
| << Ty |
| << llvm::StringRef(buffer.data(), buffer.size()); |
| } |
| |
| bool isExact = (result == APFloat::opOK); |
| Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation()); |
| |
| if (Ty == Context.DoubleTy) { |
| if (getLangOptions().SinglePrecisionConstants) { |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take(); |
| } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) { |
| Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64); |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take(); |
| } |
| } |
| } else if (!Literal.isIntegerLiteral()) { |
| return ExprError(); |
| } else { |
| QualType Ty; |
| |
| // long long is a C99 feature. |
| if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && |
| Literal.isLongLong) |
| Diag(Tok.getLocation(), diag::ext_longlong); |
| |
| // Get the value in the widest-possible width. |
| llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); |
| |
| if (Literal.GetIntegerValue(ResultVal)) { |
| // If this value didn't fit into uintmax_t, warn and force to ull. |
| Diag(Tok.getLocation(), diag::warn_integer_too_large); |
| Ty = Context.UnsignedLongLongTy; |
| assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && |
| "long long is not intmax_t?"); |
| } else { |
| // If this value fits into a ULL, try to figure out what else it fits into |
| // according to the rules of C99 6.4.4.1p5. |
| |
| // Octal, Hexadecimal, and integers with a U suffix are allowed to |
| // be an unsigned int. |
| bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
| |
| // Check from smallest to largest, picking the smallest type we can. |
| unsigned Width = 0; |
| if (!Literal.isLong && !Literal.isLongLong) { |
| // Are int/unsigned possibilities? |
| unsigned IntSize = Context.Target.getIntWidth(); |
| |
| // Does it fit in a unsigned int? |
| if (ResultVal.isIntN(IntSize)) { |
| // Does it fit in a signed int? |
| if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
| Ty = Context.IntTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedIntTy; |
| Width = IntSize; |
| } |
| } |
| |
| // Are long/unsigned long possibilities? |
| if (Ty.isNull() && !Literal.isLongLong) { |
| unsigned LongSize = Context.Target.getLongWidth(); |
| |
| // Does it fit in a unsigned long? |
| if (ResultVal.isIntN(LongSize)) { |
| // Does it fit in a signed long? |
| if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
| Ty = Context.LongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongTy; |
| Width = LongSize; |
| } |
| } |
| |
| // Finally, check long long if needed. |
| if (Ty.isNull()) { |
| unsigned LongLongSize = Context.Target.getLongLongWidth(); |
| |
| // Does it fit in a unsigned long long? |
| if (ResultVal.isIntN(LongLongSize)) { |
| // Does it fit in a signed long long? |
| // To be compatible with MSVC, hex integer literals ending with the |
| // LL or i64 suffix are always signed in Microsoft mode. |
| if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || |
| (getLangOptions().Microsoft && Literal.isLongLong))) |
| Ty = Context.LongLongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongLongTy; |
| Width = LongLongSize; |
| } |
| } |
| |
| // If we still couldn't decide a type, we probably have something that |
| // does not fit in a signed long long, but has no U suffix. |
| if (Ty.isNull()) { |
| Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); |
| Ty = Context.UnsignedLongLongTy; |
| Width = Context.Target.getLongLongWidth(); |
| } |
| |
| if (ResultVal.getBitWidth() != Width) |
| ResultVal = ResultVal.trunc(Width); |
| } |
| Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); |
| } |
| |
| // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
| if (Literal.isImaginary) |
| Res = new (Context) ImaginaryLiteral(Res, |
| Context.getComplexType(Res->getType())); |
| |
| return Owned(Res); |
| } |
| |
| ExprResult Sema::ActOnParenExpr(SourceLocation L, |
| SourceLocation R, Expr *E) { |
| assert((E != 0) && "ActOnParenExpr() missing expr"); |
| return Owned(new (Context) ParenExpr(L, R, E)); |
| } |
| |
| /// The UsualUnaryConversions() function is *not* called by this routine. |
| /// See C99 6.3.2.1p[2-4] for more details. |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType, |
| SourceLocation OpLoc, |
| SourceRange ExprRange, |
| UnaryExprOrTypeTrait ExprKind) { |
| if (exprType->isDependentType()) |
| return false; |
| |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the |
| // result shall be the alignment of the referenced type." |
| if (const ReferenceType *Ref = exprType->getAs<ReferenceType>()) |
| exprType = Ref->getPointeeType(); |
| |
| // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in |
| // scalar or vector data type argument..." |
| // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic |
| // type (C99 6.2.5p18) or void. |
| if (ExprKind == UETT_VecStep) { |
| if (!(exprType->isArithmeticType() || exprType->isVoidType() || |
| exprType->isVectorType())) { |
| Diag(OpLoc, diag::err_vecstep_non_scalar_vector_type) |
| << exprType << ExprRange; |
| return true; |
| } |
| } |
| |
| // C99 6.5.3.4p1: |
| if (exprType->isFunctionType()) { |
| // alignof(function) is allowed as an extension. |
| if (ExprKind == UETT_SizeOf) |
| Diag(OpLoc, diag::ext_sizeof_function_type) |
| << ExprRange; |
| return false; |
| } |
| |
| // Allow sizeof(void)/alignof(void) as an extension. vec_step(void) is not |
| // an extension, as void is a built-in scalar type (OpenCL 1.1 6.1.1). |
| if (exprType->isVoidType()) { |
| if (ExprKind != UETT_VecStep) |
| Diag(OpLoc, diag::ext_sizeof_void_type) |
| << ExprKind << ExprRange; |
| return false; |
| } |
| |
| if (RequireCompleteType(OpLoc, exprType, |
| PDiag(diag::err_sizeof_alignof_incomplete_type) |
| << ExprKind << ExprRange)) |
| return true; |
| |
| // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode. |
| if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) { |
| Diag(OpLoc, diag::err_sizeof_nonfragile_interface) |
| << exprType << (ExprKind == UETT_SizeOf) |
| << ExprRange; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc, |
| SourceRange ExprRange) { |
| E = E->IgnoreParens(); |
| |
| // alignof decl is always ok. |
| if (isa<DeclRefExpr>(E)) |
| return false; |
| |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| if (E->getBitField()) { |
| S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange; |
| return true; |
| } |
| |
| // Alignment of a field access is always okay, so long as it isn't a |
| // bit-field. |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| if (isa<FieldDecl>(ME->getMemberDecl())) |
| return false; |
| |
| return S.CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange, |
| UETT_AlignOf); |
| } |
| |
| bool Sema::CheckVecStepExpr(Expr *E, SourceLocation OpLoc, |
| SourceRange ExprRange) { |
| E = E->IgnoreParens(); |
| |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| return CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange, |
| UETT_VecStep); |
| } |
| |
| /// \brief Build a sizeof or alignof expression given a type operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, |
| SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| if (!TInfo) |
| return ExprError(); |
| |
| QualType T = TInfo->getType(); |
| |
| if (!T->isDependentType() && |
| CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) |
| return ExprError(); |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo, |
| Context.getSizeType(), |
| OpLoc, R.getEnd())); |
| } |
| |
| /// \brief Build a sizeof or alignof expression given an expression |
| /// operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| // Verify that the operand is valid. |
| bool isInvalid = false; |
| if (E->isTypeDependent()) { |
| // Delay type-checking for type-dependent expressions. |
| } else if (ExprKind == UETT_AlignOf) { |
| isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R); |
| } else if (ExprKind == UETT_VecStep) { |
| isInvalid = CheckVecStepExpr(E, OpLoc, R); |
| } else if (E->getBitField()) { // C99 6.5.3.4p1. |
| Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0; |
| isInvalid = true; |
| } else if (E->getType()->isPlaceholderType()) { |
| ExprResult PE = CheckPlaceholderExpr(E); |
| if (PE.isInvalid()) return ExprError(); |
| return CreateUnaryExprOrTypeTraitExpr(PE.take(), OpLoc, ExprKind, R); |
| } else { |
| isInvalid = CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, R, |
| UETT_SizeOf); |
| } |
| |
| if (isInvalid) |
| return ExprError(); |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, E, |
| Context.getSizeType(), |
| OpLoc, R.getEnd())); |
| } |
| |
| /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c |
| /// expr and the same for @c alignof and @c __alignof |
| /// Note that the ArgRange is invalid if isType is false. |
| ExprResult |
| Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, bool isType, |
| void *TyOrEx, const SourceRange &ArgRange) { |
| // If error parsing type, ignore. |
| if (TyOrEx == 0) return ExprError(); |
| |
| if (isType) { |
| TypeSourceInfo *TInfo; |
| (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); |
| return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); |
| } |
| |
| Expr *ArgEx = (Expr *)TyOrEx; |
| ExprResult Result |
| = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind, |
| ArgEx->getSourceRange()); |
| |
| return move(Result); |
| } |
| |
| static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, |
| bool isReal) { |
| if (V.get()->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| // _Real and _Imag are only l-values for normal l-values. |
| if (V.get()->getObjectKind() != OK_Ordinary) { |
| V = S.DefaultLvalueConversion(V.take()); |
| if (V.isInvalid()) |
| return QualType(); |
| } |
| |
| // These operators return the element type of a complex type. |
| if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) |
| return CT->getElementType(); |
| |
| // Otherwise they pass through real integer and floating point types here. |
| if (V.get()->getType()->isArithmeticType()) |
| return V.get()->getType(); |
| |
| // Test for placeholders. |
| ExprResult PR = S.CheckPlaceholderExpr(V.get()); |
| if (PR.isInvalid()) return QualType(); |
| if (PR.get() != V.get()) { |
| V = move(PR); |
| return CheckRealImagOperand(S, V, Loc, isReal); |
| } |
| |
| // Reject anything else. |
| S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() |
| << (isReal ? "__real" : "__imag"); |
| return QualType(); |
| } |
| |
| |
| |
| ExprResult |
| Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Kind, Expr *Input) { |
| UnaryOperatorKind Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UO_PostInc; break; |
| case tok::minusminus: Opc = UO_PostDec; break; |
| } |
| |
| return BuildUnaryOp(S, OpLoc, Opc, Input); |
| } |
| |
| /// Expressions of certain arbitrary types are forbidden by C from |
| /// having l-value type. These are: |
| /// - 'void', but not qualified void |
| /// - function types |
| /// |
| /// The exact rule here is C99 6.3.2.1: |
| /// An lvalue is an expression with an object type or an incomplete |
| /// type other than void. |
| static bool IsCForbiddenLValueType(ASTContext &C, QualType T) { |
| return ((T->isVoidType() && !T.hasQualifiers()) || |
| T->isFunctionType()); |
| } |
| |
| ExprResult |
| Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, |
| Expr *Idx, SourceLocation RLoc) { |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); |
| if (Result.isInvalid()) return ExprError(); |
| Base = Result.take(); |
| |
| Expr *LHSExp = Base, *RHSExp = Idx; |
| |
| if (getLangOptions().CPlusPlus && |
| (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) { |
| return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, |
| Context.DependentTy, |
| VK_LValue, OK_Ordinary, |
| RLoc)); |
| } |
| |
| if (getLangOptions().CPlusPlus && |
| (LHSExp->getType()->isRecordType() || |
| LHSExp->getType()->isEnumeralType() || |
| RHSExp->getType()->isRecordType() || |
| RHSExp->getType()->isEnumeralType())) { |
| return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx); |
| } |
| |
| return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc); |
| } |
| |
| |
| ExprResult |
| Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, |
| Expr *Idx, SourceLocation RLoc) { |
| Expr *LHSExp = Base; |
| Expr *RHSExp = Idx; |
| |
| // Perform default conversions. |
| if (!LHSExp->getType()->getAs<VectorType>()) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LHSExp = Result.take(); |
| } |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| RHSExp = Result.take(); |
| |
| QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
| ExprValueKind VK = VK_LValue; |
| ExprObjectKind OK = OK_Ordinary; |
| |
| // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
| // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
| // in the subscript position. As a result, we need to derive the array base |
| // and index from the expression types. |
| Expr *BaseExpr, *IndexExpr; |
| QualType ResultType; |
| if (LHSTy->isDependentType() || RHSTy->isDependentType()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = Context.DependentTy; |
| } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| LHSTy->getAs<ObjCObjectPointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| RHSTy->getAs<ObjCObjectPointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { |
| BaseExpr = LHSExp; // vectors: V[123] |
| IndexExpr = RHSExp; |
| VK = LHSExp->getValueKind(); |
| if (VK != VK_RValue) |
| OK = OK_VectorComponent; |
| |
| // FIXME: need to deal with const... |
| ResultType = VTy->getElementType(); |
| } else if (LHSTy->isArrayType()) { |
| // If we see an array that wasn't promoted by |
| // DefaultFunctionArrayLvalueConversion, it must be an array that |
| // wasn't promoted because of the C90 rule that doesn't |
| // allow promoting non-lvalue arrays. Warn, then |
| // force the promotion here. |
| Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << |
| LHSExp->getSourceRange(); |
| LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), |
| CK_ArrayToPointerDecay).take(); |
| LHSTy = LHSExp->getType(); |
| |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); |
| } else if (RHSTy->isArrayType()) { |
| // Same as previous, except for 123[f().a] case |
| Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << |
| RHSExp->getSourceRange(); |
| RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), |
| CK_ArrayToPointerDecay).take(); |
| RHSTy = RHSExp->getType(); |
| |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); |
| } else { |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) |
| << LHSExp->getSourceRange() << RHSExp->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) |
| << IndexExpr->getSourceRange()); |
| |
| if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| && !IndexExpr->isTypeDependent()) |
| Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
| // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
| // type. Note that Functions are not objects, and that (in C99 parlance) |
| // incomplete types are not object types. |
| if (ResultType->isFunctionType()) { |
| Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) { |
| // GNU extension: subscripting on pointer to void |
| Diag(LLoc, diag::ext_gnu_void_ptr) |
| << BaseExpr->getSourceRange(); |
| |
| // C forbids expressions of unqualified void type from being l-values. |
| // See IsCForbiddenLValueType. |
| if (!ResultType.hasQualifiers()) VK = VK_RValue; |
| } else if (!ResultType->isDependentType() && |
| RequireCompleteType(LLoc, ResultType, |
| PDiag(diag::err_subscript_incomplete_type) |
| << BaseExpr->getSourceRange())) |
| return ExprError(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { |
| Diag(LLoc, diag::err_subscript_nonfragile_interface) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| assert(VK == VK_RValue || LangOpts.CPlusPlus || |
| !IsCForbiddenLValueType(Context, ResultType)); |
| |
| return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, |
| ResultType, VK, OK, RLoc)); |
| } |
| |
| /// Check an ext-vector component access expression. |
| /// |
| /// VK should be set in advance to the value kind of the base |
| /// expression. |
| static QualType |
| CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, |
| SourceLocation OpLoc, const IdentifierInfo *CompName, |
| SourceLocation CompLoc) { |
| // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, |
| // see FIXME there. |
| // |
| // FIXME: This logic can be greatly simplified by splitting it along |
| // halving/not halving and reworking the component checking. |
| const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); |
| |
| // The vector accessor can't exceed the number of elements. |
| const char *compStr = CompName->getNameStart(); |
| |
| // This flag determines whether or not the component is one of the four |
| // special names that indicate a subset of exactly half the elements are |
| // to be selected. |
| bool HalvingSwizzle = false; |
| |
| // This flag determines whether or not CompName has an 's' char prefix, |
| // indicating that it is a string of hex values to be used as vector indices. |
| bool HexSwizzle = *compStr == 's' || *compStr == 'S'; |
| |
| bool HasRepeated = false; |
| bool HasIndex[16] = {}; |
| |
| int Idx; |
| |
| // Check that we've found one of the special components, or that the component |
| // names must come from the same set. |
| if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || |
| !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { |
| HalvingSwizzle = true; |
| } else if (!HexSwizzle && |
| (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { |
| do { |
| if (HasIndex[Idx]) HasRepeated = true; |
| HasIndex[Idx] = true; |
| compStr++; |
| } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); |
| } else { |
| if (HexSwizzle) compStr++; |
| while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { |
| if (HasIndex[Idx]) HasRepeated = true; |
| HasIndex[Idx] = true; |
| compStr++; |
| } |
| } |
| |
| if (!HalvingSwizzle && *compStr) { |
| // We didn't get to the end of the string. This means the component names |
| // didn't come from the same set *or* we encountered an illegal name. |
| S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) |
| << llvm::StringRef(compStr, 1) << SourceRange(CompLoc); |
| return QualType(); |
| } |
| |
| // Ensure no component accessor exceeds the width of the vector type it |
| // operates on. |
| if (!HalvingSwizzle) { |
| compStr = CompName->getNameStart(); |
| |
| if (HexSwizzle) |
| compStr++; |
| |
| while (*compStr) { |
| if (!vecType->isAccessorWithinNumElements(*compStr++)) { |
| S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) |
| << baseType << SourceRange(CompLoc); |
| return QualType(); |
| } |
| } |
| } |
| |
| // The component accessor looks fine - now we need to compute the actual type. |
| // The vector type is implied by the component accessor. For example, |
| // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. |
| // vec4.s0 is a float, vec4.s23 is a vec3, etc. |
| // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. |
| unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 |
| : CompName->getLength(); |
| if (HexSwizzle) |
| CompSize--; |
| |
| if (CompSize == 1) |
| return vecType->getElementType(); |
| |
| if (HasRepeated) VK = VK_RValue; |
| |
| QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); |
| // Now look up the TypeDefDecl from the vector type. Without this, |
| // diagostics look bad. We want extended vector types to appear built-in. |
| for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) { |
| if (S.ExtVectorDecls[i]->getUnderlyingType() == VT) |
| return S.Context.getTypedefType(S.ExtVectorDecls[i]); |
| } |
| return VT; // should never get here (a typedef type should always be found). |
| } |
| |
| static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, |
| IdentifierInfo *Member, |
| const Selector &Sel, |
| ASTContext &Context) { |
| if (Member) |
| if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member)) |
| return PD; |
| if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) |
| return OMD; |
| |
| for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(), |
| E = PDecl->protocol_end(); I != E; ++I) { |
| if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel, |
| Context)) |
| return D; |
| } |
| return 0; |
| } |
| |
| static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, |
| IdentifierInfo *Member, |
| const Selector &Sel, |
| ASTContext &Context) { |
| // Check protocols on qualified interfaces. |
| Decl *GDecl = 0; |
| for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), |
| E = QIdTy->qual_end(); I != E; ++I) { |
| if (Member) |
| if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { |
| GDecl = PD; |
| break; |
| } |
| // Also must look for a getter or setter name which uses property syntax. |
| if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) { |
| GDecl = OMD; |
| break; |
| } |
| } |
| if (!GDecl) { |
| for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), |
| E = QIdTy->qual_end(); I != E; ++I) { |
| // Search in the protocol-qualifier list of current protocol. |
| GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel, |
| Context); |
| if (GDecl) |
| return GDecl; |
| } |
| } |
| return GDecl; |
| } |
| |
| ExprResult |
| Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, |
| bool IsArrow, SourceLocation OpLoc, |
| const CXXScopeSpec &SS, |
| NamedDecl *FirstQualifierInScope, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| // Even in dependent contexts, try to diagnose base expressions with |
| // obviously wrong types, e.g.: |
| // |
| // T* t; |
| // t.f; |
| // |
| // In Obj-C++, however, the above expression is valid, since it could be |
| // accessing the 'f' property if T is an Obj-C interface. The extra check |
| // allows this, while still reporting an error if T is a struct pointer. |
| if (!IsArrow) { |
| const PointerType *PT = BaseType->getAs<PointerType>(); |
| if (PT && (!getLangOptions().ObjC1 || |
| PT->getPointeeType()->isRecordType())) { |
| assert(BaseExpr && "cannot happen with implicit member accesses"); |
| Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union) |
| << BaseType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| assert(BaseType->isDependentType() || |
| NameInfo.getName().isDependentName() || |
| isDependentScopeSpecifier(SS)); |
| |
| // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr |
| // must have pointer type, and the accessed type is the pointee. |
| return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType, |
| IsArrow, OpLoc, |
| SS.getWithLocInContext(Context), |
| FirstQualifierInScope, |
| NameInfo, TemplateArgs)); |
| } |
| |
| /// We know that the given qualified member reference points only to |
| /// declarations which do not belong to the static type of the base |
| /// expression. Diagnose the problem. |
| static void DiagnoseQualifiedMemberReference(Sema &SemaRef, |
| Expr *BaseExpr, |
| QualType BaseType, |
| const CXXScopeSpec &SS, |
| NamedDecl *rep, |
| const DeclarationNameInfo &nameInfo) { |
| // If this is an implicit member access, use a different set of |
| // diagnostics. |
| if (!BaseExpr) |
| return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo); |
| |
| SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) |
| << SS.getRange() << rep << BaseType; |
| } |
| |
| // Check whether the declarations we found through a nested-name |
| // specifier in a member expression are actually members of the base |
| // type. The restriction here is: |
| // |
| // C++ [expr.ref]p2: |
| // ... In these cases, the id-expression shall name a |
| // member of the class or of one of its base classes. |
| // |
| // So it's perfectly legitimate for the nested-name specifier to name |
| // an unrelated class, and for us to find an overload set including |
| // decls from classes which are not superclasses, as long as the decl |
| // we actually pick through overload resolution is from a superclass. |
| bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, |
| QualType BaseType, |
| const CXXScopeSpec &SS, |
| const LookupResult &R) { |
| const RecordType *BaseRT = BaseType->getAs<RecordType>(); |
| if (!BaseRT) { |
| // We can't check this yet because the base type is still |
| // dependent. |
| assert(BaseType->isDependentType()); |
| return false; |
| } |
| CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl()); |
| |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| // If this is an implicit member reference and we find a |
| // non-instance member, it's not an error. |
| if (!BaseExpr && !(*I)->isCXXInstanceMember()) |
| return false; |
| |
| // Note that we use the DC of the decl, not the underlying decl. |
| DeclContext *DC = (*I)->getDeclContext(); |
| while (DC->isTransparentContext()) |
| DC = DC->getParent(); |
| |
| if (!DC->isRecord()) |
| continue; |
| |
| llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord; |
| MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl()); |
| |
| if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord)) |
| return false; |
| } |
| |
| DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, |
| R.getRepresentativeDecl(), |
| R.getLookupNameInfo()); |
| return true; |
| } |
| |
| static bool |
| LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, |
| SourceRange BaseRange, const RecordType *RTy, |
| SourceLocation OpLoc, CXXScopeSpec &SS, |
| bool HasTemplateArgs) { |
| RecordDecl *RDecl = RTy->getDecl(); |
| if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), |
| SemaRef.PDiag(diag::err_typecheck_incomplete_tag) |
| << BaseRange)) |
| return true; |
| |
| if (HasTemplateArgs) { |
| // LookupTemplateName doesn't expect these both to exist simultaneously. |
| QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); |
| |
| bool MOUS; |
| SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS); |
| return false; |
| } |
| |
| DeclContext *DC = RDecl; |
| if (SS.isSet()) { |
| // If the member name was a qualified-id, look into the |
| // nested-name-specifier. |
| DC = SemaRef.computeDeclContext(SS, false); |
| |
| if (SemaRef.RequireCompleteDeclContext(SS, DC)) { |
| SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) |
| << SS.getRange() << DC; |
| return true; |
| } |
| |
| assert(DC && "Cannot handle non-computable dependent contexts in lookup"); |
| |
| if (!isa<TypeDecl>(DC)) { |
| SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) |
| << DC << SS.getRange(); |
| return true; |
| } |
| } |
| |
| // The record definition is complete, now look up the member. |
| SemaRef.LookupQualifiedName(R, DC); |
| |
| if (!R.empty()) |
| return false; |
| |
| // We didn't find anything with the given name, so try to correct |
| // for typos. |
| DeclarationName Name = R.getLookupName(); |
| if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) && |
| !R.empty() && |
| (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) { |
| SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest) |
| << Name << DC << R.getLookupName() << SS.getRange() |
| << FixItHint::CreateReplacement(R.getNameLoc(), |
| R.getLookupName().getAsString()); |
| if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) |
| SemaRef.Diag(ND->getLocation(), diag::note_previous_decl) |
| << ND->getDeclName(); |
| return false; |
| } else { |
| R.clear(); |
| R.setLookupName(Name); |
| } |
| |
| return false; |
| } |
| |
| ExprResult |
| Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, |
| SourceLocation OpLoc, bool IsArrow, |
| CXXScopeSpec &SS, |
| NamedDecl *FirstQualifierInScope, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| if (BaseType->isDependentType() || |
| (SS.isSet() && isDependentScopeSpecifier(SS))) |
| return ActOnDependentMemberExpr(Base, BaseType, |
| IsArrow, OpLoc, |
| SS, FirstQualifierInScope, |
| NameInfo, TemplateArgs); |
| |
| LookupResult R(*this, NameInfo, LookupMemberName); |
| |
| // Implicit member accesses. |
| if (!Base) { |
| QualType RecordTy = BaseType; |
| if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType(); |
| if (LookupMemberExprInRecord(*this, R, SourceRange(), |
| RecordTy->getAs<RecordType>(), |
| OpLoc, SS, TemplateArgs != 0)) |
| return ExprError(); |
| |
| // Explicit member accesses. |
| } else { |
| ExprResult BaseResult = Owned(Base); |
| ExprResult Result = |
| LookupMemberExpr(R, BaseResult, IsArrow, OpLoc, |
| SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0); |
| |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.take(); |
| |
| if (Result.isInvalid()) { |
| Owned(Base); |
| return ExprError(); |
| } |
| |
| if (Result.get()) |
| return move(Result); |
| |
| // LookupMemberExpr can modify Base, and thus change BaseType |
| BaseType = Base->getType(); |
| } |
| |
| return BuildMemberReferenceExpr(Base, BaseType, |
| OpLoc, IsArrow, SS, FirstQualifierInScope, |
| R, TemplateArgs); |
| } |
| |
| ExprResult |
| Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, |
| SourceLocation OpLoc, bool IsArrow, |
| const CXXScopeSpec &SS, |
| NamedDecl *FirstQualifierInScope, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs, |
| bool SuppressQualifierCheck) { |
| QualType BaseType = BaseExprType; |
| if (IsArrow) { |
| assert(BaseType->isPointerType()); |
| BaseType = BaseType->getAs<PointerType>()->getPointeeType(); |
| } |
| R.setBaseObjectType(BaseType); |
| |
| const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); |
| DeclarationName MemberName = MemberNameInfo.getName(); |
| SourceLocation MemberLoc = MemberNameInfo.getLoc(); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.empty()) { |
| // Rederive where we looked up. |
| DeclContext *DC = (SS.isSet() |
| ? computeDeclContext(SS, false) |
| : BaseType->getAs<RecordType>()->getDecl()); |
| |
| Diag(R.getNameLoc(), diag::err_no_member) |
| << MemberName << DC |
| << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); |
| return ExprError(); |
| } |
| |
| // Diagnose lookups that find only declarations from a non-base |
| // type. This is possible for either qualified lookups (which may |
| // have been qualified with an unrelated type) or implicit member |
| // expressions (which were found with unqualified lookup and thus |
| // may have come from an enclosing scope). Note that it's okay for |
| // lookup to find declarations from a non-base type as long as those |
| // aren't the ones picked by overload resolution. |
| if ((SS.isSet() || !BaseExpr || |
| (isa<CXXThisExpr>(BaseExpr) && |
| cast<CXXThisExpr>(BaseExpr)->isImplicit())) && |
| !SuppressQualifierCheck && |
| CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) |
| return ExprError(); |
| |
| // Construct an unresolved result if we in fact got an unresolved |
| // result. |
| if (R.isOverloadedResult() || R.isUnresolvableResult()) { |
| // Suppress any lookup-related diagnostics; we'll do these when we |
| // pick a member. |
| R.suppressDiagnostics(); |
| |
| UnresolvedMemberExpr *MemExpr |
| = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), |
| BaseExpr, BaseExprType, |
| IsArrow, OpLoc, |
| SS.getWithLocInContext(Context), |
| MemberNameInfo, |
| TemplateArgs, R.begin(), R.end()); |
| |
| return Owned(MemExpr); |
| } |
| |
| assert(R.isSingleResult()); |
| DeclAccessPair FoundDecl = R.begin().getPair(); |
| NamedDecl *MemberDecl = R.getFoundDecl(); |
| |
| // FIXME: diagnose the presence of template arguments now. |
| |
| // If the decl being referenced had an error, return an error for this |
| // sub-expr without emitting another error, in order to avoid cascading |
| // error cases. |
| if (MemberDecl->isInvalidDecl()) |
| return ExprError(); |
| |
| // Handle the implicit-member-access case. |
| if (!BaseExpr) { |
| // If this is not an instance member, convert to a non-member access. |
| if (!MemberDecl->isCXXInstanceMember()) |
| return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl); |
| |
| SourceLocation Loc = R.getNameLoc(); |
| if (SS.getRange().isValid()) |
| Loc = SS.getRange().getBegin(); |
| BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true); |
| } |
| |
| bool ShouldCheckUse = true; |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) { |
| // Don't diagnose the use of a virtual member function unless it's |
| // explicitly qualified. |
| if (MD->isVirtual() && !SS.isSet()) |
| ShouldCheckUse = false; |
| } |
| |
| // Check the use of this member. |
| if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) { |
| Owned(BaseExpr); |
| return ExprError(); |
| } |
| |
| // Perform a property load on the base regardless of whether we |
| // actually need it for the declaration. |
| if (BaseExpr->getObjectKind() == OK_ObjCProperty) { |
| ExprResult Result = ConvertPropertyForRValue(BaseExpr); |
| if (Result.isInvalid()) |
| return ExprError(); |
| BaseExpr = Result.take(); |
| } |
| |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) |
| return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, |
| SS, FD, FoundDecl, MemberNameInfo); |
| |
| if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) |
| // We may have found a field within an anonymous union or struct |
| // (C++ [class.union]). |
| return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, |
| BaseExpr, OpLoc); |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { |
| MarkDeclarationReferenced(MemberLoc, Var); |
| return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, |
| Var, FoundDecl, MemberNameInfo, |
| Var->getType().getNonReferenceType(), |
| VK_LValue, OK_Ordinary)); |
| } |
| |
| if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { |
| MarkDeclarationReferenced(MemberLoc, MemberDecl); |
| return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, |
| MemberFn, FoundDecl, MemberNameInfo, |
| MemberFn->getType(), |
| MemberFn->isInstance() ? VK_RValue : VK_LValue, |
| OK_Ordinary)); |
| } |
| assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); |
| |
| if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { |
| MarkDeclarationReferenced(MemberLoc, MemberDecl); |
| return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, |
| Enum, FoundDecl, MemberNameInfo, |
| Enum->getType(), VK_RValue, OK_Ordinary)); |
| } |
| |
| Owned(BaseExpr); |
| |
| // We found something that we didn't expect. Complain. |
| if (isa<TypeDecl>(MemberDecl)) |
| Diag(MemberLoc, diag::err_typecheck_member_reference_type) |
| << MemberName << BaseType << int(IsArrow); |
| else |
| Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) |
| << MemberName << BaseType << int(IsArrow); |
| |
| Diag(MemberDecl->getLocation(), diag::note_member_declared_here) |
| << MemberName; |
| R.suppressDiagnostics(); |
| return ExprError(); |
| } |
| |
| /// Given that normal member access failed on the given expression, |
| /// and given that the expression's type involves builtin-id or |
| /// builtin-Class, decide whether substituting in the redefinition |
| /// types would be profitable. The redefinition type is whatever |
| /// this translation unit tried to typedef to id/Class; we store |
| /// it to the side and then re-use it in places like this. |
| static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { |
| const ObjCObjectPointerType *opty |
| = base.get()->getType()->getAs<ObjCObjectPointerType>(); |
| if (!opty) return false; |
| |
| const ObjCObjectType *ty = opty->getObjectType(); |
| |
| QualType redef; |
| if (ty->isObjCId()) { |
| redef = S.Context.ObjCIdRedefinitionType; |
| } else if (ty->isObjCClass()) { |
| redef = S.Context.ObjCClassRedefinitionType; |
| } else { |
| return false; |
| } |
| |
| // Do the substitution as long as the redefinition type isn't just a |
| // possibly-qualified pointer to builtin-id or builtin-Class again. |
| opty = redef->getAs<ObjCObjectPointerType>(); |
| if (opty && !opty->getObjectType()->getInterface() != 0) |
| return false; |
| |
| base = S.ImpCastExprToType(base.take(), redef, CK_BitCast); |
| return true; |
| } |
| |
| /// Look up the given member of the given non-type-dependent |
| /// expression. This can return in one of two ways: |
| /// * If it returns a sentinel null-but-valid result, the caller will |
| /// assume that lookup was performed and the results written into |
| /// the provided structure. It will take over from there. |
| /// * Otherwise, the returned expression will be produced in place of |
| /// an ordinary member expression. |
| /// |
| /// The ObjCImpDecl bit is a gross hack that will need to be properly |
| /// fixed for ObjC++. |
| ExprResult |
| Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr, |
| bool &IsArrow, SourceLocation OpLoc, |
| CXXScopeSpec &SS, |
| Decl *ObjCImpDecl, bool HasTemplateArgs) { |
| assert(BaseExpr.get() && "no base expression"); |
| |
| // Perform default conversions. |
| BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take()); |
| |
| if (IsArrow) { |
| BaseExpr = DefaultLvalueConversion(BaseExpr.take()); |
| if (BaseExpr.isInvalid()) |
| return ExprError(); |
| } |
| |
| QualType BaseType = BaseExpr.get()->getType(); |
| assert(!BaseType->isDependentType()); |
| |
| DeclarationName MemberName = R.getLookupName(); |
| SourceLocation MemberLoc = R.getNameLoc(); |
| |
| // For later type-checking purposes, turn arrow accesses into dot |
| // accesses. The only access type we support that doesn't follow |
| // the C equivalence "a->b === (*a).b" is ObjC property accesses, |
| // and those never use arrows, so this is unaffected. |
| if (IsArrow) { |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| else if (const ObjCObjectPointerType *Ptr |
| = BaseType->getAs<ObjCObjectPointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| else if (BaseType->isRecordType()) { |
| // Recover from arrow accesses to records, e.g.: |
| // struct MyRecord foo; |
| // foo->bar |
| // This is actually well-formed in C++ if MyRecord has an |
| // overloaded operator->, but that should have been dealt with |
| // by now. |
| Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() |
| << FixItHint::CreateReplacement(OpLoc, "."); |
| IsArrow = false; |
| } else { |
| Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) |
| << BaseType << BaseExpr.get()->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| // Handle field access to simple records. |
| if (const RecordType *RTy = BaseType->getAs<RecordType>()) { |
| if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(), |
| RTy, OpLoc, SS, HasTemplateArgs)) |
| return ExprError(); |
| |
| // Returning valid-but-null is how we indicate to the caller that |
| // the lookup result was filled in. |
| return Owned((Expr*) 0); |
| } |
| |
| // Handle ivar access to Objective-C objects. |
| if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| |
| // There are three cases for the base type: |
| // - builtin id (qualified or unqualified) |
| // - builtin Class (qualified or unqualified) |
| // - an interface |
| ObjCInterfaceDecl *IDecl = OTy->getInterface(); |
| if (!IDecl) { |
| // There's an implicit 'isa' ivar on all objects. |
| // But we only actually find it this way on objects of type 'id', |
| // apparently. |
| if (OTy->isObjCId() && Member->isStr("isa")) |
| return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc, |
| Context.getObjCClassType())); |
| |
| if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| goto fail; |
| } |
| |
| ObjCInterfaceDecl *ClassDeclared; |
| ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); |
| |
| if (!IV) { |
| // Attempt to correct for typos in ivar names. |
| LookupResult Res(*this, R.getLookupName(), R.getNameLoc(), |
| LookupMemberName); |
| if (CorrectTypo(Res, 0, 0, IDecl, false, |
| IsArrow ? CTC_ObjCIvarLookup |
| : CTC_ObjCPropertyLookup) && |
| (IV = Res.getAsSingle<ObjCIvarDecl>())) { |
| Diag(R.getNameLoc(), |
| diag::err_typecheck_member_reference_ivar_suggest) |
| << IDecl->getDeclName() << MemberName << IV->getDeclName() |
| << FixItHint::CreateReplacement(R.getNameLoc(), |
| IV->getNameAsString()); |
| Diag(IV->getLocation(), diag::note_previous_decl) |
| << IV->getDeclName(); |
| } else { |
| Res.clear(); |
| Res.setLookupName(Member); |
| |
| Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) |
| << IDecl->getDeclName() << MemberName |
| << BaseExpr.get()->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| // If the decl being referenced had an error, return an error for this |
| // sub-expr without emitting another error, in order to avoid cascading |
| // error cases. |
| if (IV->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check whether we can reference this field. |
| if (DiagnoseUseOfDecl(IV, MemberLoc)) |
| return ExprError(); |
| if (IV->getAccessControl() != ObjCIvarDecl::Public && |
| IV->getAccessControl() != ObjCIvarDecl::Package) { |
| ObjCInterfaceDecl *ClassOfMethodDecl = 0; |
| if (ObjCMethodDecl *MD = getCurMethodDecl()) |
| ClassOfMethodDecl = MD->getClassInterface(); |
| else if (ObjCImpDecl && getCurFunctionDecl()) { |
| // Case of a c-function declared inside an objc implementation. |
| // FIXME: For a c-style function nested inside an objc implementation |
| // class, there is no implementation context available, so we pass |
| // down the context as argument to this routine. Ideally, this context |
| // need be passed down in the AST node and somehow calculated from the |
| // AST for a function decl. |
| if (ObjCImplementationDecl *IMPD = |
| dyn_cast<ObjCImplementationDecl>(ObjCImpDecl)) |
| ClassOfMethodDecl = IMPD->getClassInterface(); |
| else if (ObjCCategoryImplDecl* CatImplClass = |
| dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl)) |
| ClassOfMethodDecl = CatImplClass->getClassInterface(); |
| } |
| |
| if (IV->getAccessControl() == ObjCIvarDecl::Private) { |
| if (ClassDeclared != IDecl || |
| ClassOfMethodDecl != ClassDeclared) |
| Diag(MemberLoc, diag::error_private_ivar_access) |
| << IV->getDeclName(); |
| } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) |
| // @protected |
| Diag(MemberLoc, diag::error_protected_ivar_access) |
| << IV->getDeclName(); |
| } |
| |
| return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(), |
| MemberLoc, BaseExpr.take(), |
| IsArrow)); |
| } |
| |
| // Objective-C property access. |
| const ObjCObjectPointerType *OPT; |
| if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { |
| // This actually uses the base as an r-value. |
| BaseExpr = DefaultLvalueConversion(BaseExpr.take()); |
| if (BaseExpr.isInvalid()) |
| return ExprError(); |
| |
| assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType())); |
| |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| |
| const ObjCObjectType *OT = OPT->getObjectType(); |
| |
| // id, with and without qualifiers. |
| if (OT->isObjCId()) { |
| // Check protocols on qualified interfaces. |
| Selector Sel = PP.getSelectorTable().getNullarySelector(Member); |
| if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) { |
| if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { |
| // Check the use of this declaration |
| if (DiagnoseUseOfDecl(PD, MemberLoc)) |
| return ExprError(); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), |
| VK_LValue, |
| OK_ObjCProperty, |
| MemberLoc, |
| BaseExpr.take())); |
| } |
| |
| if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { |
| // Check the use of this method. |
| if (DiagnoseUseOfDecl(OMD, MemberLoc)) |
| return ExprError(); |
| Selector SetterSel = |
| SelectorTable::constructSetterName(PP.getIdentifierTable(), |
| PP.getSelectorTable(), Member); |
| ObjCMethodDecl *SMD = 0; |
| if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0, |
| SetterSel, Context)) |
| SMD = dyn_cast<ObjCMethodDecl>(SDecl); |
| QualType PType = OMD->getSendResultType(); |
| |
| ExprValueKind VK = VK_LValue; |
| if (!getLangOptions().CPlusPlus && |
| IsCForbiddenLValueType(Context, PType)) |
| VK = VK_RValue; |
| ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType, |
| VK, OK, |
| MemberLoc, BaseExpr.take())); |
| } |
| } |
| // Use of id.member can only be for a property reference. Do not |
| // use the 'id' redefinition in this case. |
| if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| |
| return ExprError(Diag(MemberLoc, diag::err_property_not_found) |
| << MemberName << BaseType); |
| } |
| |
| // 'Class', unqualified only. |
| if (OT->isObjCClass()) { |
| // Only works in a method declaration (??!). |
| ObjCMethodDecl *MD = getCurMethodDecl(); |
| if (!MD) { |
| if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| |
| goto fail; |
| } |
| |
| // Also must look for a getter name which uses property syntax. |
| Selector Sel = PP.getSelectorTable().getNullarySelector(Member); |
| ObjCInterfaceDecl *IFace = MD->getClassInterface(); |
| ObjCMethodDecl *Getter; |
| if ((Getter = IFace->lookupClassMethod(Sel))) { |
| // Check the use of this method. |
| if (DiagnoseUseOfDecl(Getter, MemberLoc)) |
| return ExprError(); |
| } else |
| Getter = IFace->lookupPrivateMethod(Sel, false); |
| // If we found a getter then this may be a valid dot-reference, we |
| // will look for the matching setter, in case it is needed. |
| Selector SetterSel = |
| SelectorTable::constructSetterName(PP.getIdentifierTable(), |
| PP.getSelectorTable(), Member); |
| ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); |
| if (!Setter) { |
| // If this reference is in an @implementation, also check for 'private' |
| // methods. |
| Setter = IFace->lookupPrivateMethod(SetterSel, false); |
| } |
| // Look through local category implementations associated with the class. |
| if (!Setter) |
| Setter = IFace->getCategoryClassMethod(SetterSel); |
| |
| if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) |
| return ExprError(); |
| |
| if (Getter || Setter) { |
| QualType PType; |
| |
| ExprValueKind VK = VK_LValue; |
| if (Getter) { |
| PType = Getter->getSendResultType(); |
| if (!getLangOptions().CPlusPlus && |
| IsCForbiddenLValueType(Context, PType)) |
| VK = VK_RValue; |
| } else { |
| // Get the expression type from Setter's incoming parameter. |
| PType = (*(Setter->param_end() -1))->getType(); |
| } |
| ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty); |
| |
| // FIXME: we must check that the setter has property type. |
| return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, |
| PType, VK, OK, |
| MemberLoc, BaseExpr.take())); |
| } |
| |
| if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| |
| return ExprError(Diag(MemberLoc, diag::err_property_not_found) |
| << MemberName << BaseType); |
| } |
| |
| // Normal property access. |
| return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), MemberName, MemberLoc, |
| SourceLocation(), QualType(), false); |
| } |
| |
| // Handle 'field access' to vectors, such as 'V.xx'. |
| if (BaseType->isExtVectorType()) { |
| // FIXME: this expr should store IsArrow. |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind()); |
| QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc, |
| Member, MemberLoc); |
| if (ret.isNull()) |
| return ExprError(); |
| |
| return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(), |
| *Member, MemberLoc)); |
| } |
| |
| // Adjust builtin-sel to the appropriate redefinition type if that's |
| // not just a pointer to builtin-sel again. |
| if (IsArrow && |
| BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && |
| !Context.ObjCSelRedefinitionType->isObjCSelType()) { |
| BaseExpr = ImpCastExprToType(BaseExpr.take(), Context.ObjCSelRedefinitionType, |
| CK_BitCast); |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| } |
| |
| // Failure cases. |
| fail: |
| |
| // Recover from dot accesses to pointers, e.g.: |
| // type *foo; |
| // foo.bar |
| // This is actually well-formed in two cases: |
| // - 'type' is an Objective C type |
| // - 'bar' is a pseudo-destructor name which happens to refer to |
| // the appropriate pointer type |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
| if (!IsArrow && Ptr->getPointeeType()->isRecordType() && |
| MemberName.getNameKind() != DeclarationName::CXXDestructorName) { |
| Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() |
| << FixItHint::CreateReplacement(OpLoc, "->"); |
| |
| // Recurse as an -> access. |
| IsArrow = true; |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| } |
| } |
| |
| // If the user is trying to apply -> or . to a function name, it's probably |
| // because they forgot parentheses to call that function. |
| bool TryCall = false; |
| bool Overloaded = false; |
| UnresolvedSet<8> AllOverloads; |
| if (const OverloadExpr *Overloads = dyn_cast<OverloadExpr>(BaseExpr.get())) { |
| AllOverloads.append(Overloads->decls_begin(), Overloads->decls_end()); |
| TryCall = true; |
| Overloaded = true; |
| } else if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(BaseExpr.get())) { |
| if (FunctionDecl* Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) { |
| AllOverloads.addDecl(Fun); |
| TryCall = true; |
| } |
| } |
| |
| if (TryCall) { |
| // Plunder the overload set for something that would make the member |
| // expression valid. |
| UnresolvedSet<4> ViableOverloads; |
| bool HasViableZeroArgOverload = false; |
| for (OverloadExpr::decls_iterator it = AllOverloads.begin(), |
| DeclsEnd = AllOverloads.end(); it != DeclsEnd; ++it) { |
| // Our overload set may include TemplateDecls, which we'll ignore for the |
| // purposes of determining whether we can issue a '()' fixit. |
| if (const FunctionDecl *OverloadDecl = dyn_cast<FunctionDecl>(*it)) { |
| QualType ResultTy = OverloadDecl->getResultType(); |
| if ((!IsArrow && ResultTy->isRecordType()) || |
| (IsArrow && ResultTy->isPointerType() && |
| ResultTy->getPointeeType()->isRecordType())) { |
| ViableOverloads.addDecl(*it); |
| if (OverloadDecl->getMinRequiredArguments() == 0) { |
| HasViableZeroArgOverload = true; |
| } |
| } |
| } |
| } |
| |
| if (!HasViableZeroArgOverload || ViableOverloads.size() != 1) { |
| Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call) |
| << (AllOverloads.size() > 1) << 0 |
| << BaseExpr.get()->getSourceRange(); |
| int ViableOverloadCount = ViableOverloads.size(); |
| int I; |
| for (I = 0; I < ViableOverloadCount; ++I) { |
| // FIXME: Magic number for max shown overloads stolen from |
| // OverloadCandidateSet::NoteCandidates. |
| if (I >= 4 && Diags.getShowOverloads() == Diagnostic::Ovl_Best) { |
| break; |
| } |
| Diag(ViableOverloads[I].getDecl()->getSourceRange().getBegin(), |
| diag::note_member_ref_possible_intended_overload); |
| } |
| if (I != ViableOverloadCount) { |
| Diag(BaseExpr.get()->getExprLoc(), diag::note_ovl_too_many_candidates) |
| << int(ViableOverloadCount - I); |
| } |
| return ExprError(); |
| } |
| } else { |
| // We don't have an expression that's convenient to get a Decl from, but we |
| // can at least check if the type is "function of 0 arguments which returns |
| // an acceptable type". |
| const FunctionType *Fun = NULL; |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
| if ((Fun = Ptr->getPointeeType()->getAs<FunctionType>())) { |
| TryCall = true; |
| } |
| } else if ((Fun = BaseType->getAs<FunctionType>())) { |
| TryCall = true; |
| } |
| |
| if (TryCall) { |
| if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Fun)) { |
| if (FPT->getNumArgs() == 0) { |
| QualType ResultTy = Fun->getResultType(); |
| TryCall = (!IsArrow && ResultTy->isRecordType()) || |
| (IsArrow && ResultTy->isPointerType() && |
| ResultTy->getPointeeType()->isRecordType()); |
| } |
| } |
| } |
| } |
| |
| if (TryCall) { |
| // At this point, we know BaseExpr looks like it's potentially callable with |
| // 0 arguments, and that it returns something of a reasonable type, so we |
| // can emit a fixit and carry on pretending that BaseExpr was actually a |
| // CallExpr. |
| SourceLocation ParenInsertionLoc = |
| PP.getLocForEndOfToken(BaseExpr.get()->getLocEnd()); |
| Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call) |
| << int(Overloaded) << 1 |
| << BaseExpr.get()->getSourceRange() |
| << FixItHint::CreateInsertion(ParenInsertionLoc, "()"); |
| ExprResult NewBase = ActOnCallExpr(0, BaseExpr.take(), ParenInsertionLoc, |
| MultiExprArg(*this, 0, 0), |
| ParenInsertionLoc); |
| if (NewBase.isInvalid()) |
| return ExprError(); |
| BaseExpr = NewBase; |
| BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take()); |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| } |
| |
| Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union) |
| << BaseType << BaseExpr.get()->getSourceRange(); |
| |
| return ExprError(); |
| } |
| |
| /// The main callback when the parser finds something like |
| /// expression . [nested-name-specifier] identifier |
| /// expression -> [nested-name-specifier] identifier |
| /// where 'identifier' encompasses a fairly broad spectrum of |
| /// possibilities, including destructor and operator references. |
| /// |
| /// \param OpKind either tok::arrow or tok::period |
| /// \param HasTrailingLParen whether the next token is '(', which |
| /// is used to diagnose mis-uses of special members that can |
| /// only be called |
| /// \param ObjCImpDecl the current ObjC @implementation decl; |
| /// this is an ugly hack around the fact that ObjC @implementations |
| /// aren't properly put in the context chain |
| ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, |
| SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| CXXScopeSpec &SS, |
| UnqualifiedId &Id, |
| Decl *ObjCImpDecl, |
| bool HasTrailingLParen) { |
| if (SS.isSet() && SS.isInvalid()) |
| return ExprError(); |
| |
| // Warn about the explicit constructor calls Microsoft extension. |
| if (getLangOptions().Microsoft && |
| Id.getKind() == UnqualifiedId::IK_ConstructorName) |
| Diag(Id.getSourceRange().getBegin(), |
| diag::ext_ms_explicit_constructor_call); |
| |
| TemplateArgumentListInfo TemplateArgsBuffer; |
| |
| // Decompose the name into its component parts. |
| DeclarationNameInfo NameInfo; |
| const TemplateArgumentListInfo *TemplateArgs; |
| DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, |
| NameInfo, TemplateArgs); |
| |
| DeclarationName Name = NameInfo.getName(); |
| bool IsArrow = (OpKind == tok::arrow); |
| |
| NamedDecl *FirstQualifierInScope |
| = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S, |
| static_cast<NestedNameSpecifier*>(SS.getScopeRep()))); |
| |
| // This is a postfix expression, so get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); |
| if (Result.isInvalid()) return ExprError(); |
| Base = Result.take(); |
| |
| if (Base->getType()->isDependentType() || Name.isDependentName() || |
| isDependentScopeSpecifier(SS)) { |
| Result = ActOnDependentMemberExpr(Base, Base->getType(), |
| IsArrow, OpLoc, |
| SS, FirstQualifierInScope, |
| NameInfo, TemplateArgs); |
| } else { |
| LookupResult R(*this, NameInfo, LookupMemberName); |
| ExprResult BaseResult = Owned(Base); |
| Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc, |
| SS, ObjCImpDecl, TemplateArgs != 0); |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.take(); |
| |
| if (Result.isInvalid()) { |
| Owned(Base); |
| return ExprError(); |
| } |
| |
| if (Result.get()) { |
| // The only way a reference to a destructor can be used is to |
| // immediately call it, which falls into this case. If the |
| // next token is not a '(', produce a diagnostic and build the |
| // call now. |
| if (!HasTrailingLParen && |
| Id.getKind() == UnqualifiedId::IK_DestructorName) |
| return DiagnoseDtorReference(NameInfo.getLoc(), Result.get()); |
| |
| return move(Result); |
| } |
| |
| Result = BuildMemberReferenceExpr(Base, Base->getType(), |
| OpLoc, IsArrow, SS, FirstQualifierInScope, |
| R, TemplateArgs); |
| } |
| |
| return move(Result); |
| } |
| |
| ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, |
| FunctionDecl *FD, |
| ParmVarDecl *Param) { |
| if (Param->hasUnparsedDefaultArg()) { |
| Diag(CallLoc, |
| diag::err_use_of_default_argument_to_function_declared_later) << |
| FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); |
| Diag(UnparsedDefaultArgLocs[Param], |
| diag::note_default_argument_declared_here); |
| return ExprError(); |
| } |
| |
| if (Param->hasUninstantiatedDefaultArg()) { |
| Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); |
| |
| // Instantiate the expression. |
| MultiLevelTemplateArgumentList ArgList |
| = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true); |
| |
| std::pair<const TemplateArgument *, unsigned> Innermost |
| = ArgList.getInnermost(); |
| InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first, |
| Innermost.second); |
| |
| ExprResult Result; |
| { |
| // C++ [dcl.fct.default]p5: |
| // The names in the [default argument] expression are bound, and |
| // the semantic constraints are checked, at the point where the |
| // default argument expression appears. |
| ContextRAII SavedContext(*this, FD); |
| Result = SubstExpr(UninstExpr, ArgList); |
| } |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| // Check the expression as an initializer for the parameter. |
| InitializedEntity Entity |
| = InitializedEntity::InitializeParameter(Context, Param); |
| InitializationKind Kind |
| = InitializationKind::CreateCopy(Param->getLocation(), |
| /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin()); |
| Expr *ResultE = Result.takeAs<Expr>(); |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1); |
| Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &ResultE, 1)); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| // Build the default argument expression. |
| return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, |
| Result.takeAs<Expr>())); |
| } |
| |
| // If the default expression creates temporaries, we need to |
| // push them to the current stack of expression temporaries so they'll |
| // be properly destroyed. |
| // FIXME: We should really be rebuilding the default argument with new |
| // bound temporaries; see the comment in PR5810. |
| for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) { |
| CXXTemporary *Temporary = Param->getDefaultArgTemporary(i); |
| MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(), |
| const_cast<CXXDestructorDecl*>(Temporary->getDestructor())); |
| ExprTemporaries.push_back(Temporary); |
| } |
| |
| // We already type-checked the argument, so we know it works. |
| // Just mark all of the declarations in this potentially-evaluated expression |
| // as being "referenced". |
| MarkDeclarationsReferencedInExpr(Param->getDefaultArg()); |
| return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param)); |
| } |
| |
| /// ConvertArgumentsForCall - Converts the arguments specified in |
| /// Args/NumArgs to the parameter types of the function FDecl with |
| /// function prototype Proto. Call is the call expression itself, and |
| /// Fn is the function expression. For a C++ member function, this |
| /// routine does not attempt to convert the object argument. Returns |
| /// true if the call is ill-formed. |
| bool |
| Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, |
| FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc) { |
| // Bail out early if calling a builtin with custom typechecking. |
| // We don't need to do this in the |
| if (FDecl) |
| if (unsigned ID = FDecl->getBuiltinID()) |
| if (Context.BuiltinInfo.hasCustomTypechecking(ID)) |
| return false; |
| |
| // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
| // assignment, to the types of the corresponding parameter, ... |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| bool Invalid = false; |
| |
| // If too few arguments are available (and we don't have default |
| // arguments for the remaining parameters), don't make the call. |
| if (NumArgs < NumArgsInProto) { |
| if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) |
| return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) |
| << Fn->getType()->isBlockPointerType() |
| << NumArgsInProto << NumArgs << Fn->getSourceRange(); |
| Call->setNumArgs(Context, NumArgsInProto); |
| } |
| |
| // If too many are passed and not variadic, error on the extras and drop |
| // them. |
| if (NumArgs > NumArgsInProto) { |
| if (!Proto->isVariadic()) { |
| Diag(Args[NumArgsInProto]->getLocStart(), |
| diag::err_typecheck_call_too_many_args) |
| << Fn->getType()->isBlockPointerType() |
| << NumArgsInProto << NumArgs << Fn->getSourceRange() |
| << SourceRange(Args[NumArgsInProto]->getLocStart(), |
| Args[NumArgs-1]->getLocEnd()); |
| |
| // Emit the location of the prototype. |
| if (FDecl && !FDecl->getBuiltinID()) |
| Diag(FDecl->getLocStart(), |
| diag::note_typecheck_call_too_many_args) |
| << FDecl; |
| |
| // This deletes the extra arguments. |
| Call->setNumArgs(Context, NumArgsInProto); |
| return true; |
| } |
| } |
| llvm::SmallVector<Expr *, 8> AllArgs; |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; |
| if (Fn->getType()->isBlockPointerType()) |
| CallType = VariadicBlock; // Block |
| else if (isa<MemberExpr>(Fn)) |
| CallType = VariadicMethod; |
| Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl, |
| Proto, 0, Args, NumArgs, AllArgs, CallType); |
| if (Invalid) |
| return true; |
| unsigned TotalNumArgs = AllArgs.size(); |
| for (unsigned i = 0; i < TotalNumArgs; ++i) |
| Call->setArg(i, AllArgs[i]); |
| |
| return false; |
| } |
| |
| bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, |
| FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| unsigned FirstProtoArg, |
| Expr **Args, unsigned NumArgs, |
| llvm::SmallVector<Expr *, 8> &AllArgs, |
| VariadicCallType CallType) { |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| unsigned NumArgsToCheck = NumArgs; |
| bool Invalid = false; |
| if (NumArgs != NumArgsInProto) |
| // Use default arguments for missing arguments |
| NumArgsToCheck = NumArgsInProto; |
| unsigned ArgIx = 0; |
| // Continue to check argument types (even if we have too few/many args). |
| for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) { |
| QualType ProtoArgType = Proto->getArgType(i); |
| |
| Expr *Arg; |
| if (ArgIx < NumArgs) { |
| Arg = Args[ArgIx++]; |
| |
| if (RequireCompleteType(Arg->getSourceRange().getBegin(), |
| ProtoArgType, |
| PDiag(diag::err_call_incomplete_argument) |
| << Arg->getSourceRange())) |
| return true; |
| |
| // Pass the argument |
| ParmVarDecl *Param = 0; |
| if (FDecl && i < FDecl->getNumParams()) |
| Param = FDecl->getParamDecl(i); |
| |
| InitializedEntity Entity = |
| Param? InitializedEntity::InitializeParameter(Context, Param) |
| : InitializedEntity::InitializeParameter(Context, ProtoArgType); |
| ExprResult ArgE = PerformCopyInitialization(Entity, |
| SourceLocation(), |
| Owned(Arg)); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.takeAs<Expr>(); |
| } else { |
| ParmVarDecl *Param = FDecl->getParamDecl(i); |
| |
| ExprResult ArgExpr = |
| BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); |
| if (ArgExpr.isInvalid()) |
| return true; |
| |
| Arg = ArgExpr.takeAs<Expr>(); |
| } |
| AllArgs.push_back(Arg); |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (CallType != VariadicDoesNotApply) { |
| |
| // Assume that extern "C" functions with variadic arguments that |
| // return __unknown_anytype aren't *really* variadic. |
| if (Proto->getResultType() == Context.UnknownAnyTy && |
| FDecl && FDecl->isExternC()) { |
| for (unsigned i = ArgIx; i != NumArgs; ++i) { |
| ExprResult arg; |
| if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens())) |
| arg = DefaultFunctionArrayLvalueConversion(Args[i]); |
| else |
| arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl); |
| Invalid |= arg.isInvalid(); |
| AllArgs.push_back(arg.take()); |
| } |
| |
| // Otherwise do argument promotion, (C99 6.5.2.2p7). |
| } else { |
| for (unsigned i = ArgIx; i != NumArgs; ++i) { |
| ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl); |
| Invalid |= Arg.isInvalid(); |
| AllArgs.push_back(Arg.take()); |
| } |
| } |
| } |
| return Invalid; |
| } |
| |
| /// Given a function expression of unknown-any type, try to rebuild it |
| /// to have a function type. |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); |
| |
| /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. |
| /// This provides the location of the left/right parens and a list of comma |
| /// locations. |
| ExprResult |
| Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, |
| MultiExprArg args, SourceLocation RParenLoc, |
| Expr *ExecConfig) { |
| unsigned NumArgs = args.size(); |
| |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn); |
| if (Result.isInvalid()) return ExprError(); |
| Fn = Result.take(); |
| |
| Expr **Args = args.release(); |
| |
| if (getLangOptions().CPlusPlus) { |
| // If this is a pseudo-destructor expression, build the call immediately. |
| if (isa<CXXPseudoDestructorExpr>(Fn)) { |
| if (NumArgs > 0) { |
| // Pseudo-destructor calls should not have any arguments. |
| Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args) |
| << FixItHint::CreateRemoval( |
| SourceRange(Args[0]->getLocStart(), |
| Args[NumArgs-1]->getLocEnd())); |
| |
| NumArgs = 0; |
| } |
| |
| return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy, |
| VK_RValue, RParenLoc)); |
| } |
| |
| // Determine whether this is a dependent call inside a C++ template, |
| // in which case we won't do any semantic analysis now. |
| // FIXME: Will need to cache the results of name lookup (including ADL) in |
| // Fn. |
| bool Dependent = false; |
| if (Fn->isTypeDependent()) |
| Dependent = true; |
| else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) |
| Dependent = true; |
| |
| if (Dependent) { |
| if (ExecConfig) { |
| return Owned(new (Context) CUDAKernelCallExpr( |
| Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs, |
| Context.DependentTy, VK_RValue, RParenLoc)); |
| } else { |
| return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, |
| Context.DependentTy, VK_RValue, |
| RParenLoc)); |
| } |
| } |
| |
| // Determine whether this is a call to an object (C++ [over.call.object]). |
| if (Fn->getType()->isRecordType()) |
| return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, |
| RParenLoc)); |
| |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult result = rebuildUnknownAnyFunction(*this, Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.take(); |
| } |
| |
| Expr *NakedFn = Fn->IgnoreParens(); |
| |
| // Determine whether this is a call to an unresolved member function. |
| if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) { |
| // If lookup was unresolved but not dependent (i.e. didn't find |
| // an unresolved using declaration), it has to be an overloaded |
| // function set, which means it must contain either multiple |
| // declarations (all methods or method templates) or a single |
| // method template. |
| assert((MemE->getNumDecls() > 1) || |
| isa<FunctionTemplateDecl>( |
| (*MemE->decls_begin())->getUnderlyingDecl())); |
| (void)MemE; |
| |
| return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, |
| RParenLoc); |
| } |
| |
| // Determine whether this is a call to a member function. |
| if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) { |
| NamedDecl *MemDecl = MemExpr->getMemberDecl(); |
| if (isa<CXXMethodDecl>(MemDecl)) |
| return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, |
| RParenLoc); |
| } |
| |
| // Determine whether this is a call to a pointer-to-member function. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) { |
| if (BO->getOpcode() == BO_PtrMemD || |
| BO->getOpcode() == BO_PtrMemI) { |
| if (const FunctionProtoType *FPT |
| = BO->getType()->getAs<FunctionProtoType>()) { |
| QualType ResultTy = FPT->getCallResultType(Context); |
| ExprValueKind VK = Expr::getValueKindForType(FPT->getResultType()); |
| |
| // Check that the object type isn't more qualified than the |
| // member function we're calling. |
| Qualifiers FuncQuals = Qualifiers::fromCVRMask(FPT->getTypeQuals()); |
| Qualifiers ObjectQuals |
| = BO->getOpcode() == BO_PtrMemD |
| ? BO->getLHS()->getType().getQualifiers() |
| : BO->getLHS()->getType()->getAs<PointerType>() |
| ->getPointeeType().getQualifiers(); |
| |
| Qualifiers Difference = ObjectQuals - FuncQuals; |
| Difference.removeObjCGCAttr(); |
| Difference.removeAddressSpace(); |
| if (Difference) { |
| std::string QualsString = Difference.getAsString(); |
| Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) |
| << BO->getType().getUnqualifiedType() |
| << QualsString |
| << (QualsString.find(' ') == std::string::npos? 1 : 2); |
| } |
| |
| CXXMemberCallExpr *TheCall |
| = new (Context) CXXMemberCallExpr(Context, Fn, Args, |
| NumArgs, ResultTy, VK, |
| RParenLoc); |
| |
| if (CheckCallReturnType(FPT->getResultType(), |
| BO->getRHS()->getSourceRange().getBegin(), |
| TheCall, 0)) |
| return ExprError(); |
| |
| if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs, |
| RParenLoc)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall); |
| } |
| } |
| } |
| } |
| |
| // If we're directly calling a function, get the appropriate declaration. |
| // Also, in C++, keep track of whether we should perform argument-dependent |
| // lookup and whether there were any explicitly-specified template arguments. |
| |
| Expr *NakedFn = Fn->IgnoreParens(); |
| if (isa<UnresolvedLookupExpr>(NakedFn)) { |
| UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn); |
| return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs, |
| RParenLoc, ExecConfig); |
| } |
| |
| NamedDecl *NDecl = 0; |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) |
| if (UnOp->getOpcode() == UO_AddrOf) |
| NakedFn = UnOp->getSubExpr()->IgnoreParens(); |
| |
| if (isa<DeclRefExpr>(NakedFn)) |
| NDecl = cast<DeclRefExpr>(NakedFn)->getDecl(); |
| |
| return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc, |
| ExecConfig); |
| } |
| |
| ExprResult |
| Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, |
| MultiExprArg execConfig, SourceLocation GGGLoc) { |
| FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); |
| if (!ConfigDecl) |
| return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) |
| << "cudaConfigureCall"); |
| QualType ConfigQTy = ConfigDecl->getType(); |
| |
| DeclRefExpr *ConfigDR = new (Context) DeclRefExpr( |
| ConfigDecl, ConfigQTy, VK_LValue, LLLLoc); |
| |
| return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0); |
| } |
| |
| /// BuildResolvedCallExpr - Build a call to a resolved expression, |
| /// i.e. an expression not of \p OverloadTy. The expression should |
| /// unary-convert to an expression of function-pointer or |
| /// block-pointer type. |
| /// |
| /// \param NDecl the declaration being called, if available |
| ExprResult |
| Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc, |
| Expr *Config) { |
| FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); |
| |
| // Promote the function operand. |
| ExprResult Result = UsualUnaryConversions(Fn); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Fn = Result.take(); |
| |
| // Make the call expr early, before semantic checks. This guarantees cleanup |
| // of arguments and function on error. |
| CallExpr *TheCall; |
| if (Config) { |
| TheCall = new (Context) CUDAKernelCallExpr(Context, Fn, |
| cast<CallExpr>(Config), |
| Args, NumArgs, |
| Context.BoolTy, |
| VK_RValue, |
| RParenLoc); |
| } else { |
| TheCall = new (Context) CallExpr(Context, Fn, |
| Args, NumArgs, |
| Context.BoolTy, |
| VK_RValue, |
| RParenLoc); |
| } |
| |
| unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); |
| |
| // Bail out early if calling a builtin with custom typechecking. |
| if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) |
| return CheckBuiltinFunctionCall(BuiltinID, TheCall); |
| |
| retry: |
| const FunctionType *FuncT; |
| if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { |
| // C99 6.5.2.2p1 - "The expression that denotes the called function shall |
| // have type pointer to function". |
| FuncT = PT->getPointeeType()->getAs<FunctionType>(); |
| if (FuncT == 0) |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } else if (const BlockPointerType *BPT = |
| Fn->getType()->getAs<BlockPointerType>()) { |
| FuncT = BPT->getPointeeType()->castAs<FunctionType>(); |
| } else { |
| // Handle calls to expressions of unknown-any type. |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); |
| if (rewrite.isInvalid()) return ExprError(); |
| Fn = rewrite.take(); |
| TheCall->setCallee(Fn); |
| goto retry; |
| } |
| |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } |
| |
| if (getLangOptions().CUDA) { |
| if (Config) { |
| // CUDA: Kernel calls must be to global functions |
| if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) |
| return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) |
| << FDecl->getName() << Fn->getSourceRange()); |
| |
| // CUDA: Kernel function must have 'void' return type |
| if (!FuncT->getResultType()->isVoidType()) |
| return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) |
| << Fn->getType() << Fn->getSourceRange()); |
| } |
| } |
| |
| // Check for a valid return type |
| if (CheckCallReturnType(FuncT->getResultType(), |
| Fn->getSourceRange().getBegin(), TheCall, |
| FDecl)) |
| return ExprError(); |
| |
| // We know the result type of the call, set it. |
| TheCall->setType(FuncT->getCallResultType(Context)); |
| TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType())); |
| |
| if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) { |
| if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs, |
| RParenLoc)) |
| return ExprError(); |
| } else { |
| assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); |
| |
| if (FDecl) { |
| // Check if we have too few/too many template arguments, based |
| // on our knowledge of the function definition. |
| const FunctionDecl *Def = 0; |
| if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) { |
| const FunctionProtoType *Proto |
| = Def->getType()->getAs<FunctionProtoType>(); |
| if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) |
| Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) |
| << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange(); |
| } |
| |
| // If the function we're calling isn't a function prototype, but we have |
| // a function prototype from a prior declaratiom, use that prototype. |
| if (!FDecl->hasPrototype()) |
| Proto = FDecl->getType()->getAs<FunctionProtoType>(); |
| } |
| |
| // Promote the arguments (C99 6.5.2.2p6). |
| for (unsigned i = 0; i != NumArgs; i++) { |
| Expr *Arg = Args[i]; |
| |
| if (Proto && i < Proto->getNumArgs()) { |
| InitializedEntity Entity |
| = InitializedEntity::InitializeParameter(Context, |
| Proto->getArgType(i)); |
| ExprResult ArgE = PerformCopyInitialization(Entity, |
| SourceLocation(), |
| Owned(Arg)); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.takeAs<Expr>(); |
| |
| } else { |
| ExprResult ArgE = DefaultArgumentPromotion(Arg); |
| |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.takeAs<Expr>(); |
| } |
| |
| if (RequireCompleteType(Arg->getSourceRange().getBegin(), |
| Arg->getType(), |
| PDiag(diag::err_call_incomplete_argument) |
| << Arg->getSourceRange())) |
| return ExprError(); |
| |
| TheCall->setArg(i, Arg); |
| } |
| } |
| |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
| if (!Method->isStatic()) |
| return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) |
| << Fn->getSourceRange()); |
| |
| // Check for sentinels |
| if (NDecl) |
| DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs); |
| |
| // Do special checking on direct calls to functions. |
| if (FDecl) { |
| if (CheckFunctionCall(FDecl, TheCall)) |
| return ExprError(); |
| |
| if (BuiltinID) |
| return CheckBuiltinFunctionCall(BuiltinID, TheCall); |
| } else if (NDecl) { |
| if (CheckBlockCall(NDecl, TheCall)) |
| return ExprError(); |
| } |
| |
| return MaybeBindToTemporary(TheCall); |
| } |
| |
| ExprResult |
| Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, |
| SourceLocation RParenLoc, Expr *InitExpr) { |
| assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); |
| // FIXME: put back this assert when initializers are worked out. |
| //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); |
| |
| TypeSourceInfo *TInfo; |
| QualType literalType = GetTypeFromParser(Ty, &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(literalType); |
| |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); |
| } |
| |
| ExprResult |
| Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, Expr *literalExpr) { |
| QualType literalType = TInfo->getType(); |
| |
| if (literalType->isArrayType()) { |
| if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType), |
| PDiag(diag::err_illegal_decl_array_incomplete_type) |
| << SourceRange(LParenLoc, |
| literalExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| if (literalType->isVariableArrayType()) |
| return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) |
| << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())); |
| } else if (!literalType->isDependentType() && |
| RequireCompleteType(LParenLoc, literalType, |
| PDiag(diag::err_typecheck_decl_incomplete_type) |
| << SourceRange(LParenLoc, |
| literalExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| |
| InitializedEntity Entity |
| = InitializedEntity::InitializeTemporary(literalType); |
| InitializationKind Kind |
| = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc), |
| /*IsCStyleCast=*/true); |
| InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, &literalExpr, 1), |
| &literalType); |
| if (Result.isInvalid()) |
| return ExprError(); |
| literalExpr = Result.get(); |
| |
| bool isFileScope = getCurFunctionOrMethodDecl() == 0; |
| if (isFileScope) { // 6.5.2.5p3 |
| if (CheckForConstantInitializer(literalExpr, literalType)) |
| return ExprError(); |
| } |
| |
| // In C, compound literals are l-values for some reason. |
| ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue; |
| |
| return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, |
| VK, literalExpr, isFileScope)); |
| } |
| |
| ExprResult |
| Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist, |
| SourceLocation RBraceLoc) { |
| unsigned NumInit = initlist.size(); |
| Expr **InitList = initlist.release(); |
| |
| // Semantic analysis for initializers is done by ActOnDeclarator() and |
| // CheckInitializer() - it requires knowledge of the object being intialized. |
| |
| InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList, |
| NumInit, RBraceLoc); |
| E->setType(Context.VoidTy); // FIXME: just a place holder for now. |
| return Owned(E); |
| } |
| |
| /// Prepares for a scalar cast, performing all the necessary stages |
| /// except the final cast and returning the kind required. |
| static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) { |
| // Both Src and Dest are scalar types, i.e. arithmetic or pointer. |
| // Also, callers should have filtered out the invalid cases with |
| // pointers. Everything else should be possible. |
| |
| QualType SrcTy = Src.get()->getType(); |
| if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy)) |
| return CK_NoOp; |
| |
| switch (SrcTy->getScalarTypeKind()) { |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| |
| case Type::STK_Pointer: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_Pointer: |
| return DestTy->isObjCObjectPointerType() ? |
| CK_AnyPointerToObjCPointerCast : |
| CK_BitCast; |
| case Type::STK_Bool: |
| return CK_PointerToBoolean; |
| case Type::STK_Integral: |
| return CK_PointerToIntegral; |
| case Type::STK_Floating: |
| case Type::STK_FloatingComplex: |
| case Type::STK_IntegralComplex: |
| case Type::STK_MemberPointer: |
| llvm_unreachable("illegal cast from pointer"); |
| } |
| break; |
| |
| case Type::STK_Bool: // casting from bool is like casting from an integer |
| case Type::STK_Integral: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_Pointer: |
| if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) |
| return CK_NullToPointer; |
| return CK_IntegralToPointer; |
| case Type::STK_Bool: |
| return CK_IntegralToBoolean; |
| case Type::STK_Integral: |
| return CK_IntegralCast; |
| case Type::STK_Floating: |
| return CK_IntegralToFloating; |
| case Type::STK_IntegralComplex: |
| Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), |
| CK_IntegralCast); |
| return CK_IntegralRealToComplex; |
| case Type::STK_FloatingComplex: |
| Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), |
| CK_IntegralToFloating); |
| return CK_FloatingRealToComplex; |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| |
| case Type::STK_Floating: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_Floating: |
| return CK_FloatingCast; |
| case Type::STK_Bool: |
| return CK_FloatingToBoolean; |
| case Type::STK_Integral: |
| return CK_FloatingToIntegral; |
| case Type::STK_FloatingComplex: |
| Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), |
| CK_FloatingCast); |
| return CK_FloatingRealToComplex; |
| case Type::STK_IntegralComplex: |
| Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), |
| CK_FloatingToIntegral); |
| return CK_IntegralRealToComplex; |
| case Type::STK_Pointer: |
| llvm_unreachable("valid float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| |
| case Type::STK_FloatingComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_FloatingComplexCast; |
| case Type::STK_IntegralComplex: |
| return CK_FloatingComplexToIntegralComplex; |
| case Type::STK_Floating: { |
| QualType ET = SrcTy->getAs<ComplexType>()->getElementType(); |
| if (S.Context.hasSameType(ET, DestTy)) |
| return CK_FloatingComplexToReal; |
| Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal); |
| return CK_FloatingCast; |
| } |
| case Type::STK_Bool: |
| return CK_FloatingComplexToBoolean; |
| case Type::STK_Integral: |
| Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(), |
| CK_FloatingComplexToReal); |
| return CK_FloatingToIntegral; |
| case Type::STK_Pointer: |
| llvm_unreachable("valid complex float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| |
| case Type::STK_IntegralComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_IntegralComplexToFloatingComplex; |
| case Type::STK_IntegralComplex: |
| return CK_IntegralComplexCast; |
| case Type::STK_Integral: { |
| QualType ET = SrcTy->getAs<ComplexType>()->getElementType(); |
| if (S.Context.hasSameType(ET, DestTy)) |
| return CK_IntegralComplexToReal; |
| Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal); |
| return CK_IntegralCast; |
| } |
| case Type::STK_Bool: |
| return CK_IntegralComplexToBoolean; |
| case Type::STK_Floating: |
| Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(), |
| CK_IntegralComplexToReal); |
| return CK_IntegralToFloating; |
| case Type::STK_Pointer: |
| llvm_unreachable("valid complex int->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| break; |
| } |
| |
| llvm_unreachable("Unhandled scalar cast"); |
| return CK_BitCast; |
| } |
| |
| /// CheckCastTypes - Check type constraints for casting between types. |
| ExprResult Sema::CheckCastTypes(SourceRange TyR, QualType castType, |
| Expr *castExpr, CastKind& Kind, ExprValueKind &VK, |
| CXXCastPath &BasePath, bool FunctionalStyle) { |
| if (castExpr->getType() == Context.UnknownAnyTy) |
| return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath); |
| |
| if (getLangOptions().CPlusPlus) |
| return CXXCheckCStyleCast(SourceRange(TyR.getBegin(), |
| castExpr->getLocEnd()), |
| castType, VK, castExpr, Kind, BasePath, |
| FunctionalStyle); |
| |
| assert(!castExpr->getType()->isPlaceholderType()); |
| |
| // We only support r-value casts in C. |
| VK = VK_RValue; |
| |
| // C99 6.5.4p2: the cast type needs to be void or scalar and the expression |
| // type needs to be scalar. |
| if (castType->isVoidType()) { |
| // We don't necessarily do lvalue-to-rvalue conversions on this. |
| ExprResult castExprRes = IgnoredValueConversions(castExpr); |
| if (castExprRes.isInvalid()) |
| return ExprError(); |
| castExpr = castExprRes.take(); |
| |
| // Cast to void allows any expr type. |
| Kind = CK_ToVoid; |
| return Owned(castExpr); |
| } |
| |
| ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr); |
| if (castExprRes.isInvalid()) |
| return ExprError(); |
| castExpr = castExprRes.take(); |
| |
| if (RequireCompleteType(TyR.getBegin(), castType, |
| diag::err_typecheck_cast_to_incomplete)) |
| return ExprError(); |
| |
| if (!castType->isScalarType() && !castType->isVectorType()) { |
| if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) && |
| (castType->isStructureType() || castType->isUnionType())) { |
| // GCC struct/union extension: allow cast to self. |
| // FIXME: Check that the cast destination type is complete. |
| Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) |
| << castType << castExpr->getSourceRange(); |
| Kind = CK_NoOp; |
| return Owned(castExpr); |
| } |
| |
| if (castType->isUnionType()) { |
| // GCC cast to union extension |
| RecordDecl *RD = castType->getAs<RecordType>()->getDecl(); |
| RecordDecl::field_iterator Field, FieldEnd; |
| for (Field = RD->field_begin(), FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Context.hasSameUnqualifiedType(Field->getType(), |
| castExpr->getType()) && |
| !Field->isUnnamedBitfield()) { |
| Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union) |
| << castExpr->getSourceRange(); |
| break; |
| } |
| } |
| if (Field == FieldEnd) { |
| Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type) |
| << castExpr->getType() << castExpr->getSourceRange(); |
| return ExprError(); |
| } |
| Kind = CK_ToUnion; |
| return Owned(castExpr); |
| } |
| |
| // Reject any other conversions to non-scalar types. |
| Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) |
| << castType << castExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // The type we're casting to is known to be a scalar or vector. |
| |
| // Require the operand to be a scalar or vector. |
| if (!castExpr->getType()->isScalarType() && |
| !castExpr->getType()->isVectorType()) { |
| Diag(castExpr->getLocStart(), |
| diag::err_typecheck_expect_scalar_operand) |
| << castExpr->getType() << castExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (castType->isExtVectorType()) |
| return CheckExtVectorCast(TyR, castType, castExpr, Kind); |
| |
| if (castType->isVectorType()) { |
| if (castType->getAs<VectorType>()->getVectorKind() == |
| VectorType::AltiVecVector && |
| (castExpr->getType()->isIntegerType() || |
| castExpr->getType()->isFloatingType())) { |
| Kind = CK_VectorSplat; |
| return Owned(castExpr); |
| } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) { |
| return ExprError(); |
| } else |
| return Owned(castExpr); |
| } |
| if (castExpr->getType()->isVectorType()) { |
| if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind)) |
| return ExprError(); |
| else |
| return Owned(castExpr); |
| } |
| |
| // The source and target types are both scalars, i.e. |
| // - arithmetic types (fundamental, enum, and complex) |
| // - all kinds of pointers |
| // Note that member pointers were filtered out with C++, above. |
| |
| if (isa<ObjCSelectorExpr>(castExpr)) { |
| Diag(castExpr->getLocStart(), diag::err_cast_selector_expr); |
| return ExprError(); |
| } |
| |
| // If either type is a pointer, the other type has to be either an |
| // integer or a pointer. |
| if (!castType->isArithmeticType()) { |
| QualType castExprType = castExpr->getType(); |
| if (!castExprType->isIntegralType(Context) && |
| castExprType->isArithmeticType()) { |
| Diag(castExpr->getLocStart(), |
| diag::err_cast_pointer_from_non_pointer_int) |
| << castExprType << castExpr->getSourceRange(); |
| return ExprError(); |
| } |
| } else if (!castExpr->getType()->isArithmeticType()) { |
| if (!castType->isIntegralType(Context) && castType->isArithmeticType()) { |
| Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int) |
| << castType << castExpr->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| castExprRes = Owned(castExpr); |
| Kind = PrepareScalarCast(*this, castExprRes, castType); |
| if (castExprRes.isInvalid()) |
| return ExprError(); |
| castExpr = castExprRes.take(); |
| |
| if (Kind == CK_BitCast) |
| CheckCastAlign(castExpr, castType, TyR); |
| |
| return Owned(castExpr); |
| } |
| |
| bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, |
| CastKind &Kind) { |
| assert(VectorTy->isVectorType() && "Not a vector type!"); |
| |
| if (Ty->isVectorType() || Ty->isIntegerType()) { |
| if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) |
| return Diag(R.getBegin(), |
| Ty->isVectorType() ? |
| diag::err_invalid_conversion_between_vectors : |
| diag::err_invalid_conversion_between_vector_and_integer) |
| << VectorTy << Ty << R; |
| } else |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << VectorTy << Ty << R; |
| |
| Kind = CK_BitCast; |
| return false; |
| } |
| |
| ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, |
| Expr *CastExpr, CastKind &Kind) { |
| assert(DestTy->isExtVectorType() && "Not an extended vector type!"); |
| |
| QualType SrcTy = CastExpr->getType(); |
| |
| // If SrcTy is a VectorType, the total size must match to explicitly cast to |
| // an ExtVectorType. |
| if (SrcTy->isVectorType()) { |
| if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) { |
| Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) |
| << DestTy << SrcTy << R; |
| return ExprError(); |
| } |
| Kind = CK_BitCast; |
| return Owned(CastExpr); |
| } |
| |
| // All non-pointer scalars can be cast to ExtVector type. The appropriate |
| // conversion will take place first from scalar to elt type, and then |
| // splat from elt type to vector. |
| if (SrcTy->isPointerType()) |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << DestTy << SrcTy << R; |
| |
| QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType(); |
| ExprResult CastExprRes = Owned(CastExpr); |
| CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take(); |
| |
| Kind = CK_VectorSplat; |
| return Owned(CastExpr); |
| } |
| |
| ExprResult |
| Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty, |
| SourceLocation RParenLoc, Expr *castExpr) { |
| assert((Ty != 0) && (castExpr != 0) && |
| "ActOnCastExpr(): missing type or expr"); |
| |
| TypeSourceInfo *castTInfo; |
| QualType castType = GetTypeFromParser(Ty, &castTInfo); |
| if (!castTInfo) |
| castTInfo = Context.getTrivialTypeSourceInfo(castType); |
| |
| // If the Expr being casted is a ParenListExpr, handle it specially. |
| if (isa<ParenListExpr>(castExpr)) |
| return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr, |
| castTInfo); |
| |
| return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr); |
| } |
| |
| ExprResult |
| Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, |
| SourceLocation RParenLoc, Expr *castExpr) { |
| CastKind Kind = CK_Invalid; |
| ExprValueKind VK = VK_RValue; |
| CXXCastPath BasePath; |
| ExprResult CastResult = |
| CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr, |
| Kind, VK, BasePath); |
| if (CastResult.isInvalid()) |
| return ExprError(); |
| castExpr = CastResult.take(); |
| |
| return Owned(CStyleCastExpr::Create(Context, |
| Ty->getType().getNonLValueExprType(Context), |
| VK, Kind, castExpr, &BasePath, Ty, |
| LParenLoc, RParenLoc)); |
| } |
| |
| /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence |
| /// of comma binary operators. |
| ExprResult |
| Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) { |
| ParenListExpr *E = dyn_cast<ParenListExpr>(expr); |
| if (!E) |
| return Owned(expr); |
| |
| ExprResult Result(E->getExpr(0)); |
| |
| for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) |
| Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), |
| E->getExpr(i)); |
| |
| if (Result.isInvalid()) return ExprError(); |
| |
| return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); |
| } |
| |
| ExprResult |
| Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc, |
| SourceLocation RParenLoc, Expr *Op, |
| TypeSourceInfo *TInfo) { |
| ParenListExpr *PE = cast<ParenListExpr>(Op); |
| QualType Ty = TInfo->getType(); |
| bool isVectorLiteral = false; |
| |
| // Check for an altivec or OpenCL literal, |
| // i.e. all the elements are integer constants. |
| if (getLangOptions().AltiVec && Ty->isVectorType()) { |
| if (PE->getNumExprs() == 0) { |
| Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer); |
| return ExprError(); |
| } |
| if (PE->getNumExprs() == 1) { |
| if (!PE->getExpr(0)->getType()->isVectorType()) |
| isVectorLiteral = true; |
| } |
| else |
| isVectorLiteral = true; |
| } |
| |
| // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' |
| // then handle it as such. |
| if (isVectorLiteral) { |
| llvm::SmallVector<Expr *, 8> initExprs; |
| // '(...)' form of vector initialization in AltiVec: the number of |
| // initializers must be one or must match the size of the vector. |
| // If a single value is specified in the initializer then it will be |
| // replicated to all the components of the vector |
| if (Ty->getAs<VectorType>()->getVectorKind() == |
| VectorType::AltiVecVector) { |
| unsigned numElems = Ty->getAs<VectorType>()->getNumElements(); |
| // The number of initializers must be one or must match the size of the |
| // vector. If a single value is specified in the initializer then it will |
| // be replicated to all the components of the vector |
| if (PE->getNumExprs() == 1) { |
| QualType ElemTy = Ty->getAs<VectorType>()->getElementType(); |
| ExprResult Literal = Owned(PE->getExpr(0)); |
| Literal = ImpCastExprToType(Literal.take(), ElemTy, |
| PrepareScalarCast(*this, Literal, ElemTy)); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take()); |
| } |
| else if (PE->getNumExprs() < numElems) { |
| Diag(PE->getExprLoc(), |
| diag::err_incorrect_number_of_vector_initializers); |
| return ExprError(); |
| } |
| else |
| for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i) |
| initExprs.push_back(PE->getExpr(i)); |
| } |
| else |
| for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i) |
| initExprs.push_back(PE->getExpr(i)); |
| |
| // FIXME: This means that pretty-printing the final AST will produce curly |
| // braces instead of the original commas. |
| InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc, |
| &initExprs[0], |
| initExprs.size(), RParenLoc); |
| E->setType(Ty); |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E); |
| } else { |
| // This is not an AltiVec-style cast, so turn the ParenListExpr into a |
| // sequence of BinOp comma operators. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op); |
| if (Result.isInvalid()) return ExprError(); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take()); |
| } |
| } |
| |
| ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L, |
| SourceLocation R, |
| MultiExprArg Val, |
| ParsedType TypeOfCast) { |
| unsigned nexprs = Val.size(); |
| Expr **exprs = reinterpret_cast<Expr**>(Val.release()); |
| assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list"); |
| Expr *expr; |
| if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast)) |
| expr = new (Context) ParenExpr(L, R, exprs[0]); |
| else |
| expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R); |
| return Owned(expr); |
| } |
| |
| /// \brief Emit a specialized diagnostic when one expression is a null pointer |
| /// constant and the other is not a pointer. |
| bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS, |
| SourceLocation QuestionLoc) { |
| Expr *NullExpr = LHS; |
| Expr *NonPointerExpr = RHS; |
| Expr::NullPointerConstantKind NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| |
| if (NullKind == Expr::NPCK_NotNull) { |
| NullExpr = RHS; |
| NonPointerExpr = LHS; |
| NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| } |
| |
| if (NullKind == Expr::NPCK_NotNull) |
| return false; |
| |
| if (NullKind == Expr::NPCK_ZeroInteger) { |
| // In this case, check to make sure that we got here from a "NULL" |
| // string in the source code. |
| NullExpr = NullExpr->IgnoreParenImpCasts(); |
| SourceLocation loc = NullExpr->getExprLoc(); |
| if (!findMacroSpelling(loc, "NULL")) |
| return false; |
| } |
| |
| int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr); |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) |
| << NonPointerExpr->getType() << DiagType |
| << NonPointerExpr->getSourceRange(); |
| return true; |
| } |
| |
| /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension. |
| /// In that case, lhs = cond. |
| /// C99 6.5.15 |
| QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, |
| ExprValueKind &VK, ExprObjectKind &OK, |
| SourceLocation QuestionLoc) { |
| |
| ExprResult lhsResult = CheckPlaceholderExpr(LHS.get()); |
| if (!lhsResult.isUsable()) return QualType(); |
| LHS = move(lhsResult); |
| |
| ExprResult rhsResult = CheckPlaceholderExpr(RHS.get()); |
| if (!rhsResult.isUsable()) return QualType(); |
| RHS = move(rhsResult); |
| |
| // C++ is sufficiently different to merit its own checker. |
| if (getLangOptions().CPlusPlus) |
| return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); |
| |
| VK = VK_RValue; |
| OK = OK_Ordinary; |
| |
| Cond = UsualUnaryConversions(Cond.take()); |
| if (Cond.isInvalid()) |
| return QualType(); |
| LHS = UsualUnaryConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = UsualUnaryConversions(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| QualType CondTy = Cond.get()->getType(); |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // first, check the condition. |
| if (!CondTy->isScalarType()) { // C99 6.5.15p2 |
| // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar. |
| // Throw an error if its not either. |
| if (getLangOptions().OpenCL) { |
| if (!CondTy->isVectorType()) { |
| Diag(Cond.get()->getLocStart(), |
| diag::err_typecheck_cond_expect_scalar_or_vector) |
| << CondTy; |
| return QualType(); |
| } |
| } |
| else { |
| Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) |
| << CondTy; |
| return QualType(); |
| } |
| } |
| |
| // Now check the two expressions. |
| if (LHSTy->isVectorType() || RHSTy->isVectorType()) |
| return CheckVectorOperands(QuestionLoc, LHS, RHS); |
| |
| // OpenCL: If the condition is a vector, and both operands are scalar, |
| // attempt to implicity convert them to the vector type to act like the |
| // built in select. |
| if (getLangOptions().OpenCL && CondTy->isVectorType()) { |
| // Both operands should be of scalar type. |
| if (!LHSTy->isScalarType()) { |
| Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) |
| << CondTy; |
| return QualType(); |
| } |
| if (!RHSTy->isScalarType()) { |
| Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) |
| << CondTy; |
| return QualType(); |
| } |
| // Implicity convert these scalars to the type of the condition. |
| LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast); |
| RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast); |
| } |
| |
| // If both operands have arithmetic type, do the usual arithmetic conversions |
| // to find a common type: C99 6.5.15p3,5. |
| if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| return LHS.get()->getType(); |
| } |
| |
| // If both operands are the same structure or union type, the result is that |
| // type. |
| if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 |
| if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) |
| if (LHSRT->getDecl() == RHSRT->getDecl()) |
| // "If both the operands have structure or union type, the result has |
| // that type." This implies that CV qualifiers are dropped. |
| return LHSTy.getUnqualifiedType(); |
| // FIXME: Type of conditional expression must be complete in C mode. |
| } |
| |
| // C99 6.5.15p5: "If both operands have void type, the result has void type." |
| // The following || allows only one side to be void (a GCC-ism). |
| if (LHSTy->isVoidType() || RHSTy->isVoidType()) { |
| if (!LHSTy->isVoidType()) |
| Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << RHS.get()->getSourceRange(); |
| if (!RHSTy->isVoidType()) |
| Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << LHS.get()->getSourceRange(); |
| LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid); |
| RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid); |
| return Context.VoidTy; |
| } |
| // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has |
| // the type of the other operand." |
| if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) && |
| RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| // promote the null to a pointer. |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer); |
| return LHSTy; |
| } |
| if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) && |
| LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer); |
| return RHSTy; |
| } |
| |
| // All objective-c pointer type analysis is done here. |
| QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, |
| QuestionLoc); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (!compositeType.isNull()) |
| return compositeType; |
| |
| |
| // Handle block pointer types. |
| if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { |
| if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { |
| if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { |
| QualType destType = Context.getPointerType(Context.VoidTy); |
| LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| // We have 2 block pointer types. |
| if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { |
| // Two identical block pointer types are always compatible. |
| return LHSTy; |
| } |
| // The block pointer types aren't identical, continue checking. |
| QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType(); |
| |
| if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) { |
| Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| // In this situation, we assume void* type. No especially good |
| // reason, but this is what gcc does, and we do have to pick |
| // to get a consistent AST. |
| QualType incompatTy = Context.getPointerType(Context.VoidTy); |
| LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); |
| return incompatTy; |
| } |
| // The block pointer types are compatible. |
| LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| |
| // Check constraints for C object pointers types (C99 6.5.15p3,6). |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
| // get the "pointed to" types |
| QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); |
| |
| // ignore qualifiers on void (C99 6.5.15p3, clause 6) |
| if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { |
| // Figure out necessary qualifiers (C99 6.5.15p6) |
| QualType destPointee |
| = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { |
| QualType destPointee |
| = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| |
| if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { |
| // Two identical pointer types are always compatible. |
| return LHSTy; |
| } |
| if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) { |
| Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| // In this situation, we assume void* type. No especially good |
| // reason, but this is what gcc does, and we do have to pick |
| // to get a consistent AST. |
| QualType incompatTy = Context.getPointerType(Context.VoidTy); |
| LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); |
| return incompatTy; |
| } |
| // The pointer types are compatible. |
| // C99 6.5.15p6: If both operands are pointers to compatible types *or* to |
| // differently qualified versions of compatible types, the result type is |
| // a pointer to an appropriately qualified version of the *composite* |
| // type. |
| // FIXME: Need to calculate the composite type. |
| // FIXME: Need to add qualifiers |
| LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| |
| // GCC compatibility: soften pointer/integer mismatch. Note that |
| // null pointers have been filtered out by this point. |
| if (RHSTy->isPointerType() && LHSTy->isIntegerType()) { |
| Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer); |
| return RHSTy; |
| } |
| if (LHSTy->isPointerType() && RHSTy->isIntegerType()) { |
| Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer); |
| return LHSTy; |
| } |
| |
| // Emit a better diagnostic if one of the expressions is a null pointer |
| // constant and the other is not a pointer type. In this case, the user most |
| // likely forgot to take the address of the other expression. |
| if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
| return QualType(); |
| |
| // Otherwise, the operands are not compatible. |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// FindCompositeObjCPointerType - Helper method to find composite type of |
| /// two objective-c pointer types of the two input expressions. |
| QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // Handle things like Class and struct objc_class*. Here we case the result |
| // to the pseudo-builtin, because that will be implicitly cast back to the |
| // redefinition type if an attempt is made to access its fields. |
| if (LHSTy->isObjCClassType() && |
| (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) { |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCClassType() && |
| (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) { |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_object* / id |
| if (LHSTy->isObjCIdType() && |
| (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) { |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCIdType() && |
| (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) { |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_selector* / SEL |
| if (Context.isObjCSelType(LHSTy) && |
| (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) { |
| RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| if (Context.isObjCSelType(RHSTy) && |
| (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) { |
| LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast); |
| return RHSTy; |
| } |
| // Check constraints for Objective-C object pointers types. |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { |
| |
| if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { |
| // Two identical object pointer types are always compatible. |
| return LHSTy; |
| } |
| const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>(); |
| QualType compositeType = LHSTy; |
| |
| // If both operands are interfaces and either operand can be |
| // assigned to the other, use that type as the composite |
| // type. This allows |
| // xxx ? (A*) a : (B*) b |
| // where B is a subclass of A. |
| // |
| // Additionally, as for assignment, if either type is 'id' |
| // allow silent coercion. Finally, if the types are |
| // incompatible then make sure to use 'id' as the composite |
| // type so the result is acceptable for sending messages to. |
| |
| // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. |
| // It could return the composite type. |
| if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { |
| compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; |
| } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { |
| compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; |
| } else if ((LHSTy->isObjCQualifiedIdType() || |
| RHSTy->isObjCQualifiedIdType()) && |
| Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { |
| // Need to handle "id<xx>" explicitly. |
| // GCC allows qualified id and any Objective-C type to devolve to |
| // id. Currently localizing to here until clear this should be |
| // part of ObjCQualifiedIdTypesAreCompatible. |
| compositeType = Context.getObjCIdType(); |
| } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { |
| compositeType = Context.getObjCIdType(); |
| } else if (!(compositeType = |
| Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) |
| ; |
| else { |
| Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| QualType incompatTy = Context.getObjCIdType(); |
| LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); |
| return incompatTy; |
| } |
| // The object pointer types are compatible. |
| LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast); |
| return compositeType; |
| } |
| // Check Objective-C object pointer types and 'void *' |
| if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { |
| QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { |
| QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast); |
| return destType; |
| } |
| return QualType(); |
| } |
| |
| /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null |
| /// in the case of a the GNU conditional expr extension. |
| ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, |
| SourceLocation ColonLoc, |
| Expr *CondExpr, Expr *LHSExpr, |
| Expr *RHSExpr) { |
| // If this is the gnu "x ?: y" extension, analyze the types as though the LHS |
| // was the condition. |
| OpaqueValueExpr *opaqueValue = 0; |
| Expr *commonExpr = 0; |
| if (LHSExpr == 0) { |
| commonExpr = CondExpr; |
| |
| // We usually want to apply unary conversions *before* saving, except |
| // in the special case of a C++ l-value conditional. |
| if (!(getLangOptions().CPlusPlus |
| && !commonExpr->isTypeDependent() |
| && commonExpr->getValueKind() == RHSExpr->getValueKind() |
| && commonExpr->isGLValue() |
| && commonExpr->isOrdinaryOrBitFieldObject() |
| && RHSExpr->isOrdinaryOrBitFieldObject() |
| && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { |
| ExprResult commonRes = UsualUnaryConversions(commonExpr); |
| if (commonRes.isInvalid()) |
| return ExprError(); |
| commonExpr = commonRes.take(); |
| } |
| |
| opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), |
| commonExpr->getType(), |
| commonExpr->getValueKind(), |
| commonExpr->getObjectKind()); |
| LHSExpr = CondExpr = opaqueValue; |
| } |
| |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr); |
| QualType result = CheckConditionalOperands(Cond, LHS, RHS, |
| VK, OK, QuestionLoc); |
| if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || |
| RHS.isInvalid()) |
| return ExprError(); |
| |
| if (!commonExpr) |
| return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc, |
| LHS.take(), ColonLoc, |
| RHS.take(), result, VK, OK)); |
| |
| return Owned(new (Context) |
| BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(), |
| RHS.take(), QuestionLoc, ColonLoc, result, VK, OK)); |
| } |
| |
| // checkPointerTypesForAssignment - This is a very tricky routine (despite |
| // being closely modeled after the C99 spec:-). The odd characteristic of this |
| // routine is it effectively iqnores the qualifiers on the top level pointee. |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. |
| // FIXME: add a couple examples in this comment. |
| static Sema::AssignConvertType |
| checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) { |
| assert(lhsType.isCanonical() && "LHS not canonicalized!"); |
| assert(rhsType.isCanonical() && "RHS not canonicalized!"); |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| const Type *lhptee, *rhptee; |
| Qualifiers lhq, rhq; |
| llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split(); |
| llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split(); |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // C99 6.5.16.1p1: This following citation is common to constraints |
| // 3 & 4 (below). ...and the type *pointed to* by the left has all the |
| // qualifiers of the type *pointed to* by the right; |
| Qualifiers lq; |
| |
| if (!lhq.compatiblyIncludes(rhq)) { |
| // Treat address-space mismatches as fatal. TODO: address subspaces |
| if (lhq.getAddressSpace() != rhq.getAddressSpace()) |
| ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; |
| |
| // It's okay to add or remove GC qualifiers when converting to |
| // and from void*. |
| else if (lhq.withoutObjCGCAttr().compatiblyIncludes(rhq.withoutObjCGCAttr()) |
| && (lhptee->isVoidType() || rhptee->isVoidType())) |
| ; // keep old |
| |
| // For GCC compatibility, other qualifier mismatches are treated |
| // as still compatible in C. |
| else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or |
| // incomplete type and the other is a pointer to a qualified or unqualified |
| // version of void... |
| if (lhptee->isVoidType()) { |
| if (rhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(rhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| if (rhptee->isVoidType()) { |
| if (lhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(lhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or |
| // unqualified versions of compatible types, ... |
| QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); |
| if (!S.Context.typesAreCompatible(ltrans, rtrans)) { |
| // Check if the pointee types are compatible ignoring the sign. |
| // We explicitly check for char so that we catch "char" vs |
| // "unsigned char" on systems where "char" is unsigned. |
| if (lhptee->isCharType()) |
| ltrans = S.Context.UnsignedCharTy; |
| else if (lhptee->hasSignedIntegerRepresentation()) |
| ltrans = S.Context.getCorrespondingUnsignedType(ltrans); |
| |
| if (rhptee->isCharType()) |
| rtrans = S.Context.UnsignedCharTy; |
| else if (rhptee->hasSignedIntegerRepresentation()) |
| rtrans = S.Context.getCorrespondingUnsignedType(rtrans); |
| |
| if (ltrans == rtrans) { |
| // Types are compatible ignoring the sign. Qualifier incompatibility |
| // takes priority over sign incompatibility because the sign |
| // warning can be disabled. |
| if (ConvTy != Sema::Compatible) |
| return ConvTy; |
| |
| return Sema::IncompatiblePointerSign; |
| } |
| |
| // If we are a multi-level pointer, it's possible that our issue is simply |
| // one of qualification - e.g. char ** -> const char ** is not allowed. If |
| // the eventual target type is the same and the pointers have the same |
| // level of indirection, this must be the issue. |
| if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { |
| do { |
| lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr(); |
| rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr(); |
| } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); |
| |
| if (lhptee == rhptee) |
| return Sema::IncompatibleNestedPointerQualifiers; |
| } |
| |
| // General pointer incompatibility takes priority over qualifiers. |
| return Sema::IncompatiblePointer; |
| } |
| return ConvTy; |
| } |
| |
| /// checkBlockPointerTypesForAssignment - This routine determines whether two |
| /// block pointer types are compatible or whether a block and normal pointer |
| /// are compatible. It is more restrict than comparing two function pointer |
| // types. |
| static Sema::AssignConvertType |
| checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType, |
| QualType rhsType) { |
| assert(lhsType.isCanonical() && "LHS not canonicalized!"); |
| assert(rhsType.isCanonical() && "RHS not canonicalized!"); |
| |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = cast<BlockPointerType>(lhsType)->getPointeeType(); |
| rhptee = cast<BlockPointerType>(rhsType)->getPointeeType(); |
| |
| // In C++, the types have to match exactly. |
| if (S.getLangOptions().CPlusPlus) |
| return Sema::IncompatibleBlockPointer; |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // For blocks we enforce that qualifiers are identical. |
| if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers()) |
| ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| |
| if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType)) |
| return Sema::IncompatibleBlockPointer; |
| |
| return ConvTy; |
| } |
| |
| /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types |
| /// for assignment compatibility. |
| static Sema::AssignConvertType |
| checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) { |
| assert(lhsType.isCanonical() && "LHS was not canonicalized!"); |
| assert(rhsType.isCanonical() && "RHS was not canonicalized!"); |
| |
| if (lhsType->isObjCBuiltinType()) { |
| // Class is not compatible with ObjC object pointers. |
| if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() && |
| !rhsType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| if (rhsType->isObjCBuiltinType()) { |
| // Class is not compatible with ObjC object pointers. |
| if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() && |
| !lhsType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| QualType lhptee = |
| lhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = |
| rhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| |
| if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) |
| return Sema::CompatiblePointerDiscardsQualifiers; |
| |
| if (S.Context.typesAreCompatible(lhsType, rhsType)) |
| return Sema::Compatible; |
| if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) |
| return Sema::IncompatibleObjCQualifiedId; |
| return Sema::IncompatiblePointer; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(SourceLocation Loc, |
| QualType lhsType, QualType rhsType) { |
| // Fake up an opaque expression. We don't actually care about what |
| // cast operations are required, so if CheckAssignmentConstraints |
| // adds casts to this they'll be wasted, but fortunately that doesn't |
| // usually happen on valid code. |
| OpaqueValueExpr rhs(Loc, rhsType, VK_RValue); |
| ExprResult rhsPtr = &rhs; |
| CastKind K = CK_Invalid; |
| |
| return CheckAssignmentConstraints(lhsType, rhsPtr, K); |
| } |
| |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently |
| /// has code to accommodate several GCC extensions when type checking |
| /// pointers. Here are some objectionable examples that GCC considers warnings: |
| /// |
| /// int a, *pint; |
| /// short *pshort; |
| /// struct foo *pfoo; |
| /// |
| /// pint = pshort; // warning: assignment from incompatible pointer type |
| /// a = pint; // warning: assignment makes integer from pointer without a cast |
| /// pint = a; // warning: assignment makes pointer from integer without a cast |
| /// pint = pfoo; // warning: assignment from incompatible pointer type |
| /// |
| /// As a result, the code for dealing with pointers is more complex than the |
| /// C99 spec dictates. |
| /// |
| /// Sets 'Kind' for any result kind except Incompatible. |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs, |
| CastKind &Kind) { |
| QualType rhsType = rhs.get()->getType(); |
| |
| // Get canonical types. We're not formatting these types, just comparing |
| // them. |
| lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); |
| rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); |
| |
| // Common case: no conversion required. |
| if (lhsType == rhsType) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| |
| // If the left-hand side is a reference type, then we are in a |
| // (rare!) case where we've allowed the use of references in C, |
| // e.g., as a parameter type in a built-in function. In this case, |
| // just make sure that the type referenced is compatible with the |
| // right-hand side type. The caller is responsible for adjusting |
| // lhsType so that the resulting expression does not have reference |
| // type. |
| if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) { |
| if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) { |
| Kind = CK_LValueBitCast; |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| // Allow scalar to ExtVector assignments, and assignments of an ExtVector type |
| // to the same ExtVector type. |
| if (lhsType->isExtVectorType()) { |
| if (rhsType->isExtVectorType()) |
| return Incompatible; |
| if (rhsType->isArithmeticType()) { |
| // CK_VectorSplat does T -> vector T, so first cast to the |
| // element type. |
| QualType elType = cast<ExtVectorType>(lhsType)->getElementType(); |
| if (elType != rhsType) { |
| Kind = PrepareScalarCast(*this, rhs, elType); |
| rhs = ImpCastExprToType(rhs.take(), elType, Kind); |
| } |
| Kind = CK_VectorSplat; |
| return Compatible; |
| } |
| } |
| |
| // Conversions to or from vector type. |
| if (lhsType->isVectorType() || rhsType->isVectorType()) { |
| if (lhsType->isVectorType() && rhsType->isVectorType()) { |
| // Allow assignments of an AltiVec vector type to an equivalent GCC |
| // vector type and vice versa |
| if (Context.areCompatibleVectorTypes(lhsType, rhsType)) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a bitcast; |
| // no bits are changed but the result type is different. |
| if (getLangOptions().LaxVectorConversions && |
| (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) { |
| Kind = CK_BitCast; |
| return IncompatibleVectors; |
| } |
| } |
| return Incompatible; |
| } |
| |
| // Arithmetic conversions. |
| if (lhsType->isArithmeticType() && rhsType->isArithmeticType() && |
| !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) { |
| Kind = PrepareScalarCast(*this, rhs, lhsType); |
| return Compatible; |
| } |
| |
| // Conversions to normal pointers. |
| if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) { |
| // U* -> T* |
| if (isa<PointerType>(rhsType)) { |
| Kind = CK_BitCast; |
| return checkPointerTypesForAssignment(*this, lhsType, rhsType); |
| } |
| |
| // int -> T* |
| if (rhsType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null? |
| return IntToPointer; |
| } |
| |
| // C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<ObjCObjectPointerType>(rhsType)) { |
| // - conversions to void* |
| if (lhsPointer->getPointeeType()->isVoidType()) { |
| Kind = CK_AnyPointerToObjCPointerCast; |
| return Compatible; |
| } |
| |
| // - conversions from 'Class' to the redefinition type |
| if (rhsType->isObjCClassType() && |
| Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| Kind = CK_BitCast; |
| return IncompatiblePointer; |
| } |
| |
| // U^ -> void* |
| if (rhsType->getAs<BlockPointerType>()) { |
| if (lhsPointer->getPointeeType()->isVoidType()) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to block pointers. |
| if (isa<BlockPointerType>(lhsType)) { |
| // U^ -> T^ |
| if (rhsType->isBlockPointerType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType); |
| } |
| |
| // int or null -> T^ |
| if (rhsType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToBlockPointer; |
| } |
| |
| // id -> T^ |
| if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| // void* -> T^ |
| if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) |
| if (RHSPT->getPointeeType()->isVoidType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to Objective-C pointers. |
| if (isa<ObjCObjectPointerType>(lhsType)) { |
| // A* -> B* |
| if (rhsType->isObjCObjectPointerType()) { |
| Kind = CK_BitCast; |
| return checkObjCPointerTypesForAssignment(*this, lhsType, rhsType); |
| } |
| |
| // int or null -> A* |
| if (rhsType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToPointer; |
| } |
| |
| // In general, C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<PointerType>(rhsType)) { |
| // - conversions from 'void*' |
| if (rhsType->isVoidPointerType()) { |
| Kind = CK_AnyPointerToObjCPointerCast; |
| return Compatible; |
| } |
| |
| // - conversions to 'Class' from its redefinition type |
| if (lhsType->isObjCClassType() && |
| Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| Kind = CK_AnyPointerToObjCPointerCast; |
| return IncompatiblePointer; |
| } |
| |
| // T^ -> A* |
| if (rhsType->isBlockPointerType()) { |
| Kind = CK_AnyPointerToObjCPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from pointers that are not covered by the above. |
| if (isa<PointerType>(rhsType)) { |
| // T* -> _Bool |
| if (lhsType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (lhsType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from Objective-C pointers that are not covered by the above. |
| if (isa<ObjCObjectPointerType>(rhsType)) { |
| // T* -> _Bool |
| if (lhsType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (lhsType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // struct A -> struct B |
| if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { |
| if (Context.typesAreCompatible(lhsType, rhsType)) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| } |
| |
| return Incompatible; |
| } |
| |
| /// \brief Constructs a transparent union from an expression that is |
| /// used to initialize the transparent union. |
| static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult, |
| QualType UnionType, FieldDecl *Field) { |
| // Build an initializer list that designates the appropriate member |
| // of the transparent union. |
| Expr *E = EResult.take(); |
| InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), |
| &E, 1, |
| SourceLocation()); |
| Initializer->setType(UnionType); |
| Initializer->setInitializedFieldInUnion(Field); |
| |
| // Build a compound literal constructing a value of the transparent |
| // union type from this initializer list. |
| TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); |
| EResult = S.Owned( |
| new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, |
| VK_RValue, Initializer, false)); |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) { |
| QualType FromType = rExpr.get()->getType(); |
| |
| // If the ArgType is a Union type, we want to handle a potential |
| // transparent_union GCC extension. |
| const RecordType *UT = ArgType->getAsUnionType(); |
| if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| return Incompatible; |
| |
| // The field to initialize within the transparent union. |
| RecordDecl *UD = UT->getDecl(); |
| FieldDecl *InitField = 0; |
| // It's compatible if the expression matches any of the fields. |
| for (RecordDecl::field_iterator it = UD->field_begin(), |
| itend = UD->field_end(); |
| it != itend; ++it) { |
| if (it->getType()->isPointerType()) { |
| // If the transparent union contains a pointer type, we allow: |
| // 1) void pointer |
| // 2) null pointer constant |
| if (FromType->isPointerType()) |
| if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) { |
| rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast); |
| InitField = *it; |
| break; |
| } |
| |
| if (rExpr.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer); |
| InitField = *it; |
| break; |
| } |
| } |
| |
| CastKind Kind = CK_Invalid; |
| if (CheckAssignmentConstraints(it->getType(), rExpr, Kind) |
| == Compatible) { |
| rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind); |
| InitField = *it; |
| break; |
| } |
| } |
| |
| if (!InitField) |
| return Incompatible; |
| |
| ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField); |
| return Compatible; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) { |
| if (getLangOptions().CPlusPlus) { |
| if (!lhsType->isRecordType()) { |
| // C++ 5.17p3: If the left operand is not of class type, the |
| // expression is implicitly converted (C++ 4) to the |
| // cv-unqualified type of the left operand. |
| ExprResult Res = PerformImplicitConversion(rExpr.get(), |
| lhsType.getUnqualifiedType(), |
| AA_Assigning); |
| if (Res.isInvalid()) |
| return Incompatible; |
| rExpr = move(Res); |
| return Compatible; |
| } |
| |
| // FIXME: Currently, we fall through and treat C++ classes like C |
| // structures. |
| } |
| |
| // C99 6.5.16.1p1: the left operand is a pointer and the right is |
| // a null pointer constant. |
| if ((lhsType->isPointerType() || |
| lhsType->isObjCObjectPointerType() || |
| lhsType->isBlockPointerType()) |
| && rExpr.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer); |
| return Compatible; |
| } |
| |
| // This check seems unnatural, however it is necessary to ensure the proper |
| // conversion of functions/arrays. If the conversion were done for all |
| // DeclExpr's (created by ActOnIdExpression), it would mess up the unary |
| // expressions that suppress this implicit conversion (&, sizeof). |
| // |
| // Suppress this for references: C++ 8.5.3p5. |
| if (!lhsType->isReferenceType()) { |
| rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take()); |
| if (rExpr.isInvalid()) |
| return Incompatible; |
| } |
| |
| CastKind Kind = CK_Invalid; |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(lhsType, rExpr, Kind); |
| |
| // C99 6.5.16.1p2: The value of the right operand is converted to the |
| // type of the assignment expression. |
| // CheckAssignmentConstraints allows the left-hand side to be a reference, |
| // so that we can use references in built-in functions even in C. |
| // The getNonReferenceType() call makes sure that the resulting expression |
| // does not have reference type. |
| if (result != Incompatible && rExpr.get()->getType() != lhsType) |
| rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind); |
| return result; |
| } |
| |
| QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) { |
| Diag(Loc, diag::err_typecheck_invalid_operands) |
| << lex.get()->getType() << rex.get()->getType() |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| QualType Sema::CheckVectorOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) { |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType lhsType = |
| Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType(); |
| QualType rhsType = |
| Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType(); |
| |
| // If the vector types are identical, return. |
| if (lhsType == rhsType) |
| return lhsType; |
| |
| // Handle the case of a vector & extvector type of the same size and element |
| // type. It would be nice if we only had one vector type someday. |
| if (getLangOptions().LaxVectorConversions) { |
| if (const VectorType *LV = lhsType->getAs<VectorType>()) { |
| if (const VectorType *RV = rhsType->getAs<VectorType>()) { |
| if (LV->getElementType() == RV->getElementType() && |
| LV->getNumElements() == RV->getNumElements()) { |
| if (lhsType->isExtVectorType()) { |
| rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast); |
| return lhsType; |
| } |
| |
| lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast); |
| return rhsType; |
| } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){ |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a |
| // bitcast; no bits are changed but the result type is different. |
| rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast); |
| return lhsType; |
| } |
| } |
| } |
| } |
| |
| // Handle the case of equivalent AltiVec and GCC vector types |
| if (lhsType->isVectorType() && rhsType->isVectorType() && |
| Context.areCompatibleVectorTypes(lhsType, rhsType)) { |
| lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast); |
| return rhsType; |
| } |
| |
| // Canonicalize the ExtVector to the LHS, remember if we swapped so we can |
| // swap back (so that we don't reverse the inputs to a subtract, for instance. |
| bool swapped = false; |
| if (rhsType->isExtVectorType()) { |
| swapped = true; |
| std::swap(rex, lex); |
| std::swap(rhsType, lhsType); |
| } |
| |
| // Handle the case of an ext vector and scalar. |
| if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) { |
| QualType EltTy = LV->getElementType(); |
| if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) { |
| int order = Context.getIntegerTypeOrder(EltTy, rhsType); |
| if (order > 0) |
| rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast); |
| if (order >= 0) { |
| rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat); |
| if (swapped) std::swap(rex, lex); |
| return lhsType; |
| } |
| } |
| if (EltTy->isRealFloatingType() && rhsType->isScalarType() && |
| rhsType->isRealFloatingType()) { |
| int order = Context.getFloatingTypeOrder(EltTy, rhsType); |
| if (order > 0) |
| rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast); |
| if (order >= 0) { |
| rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat); |
| if (swapped) std::swap(rex, lex); |
| return lhsType; |
| } |
| } |
| } |
| |
| // Vectors of different size or scalar and non-ext-vector are errors. |
| Diag(Loc, diag::err_typecheck_vector_not_convertable) |
| << lex.get()->getType() << rex.get()->getType() |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| QualType Sema::CheckMultiplyDivideOperands( |
| ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) { |
| if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) |
| return CheckVectorOperands(Loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| if (lex.isInvalid() || rex.isInvalid()) |
| return QualType(); |
| |
| if (!lex.get()->getType()->isArithmeticType() || |
| !rex.get()->getType()->isArithmeticType()) |
| return InvalidOperands(Loc, lex, rex); |
| |
| // Check for division by zero. |
| if (isDiv && |
| rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) |
| DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero) |
| << rex.get()->getSourceRange()); |
| |
| return compType; |
| } |
| |
| QualType Sema::CheckRemainderOperands( |
| ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) { |
| if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { |
| if (lex.get()->getType()->hasIntegerRepresentation() && |
| rex.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(Loc, lex, rex); |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| if (lex.isInvalid() || rex.isInvalid()) |
| return QualType(); |
| |
| if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType()) |
| return InvalidOperands(Loc, lex, rex); |
| |
| // Check for remainder by zero. |
| if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) |
| DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero) |
| << rex.get()->getSourceRange()); |
| |
| return compType; |
| } |
| |
| QualType Sema::CheckAdditionOperands( // C99 6.5.6 |
| ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) { |
| if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands(Loc, lex, rex); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); |
| if (lex.isInvalid() || rex.isInvalid()) |
| return QualType(); |
| |
| // handle the common case first (both operands are arithmetic). |
| if (lex.get()->getType()->isArithmeticType() && |
| rex.get()->getType()->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Put any potential pointer into PExp |
| Expr* PExp = lex.get(), *IExp = rex.get(); |
| if (IExp->getType()->isAnyPointerType()) |
| std::swap(PExp, IExp); |
| |
| if (PExp->getType()->isAnyPointerType()) { |
| |
| if (IExp->getType()->isIntegerType()) { |
| QualType PointeeTy = PExp->getType()->getPointeeType(); |
| |
| // Check for arithmetic on pointers to incomplete types. |
| if (PointeeTy->isVoidType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_void_type) |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU extension: arithmetic on pointer to void |
| Diag(Loc, diag::ext_gnu_void_ptr) |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } else if (PointeeTy->isFunctionType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_function_type) |
| << lex.get()->getType() << lex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU extension: arithmetic on pointer to function |
| Diag(Loc, diag::ext_gnu_ptr_func_arith) |
| << lex.get()->getType() << lex.get()->getSourceRange(); |
| } else { |
| // Check if we require a complete type. |
| if (((PExp->getType()->isPointerType() && |
| !PExp->getType()->isDependentType()) || |
| PExp->getType()->isObjCObjectPointerType()) && |
| RequireCompleteType(Loc, PointeeTy, |
| PDiag(diag::err_typecheck_arithmetic_incomplete_type) |
| << PExp->getSourceRange() |
| << PExp->getType())) |
| return QualType(); |
| } |
| // Diagnose bad cases where we step over interface counts. |
| if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { |
| Diag(Loc, diag::err_arithmetic_nonfragile_interface) |
| << PointeeTy << PExp->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (CompLHSTy) { |
| QualType LHSTy = Context.isPromotableBitField(lex.get()); |
| if (LHSTy.isNull()) { |
| LHSTy = lex.get()->getType(); |
| if (LHSTy->isPromotableIntegerType()) |
| LHSTy = Context.getPromotedIntegerType(LHSTy); |
| } |
| *CompLHSTy = LHSTy; |
| } |
| return PExp->getType(); |
| } |
| } |
| |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex, |
| SourceLocation Loc, QualType* CompLHSTy) { |
| if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands(Loc, lex, rex); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); |
| if (lex.isInvalid() || rex.isInvalid()) |
| return QualType(); |
| |
| // Enforce type constraints: C99 6.5.6p3. |
| |
| // Handle the common case first (both operands are arithmetic). |
| if (lex.get()->getType()->isArithmeticType() && |
| rex.get()->getType()->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Either ptr - int or ptr - ptr. |
| if (lex.get()->getType()->isAnyPointerType()) { |
| QualType lpointee = lex.get()->getType()->getPointeeType(); |
| |
| // The LHS must be an completely-defined object type. |
| |
| bool ComplainAboutVoid = false; |
| Expr *ComplainAboutFunc = 0; |
| if (lpointee->isVoidType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_void_type) |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU C extension: arithmetic on pointer to void |
| ComplainAboutVoid = true; |
| } else if (lpointee->isFunctionType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_function_type) |
| << lex.get()->getType() << lex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU C extension: arithmetic on pointer to function |
| ComplainAboutFunc = lex.get(); |
| } else if (!lpointee->isDependentType() && |
| RequireCompleteType(Loc, lpointee, |
| PDiag(diag::err_typecheck_sub_ptr_object) |
| << lex.get()->getSourceRange() |
| << lex.get()->getType())) |
| return QualType(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { |
| Diag(Loc, diag::err_arithmetic_nonfragile_interface) |
| << lpointee << lex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // The result type of a pointer-int computation is the pointer type. |
| if (rex.get()->getType()->isIntegerType()) { |
| if (ComplainAboutVoid) |
| Diag(Loc, diag::ext_gnu_void_ptr) |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| if (ComplainAboutFunc) |
| Diag(Loc, diag::ext_gnu_ptr_func_arith) |
| << ComplainAboutFunc->getType() |
| << ComplainAboutFunc->getSourceRange(); |
| |
| if (CompLHSTy) *CompLHSTy = lex.get()->getType(); |
| return lex.get()->getType(); |
| } |
| |
| // Handle pointer-pointer subtractions. |
| if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) { |
| QualType rpointee = RHSPTy->getPointeeType(); |
| |
| // RHS must be a completely-type object type. |
| // Handle the GNU void* extension. |
| if (rpointee->isVoidType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_void_type) |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| ComplainAboutVoid = true; |
| } else if (rpointee->isFunctionType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_function_type) |
| << rex.get()->getType() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU extension: arithmetic on pointer to function |
| if (!ComplainAboutFunc) |
| ComplainAboutFunc = rex.get(); |
| } else if (!rpointee->isDependentType() && |
| RequireCompleteType(Loc, rpointee, |
| PDiag(diag::err_typecheck_sub_ptr_object) |
| << rex.get()->getSourceRange() |
| << rex.get()->getType())) |
| return QualType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| // Pointee types must be the same: C++ [expr.add] |
| if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { |
| Diag(Loc, diag::err_typecheck_sub_ptr_compatible) |
| << lex.get()->getType() << rex.get()->getType() |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| } else { |
| // Pointee types must be compatible C99 6.5.6p3 |
| if (!Context.typesAreCompatible( |
| Context.getCanonicalType(lpointee).getUnqualifiedType(), |
| Context.getCanonicalType(rpointee).getUnqualifiedType())) { |
| Diag(Loc, diag::err_typecheck_sub_ptr_compatible) |
| << lex.get()->getType() << rex.get()->getType() |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } |
| } |
| |
| if (ComplainAboutVoid) |
| Diag(Loc, diag::ext_gnu_void_ptr) |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| if (ComplainAboutFunc) |
| Diag(Loc, diag::ext_gnu_ptr_func_arith) |
| << ComplainAboutFunc->getType() |
| << ComplainAboutFunc->getSourceRange(); |
| |
| if (CompLHSTy) *CompLHSTy = lex.get()->getType(); |
| return Context.getPointerDiffType(); |
| } |
| } |
| |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| static bool isScopedEnumerationType(QualType T) { |
| if (const EnumType *ET = dyn_cast<EnumType>(T)) |
| return ET->getDecl()->isScoped(); |
| return false; |
| } |
| |
| static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex, |
| SourceLocation Loc, unsigned Opc, |
| QualType LHSTy) { |
| llvm::APSInt Right; |
| // Check right/shifter operand |
| if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context)) |
| return; |
| |
| if (Right.isNegative()) { |
| S.DiagRuntimeBehavior(Loc, rex.get(), |
| S.PDiag(diag::warn_shift_negative) |
| << rex.get()->getSourceRange()); |
| return; |
| } |
| llvm::APInt LeftBits(Right.getBitWidth(), |
| S.Context.getTypeSize(lex.get()->getType())); |
| if (Right.uge(LeftBits)) { |
| S.DiagRuntimeBehavior(Loc, rex.get(), |
| S.PDiag(diag::warn_shift_gt_typewidth) |
| << rex.get()->getSourceRange()); |
| return; |
| } |
| if (Opc != BO_Shl) |
| return; |
| |
| // When left shifting an ICE which is signed, we can check for overflow which |
| // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned |
| // integers have defined behavior modulo one more than the maximum value |
| // representable in the result type, so never warn for those. |
| llvm::APSInt Left; |
| if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) || |
| LHSTy->hasUnsignedIntegerRepresentation()) |
| return; |
| llvm::APInt ResultBits = |
| static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits(); |
| if (LeftBits.uge(ResultBits)) |
| return; |
| llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); |
| Result = Result.shl(Right); |
| |
| // If we are only missing a sign bit, this is less likely to result in actual |
| // bugs -- if the result is cast back to an unsigned type, it will have the |
| // expected value. Thus we place this behind a different warning that can be |
| // turned off separately if needed. |
| if (LeftBits == ResultBits - 1) { |
| S.Diag(Loc, diag::warn_shift_result_overrides_sign_bit) |
| << Result.toString(10) << LHSTy |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return; |
| } |
| |
| S.Diag(Loc, diag::warn_shift_result_gt_typewidth) |
| << Result.toString(10) << Result.getMinSignedBits() << LHSTy |
| << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| |
| // C99 6.5.7 |
| QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc, |
| unsigned Opc, bool isCompAssign) { |
| // C99 6.5.7p2: Each of the operands shall have integer type. |
| if (!lex.get()->getType()->hasIntegerRepresentation() || |
| !rex.get()->getType()->hasIntegerRepresentation()) |
| return InvalidOperands(Loc, lex, rex); |
| |
| // C++0x: Don't allow scoped enums. FIXME: Use something better than |
| // hasIntegerRepresentation() above instead of this. |
| if (isScopedEnumerationType(lex.get()->getType()) || |
| isScopedEnumerationType(rex.get()->getType())) { |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| // Vector shifts promote their scalar inputs to vector type. |
| if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) |
| return CheckVectorOperands(Loc, lex, rex); |
| |
| // Shifts don't perform usual arithmetic conversions, they just do integer |
| // promotions on each operand. C99 6.5.7p3 |
| |
| // For the LHS, do usual unary conversions, but then reset them away |
| // if this is a compound assignment. |
| ExprResult old_lex = lex; |
| lex = UsualUnaryConversions(lex.take()); |
| if (lex.isInvalid()) |
| return QualType(); |
| QualType LHSTy = lex.get()->getType(); |
| if (isCompAssign) lex = old_lex; |
| |
| // The RHS is simpler. |
| rex = UsualUnaryConversions(rex.take()); |
| if (rex.isInvalid()) |
| return QualType(); |
| |
| // Sanity-check shift operands |
| DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy); |
| |
| // "The type of the result is that of the promoted left operand." |
| return LHSTy; |
| } |
| |
| static bool IsWithinTemplateSpecialization(Decl *D) { |
| if (DeclContext *DC = D->getDeclContext()) { |
| if (isa<ClassTemplateSpecializationDecl>(DC)) |
| return true; |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) |
| return FD->isFunctionTemplateSpecialization(); |
| } |
| return false; |
| } |
| |
| // C99 6.5.8, C++ [expr.rel] |
| QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc, |
| unsigned OpaqueOpc, bool isRelational) { |
| BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc; |
| |
| // Handle vector comparisons separately. |
| if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) |
| return CheckVectorCompareOperands(lex, rex, Loc, isRelational); |
| |
| QualType lType = lex.get()->getType(); |
| QualType rType = rex.get()->getType(); |
| |
| Expr *LHSStripped = lex.get()->IgnoreParenImpCasts(); |
| Expr *RHSStripped = rex.get()->IgnoreParenImpCasts(); |
| QualType LHSStrippedType = LHSStripped->getType(); |
| QualType RHSStrippedType = RHSStripped->getType(); |
| |
| |
| |
| // Two different enums will raise a warning when compared. |
| if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) { |
| if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) { |
| if (LHSEnumType->getDecl()->getIdentifier() && |
| RHSEnumType->getDecl()->getIdentifier() && |
| !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { |
| Diag(Loc, diag::warn_comparison_of_mixed_enum_types) |
| << LHSStrippedType << RHSStrippedType |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| } |
| } |
| |
| if (!lType->hasFloatingRepresentation() && |
| !(lType->isBlockPointerType() && isRelational) && |
| !lex.get()->getLocStart().isMacroID() && |
| !rex.get()->getLocStart().isMacroID()) { |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| // |
| // NOTE: Don't warn about comparison expressions resulting from macro |
| // expansion. Also don't warn about comparisons which are only self |
| // comparisons within a template specialization. The warnings should catch |
| // obvious cases in the definition of the template anyways. The idea is to |
| // warn when the typed comparison operator will always evaluate to the same |
| // result. |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) { |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) { |
| if (DRL->getDecl() == DRR->getDecl() && |
| !IsWithinTemplateSpecialization(DRL->getDecl())) { |
| DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always) |
| << 0 // self- |
| << (Opc == BO_EQ |
| || Opc == BO_LE |
| || Opc == BO_GE)); |
| } else if (lType->isArrayType() && rType->isArrayType() && |
| !DRL->getDecl()->getType()->isReferenceType() && |
| !DRR->getDecl()->getType()->isReferenceType()) { |
| // what is it always going to eval to? |
| char always_evals_to; |
| switch(Opc) { |
| case BO_EQ: // e.g. array1 == array2 |
| always_evals_to = 0; // false |
| break; |
| case BO_NE: // e.g. array1 != array2 |
| always_evals_to = 1; // true |
| break; |
| default: |
| // best we can say is 'a constant' |
| always_evals_to = 2; // e.g. array1 <= array2 |
| break; |
| } |
| DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always) |
| << 1 // array |
| << always_evals_to); |
| } |
| } |
| } |
| |
| if (isa<CastExpr>(LHSStripped)) |
| LHSStripped = LHSStripped->IgnoreParenCasts(); |
| if (isa<CastExpr>(RHSStripped)) |
| RHSStripped = RHSStripped->IgnoreParenCasts(); |
| |
| // Warn about comparisons against a string constant (unless the other |
| // operand is null), the user probably wants strcmp. |
| Expr *literalString = 0; |
| Expr *literalStringStripped = 0; |
| if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && |
| !RHSStripped->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| literalString = lex.get(); |
| literalStringStripped = LHSStripped; |
| } else if ((isa<StringLiteral>(RHSStripped) || |
| isa<ObjCEncodeExpr>(RHSStripped)) && |
| !LHSStripped->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| literalString = rex.get(); |
| literalStringStripped = RHSStripped; |
| } |
| |
| if (literalString) { |
| std::string resultComparison; |
| switch (Opc) { |
| case BO_LT: resultComparison = ") < 0"; break; |
| case BO_GT: resultComparison = ") > 0"; break; |
| case BO_LE: resultComparison = ") <= 0"; break; |
| case BO_GE: resultComparison = ") >= 0"; break; |
| case BO_EQ: resultComparison = ") == 0"; break; |
| case BO_NE: resultComparison = ") != 0"; break; |
| default: assert(false && "Invalid comparison operator"); |
| } |
| |
| DiagRuntimeBehavior(Loc, 0, |
| PDiag(diag::warn_stringcompare) |
| << isa<ObjCEncodeExpr>(literalStringStripped) |
| << literalString->getSourceRange()); |
| } |
| } |
| |
| // C99 6.5.8p3 / C99 6.5.9p4 |
| if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) { |
| UsualArithmeticConversions(lex, rex); |
| if (lex.isInvalid() || rex.isInvalid()) |
| return QualType(); |
| } |
| else { |
| lex = UsualUnaryConversions(lex.take()); |
| if (lex.isInvalid()) |
| return QualType(); |
| |
| rex = UsualUnaryConversions(rex.take()); |
| if (rex.isInvalid()) |
| return QualType(); |
| } |
| |
| lType = lex.get()->getType(); |
| rType = rex.get()->getType(); |
| |
| // The result of comparisons is 'bool' in C++, 'int' in C. |
| QualType ResultTy = Context.getLogicalOperationType(); |
| |
| if (isRelational) { |
| if (lType->isRealType() && rType->isRealType()) |
| return ResultTy; |
| } else { |
| // Check for comparisons of floating point operands using != and ==. |
| if (lType->hasFloatingRepresentation()) |
| CheckFloatComparison(Loc, lex.get(), rex.get()); |
| |
| if (lType->isArithmeticType() && rType->isArithmeticType()) |
| return ResultTy; |
| } |
| |
| bool LHSIsNull = lex.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull); |
| bool RHSIsNull = rex.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull); |
| |
| // All of the following pointer-related warnings are GCC extensions, except |
| // when handling null pointer constants. |
| if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 |
| QualType LCanPointeeTy = |
| Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType()); |
| QualType RCanPointeeTy = |
| Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType()); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (LCanPointeeTy == RCanPointeeTy) |
| return ResultTy; |
| if (!isRelational && |
| (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { |
| // Valid unless comparison between non-null pointer and function pointer |
| // This is a gcc extension compatibility comparison. |
| // In a SFINAE context, we treat this as a hard error to maintain |
| // conformance with the C++ standard. |
| if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) |
| && !LHSIsNull && !RHSIsNull) { |
| Diag(Loc, |
| isSFINAEContext()? |
| diag::err_typecheck_comparison_of_fptr_to_void |
| : diag::ext_typecheck_comparison_of_fptr_to_void) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| |
| if (isSFINAEContext()) |
| return QualType(); |
| |
| rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); |
| return ResultTy; |
| } |
| } |
| |
| // C++ [expr.rel]p2: |
| // [...] Pointer conversions (4.10) and qualification |
| // conversions (4.4) are performed on pointer operands (or on |
| // a pointer operand and a null pointer constant) to bring |
| // them to their composite pointer type. [...] |
| // |
| // C++ [expr.eq]p1 uses the same notion for (in)equality |
| // comparisons of pointers. |
| bool NonStandardCompositeType = false; |
| QualType T = FindCompositePointerType(Loc, lex, rex, |
| isSFINAEContext()? 0 : &NonStandardCompositeType); |
| if (T.isNull()) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } else if (NonStandardCompositeType) { |
| Diag(Loc, |
| diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) |
| << lType << rType << T |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| |
| lex = ImpCastExprToType(lex.take(), T, CK_BitCast); |
| rex = ImpCastExprToType(rex.take(), T, CK_BitCast); |
| return ResultTy; |
| } |
| // C99 6.5.9p2 and C99 6.5.8p2 |
| if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), |
| RCanPointeeTy.getUnqualifiedType())) { |
| // Valid unless a relational comparison of function pointers |
| if (isRelational && LCanPointeeTy->isFunctionType()) { |
| Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| } else if (!isRelational && |
| (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { |
| // Valid unless comparison between non-null pointer and function pointer |
| if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) |
| && !LHSIsNull && !RHSIsNull) { |
| Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| } else { |
| // Invalid |
| Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| if (LCanPointeeTy != RCanPointeeTy) { |
| if (LHSIsNull && !RHSIsNull) |
| lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); |
| else |
| rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); |
| } |
| return ResultTy; |
| } |
| |
| if (getLangOptions().CPlusPlus) { |
| // Comparison of nullptr_t with itself. |
| if (lType->isNullPtrType() && rType->isNullPtrType()) |
| return ResultTy; |
| |
| // Comparison of pointers with null pointer constants and equality |
| // comparisons of member pointers to null pointer constants. |
| if (RHSIsNull && |
| ((lType->isPointerType() || lType->isNullPtrType()) || |
| (!isRelational && lType->isMemberPointerType()))) { |
| rex = ImpCastExprToType(rex.take(), lType, |
| lType->isMemberPointerType() |
| ? CK_NullToMemberPointer |
| : CK_NullToPointer); |
| return ResultTy; |
| } |
| if (LHSIsNull && |
| ((rType->isPointerType() || rType->isNullPtrType()) || |
| (!isRelational && rType->isMemberPointerType()))) { |
| lex = ImpCastExprToType(lex.take(), rType, |
| rType->isMemberPointerType() |
| ? CK_NullToMemberPointer |
| : CK_NullToPointer); |
| return ResultTy; |
| } |
| |
| // Comparison of member pointers. |
| if (!isRelational && |
| lType->isMemberPointerType() && rType->isMemberPointerType()) { |
| // C++ [expr.eq]p2: |
| // In addition, pointers to members can be compared, or a pointer to |
| // member and a null pointer constant. Pointer to member conversions |
| // (4.11) and qualification conversions (4.4) are performed to bring |
| // them to a common type. If one operand is a null pointer constant, |
| // the common type is the type of the other operand. Otherwise, the |
| // common type is a pointer to member type similar (4.4) to the type |
| // of one of the operands, with a cv-qualification signature (4.4) |
| // that is the union of the cv-qualification signatures of the operand |
| // types. |
| bool NonStandardCompositeType = false; |
| QualType T = FindCompositePointerType(Loc, lex, rex, |
| isSFINAEContext()? 0 : &NonStandardCompositeType); |
| if (T.isNull()) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| return QualType(); |
| } else if (NonStandardCompositeType) { |
| Diag(Loc, |
| diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) |
| << lType << rType << T |
| << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| |
| lex = ImpCastExprToType(lex.take(), T, CK_BitCast); |
| rex = ImpCastExprToType(rex.take(), T, CK_BitCast); |
| return ResultTy; |
| } |
| |
| // Handle scoped enumeration types specifically, since they don't promote |
| // to integers. |
| if (lex.get()->getType()->isEnumeralType() && |
| Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType())) |
| return ResultTy; |
| } |
| |
| // Handle block pointer types. |
| if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) { |
| QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType(); |
| QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType(); |
| |
| if (!LHSIsNull && !RHSIsNull && |
| !Context.typesAreCompatible(lpointee, rpointee)) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); |
| return ResultTy; |
| } |
| |
| // Allow block pointers to be compared with null pointer constants. |
| if (!isRelational |
| && ((lType->isBlockPointerType() && rType->isPointerType()) |
| || (lType->isPointerType() && rType->isBlockPointerType()))) { |
| if (!LHSIsNull && !RHSIsNull) { |
| if (!((rType->isPointerType() && rType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()) |
| || (lType->isPointerType() && lType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()))) |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| if (LHSIsNull && !RHSIsNull) |
| lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); |
| else |
| rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); |
| return ResultTy; |
| } |
| |
| if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) { |
| const PointerType *LPT = lType->getAs<PointerType>(); |
| const PointerType *RPT = rType->getAs<PointerType>(); |
| if (LPT || RPT) { |
| bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; |
| bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; |
| |
| if (!LPtrToVoid && !RPtrToVoid && |
| !Context.typesAreCompatible(lType, rType)) { |
| Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| } |
| if (LHSIsNull && !RHSIsNull) |
| lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); |
| else |
| rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); |
| return ResultTy; |
| } |
| if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) { |
| if (!Context.areComparableObjCPointerTypes(lType, rType)) |
| Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| if (LHSIsNull && !RHSIsNull) |
| lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); |
| else |
| rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); |
| return ResultTy; |
| } |
| } |
| if ((lType->isAnyPointerType() && rType->isIntegerType()) || |
| (lType->isIntegerType() && rType->isAnyPointerType())) { |
| unsigned DiagID = 0; |
| bool isError = false; |
| if ((LHSIsNull && lType->isIntegerType()) || |
| (RHSIsNull && rType->isIntegerType())) { |
| if (isRelational && !getLangOptions().CPlusPlus) |
| DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; |
| } else if (isRelational && !getLangOptions().CPlusPlus) |
| DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; |
| else if (getLangOptions().CPlusPlus) { |
| DiagID = diag::err_typecheck_comparison_of_pointer_integer; |
| isError = true; |
| } else |
| DiagID = diag::ext_typecheck_comparison_of_pointer_integer; |
| |
| if (DiagID) { |
| Diag(Loc, DiagID) |
| << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); |
| if (isError) |
| return QualType(); |
| } |
| |
| if (lType->isIntegerType()) |
| lex = ImpCastExprToType(lex.take(), rType, |
| LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| else |
| rex = ImpCastExprToType(rex.take(), lType, |
| RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| return ResultTy; |
| } |
| |
| // Handle block pointers. |
| if (!isRelational && RHSIsNull |
| && lType->isBlockPointerType() && rType->isIntegerType()) { |
| rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer); |
| return ResultTy; |
| } |
| if (!isRelational && LHSIsNull |
| && lType->isIntegerType() && rType->isBlockPointerType()) { |
| lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer); |
| return ResultTy; |
| } |
| |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| /// CheckVectorCompareOperands - vector comparisons are a clang extension that |
| /// operates on extended vector types. Instead of producing an IntTy result, |
| /// like a scalar comparison, a vector comparison produces a vector of integer |
| /// types. |
| QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex, |
| SourceLocation Loc, |
| bool isRelational) { |
| // Check to make sure we're operating on vectors of the same type and width, |
| // Allowing one side to be a scalar of element type. |
| QualType vType = CheckVectorOperands(Loc, lex, rex); |
| if (vType.isNull()) |
| return vType; |
| |
| QualType lType = lex.get()->getType(); |
| QualType rType = rex.get()->getType(); |
| |
| // If AltiVec, the comparison results in a numeric type, i.e. |
| // bool for C++, int for C |
| if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector) |
| return Context.getLogicalOperationType(); |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| if (!lType->hasFloatingRepresentation()) { |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens())) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens())) |
| if (DRL->getDecl() == DRR->getDecl()) |
| DiagRuntimeBehavior(Loc, 0, |
| PDiag(diag::warn_comparison_always) |
| << 0 // self- |
| << 2 // "a constant" |
| ); |
| } |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (!isRelational && lType->hasFloatingRepresentation()) { |
| assert (rType->hasFloatingRepresentation()); |
| CheckFloatComparison(Loc, lex.get(), rex.get()); |
| } |
| |
| // Return the type for the comparison, which is the same as vector type for |
| // integer vectors, or an integer type of identical size and number of |
| // elements for floating point vectors. |
| if (lType->hasIntegerRepresentation()) |
| return lType; |
| |
| const VectorType *VTy = lType->getAs<VectorType>(); |
| unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); |
| if (TypeSize == Context.getTypeSize(Context.IntTy)) |
| return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); |
| if (TypeSize == Context.getTypeSize(Context.LongTy)) |
| return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); |
| |
| assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && |
| "Unhandled vector element size in vector compare"); |
| return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); |
| } |
| |
| inline QualType Sema::CheckBitwiseOperands( |
| ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) { |
| if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { |
| if (lex.get()->getType()->hasIntegerRepresentation() && |
| rex.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(Loc, lex, rex); |
| |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| ExprResult lexResult = Owned(lex), rexResult = Owned(rex); |
| QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign); |
| if (lexResult.isInvalid() || rexResult.isInvalid()) |
| return QualType(); |
| lex = lexResult.take(); |
| rex = rexResult.take(); |
| |
| if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() && |
| rex.get()->getType()->isIntegralOrUnscopedEnumerationType()) |
| return compType; |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] |
| ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) { |
| |
| // Diagnose cases where the user write a logical and/or but probably meant a |
| // bitwise one. We do this when the LHS is a non-bool integer and the RHS |
| // is a constant. |
| if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() && |
| rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() && |
| // Don't warn in macros. |
| !Loc.isMacroID()) { |
| // If the RHS can be constant folded, and if it constant folds to something |
| // that isn't 0 or 1 (which indicate a potential logical operation that |
| // happened to fold to true/false) then warn. |
| Expr::EvalResult Result; |
| if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects && |
| Result.Val.getInt() != 0 && Result.Val.getInt() != 1) { |
| Diag(Loc, diag::warn_logical_instead_of_bitwise) |
| << rex.get()->getSourceRange() |
| << (Opc == BO_LAnd ? "&&" : "||") |
| << (Opc == BO_LAnd ? "&" : "|"); |
| } |
| } |
| |
| if (!Context.getLangOptions().CPlusPlus) { |
| lex = UsualUnaryConversions(lex.take()); |
| if (lex.isInvalid()) |
| return QualType(); |
| |
| rex = UsualUnaryConversions(rex.take()); |
| if (rex.isInvalid()) |
| return QualType(); |
| |
| if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType()) |
| return InvalidOperands(Loc, lex, rex); |
| |
| return Context.IntTy; |
| } |
| |
| // The following is safe because we only use this method for |
| // non-overloadable operands. |
| |
| // C++ [expr.log.and]p1 |
| // C++ [expr.log.or]p1 |
| // The operands are both contextually converted to type bool. |
| ExprResult lexRes = PerformContextuallyConvertToBool(lex.get()); |
| if (lexRes.isInvalid()) |
| return InvalidOperands(Loc, lex, rex); |
| lex = move(lexRes); |
| |
| ExprResult rexRes = PerformContextuallyConvertToBool(rex.get()); |
| if (rexRes.isInvalid()) |
| return InvalidOperands(Loc, lex, rex); |
| rex = move(rexRes); |
| |
| // C++ [expr.log.and]p2 |
| // C++ [expr.log.or]p2 |
| // The result is a bool. |
| return Context.BoolTy; |
| } |
| |
| /// IsReadonlyProperty - Verify that otherwise a valid l-value expression |
| /// is a read-only property; return true if so. A readonly property expression |
| /// depends on various declarations and thus must be treated specially. |
| /// |
| static bool IsReadonlyProperty(Expr *E, Sema &S) { |
| if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { |
| const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E); |
| if (PropExpr->isImplicitProperty()) return false; |
| |
| ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty(); |
| QualType BaseType = PropExpr->isSuperReceiver() ? |
| PropExpr->getSuperReceiverType() : |
| PropExpr->getBase()->getType(); |
| |
| if (const ObjCObjectPointerType *OPT = |
| BaseType->getAsObjCInterfacePointerType()) |
| if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl()) |
| if (S.isPropertyReadonly(PDecl, IFace)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool IsConstProperty(Expr *E, Sema &S) { |
| if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { |
| const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E); |
| if (PropExpr->isImplicitProperty()) return false; |
| |
| ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty(); |
| QualType T = PDecl->getType(); |
| if (T->isReferenceType()) |
| T = T->getAs<ReferenceType>()->getPointeeType(); |
| CanQualType CT = S.Context.getCanonicalType(T); |
| return CT.isConstQualified(); |
| } |
| return false; |
| } |
| |
| static bool IsReadonlyMessage(Expr *E, Sema &S) { |
| if (E->getStmtClass() != Expr::MemberExprClass) |
| return false; |
| const MemberExpr *ME = cast<MemberExpr>(E); |
| NamedDecl *Member = ME->getMemberDecl(); |
| if (isa<FieldDecl>(Member)) { |
| Expr *Base = ME->getBase()->IgnoreParenImpCasts(); |
| if (Base->getStmtClass() != Expr::ObjCMessageExprClass) |
| return false; |
| return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0; |
| } |
| return false; |
| } |
| |
| /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, |
| /// emit an error and return true. If so, return false. |
| static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { |
| SourceLocation OrigLoc = Loc; |
| Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, |
| &Loc); |
| if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) |
| IsLV = Expr::MLV_ReadonlyProperty; |
| else if (Expr::MLV_ConstQualified && IsConstProperty(E, S)) |
| IsLV = Expr::MLV_Valid; |
| else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) |
| IsLV = Expr::MLV_InvalidMessageExpression; |
| if (IsLV == Expr::MLV_Valid) |
| return false; |
| |
| unsigned Diag = 0; |
| bool NeedType = false; |
| switch (IsLV) { // C99 6.5.16p2 |
| case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break; |
| case Expr::MLV_ArrayType: |
| Diag = diag::err_typecheck_array_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_NotObjectType: |
| Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_LValueCast: |
| Diag = diag::err_typecheck_lvalue_casts_not_supported; |
| break; |
| case Expr::MLV_Valid: |
| llvm_unreachable("did not take early return for MLV_Valid"); |
| case Expr::MLV_InvalidExpression: |
| case Expr::MLV_MemberFunction: |
| case Expr::MLV_ClassTemporary: |
| Diag = diag::err_typecheck_expression_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_IncompleteType: |
| case Expr::MLV_IncompleteVoidType: |
| return S.RequireCompleteType(Loc, E->getType(), |
| S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue) |
| << E->getSourceRange()); |
| case Expr::MLV_DuplicateVectorComponents: |
| Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; |
| break; |
| case Expr::MLV_NotBlockQualified: |
| Diag = diag::err_block_decl_ref_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_ReadonlyProperty: |
| Diag = diag::error_readonly_property_assignment; |
| break; |
| case Expr::MLV_NoSetterProperty: |
| Diag = diag::error_nosetter_property_assignment; |
| break; |
| case Expr::MLV_InvalidMessageExpression: |
| Diag = diag::error_readonly_message_assignment; |
| break; |
| case Expr::MLV_SubObjCPropertySetting: |
| Diag = diag::error_no_subobject_property_setting; |
| break; |
| } |
| |
| SourceRange Assign; |
| if (Loc != OrigLoc) |
| Assign = SourceRange(OrigLoc, OrigLoc); |
| if (NeedType) |
| S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign; |
| else |
| S.Diag(Loc, Diag) << E->getSourceRange() << Assign; |
| return true; |
| } |
| |
| |
| |
| // C99 6.5.16.1 |
| QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| QualType CompoundType) { |
| // Verify that LHS is a modifiable lvalue, and emit error if not. |
| if (CheckForModifiableLvalue(LHS, Loc, *this)) |
| return QualType(); |
| |
| QualType LHSType = LHS->getType(); |
| QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType; |
| AssignConvertType ConvTy; |
| if (CompoundType.isNull()) { |
| QualType LHSTy(LHSType); |
| // Simple assignment "x = y". |
| if (LHS->getObjectKind() == OK_ObjCProperty) { |
| ExprResult LHSResult = Owned(LHS); |
| ConvertPropertyForLValue(LHSResult, RHS, LHSTy); |
| if (LHSResult.isInvalid()) |
| return QualType(); |
| LHS = LHSResult.take(); |
| } |
| ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); |
| if (RHS.isInvalid()) |
| return QualType(); |
| // Special case of NSObject attributes on c-style pointer types. |
| if (ConvTy == IncompatiblePointer && |
| ((Context.isObjCNSObjectType(LHSType) && |
| RHSType->isObjCObjectPointerType()) || |
| (Context.isObjCNSObjectType(RHSType) && |
| LHSType->isObjCObjectPointerType()))) |
| ConvTy = Compatible; |
| |
| if (ConvTy == Compatible && |
| getLangOptions().ObjCNonFragileABI && |
| LHSType->isObjCObjectType()) |
| Diag(Loc, diag::err_assignment_requires_nonfragile_object) |
| << LHSType; |
| |
| // If the RHS is a unary plus or minus, check to see if they = and + are |
| // right next to each other. If so, the user may have typo'd "x =+ 4" |
| // instead of "x += 4". |
| Expr *RHSCheck = RHS.get(); |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) |
| RHSCheck = ICE->getSubExpr(); |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { |
| if ((UO->getOpcode() == UO_Plus || |
| UO->getOpcode() == UO_Minus) && |
| Loc.isFileID() && UO->getOperatorLoc().isFileID() && |
| // Only if the two operators are exactly adjacent. |
| Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() && |
| // And there is a space or other character before the subexpr of the |
| // unary +/-. We don't want to warn on "x=-1". |
| Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() && |
| UO->getSubExpr()->getLocStart().isFileID()) { |
| Diag(Loc, diag::warn_not_compound_assign) |
| << (UO->getOpcode() == UO_Plus ? "+" : "-") |
| << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); |
| } |
| } |
| } else { |
| // Compound assignment "x += y" |
| ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); |
| } |
| |
| if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, |
| RHS.get(), AA_Assigning)) |
| return QualType(); |
| |
| |
| // Check to see if the destination operand is a dereferenced null pointer. If |
| // so, and if not volatile-qualified, this is undefined behavior that the |
| // optimizer will delete, so warn about it. People sometimes try to use this |
| // to get a deterministic trap and are surprised by clang's behavior. This |
| // only handles the pattern "*null = whatever", which is a very syntactic |
| // check. |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts())) |
| if (UO->getOpcode() == UO_Deref && |
| UO->getSubExpr()->IgnoreParenCasts()-> |
| isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) && |
| !UO->getType().isVolatileQualified()) { |
| DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| PDiag(diag::warn_indirection_through_null) |
| << UO->getSubExpr()->getSourceRange()); |
| DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| PDiag(diag::note_indirection_through_null)); |
| } |
| |
| // Check for trivial buffer overflows. |
| CheckArrayAccess(LHS->IgnoreParenCasts()); |
| |
| // C99 6.5.16p3: The type of an assignment expression is the type of the |
| // left operand unless the left operand has qualified type, in which case |
| // it is the unqualified version of the type of the left operand. |
| // C99 6.5.16.1p2: In simple assignment, the value of the right operand |
| // is converted to the type of the assignment expression (above). |
| // C++ 5.17p1: the type of the assignment expression is that of its left |
| // operand. |
| return (getLangOptions().CPlusPlus |
| ? LHSType : LHSType.getUnqualifiedType()); |
| } |
| |
| // C99 6.5.17 |
| static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc) { |
| S.DiagnoseUnusedExprResult(LHS.get()); |
| |
| LHS = S.CheckPlaceholderExpr(LHS.take()); |
| RHS = S.CheckPlaceholderExpr(RHS.take()); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // C's comma performs lvalue conversion (C99 6.3.2.1) on both its |
| // operands, but not unary promotions. |
| // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). |
| |
| // So we treat the LHS as a ignored value, and in C++ we allow the |
| // containing site to determine what should be done with the RHS. |
| LHS = S.IgnoredValueConversions(LHS.take()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| |
| if (!S.getLangOptions().CPlusPlus) { |
| RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| if (!RHS.get()->getType()->isVoidType()) |
| S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type); |
| } |
| |
| return RHS.get()->getType(); |
| } |
| |
| /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine |
| /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. |
| static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, |
| ExprValueKind &VK, |
| SourceLocation OpLoc, |
| bool isInc, bool isPrefix) { |
| if (Op->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| QualType ResType = Op->getType(); |
| assert(!ResType.isNull() && "no type for increment/decrement expression"); |
| |
| if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) { |
| // Decrement of bool is not allowed. |
| if (!isInc) { |
| S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); |
| return QualType(); |
| } |
| // Increment of bool sets it to true, but is deprecated. |
| S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); |
| } else if (ResType->isRealType()) { |
| // OK! |
| } else if (ResType->isAnyPointerType()) { |
| QualType PointeeTy = ResType->getPointeeType(); |
| |
| // C99 6.5.2.4p2, 6.5.6p2 |
| if (PointeeTy->isVoidType()) { |
| if (S.getLangOptions().CPlusPlus) { |
| S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type) |
| << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Pointer to void is a GNU extension in C. |
| S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange(); |
| } else if (PointeeTy->isFunctionType()) { |
| if (S.getLangOptions().CPlusPlus) { |
| S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type) |
| << Op->getType() << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith) |
| << ResType << Op->getSourceRange(); |
| } else if (S.RequireCompleteType(OpLoc, PointeeTy, |
| S.PDiag(diag::err_typecheck_arithmetic_incomplete_type) |
| << Op->getSourceRange() |
| << ResType)) |
| return QualType(); |
| // Diagnose bad cases where we step over interface counts. |
| else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) { |
| S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface) |
| << PointeeTy << Op->getSourceRange(); |
| return QualType(); |
| } |
| } else if (ResType->isAnyComplexType()) { |
| // C99 does not support ++/-- on complex types, we allow as an extension. |
| S.Diag(OpLoc, diag::ext_integer_increment_complex) |
| << ResType << Op->getSourceRange(); |
| } else if (ResType->isPlaceholderType()) { |
| ExprResult PR = S.CheckPlaceholderExpr(Op); |
| if (PR.isInvalid()) return QualType(); |
| return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc, |
| isInc, isPrefix); |
| } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) { |
| // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) |
| } else { |
| S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) |
| << ResType << int(isInc) << Op->getSourceRange(); |
| return QualType(); |
| } |
| // At this point, we know we have a real, complex or pointer type. |
| // Now make sure the operand is a modifiable lvalue. |
| if (CheckForModifiableLvalue(Op, OpLoc, S)) |
| return QualType(); |
| // In C++, a prefix increment is the same type as the operand. Otherwise |
| // (in C or with postfix), the increment is the unqualified type of the |
| // operand. |
| if (isPrefix && S.getLangOptions().CPlusPlus) { |
| VK = VK_LValue; |
| return ResType; |
| } else { |
| VK = VK_RValue; |
| return ResType.getUnqualifiedType(); |
| } |
| } |
| |
| ExprResult Sema::ConvertPropertyForRValue(Expr *E) { |
| assert(E->getValueKind() == VK_LValue && |
| E->getObjectKind() == OK_ObjCProperty); |
| const ObjCPropertyRefExpr *PRE = E->getObjCProperty(); |
| |
| ExprValueKind VK = VK_RValue; |
| if (PRE->isImplicitProperty()) { |
| if (const ObjCMethodDecl *GetterMethod = |
| PRE->getImplicitPropertyGetter()) { |
| QualType Result = GetterMethod->getResultType(); |
| VK = Expr::getValueKindForType(Result); |
| } |
| else { |
| Diag(PRE->getLocation(), diag::err_getter_not_found) |
| << PRE->getBase()->getType(); |
| } |
| } |
| |
| E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty, |
| E, 0, VK); |
| |
| ExprResult Result = MaybeBindToTemporary(E); |
| if (!Result.isInvalid()) |
| E = Result.take(); |
| |
| return Owned(E); |
| } |
| |
| void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) { |
| assert(LHS.get()->getValueKind() == VK_LValue && |
| LHS.get()->getObjectKind() == OK_ObjCProperty); |
| const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty(); |
| |
| if (PropRef->isImplicitProperty()) { |
| // If using property-dot syntax notation for assignment, and there is a |
| // setter, RHS expression is being passed to the setter argument. So, |
| // type conversion (and comparison) is RHS to setter's argument type. |
| if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) { |
| ObjCMethodDecl::param_iterator P = SetterMD->param_begin(); |
| LHSTy = (*P)->getType(); |
| |
| // Otherwise, if the getter returns an l-value, just call that. |
| } else { |
| QualType Result = PropRef->getImplicitPropertyGetter()->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(Result); |
| if (VK == VK_LValue) { |
| LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(), |
| CK_GetObjCProperty, LHS.take(), 0, VK); |
| return; |
| } |
| } |
| } |
| |
| if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) { |
| InitializedEntity Entity = |
| InitializedEntity::InitializeParameter(Context, LHSTy); |
| ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS); |
| if (!ArgE.isInvalid()) |
| RHS = ArgE; |
| } |
| } |
| |
| |
| /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). |
| /// This routine allows us to typecheck complex/recursive expressions |
| /// where the declaration is needed for type checking. We only need to |
| /// handle cases when the expression references a function designator |
| /// or is an lvalue. Here are some examples: |
| /// - &(x) => x |
| /// - &*****f => f for f a function designator. |
| /// - &s.xx => s |
| /// - &s.zz[1].yy -> s, if zz is an array |
| /// - *(x + 1) -> x, if x is an array |
| /// - &"123"[2] -> 0 |
| /// - & __real__ x -> x |
| static ValueDecl *getPrimaryDecl(Expr *E) { |
| switch (E->getStmtClass()) { |
| case Stmt::DeclRefExprClass: |
| return cast<DeclRefExpr>(E)->getDecl(); |
| case Stmt::MemberExprClass: |
| // If this is an arrow operator, the address is an offset from |
| // the base's value, so the object the base refers to is |
| // irrelevant. |
| if (cast<MemberExpr>(E)->isArrow()) |
| return 0; |
| // Otherwise, the expression refers to a part of the base |
| return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); |
| case Stmt::ArraySubscriptExprClass: { |
| // FIXME: This code shouldn't be necessary! We should catch the implicit |
| // promotion of register arrays earlier. |
| Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); |
| if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { |
| if (ICE->getSubExpr()->getType()->isArrayType()) |
| return getPrimaryDecl(ICE->getSubExpr()); |
| } |
| return 0; |
| } |
| case Stmt::UnaryOperatorClass: { |
| UnaryOperator *UO = cast<UnaryOperator>(E); |
| |
| switch(UO->getOpcode()) { |
| case UO_Real: |
| case UO_Imag: |
| case UO_Extension: |
| return getPrimaryDecl(UO->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| case Stmt::ParenExprClass: |
| return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); |
| case Stmt::ImplicitCastExprClass: |
| // If the result of an implicit cast is an l-value, we care about |
| // the sub-expression; otherwise, the result here doesn't matter. |
| return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| |
| /// CheckAddressOfOperand - The operand of & must be either a function |
| /// designator or an lvalue designating an object. If it is an lvalue, the |
| /// object cannot be declared with storage class register or be a bit field. |
| /// Note: The usual conversions are *not* applied to the operand of the & |
| /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. |
| /// In C++, the operand might be an overloaded function name, in which case |
| /// we allow the '&' but retain the overloaded-function type. |
| static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp, |
| SourceLocation OpLoc) { |
| if (OrigOp->isTypeDependent()) |
| return S.Context.DependentTy; |
| if (OrigOp->getType() == S.Context.OverloadTy) |
| return S.Context.OverloadTy; |
| if (OrigOp->getType() == S.Context.UnknownAnyTy) |
| return S.Context.UnknownAnyTy; |
| |
| assert(!OrigOp->getType()->isPlaceholderType()); |
| |
| // Make sure to ignore parentheses in subsequent checks |
| Expr *op = OrigOp->IgnoreParens(); |
| |
| if (S.getLangOptions().C99) { |
| // Implement C99-only parts of addressof rules. |
| if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { |
| if (uOp->getOpcode() == UO_Deref) |
| // Per C99 6.5.3.2, the address of a deref always returns a valid result |
| // (assuming the deref expression is valid). |
| return uOp->getSubExpr()->getType(); |
| } |
| // Technically, there should be a check for array subscript |
| // expressions here, but the result of one is always an lvalue anyway. |
| } |
| ValueDecl *dcl = getPrimaryDecl(op); |
| Expr::LValueClassification lval = op->ClassifyLValue(S.Context); |
| |
| if (lval == Expr::LV_ClassTemporary) { |
| bool sfinae = S.isSFINAEContext(); |
| S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary |
| : diag::ext_typecheck_addrof_class_temporary) |
| << op->getType() << op->getSourceRange(); |
| if (sfinae) |
| return QualType(); |
| } else if (isa<ObjCSelectorExpr>(op)) { |
| return S.Context.getPointerType(op->getType()); |
| } else if (lval == Expr::LV_MemberFunction) { |
| // If it's an instance method, make a member pointer. |
| // The expression must have exactly the form &A::foo. |
| |
| // If the underlying expression isn't a decl ref, give up. |
| if (!isa<DeclRefExpr>(op)) { |
| S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function) |
| << OrigOp->getSourceRange(); |
| return QualType(); |
| } |
| DeclRefExpr *DRE = cast<DeclRefExpr>(op); |
| CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); |
| |
| // The id-expression was parenthesized. |
| if (OrigOp != DRE) { |
| S.Diag(OpLoc, diag::err_parens_pointer_member_function) |
| << OrigOp->getSourceRange(); |
| |
| // The method was named without a qualifier. |
| } else if (!DRE->getQualifier()) { |
| S.Diag(OpLoc, diag::err_unqualified_pointer_member_function) |
| << op->getSourceRange(); |
| } |
| |
| return S.Context.getMemberPointerType(op->getType(), |
| S.Context.getTypeDeclType(MD->getParent()).getTypePtr()); |
| } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { |
| // C99 6.5.3.2p1 |
| // The operand must be either an l-value or a function designator |
| if (!op->getType()->isFunctionType()) { |
| // FIXME: emit more specific diag... |
| S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) |
| << op->getSourceRange(); |
| return QualType(); |
| } |
| } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 |
| // The operand cannot be a bit-field |
| S.Diag(OpLoc, diag::err_typecheck_address_of) |
| << "bit-field" << op->getSourceRange(); |
| return QualType(); |
| } else if (op->getObjectKind() == OK_VectorComponent) { |
| // The operand cannot be an element of a vector |
| S.Diag(OpLoc, diag::err_typecheck_address_of) |
| << "vector element" << op->getSourceRange(); |
| return QualType(); |
| } else if (op->getObjectKind() == OK_ObjCProperty) { |
| // cannot take address of a property expression. |
| S.Diag(OpLoc, diag::err_typecheck_address_of) |
| << "property expression" << op->getSourceRange(); |
| return QualType(); |
| } else if (dcl) { // C99 6.5.3.2p1 |
| // We have an lvalue with a decl. Make sure the decl is not declared |
| // with the register storage-class specifier. |
| if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { |
| // in C++ it is not error to take address of a register |
| // variable (c++03 7.1.1P3) |
| if (vd->getStorageClass() == SC_Register && |
| !S.getLangOptions().CPlusPlus) { |
| S.Diag(OpLoc, diag::err_typecheck_address_of) |
| << "register variable" << op->getSourceRange(); |
| return QualType(); |
| } |
| } else if (isa<FunctionTemplateDecl>(dcl)) { |
| return S.Context.OverloadTy; |
| } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) { |
| // Okay: we can take the address of a field. |
| // Could be a pointer to member, though, if there is an explicit |
| // scope qualifier for the class. |
| if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { |
| DeclContext *Ctx = dcl->getDeclContext(); |
| if (Ctx && Ctx->isRecord()) { |
| if (dcl->getType()->isReferenceType()) { |
| S.Diag(OpLoc, |
| diag::err_cannot_form_pointer_to_member_of_reference_type) |
| << dcl->getDeclName() << dcl->getType(); |
| return QualType(); |
| } |
| |
| while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()) |
| Ctx = Ctx->getParent(); |
| return S.Context.getMemberPointerType(op->getType(), |
| S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); |
| } |
| } |
| } else if (!isa<FunctionDecl>(dcl)) |
| assert(0 && "Unknown/unexpected decl type"); |
| } |
| |
| if (lval == Expr::LV_IncompleteVoidType) { |
| // Taking the address of a void variable is technically illegal, but we |
| // allow it in cases which are otherwise valid. |
| // Example: "extern void x; void* y = &x;". |
| S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); |
| } |
| |
| // If the operand has type "type", the result has type "pointer to type". |
| if (op->getType()->isObjCObjectType()) |
| return S.Context.getObjCObjectPointerType(op->getType()); |
| return S.Context.getPointerType(op->getType()); |
| } |
| |
| /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). |
| static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, |
| SourceLocation OpLoc) { |
| if (Op->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| ExprResult ConvResult = S.UsualUnaryConversions(Op); |
| if (ConvResult.isInvalid()) |
| return QualType(); |
| Op = ConvResult.take(); |
| QualType OpTy = Op->getType(); |
| QualType Result; |
| |
| // Note that per both C89 and C99, indirection is always legal, even if OpTy |
| // is an incomplete type or void. It would be possible to warn about |
| // dereferencing a void pointer, but it's completely well-defined, and such a |
| // warning is unlikely to catch any mistakes. |
| if (const PointerType *PT = OpTy->getAs<PointerType>()) |
| Result = PT->getPointeeType(); |
| else if (const ObjCObjectPointerType *OPT = |
| OpTy->getAs<ObjCObjectPointerType>()) |
| Result = OPT->getPointeeType(); |
| else { |
| ExprResult PR = S.CheckPlaceholderExpr(Op); |
| if (PR.isInvalid()) return QualType(); |
| if (PR.take() != Op) |
| return CheckIndirectionOperand(S, PR.take(), VK, OpLoc); |
| } |
| |
| if (Result.isNull()) { |
| S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) |
| << OpTy << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Dereferences are usually l-values... |
| VK = VK_LValue; |
| |
| // ...except that certain expressions are never l-values in C. |
| if (!S.getLangOptions().CPlusPlus && |
| IsCForbiddenLValueType(S.Context, Result)) |
| VK = VK_RValue; |
| |
| return Result; |
| } |
| |
| static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode( |
| tok::TokenKind Kind) { |
| BinaryOperatorKind Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown binop!"); |
| case tok::periodstar: Opc = BO_PtrMemD; break; |
| case tok::arrowstar: Opc = BO_PtrMemI; break; |
| case tok::star: Opc = BO_Mul; break; |
| case tok::slash: Opc = BO_Div; break; |
| case tok::percent: Opc = BO_Rem; break; |
| case tok::plus: Opc = BO_Add; break; |
| case tok::minus: Opc = BO_Sub; break; |
| case tok::lessless: Opc = BO_Shl; break; |
| case tok::greatergreater: Opc = BO_Shr; break; |
| case tok::lessequal: Opc = BO_LE; break; |
| case tok::less: Opc = BO_LT; break; |
| case tok::greaterequal: Opc = BO_GE; break; |
| case tok::greater: Opc = BO_GT; break; |
| case tok::exclaimequal: Opc = BO_NE; break; |
| case tok::equalequal: Opc = BO_EQ; break; |
| case tok::amp: Opc = BO_And; break; |
| case tok::caret: Opc = BO_Xor; break; |
| case tok::pipe: Opc = BO_Or; break; |
| case tok::ampamp: Opc = BO_LAnd; break; |
| case tok::pipepipe: Opc = BO_LOr; break; |
| case tok::equal: Opc = BO_Assign; break; |
| case tok::starequal: Opc = BO_MulAssign; break; |
| case tok::slashequal: Opc = BO_DivAssign; break; |
| case tok::percentequal: Opc = BO_RemAssign; break; |
| case tok::plusequal: Opc = BO_AddAssign; break; |
| case tok::minusequal: Opc = BO_SubAssign; break; |
| case tok::lesslessequal: Opc = BO_ShlAssign; break; |
| case tok::greatergreaterequal: Opc = BO_ShrAssign; break; |
| case tok::ampequal: Opc = BO_AndAssign; break; |
| case tok::caretequal: Opc = BO_XorAssign; break; |
| case tok::pipeequal: Opc = BO_OrAssign; break; |
| case tok::comma: Opc = BO_Comma; break; |
| } |
| return Opc; |
| } |
| |
| static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( |
| tok::TokenKind Kind) { |
| UnaryOperatorKind Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UO_PreInc; break; |
| case tok::minusminus: Opc = UO_PreDec; break; |
| case tok::amp: Opc = UO_AddrOf; break; |
| case tok::star: Opc = UO_Deref; break; |
| case tok::plus: Opc = UO_Plus; break; |
| case tok::minus: Opc = UO_Minus; break; |
| case tok::tilde: Opc = UO_Not; break; |
| case tok::exclaim: Opc = UO_LNot; break; |
| case tok::kw___real: Opc = UO_Real; break; |
| case tok::kw___imag: Opc = UO_Imag; break; |
| case tok::kw___extension__: Opc = UO_Extension; break; |
| } |
| return Opc; |
| } |
| |
| /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. |
| /// This warning is only emitted for builtin assignment operations. It is also |
| /// suppressed in the event of macro expansions. |
| static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs, |
| SourceLocation OpLoc) { |
| if (!S.ActiveTemplateInstantiations.empty()) |
| return; |
| if (OpLoc.isInvalid() || OpLoc.isMacroID()) |
| return; |
| lhs = lhs->IgnoreParenImpCasts(); |
| rhs = rhs->IgnoreParenImpCasts(); |
| const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs); |
| const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs); |
| if (!LeftDeclRef || !RightDeclRef || |
| LeftDeclRef->getLocation().isMacroID() || |
| RightDeclRef->getLocation().isMacroID()) |
| return; |
| const ValueDecl *LeftDecl = |
| cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl()); |
| const ValueDecl *RightDecl = |
| cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl()); |
| if (LeftDecl != RightDecl) |
| return; |
| if (LeftDecl->getType().isVolatileQualified()) |
| return; |
| if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>()) |
| if (RefTy->getPointeeType().isVolatileQualified()) |
| return; |
| |
| S.Diag(OpLoc, diag::warn_self_assignment) |
| << LeftDeclRef->getType() |
| << lhs->getSourceRange() << rhs->getSourceRange(); |
| } |
| |
| /// CreateBuiltinBinOp - Creates a new built-in binary operation with |
| /// operator @p Opc at location @c TokLoc. This routine only supports |
| /// built-in operations; ActOnBinOp handles overloaded operators. |
| ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *lhsExpr, Expr *rhsExpr) { |
| ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr); |
| QualType ResultTy; // Result type of the binary operator. |
| // The following two variables are used for compound assignment operators |
| QualType CompLHSTy; // Type of LHS after promotions for computation |
| QualType CompResultTy; // Type of computation result |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| |
| // Check if a 'foo<int>' involved in a binary op, identifies a single |
| // function unambiguously (i.e. an lvalue ala 13.4) |
| // But since an assignment can trigger target based overload, exclude it in |
| // our blind search. i.e: |
| // template<class T> void f(); template<class T, class U> void f(U); |
| // f<int> == 0; // resolve f<int> blindly |
| // void (*p)(int); p = f<int>; // resolve f<int> using target |
| if (Opc != BO_Assign) { |
| ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get()); |
| if (!resolvedLHS.isUsable()) return ExprError(); |
| lhs = move(resolvedLHS); |
| |
| ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get()); |
| if (!resolvedRHS.isUsable()) return ExprError(); |
| rhs = move(resolvedRHS); |
| } |
| |
| switch (Opc) { |
| case BO_Assign: |
| ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType()); |
| if (getLangOptions().CPlusPlus && |
| lhs.get()->getObjectKind() != OK_ObjCProperty) { |
| VK = lhs.get()->getValueKind(); |
| OK = lhs.get()->getObjectKind(); |
| } |
| if (!ResultTy.isNull()) |
| DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc); |
| break; |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc, |
| Opc == BO_PtrMemI); |
| break; |
| case BO_Mul: |
| case BO_Div: |
| ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false, |
| Opc == BO_Div); |
| break; |
| case BO_Rem: |
| ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); |
| break; |
| case BO_Add: |
| ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); |
| break; |
| case BO_Sub: |
| ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); |
| break; |
| case BO_Shl: |
| case BO_Shr: |
| ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc); |
| break; |
| case BO_LE: |
| case BO_LT: |
| case BO_GE: |
| case BO_GT: |
| ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true); |
| break; |
| case BO_EQ: |
| case BO_NE: |
| ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false); |
| break; |
| case BO_And: |
| case BO_Xor: |
| case BO_Or: |
| ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); |
| break; |
| case BO_LAnd: |
| case BO_LOr: |
| ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc); |
| break; |
| case BO_MulAssign: |
| case BO_DivAssign: |
| CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true, |
| Opc == BO_DivAssign); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) |
| ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); |
| break; |
| case BO_RemAssign: |
| CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) |
| ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); |
| break; |
| case BO_AddAssign: |
| CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy); |
| if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) |
| ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); |
| break; |
| case BO_SubAssign: |
| CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy); |
| if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) |
| ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); |
| break; |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) |
| ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); |
| break; |
| case BO_AndAssign: |
| case BO_XorAssign: |
| case BO_OrAssign: |
| CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) |
| ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); |
| break; |
| case BO_Comma: |
| ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc); |
| if (getLangOptions().CPlusPlus && !rhs.isInvalid()) { |
| VK = rhs.get()->getValueKind(); |
| OK = rhs.get()->getObjectKind(); |
| } |
| break; |
| } |
| if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid()) |
| return ExprError(); |
| if (CompResultTy.isNull()) |
| return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc, |
| ResultTy, VK, OK, OpLoc)); |
| if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) { |
| VK = VK_LValue; |
| OK = lhs.get()->getObjectKind(); |
| } |
| return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc, |
| ResultTy, VK, OK, CompLHSTy, |
| CompResultTy, OpLoc)); |
| } |
| |
| /// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps |
| /// ParenRange in parentheses. |
| static void SuggestParentheses(Sema &Self, SourceLocation Loc, |
| const PartialDiagnostic &PD, |
| const PartialDiagnostic &FirstNote, |
| SourceRange FirstParenRange, |
| const PartialDiagnostic &SecondNote, |
| SourceRange SecondParenRange) { |
| Self.Diag(Loc, PD); |
| |
| if (!FirstNote.getDiagID()) |
| return; |
| |
| SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd()); |
| if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { |
| // We can't display the parentheses, so just return. |
| return; |
| } |
| |
| Self.Diag(Loc, FirstNote) |
| << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(") |
| << FixItHint::CreateInsertion(EndLoc, ")"); |
| |
| if (!SecondNote.getDiagID()) |
| return; |
| |
| EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd()); |
| if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { |
| // We can't display the parentheses, so just dig the |
| // warning/error and return. |
| Self.Diag(Loc, SecondNote); |
| return; |
| } |
| |
| Self.Diag(Loc, SecondNote) |
| << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(") |
| << FixItHint::CreateInsertion(EndLoc, ")"); |
| } |
| |
| /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison |
| /// operators are mixed in a way that suggests that the programmer forgot that |
| /// comparison operators have higher precedence. The most typical example of |
| /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". |
| static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, |
| SourceLocation OpLoc,Expr *lhs,Expr *rhs){ |
| typedef BinaryOperator BinOp; |
| BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1), |
| rhsopc = static_cast<BinOp::Opcode>(-1); |
| if (BinOp *BO = dyn_cast<BinOp>(lhs)) |
| lhsopc = BO->getOpcode(); |
| if (BinOp *BO = dyn_cast<BinOp>(rhs)) |
| rhsopc = BO->getOpcode(); |
| |
| // Subs are not binary operators. |
| if (lhsopc == -1 && rhsopc == -1) |
| return; |
| |
| // Bitwise operations are sometimes used as eager logical ops. |
| // Don't diagnose this. |
| if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) && |
| (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc))) |
| return; |
| |
| if (BinOp::isComparisonOp(lhsopc)) |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::warn_precedence_bitwise_rel) |
| << SourceRange(lhs->getLocStart(), OpLoc) |
| << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc), |
| Self.PDiag(diag::note_precedence_bitwise_silence) |
| << BinOp::getOpcodeStr(lhsopc), |
| lhs->getSourceRange(), |
| Self.PDiag(diag::note_precedence_bitwise_first) |
| << BinOp::getOpcodeStr(Opc), |
| SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd())); |
| else if (BinOp::isComparisonOp(rhsopc)) |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::warn_precedence_bitwise_rel) |
| << SourceRange(OpLoc, rhs->getLocEnd()) |
| << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc), |
| Self.PDiag(diag::note_precedence_bitwise_silence) |
| << BinOp::getOpcodeStr(rhsopc), |
| rhs->getSourceRange(), |
| Self.PDiag(diag::note_precedence_bitwise_first) |
| << BinOp::getOpcodeStr(Opc), |
| SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart())); |
| } |
| |
| /// \brief It accepts a '&&' expr that is inside a '||' one. |
| /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression |
| /// in parentheses. |
| static void |
| EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, |
| BinaryOperator *Bop) { |
| assert(Bop->getOpcode() == BO_LAnd); |
| SuggestParentheses(Self, Bop->getOperatorLoc(), |
| Self.PDiag(diag::warn_logical_and_in_logical_or) |
| << Bop->getSourceRange() << OpLoc, |
| Self.PDiag(diag::note_logical_and_in_logical_or_silence), |
| Bop->getSourceRange(), |
| Self.PDiag(0), SourceRange()); |
| } |
| |
| /// \brief Returns true if the given expression can be evaluated as a constant |
| /// 'true'. |
| static bool EvaluatesAsTrue(Sema &S, Expr *E) { |
| bool Res; |
| return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res; |
| } |
| |
| /// \brief Returns true if the given expression can be evaluated as a constant |
| /// 'false'. |
| static bool EvaluatesAsFalse(Sema &S, Expr *E) { |
| bool Res; |
| return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res; |
| } |
| |
| /// \brief Look for '&&' in the left hand of a '||' expr. |
| static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, |
| Expr *OrLHS, Expr *OrRHS) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) { |
| if (Bop->getOpcode() == BO_LAnd) { |
| // If it's "a && b || 0" don't warn since the precedence doesn't matter. |
| if (EvaluatesAsFalse(S, OrRHS)) |
| return; |
| // If it's "1 && a || b" don't warn since the precedence doesn't matter. |
| if (!EvaluatesAsTrue(S, Bop->getLHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); |
| } else if (Bop->getOpcode() == BO_LOr) { |
| if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) { |
| // If it's "a || b && 1 || c" we didn't warn earlier for |
| // "a || b && 1", but warn now. |
| if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); |
| } |
| } |
| } |
| } |
| |
| /// \brief Look for '&&' in the right hand of a '||' expr. |
| static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, |
| Expr *OrLHS, Expr *OrRHS) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) { |
| if (Bop->getOpcode() == BO_LAnd) { |
| // If it's "0 || a && b" don't warn since the precedence doesn't matter. |
| if (EvaluatesAsFalse(S, OrLHS)) |
| return; |
| // If it's "a || b && 1" don't warn since the precedence doesn't matter. |
| if (!EvaluatesAsTrue(S, Bop->getRHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); |
| } |
| } |
| } |
| |
| /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky |
| /// precedence. |
| static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, |
| SourceLocation OpLoc, Expr *lhs, Expr *rhs){ |
| // Diagnose "arg1 'bitwise' arg2 'eq' arg3". |
| if (BinaryOperator::isBitwiseOp(Opc)) |
| return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs); |
| |
| // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. |
| // We don't warn for 'assert(a || b && "bad")' since this is safe. |
| if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { |
| DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs); |
| DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs); |
| } |
| } |
| |
| // Binary Operators. 'Tok' is the token for the operator. |
| ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, |
| tok::TokenKind Kind, |
| Expr *lhs, Expr *rhs) { |
| BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); |
| assert((lhs != 0) && "ActOnBinOp(): missing left expression"); |
| assert((rhs != 0) && "ActOnBinOp(): missing right expression"); |
| |
| // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" |
| DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs); |
| |
| return BuildBinOp(S, TokLoc, Opc, lhs, rhs); |
| } |
| |
| ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *lhs, Expr *rhs) { |
| if (getLangOptions().CPlusPlus) { |
| bool UseBuiltinOperator; |
| |
| if (lhs->isTypeDependent() || rhs->isTypeDependent()) { |
| UseBuiltinOperator = false; |
| } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) { |
| UseBuiltinOperator = true; |
| } else { |
| UseBuiltinOperator = !lhs->getType()->isOverloadableType() && |
| !rhs->getType()->isOverloadableType(); |
| } |
| |
| if (!UseBuiltinOperator) { |
| // Find all of the overloaded operators visible from this |
| // point. We perform both an operator-name lookup from the local |
| // scope and an argument-dependent lookup based on the types of |
| // the arguments. |
| UnresolvedSet<16> Functions; |
| OverloadedOperatorKind OverOp |
| = BinaryOperator::getOverloadedOperator(Opc); |
| if (S && OverOp != OO_None) |
| LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(), |
| Functions); |
| |
| // Build the (potentially-overloaded, potentially-dependent) |
| // binary operation. |
| return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs); |
| } |
| } |
| |
| // Build a built-in binary operation. |
| return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs); |
| } |
| |
| ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, |
| UnaryOperatorKind Opc, |
| Expr *InputExpr) { |
| ExprResult Input = Owned(InputExpr); |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType resultType; |
| switch (Opc) { |
| case UO_PreInc: |
| case UO_PreDec: |
| case UO_PostInc: |
| case UO_PostDec: |
| resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc, |
| Opc == UO_PreInc || |
| Opc == UO_PostInc, |
| Opc == UO_PreInc || |
| Opc == UO_PreDec); |
| break; |
| case UO_AddrOf: |
| resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc); |
| break; |
| case UO_Deref: { |
| ExprResult resolved = CheckPlaceholderExpr(Input.get()); |
| if (!resolved.isUsable()) return ExprError(); |
| Input = move(resolved); |
| Input = DefaultFunctionArrayLvalueConversion(Input.take()); |
| resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc); |
| break; |
| } |
| case UO_Plus: |
| case UO_Minus: |
| Input = UsualUnaryConversions(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = Input.get()->getType(); |
| if (resultType->isDependentType()) |
| break; |
| if (resultType->isArithmeticType() || // C99 6.5.3.3p1 |
| resultType->isVectorType()) |
| break; |
| else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 |
| resultType->isEnumeralType()) |
| break; |
| else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 |
| Opc == UO_Plus && |
| resultType->isPointerType()) |
| break; |
| else if (resultType->isPlaceholderType()) { |
| Input = CheckPlaceholderExpr(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take()); |
| } |
| |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| |
| case UO_Not: // bitwise complement |
| Input = UsualUnaryConversions(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = Input.get()->getType(); |
| if (resultType->isDependentType()) |
| break; |
| // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. |
| if (resultType->isComplexType() || resultType->isComplexIntegerType()) |
| // C99 does not support '~' for complex conjugation. |
| Diag(OpLoc, diag::ext_integer_complement_complex) |
| << resultType << Input.get()->getSourceRange(); |
| else if (resultType->hasIntegerRepresentation()) |
| break; |
| else if (resultType->isPlaceholderType()) { |
| Input = CheckPlaceholderExpr(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take()); |
| } else { |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| break; |
| |
| case UO_LNot: // logical negation |
| // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). |
| Input = DefaultFunctionArrayLvalueConversion(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = Input.get()->getType(); |
| if (resultType->isDependentType()) |
| break; |
| if (resultType->isScalarType()) { |
| // C99 6.5.3.3p1: ok, fallthrough; |
| if (Context.getLangOptions().CPlusPlus) { |
| // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: |
| // operand contextually converted to bool. |
| Input = ImpCastExprToType(Input.take(), Context.BoolTy, |
| ScalarTypeToBooleanCastKind(resultType)); |
| } |
| } else if (resultType->isPlaceholderType()) { |
| Input = CheckPlaceholderExpr(Input.take()); |
| if (Input.isInvalid()) return ExprError(); |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take()); |
| } else { |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| |
| // LNot always has type int. C99 6.5.3.3p5. |
| // In C++, it's bool. C++ 5.3.1p8 |
| resultType = Context.getLogicalOperationType(); |
| break; |
| case UO_Real: |
| case UO_Imag: |
| resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); |
| // _Real and _Imag map ordinary l-values into ordinary l-values. |
| if (Input.isInvalid()) return ExprError(); |
| if (Input.get()->getValueKind() != VK_RValue && |
| Input.get()->getObjectKind() == OK_Ordinary) |
| VK = Input.get()->getValueKind(); |
| break; |
| case UO_Extension: |
| resultType = Input.get()->getType(); |
| VK = Input.get()->getValueKind(); |
| OK = Input.get()->getObjectKind(); |
| break; |
| } |
| if (resultType.isNull() || Input.isInvalid()) |
| return ExprError(); |
| |
| return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType, |
| VK, OK, OpLoc)); |
| } |
| |
| ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, |
| UnaryOperatorKind Opc, |
| Expr *Input) { |
| if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() && |
| UnaryOperator::getOverloadedOperator(Opc) != OO_None) { |
| // Find all of the overloaded operators visible from this |
| // point. We perform both an operator-name lookup from the local |
| // scope and an argument-dependent lookup based on the types of |
| // the arguments. |
| UnresolvedSet<16> Functions; |
| OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); |
| if (S && OverOp != OO_None) |
| LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), |
| Functions); |
| |
| return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); |
| } |
| |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| } |
| |
| // Unary Operators. 'Tok' is the token for the operator. |
| ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Op, Expr *Input) { |
| return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input); |
| } |
| |
| /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". |
| ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, |
| LabelDecl *TheDecl) { |
| TheDecl->setUsed(); |
| // Create the AST node. The address of a label always has type 'void*'. |
| return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl, |
| Context.getPointerType(Context.VoidTy))); |
| } |
| |
| ExprResult |
| Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, |
| SourceLocation RPLoc) { // "({..})" |
| assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); |
| CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); |
| |
| bool isFileScope |
| = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0); |
| if (isFileScope) |
| return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope)); |
| |
| // FIXME: there are a variety of strange constraints to enforce here, for |
| // example, it is not possible to goto into a stmt expression apparently. |
| // More semantic analysis is needed. |
| |
| // If there are sub stmts in the compound stmt, take the type of the last one |
| // as the type of the stmtexpr. |
| QualType Ty = Context.VoidTy; |
| bool StmtExprMayBindToTemp = false; |
| if (!Compound->body_empty()) { |
| Stmt *LastStmt = Compound->body_back(); |
| LabelStmt *LastLabelStmt = 0; |
| // If LastStmt is a label, skip down through into the body. |
| while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) { |
| LastLabelStmt = Label; |
| LastStmt = Label->getSubStmt(); |
| } |
| if (Expr *LastE = dyn_cast<Expr>(LastStmt)) { |
| // Do function/array conversion on the last expression, but not |
| // lvalue-to-rvalue. However, initialize an unqualified type. |
| ExprResult LastExpr = DefaultFunctionArrayConversion(LastE); |
| if (LastExpr.isInvalid()) |
| return ExprError(); |
| Ty = LastExpr.get()->getType().getUnqualifiedType(); |
| |
| if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) { |
| LastExpr = PerformCopyInitialization( |
| InitializedEntity::InitializeResult(LPLoc, |
| Ty, |
| false), |
| SourceLocation(), |
| LastExpr); |
| if (LastExpr.isInvalid()) |
| return ExprError(); |
| if (LastExpr.get() != 0) { |
| if (!LastLabelStmt) |
| Compound->setLastStmt(LastExpr.take()); |
| else |
| LastLabelStmt->setSubStmt(LastExpr.take()); |
| StmtExprMayBindToTemp = true; |
| } |
| } |
| } |
| } |
| |
| // FIXME: Check that expression type is complete/non-abstract; statement |
| // expressions are not lvalues. |
| Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc); |
| if (StmtExprMayBindToTemp) |
| return MaybeBindToTemporary(ResStmtExpr); |
| return Owned(ResStmtExpr); |
| } |
| |
| ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, |
| TypeSourceInfo *TInfo, |
| OffsetOfComponent *CompPtr, |
| unsigned NumComponents, |
| SourceLocation RParenLoc) { |
| QualType ArgTy = TInfo->getType(); |
| bool Dependent = ArgTy->isDependentType(); |
| SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); |
| |
| // We must have at least one component that refers to the type, and the first |
| // one is known to be a field designator. Verify that the ArgTy represents |
| // a struct/union/class. |
| if (!Dependent && !ArgTy->isRecordType()) |
| return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) |
| << ArgTy << TypeRange); |
| |
| // Type must be complete per C99 7.17p3 because a declaring a variable |
| // with an incomplete type would be ill-formed. |
| if (!Dependent |
| && RequireCompleteType(BuiltinLoc, ArgTy, |
| PDiag(diag::err_offsetof_incomplete_type) |
| << TypeRange)) |
| return ExprError(); |
| |
| // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a |
| // GCC extension, diagnose them. |
| // FIXME: This diagnostic isn't actually visible because the location is in |
| // a system header! |
| if (NumComponents != 1) |
| Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) |
| << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); |
| |
| bool DidWarnAboutNonPOD = false; |
| QualType CurrentType = ArgTy; |
| typedef OffsetOfExpr::OffsetOfNode OffsetOfNode; |
| llvm::SmallVector<OffsetOfNode, 4> Comps; |
| llvm::SmallVector<Expr*, 4> Exprs; |
| for (unsigned i = 0; i != NumComponents; ++i) { |
| const OffsetOfComponent &OC = CompPtr[i]; |
| if (OC.isBrackets) { |
| // Offset of an array sub-field. TODO: Should we allow vector elements? |
| if (!CurrentType->isDependentType()) { |
| const ArrayType *AT = Context.getAsArrayType(CurrentType); |
| if(!AT) |
| return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) |
| << CurrentType); |
| CurrentType = AT->getElementType(); |
| } else |
| CurrentType = Context.DependentTy; |
| |
| // The expression must be an integral expression. |
| // FIXME: An integral constant expression? |
| Expr *Idx = static_cast<Expr*>(OC.U.E); |
| if (!Idx->isTypeDependent() && !Idx->isValueDependent() && |
| !Idx->getType()->isIntegerType()) |
| return ExprError(Diag(Idx->getLocStart(), |
| diag::err_typecheck_subscript_not_integer) |
| << Idx->getSourceRange()); |
| |
| // Record this array index. |
| Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); |
| Exprs.push_back(Idx); |
| continue; |
| } |
| |
| // Offset of a field. |
| if (CurrentType->isDependentType()) { |
| // We have the offset of a field, but we can't look into the dependent |
| // type. Just record the identifier of the field. |
| Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); |
| CurrentType = Context.DependentTy; |
| continue; |
| } |
| |
| // We need to have a complete type to look into. |
| if (RequireCompleteType(OC.LocStart, CurrentType, |
| diag::err_offsetof_incomplete_type)) |
| return ExprError(); |
| |
| // Look for the designated field. |
| const RecordType *RC = CurrentType->getAs<RecordType>(); |
| if (!RC) |
| return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) |
| << CurrentType); |
| RecordDecl *RD = RC->getDecl(); |
| |
| // C++ [lib.support.types]p5: |
| // The macro offsetof accepts a restricted set of type arguments in this |
| // International Standard. type shall be a POD structure or a POD union |
| // (clause 9). |
| if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
| if (!CRD->isPOD() && !DidWarnAboutNonPOD && |
| DiagRuntimeBehavior(BuiltinLoc, 0, |
| PDiag(diag::warn_offsetof_non_pod_type) |
| << SourceRange(CompPtr[0].LocStart, OC.LocEnd) |
| << CurrentType)) |
| DidWarnAboutNonPOD = true; |
| } |
| |
| // Look for the field. |
| LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); |
| LookupQualifiedName(R, RD); |
| FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); |
| IndirectFieldDecl *IndirectMemberDecl = 0; |
| if (!MemberDecl) { |
| if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>())) |
| MemberDecl = IndirectMemberDecl->getAnonField(); |
| } |
| |
| if (!MemberDecl) |
| return ExprError(Diag(BuiltinLoc, diag::err_no_member) |
| << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, |
| OC.LocEnd)); |
| |
| // C99 7.17p3: |
| // (If the specified member is a bit-field, the behavior is undefined.) |
| // |
| // We diagnose this as an error. |
| if (MemberDecl->getBitWidth()) { |
| Diag(OC.LocEnd, diag::err_offsetof_bitfield) |
| << MemberDecl->getDeclName() |
| << SourceRange(BuiltinLoc, RParenLoc); |
| Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); |
| return ExprError(); |
| } |
| |
| RecordDecl *Parent = MemberDecl->getParent(); |
| if (IndirectMemberDecl) |
| Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext()); |
| |
| // If the member was found in a base class, introduce OffsetOfNodes for |
| // the base class indirections. |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) { |
| CXXBasePath &Path = Paths.front(); |
| for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end(); |
| B != BEnd; ++B) |
| Comps.push_back(OffsetOfNode(B->Base)); |
| } |
| |
| if (IndirectMemberDecl) { |
| for (IndirectFieldDecl::chain_iterator FI = |
| IndirectMemberDecl->chain_begin(), |
| FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) { |
| assert(isa<FieldDecl>(*FI)); |
| Comps.push_back(OffsetOfNode(OC.LocStart, |
| cast<FieldDecl>(*FI), OC.LocEnd)); |
| } |
| } else |
| Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); |
| |
| CurrentType = MemberDecl->getType().getNonReferenceType(); |
| } |
| |
| return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, |
| TInfo, Comps.data(), Comps.size(), |
| Exprs.data(), Exprs.size(), RParenLoc)); |
| } |
| |
| ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, |
| SourceLocation BuiltinLoc, |
| SourceLocation TypeLoc, |
| ParsedType argty, |
| OffsetOfComponent *CompPtr, |
| unsigned NumComponents, |
| SourceLocation RPLoc) { |
| |
| TypeSourceInfo *ArgTInfo; |
| QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo); |
| if (ArgTy.isNull()) |
| return ExprError(); |
| |
| if (!ArgTInfo) |
| ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); |
| |
| return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, |
| RPLoc); |
| } |
| |
| |
| ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, |
| Expr *CondExpr, |
| Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation RPLoc) { |
| assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); |
| |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType resType; |
| bool ValueDependent = false; |
| if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { |
| resType = Context.DependentTy; |
| ValueDependent = true; |
| } else { |
| // The conditional expression is required to be a constant expression. |
| llvm::APSInt condEval(32); |
| SourceLocation ExpLoc; |
| if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) |
| return ExprError(Diag(ExpLoc, |
| diag::err_typecheck_choose_expr_requires_constant) |
| << CondExpr->getSourceRange()); |
| |
| // If the condition is > zero, then the AST type is the same as the LSHExpr. |
| Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr; |
| |
| resType = ActiveExpr->getType(); |
| ValueDependent = ActiveExpr->isValueDependent(); |
| VK = ActiveExpr->getValueKind(); |
| OK = ActiveExpr->getObjectKind(); |
| } |
| |
| return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, |
| resType, VK, OK, RPLoc, |
| resType->isDependentType(), |
| ValueDependent)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Clang Extensions. |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnBlockStart - This callback is invoked when a block literal is started. |
| void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { |
| BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); |
| PushBlockScope(BlockScope, Block); |
| CurContext->addDecl(Block); |
| if (BlockScope) |
| PushDeclContext(BlockScope, Block); |
| else |
| CurContext = Block; |
| } |
| |
| void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { |
| assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!"); |
| assert(ParamInfo.getContext() == Declarator::BlockLiteralContext); |
| BlockScopeInfo *CurBlock = getCurBlock(); |
| |
| TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); |
| QualType T = Sig->getType(); |
| |
| // GetTypeForDeclarator always produces a function type for a block |
| // literal signature. Furthermore, it is always a FunctionProtoType |
| // unless the function was written with a typedef. |
| assert(T->isFunctionType() && |
| "GetTypeForDeclarator made a non-function block signature"); |
| |
| // Look for an explicit signature in that function type. |
| FunctionProtoTypeLoc ExplicitSignature; |
| |
| TypeLoc tmp = Sig->getTypeLoc().IgnoreParens(); |
| if (isa<FunctionProtoTypeLoc>(tmp)) { |
| ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp); |
| |
| // Check whether that explicit signature was synthesized by |
| // GetTypeForDeclarator. If so, don't save that as part of the |
| // written signature. |
| if (ExplicitSignature.getLocalRangeBegin() == |
| ExplicitSignature.getLocalRangeEnd()) { |
| // This would be much cheaper if we stored TypeLocs instead of |
| // TypeSourceInfos. |
| TypeLoc Result = ExplicitSignature.getResultLoc(); |
| unsigned Size = Result.getFullDataSize(); |
| Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); |
| Sig->getTypeLoc().initializeFullCopy(Result, Size); |
| |
| ExplicitSignature = FunctionProtoTypeLoc(); |
| } |
| } |
| |
| CurBlock->TheDecl->setSignatureAsWritten(Sig); |
| CurBlock->FunctionType = T; |
| |
| const FunctionType *Fn = T->getAs<FunctionType>(); |
| QualType RetTy = Fn->getResultType(); |
| bool isVariadic = |
| (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic()); |
| |
| CurBlock->TheDecl->setIsVariadic(isVariadic); |
| |
| // Don't allow returning a objc interface by value. |
| if (RetTy->isObjCObjectType()) { |
| Diag(ParamInfo.getSourceRange().getBegin(), |
| diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; |
| return; |
| } |
| |
| // Context.DependentTy is used as a placeholder for a missing block |
| // return type. TODO: what should we do with declarators like: |
| // ^ * { ... } |
| // If the answer is "apply template argument deduction".... |
| if (RetTy != Context.DependentTy) |
| CurBlock->ReturnType = RetTy; |
| |
| // Push block parameters from the declarator if we had them. |
| llvm::SmallVector<ParmVarDecl*, 8> Params; |
| if (ExplicitSignature) { |
| for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) { |
| ParmVarDecl *Param = ExplicitSignature.getArg(I); |
| if (Param->getIdentifier() == 0 && |
| !Param->isImplicit() && |
| !Param->isInvalidDecl() && |
| !getLangOptions().CPlusPlus) |
| Diag(Param->getLocation(), diag::err_parameter_name_omitted); |
| Params.push_back(Param); |
| } |
| |
| // Fake up parameter variables if we have a typedef, like |
| // ^ fntype { ... } |
| } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) { |
| for (FunctionProtoType::arg_type_iterator |
| I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) { |
| ParmVarDecl *Param = |
| BuildParmVarDeclForTypedef(CurBlock->TheDecl, |
| ParamInfo.getSourceRange().getBegin(), |
| *I); |
| Params.push_back(Param); |
| } |
| } |
| |
| // Set the parameters on the block decl. |
| if (!Params.empty()) { |
| CurBlock->TheDecl->setParams(Params.data(), Params.size()); |
| CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(), |
| CurBlock->TheDecl->param_end(), |
| /*CheckParameterNames=*/false); |
| } |
| |
| // Finally we can process decl attributes. |
| ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); |
| |
| if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) { |
| Diag(ParamInfo.getAttributes()->getLoc(), |
| diag::warn_attribute_sentinel_not_variadic) << 1; |
| // FIXME: remove the attribute. |
| } |
| |
| // Put the parameter variables in scope. We can bail out immediately |
| // if we don't have any. |
| if (Params.empty()) |
| return; |
| |
| for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), |
| E = CurBlock->TheDecl->param_end(); AI != E; ++AI) { |
| (*AI)->setOwningFunction(CurBlock->TheDecl); |
| |
| // If this has an identifier, add it to the scope stack. |
| if ((*AI)->getIdentifier()) { |
| CheckShadow(CurBlock->TheScope, *AI); |
| |
| PushOnScopeChains(*AI, CurBlock->TheScope); |
| } |
| } |
| } |
| |
| /// ActOnBlockError - If there is an error parsing a block, this callback |
| /// is invoked to pop the information about the block from the action impl. |
| void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { |
| // Pop off CurBlock, handle nested blocks. |
| PopDeclContext(); |
| PopFunctionOrBlockScope(); |
| } |
| |
| /// ActOnBlockStmtExpr - This is called when the body of a block statement |
| /// literal was successfully completed. ^(int x){...} |
| ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, |
| Stmt *Body, Scope *CurScope) { |
| // If blocks are disabled, emit an error. |
| if (!LangOpts.Blocks) |
| Diag(CaretLoc, diag::err_blocks_disable); |
| |
| BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); |
| |
| PopDeclContext(); |
| |
| QualType RetTy = Context.VoidTy; |
| if (!BSI->ReturnType.isNull()) |
| RetTy = BSI->ReturnType; |
| |
| bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>(); |
| QualType BlockTy; |
| |
| // Set the captured variables on the block. |
| BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(), |
| BSI->CapturesCXXThis); |
| |
| // If the user wrote a function type in some form, try to use that. |
| if (!BSI->FunctionType.isNull()) { |
| const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>(); |
| |
| FunctionType::ExtInfo Ext = FTy->getExtInfo(); |
| if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); |
| |
| // Turn protoless block types into nullary block types. |
| if (isa<FunctionNoProtoType>(FTy)) { |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = Ext; |
| BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); |
| |
| // Otherwise, if we don't need to change anything about the function type, |
| // preserve its sugar structure. |
| } else if (FTy->getResultType() == RetTy && |
| (!NoReturn || FTy->getNoReturnAttr())) { |
| BlockTy = BSI->FunctionType; |
| |
| // Otherwise, make the minimal modifications to the function type. |
| } else { |
| const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.TypeQuals = 0; // FIXME: silently? |
| EPI.ExtInfo = Ext; |
| BlockTy = Context.getFunctionType(RetTy, |
| FPT->arg_type_begin(), |
| FPT->getNumArgs(), |
| EPI); |
| } |
| |
| // If we don't have a function type, just build one from nothing. |
| } else { |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, false, 0, CC_Default); |
| BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); |
| } |
| |
| DiagnoseUnusedParameters(BSI->TheDecl->param_begin(), |
| BSI->TheDecl->param_end()); |
| BlockTy = Context.getBlockPointerType(BlockTy); |
| |
| // If needed, diagnose invalid gotos and switches in the block. |
| if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction()) |
| DiagnoseInvalidJumps(cast<CompoundStmt>(Body)); |
| |
| BSI->TheDecl->setBody(cast<CompoundStmt>(Body)); |
| |
| BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy); |
| |
| const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy(); |
| PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result); |
| return Owned(Result); |
| } |
| |
| ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, |
| Expr *expr, ParsedType type, |
| SourceLocation RPLoc) { |
| TypeSourceInfo *TInfo; |
| GetTypeFromParser(type, &TInfo); |
| return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc); |
| } |
| |
| ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, |
| Expr *E, TypeSourceInfo *TInfo, |
| SourceLocation RPLoc) { |
| Expr *OrigExpr = E; |
| |
| // Get the va_list type |
| QualType VaListType = Context.getBuiltinVaListType(); |
| if (VaListType->isArrayType()) { |
| // Deal with implicit array decay; for example, on x86-64, |
| // va_list is an array, but it's supposed to decay to |
| // a pointer for va_arg. |
| VaListType = Context.getArrayDecayedType(VaListType); |
| // Make sure the input expression also decays appropriately. |
| ExprResult Result = UsualUnaryConversions(E); |
| if (Result.isInvalid()) |
| return ExprError(); |
| E = Result.take(); |
| } else { |
| // Otherwise, the va_list argument must be an l-value because |
| // it is modified by va_arg. |
| if (!E->isTypeDependent() && |
| CheckForModifiableLvalue(E, BuiltinLoc, *this)) |
| return ExprError(); |
| } |
| |
| if (!E->isTypeDependent() && |
| !Context.hasSameType(VaListType, E->getType())) { |
| return ExprError(Diag(E->getLocStart(), |
| diag::err_first_argument_to_va_arg_not_of_type_va_list) |
| << OrigExpr->getType() << E->getSourceRange()); |
| } |
| |
| // FIXME: Check that type is complete/non-abstract |
| // FIXME: Warn if a non-POD type is passed in. |
| |
| QualType T = TInfo->getType().getNonLValueExprType(Context); |
| return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T)); |
| } |
| |
| ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { |
| // The type of __null will be int or long, depending on the size of |
| // pointers on the target. |
| QualType Ty; |
| unsigned pw = Context.Target.getPointerWidth(0); |
| if (pw == Context.Target.getIntWidth()) |
| Ty = Context.IntTy; |
| else if (pw == Context.Target.getLongWidth()) |
| Ty = Context.LongTy; |
| else if (pw == Context.Target.getLongLongWidth()) |
| Ty = Context.LongLongTy; |
| else { |
| assert(!"I don't know size of pointer!"); |
| Ty = Context.IntTy; |
| } |
| |
| return Owned(new (Context) GNUNullExpr(Ty, TokenLoc)); |
| } |
| |
| static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType, |
| Expr *SrcExpr, FixItHint &Hint) { |
| if (!SemaRef.getLangOptions().ObjC1) |
| return; |
| |
| const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); |
| if (!PT) |
| return; |
| |
| // Check if the destination is of type 'id'. |
| if (!PT->isObjCIdType()) { |
| // Check if the destination is the 'NSString' interface. |
| const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); |
| if (!ID || !ID->getIdentifier()->isStr("NSString")) |
| return; |
| } |
| |
| // Strip off any parens and casts. |
| StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts()); |
| if (!SL || SL->isWide()) |
| return; |
| |
| Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@"); |
| } |
| |
| bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, |
| SourceLocation Loc, |
| QualType DstType, QualType SrcType, |
| Expr *SrcExpr, AssignmentAction Action, |
| bool *Complained) { |
| if (Complained) |
| *Complained = false; |
| |
| // Decode the result (notice that AST's are still created for extensions). |
| bool isInvalid = false; |
| unsigned DiagKind; |
| FixItHint Hint; |
| |
| switch (ConvTy) { |
| default: assert(0 && "Unknown conversion type"); |
| case Compatible: return false; |
| case PointerToInt: |
| DiagKind = diag::ext_typecheck_convert_pointer_int; |
| break; |
| case IntToPointer: |
| DiagKind = diag::ext_typecheck_convert_int_pointer; |
| break; |
| case IncompatiblePointer: |
| MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint); |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer; |
| break; |
| case IncompatiblePointerSign: |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; |
| break; |
| case FunctionVoidPointer: |
| DiagKind = diag::ext_typecheck_convert_pointer_void_func; |
| break; |
| case IncompatiblePointerDiscardsQualifiers: { |
| // Perform array-to-pointer decay if necessary. |
| if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); |
| |
| Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); |
| Qualifiers rhq = DstType->getPointeeType().getQualifiers(); |
| if (lhq.getAddressSpace() != rhq.getAddressSpace()) { |
| DiagKind = diag::err_typecheck_incompatible_address_space; |
| break; |
| } |
| |
| llvm_unreachable("unknown error case for discarding qualifiers!"); |
| // fallthrough |
| } |
| case CompatiblePointerDiscardsQualifiers: |
| // If the qualifiers lost were because we were applying the |
| // (deprecated) C++ conversion from a string literal to a char* |
| // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: |
| // Ideally, this check would be performed in |
| // checkPointerTypesForAssignment. However, that would require a |
| // bit of refactoring (so that the second argument is an |
| // expression, rather than a type), which should be done as part |
| // of a larger effort to fix checkPointerTypesForAssignment for |
| // C++ semantics. |
| if (getLangOptions().CPlusPlus && |
| IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) |
| return false; |
| DiagKind = diag::ext_typecheck_convert_discards_qualifiers; |
| break; |
| case IncompatibleNestedPointerQualifiers: |
| DiagKind = diag::ext_nested_pointer_qualifier_mismatch; |
| break; |
| case IntToBlockPointer: |
| DiagKind = diag::err_int_to_block_pointer; |
| break; |
| case IncompatibleBlockPointer: |
| DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; |
| break; |
| case IncompatibleObjCQualifiedId: |
| // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since |
| // it can give a more specific diagnostic. |
| DiagKind = diag::warn_incompatible_qualified_id; |
| break; |
| case IncompatibleVectors: |
| DiagKind = diag::warn_incompatible_vectors; |
| break; |
| case Incompatible: |
| DiagKind = diag::err_typecheck_convert_incompatible; |
| isInvalid = true; |
| break; |
| } |
| |
| QualType FirstType, SecondType; |
| switch (Action) { |
| case AA_Assigning: |
| case AA_Initializing: |
| // The destination type comes first. |
| FirstType = DstType; |
| SecondType = SrcType; |
| break; |
| |
| case AA_Returning: |
| case AA_Passing: |
| case AA_Converting: |
| case AA_Sending: |
| case AA_Casting: |
| // The source type comes first. |
| FirstType = SrcType; |
| SecondType = DstType; |
| break; |
| } |
| |
| Diag(Loc, DiagKind) << FirstType << SecondType << Action |
| << SrcExpr->getSourceRange() << Hint; |
| if (Complained) |
| *Complained = true; |
| return isInvalid; |
| } |
| |
| bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){ |
| llvm::APSInt ICEResult; |
| if (E->isIntegerConstantExpr(ICEResult, Context)) { |
| if (Result) |
| *Result = ICEResult; |
| return false; |
| } |
| |
| Expr::EvalResult EvalResult; |
| |
| if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || |
| EvalResult.HasSideEffects) { |
| Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); |
| |
| if (EvalResult.Diag) { |
| // We only show the note if it's not the usual "invalid subexpression" |
| // or if it's actually in a subexpression. |
| if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || |
| E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) |
| Diag(EvalResult.DiagLoc, EvalResult.Diag); |
| } |
| |
| return true; |
| } |
| |
| Diag(E->getExprLoc(), diag::ext_expr_not_ice) << |
| E->getSourceRange(); |
| |
| if (EvalResult.Diag && |
| Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc) |
| != Diagnostic::Ignored) |
| Diag(EvalResult.DiagLoc, EvalResult.Diag); |
| |
| if (Result) |
| *Result = EvalResult.Val.getInt(); |
| return false; |
| } |
| |
| void |
| Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) { |
| ExprEvalContexts.push_back( |
| ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size())); |
| } |
| |
| void |
| Sema::PopExpressionEvaluationContext() { |
| // Pop the current expression evaluation context off the stack. |
| ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back(); |
| ExprEvalContexts.pop_back(); |
| |
| if (Rec.Context == PotentiallyPotentiallyEvaluated) { |
| if (Rec.PotentiallyReferenced) { |
| // Mark any remaining declarations in the current position of the stack |
| // as "referenced". If they were not meant to be referenced, semantic |
| // analysis would have eliminated them (e.g., in ActOnCXXTypeId). |
| for (PotentiallyReferencedDecls::iterator |
| I = Rec.PotentiallyReferenced->begin(), |
| IEnd = Rec.PotentiallyReferenced->end(); |
| I != IEnd; ++I) |
| MarkDeclarationReferenced(I->first, I->second); |
| } |
| |
| if (Rec.PotentiallyDiagnosed) { |
| // Emit any pending diagnostics. |
| for (PotentiallyEmittedDiagnostics::iterator |
| I = Rec.PotentiallyDiagnosed->begin(), |
| IEnd = Rec.PotentiallyDiagnosed->end(); |
| I != IEnd; ++I) |
| Diag(I->first, I->second); |
| } |
| } |
| |
| // When are coming out of an unevaluated context, clear out any |
| // temporaries that we may have created as part of the evaluation of |
| // the expression in that context: they aren't relevant because they |
| // will never be constructed. |
| if (Rec.Context == Unevaluated && |
| ExprTemporaries.size() > Rec.NumTemporaries) |
| ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries, |
| ExprTemporaries.end()); |
| |
| // Destroy the popped expression evaluation record. |
| Rec.Destroy(); |
| } |
| |
| /// \brief Note that the given declaration was referenced in the source code. |
| /// |
| /// This routine should be invoke whenever a given declaration is referenced |
| /// in the source code, and where that reference occurred. If this declaration |
| /// reference means that the the declaration is used (C++ [basic.def.odr]p2, |
| /// C99 6.9p3), then the declaration will be marked as used. |
| /// |
| /// \param Loc the location where the declaration was referenced. |
| /// |
| /// \param D the declaration that has been referenced by the source code. |
| void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) { |
| assert(D && "No declaration?"); |
| |
| D->setReferenced(); |
| |
| if (D->isUsed(false)) |
| return; |
| |
| // Mark a parameter or variable declaration "used", regardless of whether we're in a |
| // template or not. The reason for this is that unevaluated expressions |
| // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and |
| // -Wunused-parameters) |
| if (isa<ParmVarDecl>(D) || |
| (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) { |
| D->setUsed(); |
| return; |
| } |
| |
| if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) |
| return; |
| |
| // Do not mark anything as "used" within a dependent context; wait for |
| // an instantiation. |
| if (CurContext->isDependentContext()) |
| return; |
| |
| switch (ExprEvalContexts.back().Context) { |
| case Unevaluated: |
| // We are in an expression that is not potentially evaluated; do nothing. |
| return; |
| |
| case PotentiallyEvaluated: |
| // We are in a potentially-evaluated expression, so this declaration is |
| // "used"; handle this below. |
| break; |
| |
| case PotentiallyPotentiallyEvaluated: |
| // We are in an expression that may be potentially evaluated; queue this |
| // declaration reference until we know whether the expression is |
| // potentially evaluated. |
| ExprEvalContexts.back().addReferencedDecl(Loc, D); |
| return; |
| |
| case PotentiallyEvaluatedIfUsed: |
| // Referenced declarations will only be used if the construct in the |
| // containing expression is used. |
| return; |
| } |
| |
| // Note that this declaration has been used. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { |
| unsigned TypeQuals; |
| if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) { |
| if (Constructor->getParent()->hasTrivialConstructor()) |
| return; |
| if (!Constructor->isUsed(false)) |
| DefineImplicitDefaultConstructor(Loc, Constructor); |
| } else if (Constructor->isImplicit() && |
| Constructor->isCopyConstructor(TypeQuals)) { |
| if (!Constructor->isUsed(false)) |
| DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals); |
| } |
| |
| MarkVTableUsed(Loc, Constructor->getParent()); |
| } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { |
| if (Destructor->isImplicit() && !Destructor->isUsed(false)) |
| DefineImplicitDestructor(Loc, Destructor); |
| if (Destructor->isVirtual()) |
| MarkVTableUsed(Loc, Destructor->getParent()); |
| } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) { |
| if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && |
| MethodDecl->getOverloadedOperator() == OO_Equal) { |
| if (!MethodDecl->isUsed(false)) |
| DefineImplicitCopyAssignment(Loc, MethodDecl); |
| } else if (MethodDecl->isVirtual()) |
| MarkVTableUsed(Loc, MethodDecl->getParent()); |
| } |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { |
| // Recursive functions should be marked when used from another function. |
| if (CurContext == Function) return; |
| |
| // Implicit instantiation of function templates and member functions of |
| // class templates. |
| if (Function->isImplicitlyInstantiable()) { |
| bool AlreadyInstantiated = false; |
| if (FunctionTemplateSpecializationInfo *SpecInfo |
| = Function->getTemplateSpecializationInfo()) { |
| if (SpecInfo->getPointOfInstantiation().isInvalid()) |
| SpecInfo->setPointOfInstantiation(Loc); |
| else if (SpecInfo->getTemplateSpecializationKind() |
| == TSK_ImplicitInstantiation) |
| AlreadyInstantiated = true; |
| } else if (MemberSpecializationInfo *MSInfo |
| = Function->getMemberSpecializationInfo()) { |
| if (MSInfo->getPointOfInstantiation().isInvalid()) |
| MSInfo->setPointOfInstantiation(Loc); |
| else if (MSInfo->getTemplateSpecializationKind() |
| == TSK_ImplicitInstantiation) |
| AlreadyInstantiated = true; |
| } |
| |
| if (!AlreadyInstantiated) { |
| if (isa<CXXRecordDecl>(Function->getDeclContext()) && |
| cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass()) |
| PendingLocalImplicitInstantiations.push_back(std::make_pair(Function, |
| Loc)); |
| else |
| PendingInstantiations.push_back(std::make_pair(Function, Loc)); |
| } |
| } else { |
| // Walk redefinitions, as some of them may be instantiable. |
| for (FunctionDecl::redecl_iterator i(Function->redecls_begin()), |
| e(Function->redecls_end()); i != e; ++i) { |
| if (!i->isUsed(false) && i->isImplicitlyInstantiable()) |
| MarkDeclarationReferenced(Loc, *i); |
| } |
| } |
| |
| // Keep track of used but undefined functions. |
| if (!Function->isPure() && !Function->hasBody() && |
| Function->getLinkage() != ExternalLinkage) { |
| SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()]; |
| if (old.isInvalid()) old = Loc; |
| } |
| |
| Function->setUsed(true); |
| return; |
| } |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| // Implicit instantiation of static data members of class templates. |
| if (Var->isStaticDataMember() && |
| Var->getInstantiatedFromStaticDataMember()) { |
| MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo(); |
| assert(MSInfo && "Missing member specialization information?"); |
| if (MSInfo->getPointOfInstantiation().isInvalid() && |
| MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) { |
| MSInfo->setPointOfInstantiation(Loc); |
| PendingInstantiations.push_back(std::make_pair(Var, Loc)); |
| } |
| } |
| |
| // Keep track of used but undefined variables. We make a hole in |
| // the warning for static const data members with in-line |
| // initializers. |
| if (Var->hasDefinition() == VarDecl::DeclarationOnly |
| && Var->getLinkage() != ExternalLinkage |
| && !(Var->isStaticDataMember() && Var->hasInit())) { |
| SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()]; |
| if (old.isInvalid()) old = Loc; |
| } |
| |
| D->setUsed(true); |
| return; |
| } |
| } |
| |
| namespace { |
| // Mark all of the declarations referenced |
| // FIXME: Not fully implemented yet! We need to have a better understanding |
| // of when we're entering |
| class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { |
| Sema &S; |
| SourceLocation Loc; |
| |
| public: |
| typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; |
| |
| MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } |
| |
| bool TraverseTemplateArgument(const TemplateArgument &Arg); |
| bool TraverseRecordType(RecordType *T); |
| }; |
| } |
| |
| bool MarkReferencedDecls::TraverseTemplateArgument( |
| const TemplateArgument &Arg) { |
| if (Arg.getKind() == TemplateArgument::Declaration) { |
| S.MarkDeclarationReferenced(Loc, Arg.getAsDecl()); |
| } |
| |
| return Inherited::TraverseTemplateArgument(Arg); |
| } |
| |
| bool MarkReferencedDecls::TraverseRecordType(RecordType *T) { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) { |
| const TemplateArgumentList &Args = Spec->getTemplateArgs(); |
| return TraverseTemplateArguments(Args.data(), Args.size()); |
| } |
| |
| return true; |
| } |
| |
| void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { |
| MarkReferencedDecls Marker(*this, Loc); |
| Marker.TraverseType(Context.getCanonicalType(T)); |
| } |
| |
| namespace { |
| /// \brief Helper class that marks all of the declarations referenced by |
| /// potentially-evaluated subexpressions as "referenced". |
| class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> { |
| Sema &S; |
| |
| public: |
| typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited; |
| |
| explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { } |
| |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); |
| } |
| |
| void VisitMemberExpr(MemberExpr *E) { |
| S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl()); |
| Inherited::VisitMemberExpr(E); |
| } |
| |
| void VisitCXXNewExpr(CXXNewExpr *E) { |
| if (E->getConstructor()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); |
| if (E->getOperatorNew()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew()); |
| if (E->getOperatorDelete()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); |
| Inherited::VisitCXXNewExpr(E); |
| } |
| |
| void VisitCXXDeleteExpr(CXXDeleteExpr *E) { |
| if (E->getOperatorDelete()) |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); |
| QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType()); |
| if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl()); |
| S.MarkDeclarationReferenced(E->getLocStart(), |
| S.LookupDestructor(Record)); |
| } |
| |
| Inherited::VisitCXXDeleteExpr(E); |
| } |
| |
| void VisitCXXConstructExpr(CXXConstructExpr *E) { |
| S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); |
| Inherited::VisitCXXConstructExpr(E); |
| } |
| |
| void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) { |
| S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); |
| } |
| |
| void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { |
| Visit(E->getExpr()); |
| } |
| }; |
| } |
| |
| /// \brief Mark any declarations that appear within this expression or any |
| /// potentially-evaluated subexpressions as "referenced". |
| void Sema::MarkDeclarationsReferencedInExpr(Expr *E) { |
| EvaluatedExprMarker(*this).Visit(E); |
| } |
| |
| /// \brief Emit a diagnostic that describes an effect on the run-time behavior |
| /// of the program being compiled. |
| /// |
| /// This routine emits the given diagnostic when the code currently being |
| /// type-checked is "potentially evaluated", meaning that there is a |
| /// possibility that the code will actually be executable. Code in sizeof() |
| /// expressions, code used only during overload resolution, etc., are not |
| /// potentially evaluated. This routine will suppress such diagnostics or, |
| /// in the absolutely nutty case of potentially potentially evaluated |
| /// expressions (C++ typeid), queue the diagnostic to potentially emit it |
| /// later. |
| /// |
| /// This routine should be used for all diagnostics that describe the run-time |
| /// behavior of a program, such as passing a non-POD value through an ellipsis. |
| /// Failure to do so will likely result in spurious diagnostics or failures |
| /// during overload resolution or within sizeof/alignof/typeof/typeid. |
| bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt, |
| const PartialDiagnostic &PD) { |
| switch (ExprEvalContexts.back().Context ) { |
| case Unevaluated: |
| // The argument will never be evaluated, so don't complain. |
| break; |
| |
| case PotentiallyEvaluated: |
| case PotentiallyEvaluatedIfUsed: |
| if (stmt && getCurFunctionOrMethodDecl()) { |
| FunctionScopes.back()->PossiblyUnreachableDiags. |
| push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt)); |
| } |
| else |
| Diag(Loc, PD); |
| |
| return true; |
| |
| case PotentiallyPotentiallyEvaluated: |
| ExprEvalContexts.back().addDiagnostic(Loc, PD); |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, |
| CallExpr *CE, FunctionDecl *FD) { |
| if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) |
| return false; |
| |
| PartialDiagnostic Note = |
| FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here) |
| << FD->getDeclName() : PDiag(); |
| SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation(); |
| |
| if (RequireCompleteType(Loc, ReturnType, |
| FD ? |
| PDiag(diag::err_call_function_incomplete_return) |
| << CE->getSourceRange() << FD->getDeclName() : |
| PDiag(diag::err_call_incomplete_return) |
| << CE->getSourceRange(), |
| std::make_pair(NoteLoc, Note))) |
| return true; |
| |
| return false; |
| } |
| |
| // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses |
| // will prevent this condition from triggering, which is what we want. |
| void Sema::DiagnoseAssignmentAsCondition(Expr *E) { |
| SourceLocation Loc; |
| |
| unsigned diagnostic = diag::warn_condition_is_assignment; |
| bool IsOrAssign = false; |
| |
| if (isa<BinaryOperator>(E)) { |
| BinaryOperator *Op = cast<BinaryOperator>(E); |
| if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) |
| return; |
| |
| IsOrAssign = Op->getOpcode() == BO_OrAssign; |
| |
| // Greylist some idioms by putting them into a warning subcategory. |
| if (ObjCMessageExpr *ME |
| = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { |
| Selector Sel = ME->getSelector(); |
| |
| // self = [<foo> init...] |
| if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init")) |
| diagnostic = diag::warn_condition_is_idiomatic_assignment; |
| |
| // <foo> = [<bar> nextObject] |
| else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") |
| diagnostic = diag::warn_condition_is_idiomatic_assignment; |
| } |
| |
| Loc = Op->getOperatorLoc(); |
| } else if (isa<CXXOperatorCallExpr>(E)) { |
| CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E); |
| if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) |
| return; |
| |
| IsOrAssign = Op->getOperator() == OO_PipeEqual; |
| Loc = Op->getOperatorLoc(); |
| } else { |
| // Not an assignment. |
| return; |
| } |
| |
| Diag(Loc, diagnostic) << E->getSourceRange(); |
| |
| SourceLocation Open = E->getSourceRange().getBegin(); |
| SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd()); |
| Diag(Loc, diag::note_condition_assign_silence) |
| << FixItHint::CreateInsertion(Open, "(") |
| << FixItHint::CreateInsertion(Close, ")"); |
| |
| if (IsOrAssign) |
| Diag(Loc, diag::note_condition_or_assign_to_comparison) |
| << FixItHint::CreateReplacement(Loc, "!="); |
| else |
| Diag(Loc, diag::note_condition_assign_to_comparison) |
| << FixItHint::CreateReplacement(Loc, "=="); |
| } |
| |
| /// \brief Redundant parentheses over an equality comparison can indicate |
| /// that the user intended an assignment used as condition. |
| void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) { |
| // Don't warn if the parens came from a macro. |
| SourceLocation parenLoc = parenE->getLocStart(); |
| if (parenLoc.isInvalid() || parenLoc.isMacroID()) |
| return; |
| // Don't warn for dependent expressions. |
| if (parenE->isTypeDependent()) |
| return; |
| |
| Expr *E = parenE->IgnoreParens(); |
| |
| if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E)) |
| if (opE->getOpcode() == BO_EQ && |
| opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) |
| == Expr::MLV_Valid) { |
| SourceLocation Loc = opE->getOperatorLoc(); |
| |
| Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); |
| Diag(Loc, diag::note_equality_comparison_silence) |
| << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin()) |
| << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd()); |
| Diag(Loc, diag::note_equality_comparison_to_assign) |
| << FixItHint::CreateReplacement(Loc, "="); |
| } |
| } |
| |
| ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) { |
| DiagnoseAssignmentAsCondition(E); |
| if (ParenExpr *parenE = dyn_cast<ParenExpr>(E)) |
| DiagnoseEqualityWithExtraParens(parenE); |
| |
| if (!E->isTypeDependent()) { |
| if (E->isBoundMemberFunction(Context)) { |
| Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (getLangOptions().CPlusPlus) |
| return CheckCXXBooleanCondition(E); // C++ 6.4p4 |
| |
| ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); |
| if (ERes.isInvalid()) |
| return ExprError(); |
| E = ERes.take(); |
| |
| QualType T = E->getType(); |
| if (!T->isScalarType()) { // C99 6.8.4.1p1 |
| Diag(Loc, diag::err_typecheck_statement_requires_scalar) |
| << T << E->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| return Owned(E); |
| } |
| |
| ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc, |
| Expr *Sub) { |
| if (!Sub) |
| return ExprError(); |
| |
| return CheckBooleanCondition(Sub, Loc); |
| } |
| |
| namespace { |
| /// A visitor for rebuilding a call to an __unknown_any expression |
| /// to have an appropriate type. |
| struct RebuildUnknownAnyFunction |
| : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> { |
| |
| Sema &S; |
| |
| RebuildUnknownAnyFunction(Sema &S) : S(S) {} |
| |
| ExprResult VisitStmt(Stmt *S) { |
| llvm_unreachable("unexpected statement!"); |
| return ExprError(); |
| } |
| |
| ExprResult VisitExpr(Expr *expr) { |
| S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call) |
| << expr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| /// Rebuild an expression which simply semantically wraps another |
| /// expression which it shares the type and value kind of. |
| template <class T> ExprResult rebuildSugarExpr(T *expr) { |
| ExprResult subResult = Visit(expr->getSubExpr()); |
| if (subResult.isInvalid()) return ExprError(); |
| |
| Expr *subExpr = subResult.take(); |
| expr->setSubExpr(subExpr); |
| expr->setType(subExpr->getType()); |
| expr->setValueKind(subExpr->getValueKind()); |
| assert(expr->getObjectKind() == OK_Ordinary); |
| return expr; |
| } |
| |
| ExprResult VisitParenExpr(ParenExpr *paren) { |
| return rebuildSugarExpr(paren); |
| } |
| |
| ExprResult VisitUnaryExtension(UnaryOperator *op) { |
| return rebuildSugarExpr(op); |
| } |
| |
| ExprResult VisitUnaryAddrOf(UnaryOperator *op) { |
| ExprResult subResult = Visit(op->getSubExpr()); |
| if (subResult.isInvalid()) return ExprError(); |
| |
| Expr *subExpr = subResult.take(); |
| op->setSubExpr(subExpr); |
| op->setType(S.Context.getPointerType(subExpr->getType())); |
| assert(op->getValueKind() == VK_RValue); |
| assert(op->getObjectKind() == OK_Ordinary); |
| return op; |
| } |
| |
| ExprResult resolveDecl(Expr *expr, ValueDecl *decl) { |
| if (!isa<FunctionDecl>(decl)) return VisitExpr(expr); |
| |
| expr->setType(decl->getType()); |
| |
| assert(expr->getValueKind() == VK_RValue); |
| if (S.getLangOptions().CPlusPlus && |
| !(isa<CXXMethodDecl>(decl) && |
| cast<CXXMethodDecl>(decl)->isInstance())) |
| expr->setValueKind(VK_LValue); |
| |
| return expr; |
| } |
| |
| ExprResult VisitMemberExpr(MemberExpr *mem) { |
| return resolveDecl(mem, mem->getMemberDecl()); |
| } |
| |
| ExprResult VisitDeclRefExpr(DeclRefExpr *ref) { |
| return resolveDecl(ref, ref->getDecl()); |
| } |
| }; |
| } |
| |
| /// Given a function expression of unknown-any type, try to rebuild it |
| /// to have a function type. |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) { |
| ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn); |
| if (result.isInvalid()) return ExprError(); |
| return S.DefaultFunctionArrayConversion(result.take()); |
| } |
| |
| namespace { |
| /// A visitor for rebuilding an expression of type __unknown_anytype |
| /// into one which resolves the type directly on the referring |
| /// expression. Strict preservation of the original source |
| /// structure is not a goal. |
| struct RebuildUnknownAnyExpr |
| : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> { |
| |
| Sema &S; |
| |
| /// The current destination type. |
| QualType DestType; |
| |
| RebuildUnknownAnyExpr(Sema &S, QualType castType) |
| : S(S), DestType(castType) {} |
| |
| ExprResult VisitStmt(Stmt *S) { |
| llvm_unreachable("unexpected statement!"); |
| return ExprError(); |
| } |
| |
| ExprResult VisitExpr(Expr *expr) { |
| S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr) |
| << expr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| ExprResult VisitCallExpr(CallExpr *call); |
| ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message); |
| |
| /// Rebuild an expression which simply semantically wraps another |
| /// expression which it shares the type and value kind of. |
| template <class T> ExprResult rebuildSugarExpr(T *expr) { |
| ExprResult subResult = Visit(expr->getSubExpr()); |
| if (subResult.isInvalid()) return ExprError(); |
| Expr *subExpr = subResult.take(); |
| expr->setSubExpr(subExpr); |
| expr->setType(subExpr->getType()); |
| expr->setValueKind(subExpr->getValueKind()); |
| assert(expr->getObjectKind() == OK_Ordinary); |
| return expr; |
| } |
| |
| ExprResult VisitParenExpr(ParenExpr *paren) { |
| return rebuildSugarExpr(paren); |
| } |
| |
| ExprResult VisitUnaryExtension(UnaryOperator *op) { |
| return rebuildSugarExpr(op); |
| } |
| |
| ExprResult VisitUnaryAddrOf(UnaryOperator *op) { |
| const PointerType *ptr = DestType->getAs<PointerType>(); |
| if (!ptr) { |
| S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof) |
| << op->getSourceRange(); |
| return ExprError(); |
| } |
| assert(op->getValueKind() == VK_RValue); |
| assert(op->getObjectKind() == OK_Ordinary); |
| op->setType(DestType); |
| |
| // Build the sub-expression as if it were an object of the pointee type. |
| DestType = ptr->getPointeeType(); |
| ExprResult subResult = Visit(op->getSubExpr()); |
| if (subResult.isInvalid()) return ExprError(); |
| op->setSubExpr(subResult.take()); |
| return op; |
| } |
| |
| ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice); |
| |
| ExprResult resolveDecl(Expr *expr, ValueDecl *decl); |
| |
| ExprResult VisitMemberExpr(MemberExpr *mem) { |
| return resolveDecl(mem, mem->getMemberDecl()); |
| } |
| |
| ExprResult VisitDeclRefExpr(DeclRefExpr *ref) { |
| return resolveDecl(ref, ref->getDecl()); |
| } |
| }; |
| } |
| |
| /// Rebuilds a call expression which yielded __unknown_anytype. |
| ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) { |
| Expr *callee = call->getCallee(); |
| |
| enum FnKind { |
| FK_Function, |
| FK_FunctionPointer, |
| FK_BlockPointer |
| }; |
| |
| FnKind kind; |
| QualType type = callee->getType(); |
| if (type->isFunctionType()) { |
| assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call)); |
| kind = FK_Function; |
| } else if (const PointerType *ptr = type->getAs<PointerType>()) { |
| type = ptr->getPointeeType(); |
| kind = FK_FunctionPointer; |
| } else { |
| type = type->castAs<BlockPointerType>()->getPointeeType(); |
| kind = FK_BlockPointer; |
| } |
| const FunctionType *fnType = type->castAs<FunctionType>(); |
| |
| // Verify that this is a legal result type of a function. |
| if (DestType->isArrayType() || DestType->isFunctionType()) { |
| unsigned diagID = diag::err_func_returning_array_function; |
| if (kind == FK_BlockPointer) |
| diagID = diag::err_block_returning_array_function; |
| |
| S.Diag(call->getExprLoc(), diagID) |
| << DestType->isFunctionType() << DestType; |
| return ExprError(); |
| } |
| |
| // Otherwise, go ahead and set DestType as the call's result. |
| call->setType(DestType.getNonLValueExprType(S.Context)); |
| call->setValueKind(Expr::getValueKindForType(DestType)); |
| assert(call->getObjectKind() == OK_Ordinary); |
| |
| // Rebuild the function type, replacing the result type with DestType. |
| if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) |
| DestType = S.Context.getFunctionType(DestType, |
| proto->arg_type_begin(), |
| proto->getNumArgs(), |
| proto->getExtProtoInfo()); |
| else |
| DestType = S.Context.getFunctionNoProtoType(DestType, |
| fnType->getExtInfo()); |
| |
| // Rebuild the appropriate pointer-to-function type. |
| switch (kind) { |
| case FK_Function: |
| // Nothing to do. |
| break; |
| |
| case FK_FunctionPointer: |
| DestType = S.Context.getPointerType(DestType); |
| break; |
| |
| case FK_BlockPointer: |
| DestType = S.Context.getBlockPointerType(DestType); |
| break; |
| } |
| |
| // Finally, we can recurse. |
| ExprResult calleeResult = Visit(callee); |
| if (!calleeResult.isUsable()) return ExprError(); |
| call->setCallee(calleeResult.take()); |
| |
| // Bind a temporary if necessary. |
| return S.MaybeBindToTemporary(call); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) { |
| ObjCMethodDecl *method = msg->getMethodDecl(); |
| assert(method && "__unknown_anytype message without result type?"); |
| |
| // Verify that this is a legal result type of a call. |
| if (DestType->isArrayType() || DestType->isFunctionType()) { |
| S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function) |
| << DestType->isFunctionType() << DestType; |
| return ExprError(); |
| } |
| |
| assert(method->getResultType() == S.Context.UnknownAnyTy); |
| method->setResultType(DestType); |
| |
| // Change the type of the message. |
| msg->setType(DestType.getNonReferenceType()); |
| msg->setValueKind(Expr::getValueKindForType(DestType)); |
| |
| return S.MaybeBindToTemporary(msg); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) { |
| // The only case we should ever see here is a function-to-pointer decay. |
| assert(ice->getCastKind() == CK_FunctionToPointerDecay); |
| assert(ice->getValueKind() == VK_RValue); |
| assert(ice->getObjectKind() == OK_Ordinary); |
| |
| ice->setType(DestType); |
| |
| // Rebuild the sub-expression as the pointee (function) type. |
| DestType = DestType->castAs<PointerType>()->getPointeeType(); |
| |
| ExprResult result = Visit(ice->getSubExpr()); |
| if (!result.isUsable()) return ExprError(); |
| |
| ice->setSubExpr(result.take()); |
| return S.Owned(ice); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) { |
| ExprValueKind valueKind = VK_LValue; |
| QualType type = DestType; |
| |
| // We know how to make this work for certain kinds of decls: |
| |
| // - functions |
| if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) { |
| if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn)) |
| if (method->isInstance()) valueKind = VK_RValue; |
| |
| // This is true because FunctionDecls must always have function |
| // type, so we can't be resolving the entire thing at once. |
| assert(type->isFunctionType()); |
| |
| // Function references aren't l-values in C. |
| if (!S.getLangOptions().CPlusPlus) |
| valueKind = VK_RValue; |
| |
| // - variables |
| } else if (isa<VarDecl>(decl)) { |
| if (const ReferenceType *refTy = type->getAs<ReferenceType>()) { |
| type = refTy->getPointeeType(); |
| } else if (type->isFunctionType()) { |
| S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type) |
| << decl << expr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // - nothing else |
| } else { |
| S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl) |
| << decl << expr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| decl->setType(DestType); |
| expr->setType(type); |
| expr->setValueKind(valueKind); |
| return S.Owned(expr); |
| } |
| |
| /// Check a cast of an unknown-any type. We intentionally only |
| /// trigger this for C-style casts. |
| ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType, |
| Expr *castExpr, CastKind &castKind, |
| ExprValueKind &VK, CXXCastPath &path) { |
| // Rewrite the casted expression from scratch. |
| ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr); |
| if (!result.isUsable()) return ExprError(); |
| |
| castExpr = result.take(); |
| VK = castExpr->getValueKind(); |
| castKind = CK_NoOp; |
| |
| return castExpr; |
| } |
| |
| static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) { |
| Expr *orig = e; |
| unsigned diagID = diag::err_uncasted_use_of_unknown_any; |
| while (true) { |
| e = e->IgnoreParenImpCasts(); |
| if (CallExpr *call = dyn_cast<CallExpr>(e)) { |
| e = call->getCallee(); |
| diagID = diag::err_uncasted_call_of_unknown_any; |
| } else { |
| break; |
| } |
| } |
| |
| SourceLocation loc; |
| NamedDecl *d; |
| if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { |
| loc = ref->getLocation(); |
| d = ref->getDecl(); |
| } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) { |
| loc = mem->getMemberLoc(); |
| d = mem->getMemberDecl(); |
| } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) { |
| diagID = diag::err_uncasted_call_of_unknown_any; |
| loc = msg->getSelectorLoc(); |
| d = msg->getMethodDecl(); |
| assert(d && "unknown method returning __unknown_any?"); |
| } else { |
| S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr) |
| << e->getSourceRange(); |
| return ExprError(); |
| } |
| |
| S.Diag(loc, diagID) << d << orig->getSourceRange(); |
| |
| // Never recoverable. |
| return ExprError(); |
| } |
| |
| /// Check for operands with placeholder types and complain if found. |
| /// Returns true if there was an error and no recovery was possible. |
| ExprResult Sema::CheckPlaceholderExpr(Expr *E) { |
| // Placeholder types are always *exactly* the appropriate builtin type. |
| QualType type = E->getType(); |
| |
| // Overloaded expressions. |
| if (type == Context.OverloadTy) |
| return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true, |
| E->getSourceRange(), |
| QualType(), |
| diag::err_ovl_unresolvable); |
| |
| // Expressions of unknown type. |
| if (type == Context.UnknownAnyTy) |
| return diagnoseUnknownAnyExpr(*this, E); |
| |
| assert(!type->isPlaceholderType()); |
| return Owned(E); |
| } |
| |
| bool Sema::CheckCaseExpression(Expr *expr) { |
| if (expr->isTypeDependent()) |
| return true; |
| if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context)) |
| return expr->getType()->isIntegralOrEnumerationType(); |
| return false; |
| } |