blob: d6095fc2ae5bb3b26ca0d10c1dc8c0200416c1bc [file] [log] [blame]
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements extra semantic analysis beyond what is enforced
// by the C type system.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include <limits>
using namespace clang;
/// getLocationOfStringLiteralByte - Return a source location that points to the
/// specified byte of the specified string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business. This routine handles this complexity.
///
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const {
assert(!SL->isWide() && "This doesn't work for wide strings yet");
// Loop over all of the tokens in this string until we find the one that
// contains the byte we're looking for.
unsigned TokNo = 0;
while (1) {
assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
// Get the spelling of the string so that we can get the data that makes up
// the string literal, not the identifier for the macro it is potentially
// expanded through.
SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
// Re-lex the token to get its length and original spelling.
std::pair<FileID, unsigned> LocInfo =
SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
std::pair<const char *,const char *> Buffer =
SourceMgr.getBufferData(LocInfo.first);
const char *StrData = Buffer.first+LocInfo.second;
// Create a langops struct and enable trigraphs. This is sufficient for
// relexing tokens.
LangOptions LangOpts;
LangOpts.Trigraphs = true;
// Create a lexer starting at the beginning of this token.
Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
Buffer.second);
Token TheTok;
TheLexer.LexFromRawLexer(TheTok);
// Use the StringLiteralParser to compute the length of the string in bytes.
StringLiteralParser SLP(&TheTok, 1, PP);
unsigned TokNumBytes = SLP.GetStringLength();
// If the byte is in this token, return the location of the byte.
if (ByteNo < TokNumBytes ||
(ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
unsigned Offset =
StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
// Now that we know the offset of the token in the spelling, use the
// preprocessor to get the offset in the original source.
return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
}
// Move to the next string token.
++TokNo;
ByteNo -= TokNumBytes;
}
}
/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
Action::OwningExprResult
Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
OwningExprResult TheCallResult(Owned(TheCall));
// Get the IdentifierInfo* for the called function.
IdentifierInfo *FnInfo = FDecl->getIdentifier();
// None of the checks below are needed for functions that don't have
// simple names (e.g., C++ conversion functions).
if (!FnInfo)
return move(TheCallResult);
switch (FDecl->getBuiltinID(Context)) {
case Builtin::BI__builtin___CFStringMakeConstantString:
assert(TheCall->getNumArgs() == 1 &&
"Wrong # arguments to builtin CFStringMakeConstantString");
if (CheckObjCString(TheCall->getArg(0)))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
if (SemaBuiltinVAStart(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered:
if (SemaBuiltinUnorderedCompare(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_return_address:
case Builtin::BI__builtin_frame_address:
if (SemaBuiltinStackAddress(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_shufflevector:
return SemaBuiltinShuffleVector(TheCall);
// TheCall will be freed by the smart pointer here, but that's fine, since
// SemaBuiltinShuffleVector guts it, but then doesn't release it.
case Builtin::BI__builtin_prefetch:
if (SemaBuiltinPrefetch(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_object_size:
if (SemaBuiltinObjectSize(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_longjmp:
if (SemaBuiltinLongjmp(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_fetch_and_nand:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_nand_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
if (SemaBuiltinAtomicOverloaded(TheCall))
return ExprError();
return move(TheCallResult);
}
// FIXME: This mechanism should be abstracted to be less fragile and
// more efficient. For example, just map function ids to custom
// handlers.
// Printf checking.
if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
if (Format->getType() == "printf") {
bool HasVAListArg = Format->getFirstArg() == 0;
if (!HasVAListArg) {
if (const FunctionProtoType *Proto
= FDecl->getType()->getAsFunctionProtoType())
HasVAListArg = !Proto->isVariadic();
}
CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
HasVAListArg ? 0 : Format->getFirstArg() - 1);
}
}
for (const Attr *attr = FDecl->getAttrs();
attr; attr = attr->getNext()) {
if (const NonNullAttr *NonNull = dyn_cast<NonNullAttr>(attr))
CheckNonNullArguments(NonNull, TheCall);
}
return move(TheCallResult);
}
Action::OwningExprResult
Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
OwningExprResult TheCallResult(Owned(TheCall));
// Printf checking.
const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
if (!Format)
return move(TheCallResult);
const VarDecl *V = dyn_cast<VarDecl>(NDecl);
if (!V)
return move(TheCallResult);
QualType Ty = V->getType();
if (!Ty->isBlockPointerType())
return move(TheCallResult);
if (Format->getType() == "printf") {
bool HasVAListArg = Format->getFirstArg() == 0;
if (!HasVAListArg) {
const FunctionType *FT =
Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
HasVAListArg = !Proto->isVariadic();
}
CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
HasVAListArg ? 0 : Format->getFirstArg() - 1);
}
return move(TheCallResult);
}
/// SemaBuiltinAtomicOverloaded - We have a call to a function like
/// __sync_fetch_and_add, which is an overloaded function based on the pointer
/// type of its first argument. The main ActOnCallExpr routines have already
/// promoted the types of arguments because all of these calls are prototyped as
/// void(...).
///
/// This function goes through and does final semantic checking for these
/// builtins,
bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
// Ensure that we have at least one argument to do type inference from.
if (TheCall->getNumArgs() < 1)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 << TheCall->getCallee()->getSourceRange();
// Inspect the first argument of the atomic builtin. This should always be
// a pointer type, whose element is an integral scalar or pointer type.
// Because it is a pointer type, we don't have to worry about any implicit
// casts here.
Expr *FirstArg = TheCall->getArg(0);
if (!FirstArg->getType()->isPointerType())
return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
<< FirstArg->getType() << FirstArg->getSourceRange();
QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
if (!ValType->isIntegerType() && !ValType->isPointerType() &&
!ValType->isBlockPointerType())
return Diag(DRE->getLocStart(),
diag::err_atomic_builtin_must_be_pointer_intptr)
<< FirstArg->getType() << FirstArg->getSourceRange();
// We need to figure out which concrete builtin this maps onto. For example,
// __sync_fetch_and_add with a 2 byte object turns into
// __sync_fetch_and_add_2.
#define BUILTIN_ROW(x) \
{ Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
Builtin::BI##x##_8, Builtin::BI##x##_16 }
static const unsigned BuiltinIndices[][5] = {
BUILTIN_ROW(__sync_fetch_and_add),
BUILTIN_ROW(__sync_fetch_and_sub),
BUILTIN_ROW(__sync_fetch_and_or),
BUILTIN_ROW(__sync_fetch_and_and),
BUILTIN_ROW(__sync_fetch_and_xor),
BUILTIN_ROW(__sync_fetch_and_nand),
BUILTIN_ROW(__sync_add_and_fetch),
BUILTIN_ROW(__sync_sub_and_fetch),
BUILTIN_ROW(__sync_and_and_fetch),
BUILTIN_ROW(__sync_or_and_fetch),
BUILTIN_ROW(__sync_xor_and_fetch),
BUILTIN_ROW(__sync_nand_and_fetch),
BUILTIN_ROW(__sync_val_compare_and_swap),
BUILTIN_ROW(__sync_bool_compare_and_swap),
BUILTIN_ROW(__sync_lock_test_and_set),
BUILTIN_ROW(__sync_lock_release)
};
#undef BUILTIN_ROW
// Determine the index of the size.
unsigned SizeIndex;
switch (Context.getTypeSize(ValType)/8) {
case 1: SizeIndex = 0; break;
case 2: SizeIndex = 1; break;
case 4: SizeIndex = 2; break;
case 8: SizeIndex = 3; break;
case 16: SizeIndex = 4; break;
default:
return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
<< FirstArg->getType() << FirstArg->getSourceRange();
}
// Each of these builtins has one pointer argument, followed by some number of
// values (0, 1 or 2) followed by a potentially empty varags list of stuff
// that we ignore. Find out which row of BuiltinIndices to read from as well
// as the number of fixed args.
unsigned BuiltinID = FDecl->getBuiltinID(Context);
unsigned BuiltinIndex, NumFixed = 1;
switch (BuiltinID) {
default: assert(0 && "Unknown overloaded atomic builtin!");
case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 9; break;
case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
case Builtin::BI__sync_val_compare_and_swap:
BuiltinIndex = 12;
NumFixed = 2;
break;
case Builtin::BI__sync_bool_compare_and_swap:
BuiltinIndex = 13;
NumFixed = 2;
break;
case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
case Builtin::BI__sync_lock_release:
BuiltinIndex = 15;
NumFixed = 0;
break;
}
// Now that we know how many fixed arguments we expect, first check that we
// have at least that many.
if (TheCall->getNumArgs() < 1+NumFixed)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 << TheCall->getCallee()->getSourceRange();
// Get the decl for the concrete builtin from this, we can tell what the
// concrete integer type we should convert to is.
unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
FunctionDecl *NewBuiltinDecl =
cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
TUScope, false, DRE->getLocStart()));
const FunctionProtoType *BuiltinFT =
NewBuiltinDecl->getType()->getAsFunctionProtoType();
ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
// If the first type needs to be converted (e.g. void** -> int*), do it now.
if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_Unknown,
/*isLvalue=*/false);
TheCall->setArg(0, FirstArg);
}
// Next, walk the valid ones promoting to the right type.
for (unsigned i = 0; i != NumFixed; ++i) {
Expr *Arg = TheCall->getArg(i+1);
// If the argument is an implicit cast, then there was a promotion due to
// "...", just remove it now.
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
Arg = ICE->getSubExpr();
ICE->setSubExpr(0);
ICE->Destroy(Context);
TheCall->setArg(i+1, Arg);
}
// GCC does an implicit conversion to the pointer or integer ValType. This
// can fail in some cases (1i -> int**), check for this error case now.
if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg))
return true;
// Okay, we have something that *can* be converted to the right type. Check
// to see if there is a potentially weird extension going on here. This can
// happen when you do an atomic operation on something like an char* and
// pass in 42. The 42 gets converted to char. This is even more strange
// for things like 45.123 -> char, etc.
// FIXME: Do this check.
ImpCastExprToType(Arg, ValType, CastExpr::CK_Unknown,
/*isLvalue=*/false);
TheCall->setArg(i+1, Arg);
}
// Switch the DeclRefExpr to refer to the new decl.
DRE->setDecl(NewBuiltinDecl);
DRE->setType(NewBuiltinDecl->getType());
// Set the callee in the CallExpr.
// FIXME: This leaks the original parens and implicit casts.
Expr *PromotedCall = DRE;
UsualUnaryConversions(PromotedCall);
TheCall->setCallee(PromotedCall);
// Change the result type of the call to match the result type of the decl.
TheCall->setType(NewBuiltinDecl->getResultType());
return false;
}
/// CheckObjCString - Checks that the argument to the builtin
/// CFString constructor is correct
/// FIXME: GCC currently emits the following warning:
/// "warning: input conversion stopped due to an input byte that does not
/// belong to the input codeset UTF-8"
/// Note: It might also make sense to do the UTF-16 conversion here (would
/// simplify the backend).
bool Sema::CheckObjCString(Expr *Arg) {
Arg = Arg->IgnoreParenCasts();
StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
if (!Literal || Literal->isWide()) {
Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
<< Arg->getSourceRange();
return true;
}
const char *Data = Literal->getStrData();
unsigned Length = Literal->getByteLength();
for (unsigned i = 0; i < Length; ++i) {
if (!Data[i]) {
Diag(getLocationOfStringLiteralByte(Literal, i),
diag::warn_cfstring_literal_contains_nul_character)
<< Arg->getSourceRange();
break;
}
}
return false;
}
/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
/// Emit an error and return true on failure, return false on success.
bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
Expr *Fn = TheCall->getCallee();
if (TheCall->getNumArgs() > 2) {
Diag(TheCall->getArg(2)->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/ << Fn->getSourceRange()
<< SourceRange(TheCall->getArg(2)->getLocStart(),
(*(TheCall->arg_end()-1))->getLocEnd());
return true;
}
if (TheCall->getNumArgs() < 2) {
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/;
}
// Determine whether the current function is variadic or not.
bool isVariadic;
if (CurBlock)
isVariadic = CurBlock->isVariadic;
else if (getCurFunctionDecl()) {
if (FunctionProtoType* FTP =
dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
isVariadic = FTP->isVariadic();
else
isVariadic = false;
} else {
isVariadic = getCurMethodDecl()->isVariadic();
}
if (!isVariadic) {
Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
return true;
}
// Verify that the second argument to the builtin is the last argument of the
// current function or method.
bool SecondArgIsLastNamedArgument = false;
const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
// FIXME: This isn't correct for methods (results in bogus warning).
// Get the last formal in the current function.
const ParmVarDecl *LastArg;
if (CurBlock)
LastArg = *(CurBlock->TheDecl->param_end()-1);
else if (FunctionDecl *FD = getCurFunctionDecl())
LastArg = *(FD->param_end()-1);
else
LastArg = *(getCurMethodDecl()->param_end()-1);
SecondArgIsLastNamedArgument = PV == LastArg;
}
}
if (!SecondArgIsLastNamedArgument)
Diag(TheCall->getArg(1)->getLocStart(),
diag::warn_second_parameter_of_va_start_not_last_named_argument);
return false;
}
/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
/// friends. This is declared to take (...), so we have to check everything.
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
if (TheCall->getNumArgs() < 2)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/;
if (TheCall->getNumArgs() > 2)
return Diag(TheCall->getArg(2)->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/
<< SourceRange(TheCall->getArg(2)->getLocStart(),
(*(TheCall->arg_end()-1))->getLocEnd());
Expr *OrigArg0 = TheCall->getArg(0);
Expr *OrigArg1 = TheCall->getArg(1);
// Do standard promotions between the two arguments, returning their common
// type.
QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
// Make sure any conversions are pushed back into the call; this is
// type safe since unordered compare builtins are declared as "_Bool
// foo(...)".
TheCall->setArg(0, OrigArg0);
TheCall->setArg(1, OrigArg1);
if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
return false;
// If the common type isn't a real floating type, then the arguments were
// invalid for this operation.
if (!Res->isRealFloatingType())
return Diag(OrigArg0->getLocStart(),
diag::err_typecheck_call_invalid_ordered_compare)
<< OrigArg0->getType() << OrigArg1->getType()
<< SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
return false;
}
bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
// The signature for these builtins is exact; the only thing we need
// to check is that the argument is a constant.
SourceLocation Loc;
if (!TheCall->getArg(0)->isTypeDependent() &&
!TheCall->getArg(0)->isValueDependent() &&
!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
return false;
}
/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
// This is declared to take (...), so we have to check everything.
Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
if (TheCall->getNumArgs() < 3)
return ExprError(Diag(TheCall->getLocEnd(),
diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/ << TheCall->getSourceRange());
unsigned numElements = std::numeric_limits<unsigned>::max();
if (!TheCall->getArg(0)->isTypeDependent() &&
!TheCall->getArg(1)->isTypeDependent()) {
QualType FAType = TheCall->getArg(0)->getType();
QualType SAType = TheCall->getArg(1)->getType();
if (!FAType->isVectorType() || !SAType->isVectorType()) {
Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
<< SourceRange(TheCall->getArg(0)->getLocStart(),
TheCall->getArg(1)->getLocEnd());
return ExprError();
}
if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
Context.getCanonicalType(SAType).getUnqualifiedType()) {
Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
<< SourceRange(TheCall->getArg(0)->getLocStart(),
TheCall->getArg(1)->getLocEnd());
return ExprError();
}
numElements = FAType->getAsVectorType()->getNumElements();
if (TheCall->getNumArgs() != numElements+2) {
if (TheCall->getNumArgs() < numElements+2)
return ExprError(Diag(TheCall->getLocEnd(),
diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/ << TheCall->getSourceRange());
return ExprError(Diag(TheCall->getLocEnd(),
diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/ << TheCall->getSourceRange());
}
}
for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
if (TheCall->getArg(i)->isTypeDependent() ||
TheCall->getArg(i)->isValueDependent())
continue;
llvm::APSInt Result(32);
if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
return ExprError(Diag(TheCall->getLocStart(),
diag::err_shufflevector_nonconstant_argument)
<< TheCall->getArg(i)->getSourceRange());
if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
return ExprError(Diag(TheCall->getLocStart(),
diag::err_shufflevector_argument_too_large)
<< TheCall->getArg(i)->getSourceRange());
}
llvm::SmallVector<Expr*, 32> exprs;
for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
exprs.push_back(TheCall->getArg(i));
TheCall->setArg(i, 0);
}
return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), exprs.size(),
exprs[0]->getType(),
TheCall->getCallee()->getLocStart(),
TheCall->getRParenLoc()));
}
/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
// This is declared to take (const void*, ...) and can take two
// optional constant int args.
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
unsigned NumArgs = TheCall->getNumArgs();
if (NumArgs > 3)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/ << TheCall->getSourceRange();
// Argument 0 is checked for us and the remaining arguments must be
// constant integers.
for (unsigned i = 1; i != NumArgs; ++i) {
Expr *Arg = TheCall->getArg(i);
if (Arg->isTypeDependent())
continue;
QualType RWType = Arg->getType();
const BuiltinType *BT = RWType->getAsBuiltinType();
llvm::APSInt Result;
if (!BT || BT->getKind() != BuiltinType::Int)
return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
if (Arg->isValueDependent())
continue;
if (!Arg->isIntegerConstantExpr(Result, Context))
return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
// FIXME: gcc issues a warning and rewrites these to 0. These
// seems especially odd for the third argument since the default
// is 3.
if (i == 1) {
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
<< "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
} else {
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
<< "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
}
}
return false;
}
/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
/// int type). This simply type checks that type is one of the defined
/// constants (0-3).
bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
Expr *Arg = TheCall->getArg(1);
if (Arg->isTypeDependent())
return false;
QualType ArgType = Arg->getType();
const BuiltinType *BT = ArgType->getAsBuiltinType();
llvm::APSInt Result(32);
if (!BT || BT->getKind() != BuiltinType::Int)
return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
if (Arg->isValueDependent())
return false;
if (!Arg->isIntegerConstantExpr(Result, Context)) {
return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
}
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
<< "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
}
return false;
}
/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
/// This checks that val is a constant 1.
bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
Expr *Arg = TheCall->getArg(1);
if (Arg->isTypeDependent() || Arg->isValueDependent())
return false;
llvm::APSInt Result(32);
if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
return false;
}
// Handle i > 1 ? "x" : "y", recursivelly
bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg) {
if (E->isTypeDependent() || E->isValueDependent())
return false;
switch (E->getStmtClass()) {
case Stmt::ConditionalOperatorClass: {
const ConditionalOperator *C = cast<ConditionalOperator>(E);
return SemaCheckStringLiteral(C->getLHS(), TheCall,
HasVAListArg, format_idx, firstDataArg)
&& SemaCheckStringLiteral(C->getRHS(), TheCall,
HasVAListArg, format_idx, firstDataArg);
}
case Stmt::ImplicitCastExprClass: {
const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
format_idx, firstDataArg);
}
case Stmt::ParenExprClass: {
const ParenExpr *Expr = cast<ParenExpr>(E);
return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
format_idx, firstDataArg);
}
case Stmt::DeclRefExprClass: {
const DeclRefExpr *DR = cast<DeclRefExpr>(E);
// As an exception, do not flag errors for variables binding to
// const string literals.
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
bool isConstant = false;
QualType T = DR->getType();
if (const ArrayType *AT = Context.getAsArrayType(T)) {
isConstant = AT->getElementType().isConstant(Context);
} else if (const PointerType *PT = T->getAs<PointerType>()) {
isConstant = T.isConstant(Context) &&
PT->getPointeeType().isConstant(Context);
}
if (isConstant) {
const VarDecl *Def = 0;
if (const Expr *Init = VD->getDefinition(Def))
return SemaCheckStringLiteral(Init, TheCall,
HasVAListArg, format_idx, firstDataArg);
}
// For vprintf* functions (i.e., HasVAListArg==true), we add a
// special check to see if the format string is a function parameter
// of the function calling the printf function. If the function
// has an attribute indicating it is a printf-like function, then we
// should suppress warnings concerning non-literals being used in a call
// to a vprintf function. For example:
//
// void
// logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
// va_list ap;
// va_start(ap, fmt);
// vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
// ...
//
//
// FIXME: We don't have full attribute support yet, so just check to see
// if the argument is a DeclRefExpr that references a parameter. We'll
// add proper support for checking the attribute later.
if (HasVAListArg)
if (isa<ParmVarDecl>(VD))
return true;
}
return false;
}
case Stmt::CallExprClass: {
const CallExpr *CE = cast<CallExpr>(E);
if (const ImplicitCastExpr *ICE
= dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
unsigned ArgIndex = FA->getFormatIdx();
const Expr *Arg = CE->getArg(ArgIndex - 1);
return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
format_idx, firstDataArg);
}
}
}
}
return false;
}
case Stmt::ObjCStringLiteralClass:
case Stmt::StringLiteralClass: {
const StringLiteral *StrE = NULL;
if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
StrE = ObjCFExpr->getString();
else
StrE = cast<StringLiteral>(E);
if (StrE) {
CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
firstDataArg);
return true;
}
return false;
}
default:
return false;
}
}
void
Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
{
for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
i != e; ++i) {
const Expr *ArgExpr = TheCall->getArg(*i);
if (ArgExpr->isNullPointerConstant(Context))
Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
<< ArgExpr->getSourceRange();
}
}
/// CheckPrintfArguments - Check calls to printf (and similar functions) for
/// correct use of format strings.
///
/// HasVAListArg - A predicate indicating whether the printf-like
/// function is passed an explicit va_arg argument (e.g., vprintf)
///
/// format_idx - The index into Args for the format string.
///
/// Improper format strings to functions in the printf family can be
/// the source of bizarre bugs and very serious security holes. A
/// good source of information is available in the following paper
/// (which includes additional references):
///
/// FormatGuard: Automatic Protection From printf Format String
/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
///
/// Functionality implemented:
///
/// We can statically check the following properties for string
/// literal format strings for non v.*printf functions (where the
/// arguments are passed directly):
//
/// (1) Are the number of format conversions equal to the number of
/// data arguments?
///
/// (2) Does each format conversion correctly match the type of the
/// corresponding data argument? (TODO)
///
/// Moreover, for all printf functions we can:
///
/// (3) Check for a missing format string (when not caught by type checking).
///
/// (4) Check for no-operation flags; e.g. using "#" with format
/// conversion 'c' (TODO)
///
/// (5) Check the use of '%n', a major source of security holes.
///
/// (6) Check for malformed format conversions that don't specify anything.
///
/// (7) Check for empty format strings. e.g: printf("");
///
/// (8) Check that the format string is a wide literal.
///
/// (9) Also check the arguments of functions with the __format__ attribute.
/// (TODO).
///
/// All of these checks can be done by parsing the format string.
///
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
void
Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg) {
const Expr *Fn = TheCall->getCallee();
// CHECK: printf-like function is called with no format string.
if (format_idx >= TheCall->getNumArgs()) {
Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
<< Fn->getSourceRange();
return;
}
const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
// CHECK: format string is not a string literal.
//
// Dynamically generated format strings are difficult to
// automatically vet at compile time. Requiring that format strings
// are string literals: (1) permits the checking of format strings by
// the compiler and thereby (2) can practically remove the source of
// many format string exploits.
// Format string can be either ObjC string (e.g. @"%d") or
// C string (e.g. "%d")
// ObjC string uses the same format specifiers as C string, so we can use
// the same format string checking logic for both ObjC and C strings.
if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
firstDataArg))
return; // Literal format string found, check done!
// If there are no arguments specified, warn with -Wformat-security, otherwise
// warn only with -Wformat-nonliteral.
if (TheCall->getNumArgs() == format_idx+1)
Diag(TheCall->getArg(format_idx)->getLocStart(),
diag::warn_printf_nonliteral_noargs)
<< OrigFormatExpr->getSourceRange();
else
Diag(TheCall->getArg(format_idx)->getLocStart(),
diag::warn_printf_nonliteral)
<< OrigFormatExpr->getSourceRange();
}
void Sema::CheckPrintfString(const StringLiteral *FExpr,
const Expr *OrigFormatExpr,
const CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg) {
const ObjCStringLiteral *ObjCFExpr =
dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
// CHECK: is the format string a wide literal?
if (FExpr->isWide()) {
Diag(FExpr->getLocStart(),
diag::warn_printf_format_string_is_wide_literal)
<< OrigFormatExpr->getSourceRange();
return;
}
// Str - The format string. NOTE: this is NOT null-terminated!
const char *Str = FExpr->getStrData();
// CHECK: empty format string?
unsigned StrLen = FExpr->getByteLength();
if (StrLen == 0) {
Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
<< OrigFormatExpr->getSourceRange();
return;
}
// We process the format string using a binary state machine. The
// current state is stored in CurrentState.
enum {
state_OrdChr,
state_Conversion
} CurrentState = state_OrdChr;
// numConversions - The number of conversions seen so far. This is
// incremented as we traverse the format string.
unsigned numConversions = 0;
// numDataArgs - The number of data arguments after the format
// string. This can only be determined for non vprintf-like
// functions. For those functions, this value is 1 (the sole
// va_arg argument).
unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
// Inspect the format string.
unsigned StrIdx = 0;
// LastConversionIdx - Index within the format string where we last saw
// a '%' character that starts a new format conversion.
unsigned LastConversionIdx = 0;
for (; StrIdx < StrLen; ++StrIdx) {
// Is the number of detected conversion conversions greater than
// the number of matching data arguments? If so, stop.
if (!HasVAListArg && numConversions > numDataArgs) break;
// Handle "\0"
if (Str[StrIdx] == '\0') {
// The string returned by getStrData() is not null-terminated,
// so the presence of a null character is likely an error.
Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
diag::warn_printf_format_string_contains_null_char)
<< OrigFormatExpr->getSourceRange();
return;
}
// Ordinary characters (not processing a format conversion).
if (CurrentState == state_OrdChr) {
if (Str[StrIdx] == '%') {
CurrentState = state_Conversion;
LastConversionIdx = StrIdx;
}
continue;
}
// Seen '%'. Now processing a format conversion.
switch (Str[StrIdx]) {
// Handle dynamic precision or width specifier.
case '*': {
++numConversions;
if (!HasVAListArg) {
if (numConversions > numDataArgs) {
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
if (Str[StrIdx-1] == '.')
Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
<< OrigFormatExpr->getSourceRange();
else
Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
<< OrigFormatExpr->getSourceRange();
// Don't do any more checking. We'll just emit spurious errors.
return;
}
// Perform type checking on width/precision specifier.
const Expr *E = TheCall->getArg(format_idx+numConversions);
if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
if (BT->getKind() == BuiltinType::Int)
break;
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
if (Str[StrIdx-1] == '.')
Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
<< E->getType() << E->getSourceRange();
else
Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
<< E->getType() << E->getSourceRange();
break;
}
}
// Characters which can terminate a format conversion
// (e.g. "%d"). Characters that specify length modifiers or
// other flags are handled by the default case below.
//
// FIXME: additional checks will go into the following cases.
case 'i':
case 'd':
case 'o':
case 'u':
case 'x':
case 'X':
case 'D':
case 'O':
case 'U':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
case 'a':
case 'A':
case 'c':
case 'C':
case 'S':
case 's':
case 'p':
++numConversions;
CurrentState = state_OrdChr;
break;
case 'm':
// FIXME: Warn in situations where this isn't supported!
CurrentState = state_OrdChr;
break;
// CHECK: Are we using "%n"? Issue a warning.
case 'n': {
++numConversions;
CurrentState = state_OrdChr;
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
LastConversionIdx);
Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
break;
}
// Handle "%@"
case '@':
// %@ is allowed in ObjC format strings only.
if(ObjCFExpr != NULL)
CurrentState = state_OrdChr;
else {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
Diag(Loc, diag::warn_printf_invalid_conversion)
<< std::string(Str+LastConversionIdx,
Str+std::min(LastConversionIdx+2, StrLen))
<< OrigFormatExpr->getSourceRange();
}
++numConversions;
break;
// Handle "%%"
case '%':
// Sanity check: Was the first "%" character the previous one?
// If not, we will assume that we have a malformed format
// conversion, and that the current "%" character is the start
// of a new conversion.
if (StrIdx - LastConversionIdx == 1)
CurrentState = state_OrdChr;
else {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
Diag(Loc, diag::warn_printf_invalid_conversion)
<< std::string(Str+LastConversionIdx, Str+StrIdx)
<< OrigFormatExpr->getSourceRange();
// This conversion is broken. Advance to the next format
// conversion.
LastConversionIdx = StrIdx;
++numConversions;
}
break;
default:
// This case catches all other characters: flags, widths, etc.
// We should eventually process those as well.
break;
}
}
if (CurrentState == state_Conversion) {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
Diag(Loc, diag::warn_printf_invalid_conversion)
<< std::string(Str+LastConversionIdx,
Str+std::min(LastConversionIdx+2, StrLen))
<< OrigFormatExpr->getSourceRange();
return;
}
if (!HasVAListArg) {
// CHECK: Does the number of format conversions exceed the number
// of data arguments?
if (numConversions > numDataArgs) {
SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
Diag(Loc, diag::warn_printf_insufficient_data_args)
<< OrigFormatExpr->getSourceRange();
}
// CHECK: Does the number of data arguments exceed the number of
// format conversions in the format string?
else if (numConversions < numDataArgs)
Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
diag::warn_printf_too_many_data_args)
<< OrigFormatExpr->getSourceRange();
}
}
//===--- CHECK: Return Address of Stack Variable --------------------------===//
static DeclRefExpr* EvalVal(Expr *E);
static DeclRefExpr* EvalAddr(Expr* E);
/// CheckReturnStackAddr - Check if a return statement returns the address
/// of a stack variable.
void
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc) {
// Perform checking for returned stack addresses.
if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
if (DeclRefExpr *DR = EvalAddr(RetValExp))
Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
<< DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
// Skip over implicit cast expressions when checking for block expressions.
if (ImplicitCastExpr *IcExpr =
dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
RetValExp = IcExpr->getSubExpr();
if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
if (C->hasBlockDeclRefExprs())
Diag(C->getLocStart(), diag::err_ret_local_block)
<< C->getSourceRange();
} else if (lhsType->isReferenceType()) {
// Perform checking for stack values returned by reference.
// Check for a reference to the stack
if (DeclRefExpr *DR = EvalVal(RetValExp))
Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
<< DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
}
}
/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
/// check if the expression in a return statement evaluates to an address
/// to a location on the stack. The recursion is used to traverse the
/// AST of the return expression, with recursion backtracking when we
/// encounter a subexpression that (1) clearly does not lead to the address
/// of a stack variable or (2) is something we cannot determine leads to
/// the address of a stack variable based on such local checking.
///
/// EvalAddr processes expressions that are pointers that are used as
/// references (and not L-values). EvalVal handles all other values.
/// At the base case of the recursion is a check for a DeclRefExpr* in
/// the refers to a stack variable.
///
/// This implementation handles:
///
/// * pointer-to-pointer casts
/// * implicit conversions from array references to pointers
/// * taking the address of fields
/// * arbitrary interplay between "&" and "*" operators
/// * pointer arithmetic from an address of a stack variable
/// * taking the address of an array element where the array is on the stack
static DeclRefExpr* EvalAddr(Expr *E) {
// We should only be called for evaluating pointer expressions.
assert((E->getType()->isPointerType() ||
E->getType()->isBlockPointerType() ||
E->getType()->isObjCQualifiedIdType()) &&
"EvalAddr only works on pointers");
// Our "symbolic interpreter" is just a dispatch off the currently
// viewed AST node. We then recursively traverse the AST by calling
// EvalAddr and EvalVal appropriately.
switch (E->getStmtClass()) {
case Stmt::ParenExprClass:
// Ignore parentheses.
return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
case Stmt::UnaryOperatorClass: {
// The only unary operator that make sense to handle here
// is AddrOf. All others don't make sense as pointers.
UnaryOperator *U = cast<UnaryOperator>(E);
if (U->getOpcode() == UnaryOperator::AddrOf)
return EvalVal(U->getSubExpr());
else
return NULL;
}
case Stmt::BinaryOperatorClass: {
// Handle pointer arithmetic. All other binary operators are not valid
// in this context.
BinaryOperator *B = cast<BinaryOperator>(E);
BinaryOperator::Opcode op = B->getOpcode();
if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
return NULL;
Expr *Base = B->getLHS();
// Determine which argument is the real pointer base. It could be
// the RHS argument instead of the LHS.
if (!Base->getType()->isPointerType()) Base = B->getRHS();
assert (Base->getType()->isPointerType());
return EvalAddr(Base);
}
// For conditional operators we need to see if either the LHS or RHS are
// valid DeclRefExpr*s. If one of them is valid, we return it.
case Stmt::ConditionalOperatorClass: {
ConditionalOperator *C = cast<ConditionalOperator>(E);
// Handle the GNU extension for missing LHS.
if (Expr *lhsExpr = C->getLHS())
if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
return LHS;
return EvalAddr(C->getRHS());
}
// For casts, we need to handle conversions from arrays to
// pointer values, and pointer-to-pointer conversions.
case Stmt::ImplicitCastExprClass:
case Stmt::CStyleCastExprClass:
case Stmt::CXXFunctionalCastExprClass: {
Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
QualType T = SubExpr->getType();
if (SubExpr->getType()->isPointerType() ||
SubExpr->getType()->isBlockPointerType() ||
SubExpr->getType()->isObjCQualifiedIdType())
return EvalAddr(SubExpr);
else if (T->isArrayType())
return EvalVal(SubExpr);
else
return 0;
}
// C++ casts. For dynamic casts, static casts, and const casts, we
// are always converting from a pointer-to-pointer, so we just blow
// through the cast. In the case the dynamic cast doesn't fail (and
// return NULL), we take the conservative route and report cases
// where we return the address of a stack variable. For Reinterpre
// FIXME: The comment about is wrong; we're not always converting
// from pointer to pointer. I'm guessing that this code should also
// handle references to objects.
case Stmt::CXXStaticCastExprClass:
case Stmt::CXXDynamicCastExprClass:
case Stmt::CXXConstCastExprClass:
case Stmt::CXXReinterpretCastExprClass: {
Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
return EvalAddr(S);
else
return NULL;
}
// Everything else: we simply don't reason about them.
default:
return NULL;
}
}
/// EvalVal - This function is complements EvalAddr in the mutual recursion.
/// See the comments for EvalAddr for more details.
static DeclRefExpr* EvalVal(Expr *E) {
// We should only be called for evaluating non-pointer expressions, or
// expressions with a pointer type that are not used as references but instead
// are l-values (e.g., DeclRefExpr with a pointer type).
// Our "symbolic interpreter" is just a dispatch off the currently
// viewed AST node. We then recursively traverse the AST by calling
// EvalAddr and EvalVal appropriately.
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass:
case Stmt::QualifiedDeclRefExprClass: {
// DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
// at code that refers to a variable's name. We check if it has local
// storage within the function, and if so, return the expression.
DeclRefExpr *DR = cast<DeclRefExpr>(E);
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
return NULL;
}
case Stmt::ParenExprClass:
// Ignore parentheses.
return EvalVal(cast<ParenExpr>(E)->getSubExpr());
case Stmt::UnaryOperatorClass: {
// The only unary operator that make sense to handle here
// is Deref. All others don't resolve to a "name." This includes
// handling all sorts of rvalues passed to a unary operator.
UnaryOperator *U = cast<UnaryOperator>(E);
if (U->getOpcode() == UnaryOperator::Deref)
return EvalAddr(U->getSubExpr());
return NULL;
}
case Stmt::ArraySubscriptExprClass: {
// Array subscripts are potential references to data on the stack. We
// retrieve the DeclRefExpr* for the array variable if it indeed
// has local storage.
return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
}
case Stmt::ConditionalOperatorClass: {
// For conditional operators we need to see if either the LHS or RHS are
// non-NULL DeclRefExpr's. If one is non-NULL, we return it.
ConditionalOperator *C = cast<ConditionalOperator>(E);
// Handle the GNU extension for missing LHS.
if (Expr *lhsExpr = C->getLHS())
if (DeclRefExpr *LHS = EvalVal(lhsExpr))
return LHS;
return EvalVal(C->getRHS());
}
// Accesses to members are potential references to data on the stack.
case Stmt::MemberExprClass: {
MemberExpr *M = cast<MemberExpr>(E);
// Check for indirect access. We only want direct field accesses.
if (!M->isArrow())
return EvalVal(M->getBase());
else
return NULL;
}
// Everything else: we simply don't reason about them.
default:
return NULL;
}
}
//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
/// Check for comparisons of floating point operands using != and ==.
/// Issue a warning if these are no self-comparisons, as they are not likely
/// to do what the programmer intended.
void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
bool EmitWarning = true;
Expr* LeftExprSansParen = lex->IgnoreParens();
Expr* RightExprSansParen = rex->IgnoreParens();
// Special case: check for x == x (which is OK).
// Do not emit warnings for such cases.
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
if (DRL->getDecl() == DRR->getDecl())
EmitWarning = false;
// Special case: check for comparisons against literals that can be exactly
// represented by APFloat. In such cases, do not emit a warning. This
// is a heuristic: often comparison against such literals are used to
// detect if a value in a variable has not changed. This clearly can
// lead to false negatives.
if (EmitWarning) {
if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
if (FLL->isExact())
EmitWarning = false;
} else
if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
if (FLR->isExact())
EmitWarning = false;
}
}
// Check for comparisons with builtin types.
if (EmitWarning)
if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
if (CL->isBuiltinCall(Context))
EmitWarning = false;
if (EmitWarning)
if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
if (CR->isBuiltinCall(Context))
EmitWarning = false;
// Emit the diagnostic.
if (EmitWarning)
Diag(loc, diag::warn_floatingpoint_eq)
<< lex->getSourceRange() << rex->getSourceRange();
}