| //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file provides Sema routines for C++ overloading. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "Lookup.h" |
| #include "SemaInit.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| |
| namespace clang { |
| |
| /// GetConversionCategory - Retrieve the implicit conversion |
| /// category corresponding to the given implicit conversion kind. |
| ImplicitConversionCategory |
| GetConversionCategory(ImplicitConversionKind Kind) { |
| static const ImplicitConversionCategory |
| Category[(int)ICK_Num_Conversion_Kinds] = { |
| ICC_Identity, |
| ICC_Lvalue_Transformation, |
| ICC_Lvalue_Transformation, |
| ICC_Lvalue_Transformation, |
| ICC_Identity, |
| ICC_Qualification_Adjustment, |
| ICC_Promotion, |
| ICC_Promotion, |
| ICC_Promotion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion |
| }; |
| return Category[(int)Kind]; |
| } |
| |
| /// GetConversionRank - Retrieve the implicit conversion rank |
| /// corresponding to the given implicit conversion kind. |
| ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { |
| static const ImplicitConversionRank |
| Rank[(int)ICK_Num_Conversion_Kinds] = { |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Promotion, |
| ICR_Promotion, |
| ICR_Promotion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Complex_Real_Conversion |
| }; |
| return Rank[(int)Kind]; |
| } |
| |
| /// GetImplicitConversionName - Return the name of this kind of |
| /// implicit conversion. |
| const char* GetImplicitConversionName(ImplicitConversionKind Kind) { |
| static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { |
| "No conversion", |
| "Lvalue-to-rvalue", |
| "Array-to-pointer", |
| "Function-to-pointer", |
| "Noreturn adjustment", |
| "Qualification", |
| "Integral promotion", |
| "Floating point promotion", |
| "Complex promotion", |
| "Integral conversion", |
| "Floating conversion", |
| "Complex conversion", |
| "Floating-integral conversion", |
| "Pointer conversion", |
| "Pointer-to-member conversion", |
| "Boolean conversion", |
| "Compatible-types conversion", |
| "Derived-to-base conversion", |
| "Vector conversion", |
| "Vector splat", |
| "Complex-real conversion" |
| }; |
| return Name[Kind]; |
| } |
| |
| /// StandardConversionSequence - Set the standard conversion |
| /// sequence to the identity conversion. |
| void StandardConversionSequence::setAsIdentityConversion() { |
| First = ICK_Identity; |
| Second = ICK_Identity; |
| Third = ICK_Identity; |
| DeprecatedStringLiteralToCharPtr = false; |
| ReferenceBinding = false; |
| DirectBinding = false; |
| RRefBinding = false; |
| CopyConstructor = 0; |
| } |
| |
| /// getRank - Retrieve the rank of this standard conversion sequence |
| /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the |
| /// implicit conversions. |
| ImplicitConversionRank StandardConversionSequence::getRank() const { |
| ImplicitConversionRank Rank = ICR_Exact_Match; |
| if (GetConversionRank(First) > Rank) |
| Rank = GetConversionRank(First); |
| if (GetConversionRank(Second) > Rank) |
| Rank = GetConversionRank(Second); |
| if (GetConversionRank(Third) > Rank) |
| Rank = GetConversionRank(Third); |
| return Rank; |
| } |
| |
| /// isPointerConversionToBool - Determines whether this conversion is |
| /// a conversion of a pointer or pointer-to-member to bool. This is |
| /// used as part of the ranking of standard conversion sequences |
| /// (C++ 13.3.3.2p4). |
| bool StandardConversionSequence::isPointerConversionToBool() const { |
| // Note that FromType has not necessarily been transformed by the |
| // array-to-pointer or function-to-pointer implicit conversions, so |
| // check for their presence as well as checking whether FromType is |
| // a pointer. |
| if (getToType(1)->isBooleanType() && |
| (getFromType()->isPointerType() || |
| getFromType()->isObjCObjectPointerType() || |
| getFromType()->isBlockPointerType() || |
| First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) |
| return true; |
| |
| return false; |
| } |
| |
| /// isPointerConversionToVoidPointer - Determines whether this |
| /// conversion is a conversion of a pointer to a void pointer. This is |
| /// used as part of the ranking of standard conversion sequences (C++ |
| /// 13.3.3.2p4). |
| bool |
| StandardConversionSequence:: |
| isPointerConversionToVoidPointer(ASTContext& Context) const { |
| QualType FromType = getFromType(); |
| QualType ToType = getToType(1); |
| |
| // Note that FromType has not necessarily been transformed by the |
| // array-to-pointer implicit conversion, so check for its presence |
| // and redo the conversion to get a pointer. |
| if (First == ICK_Array_To_Pointer) |
| FromType = Context.getArrayDecayedType(FromType); |
| |
| if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) |
| if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) |
| return ToPtrType->getPointeeType()->isVoidType(); |
| |
| return false; |
| } |
| |
| /// DebugPrint - Print this standard conversion sequence to standard |
| /// error. Useful for debugging overloading issues. |
| void StandardConversionSequence::DebugPrint() const { |
| llvm::raw_ostream &OS = llvm::errs(); |
| bool PrintedSomething = false; |
| if (First != ICK_Identity) { |
| OS << GetImplicitConversionName(First); |
| PrintedSomething = true; |
| } |
| |
| if (Second != ICK_Identity) { |
| if (PrintedSomething) { |
| OS << " -> "; |
| } |
| OS << GetImplicitConversionName(Second); |
| |
| if (CopyConstructor) { |
| OS << " (by copy constructor)"; |
| } else if (DirectBinding) { |
| OS << " (direct reference binding)"; |
| } else if (ReferenceBinding) { |
| OS << " (reference binding)"; |
| } |
| PrintedSomething = true; |
| } |
| |
| if (Third != ICK_Identity) { |
| if (PrintedSomething) { |
| OS << " -> "; |
| } |
| OS << GetImplicitConversionName(Third); |
| PrintedSomething = true; |
| } |
| |
| if (!PrintedSomething) { |
| OS << "No conversions required"; |
| } |
| } |
| |
| /// DebugPrint - Print this user-defined conversion sequence to standard |
| /// error. Useful for debugging overloading issues. |
| void UserDefinedConversionSequence::DebugPrint() const { |
| llvm::raw_ostream &OS = llvm::errs(); |
| if (Before.First || Before.Second || Before.Third) { |
| Before.DebugPrint(); |
| OS << " -> "; |
| } |
| OS << '\'' << ConversionFunction << '\''; |
| if (After.First || After.Second || After.Third) { |
| OS << " -> "; |
| After.DebugPrint(); |
| } |
| } |
| |
| /// DebugPrint - Print this implicit conversion sequence to standard |
| /// error. Useful for debugging overloading issues. |
| void ImplicitConversionSequence::DebugPrint() const { |
| llvm::raw_ostream &OS = llvm::errs(); |
| switch (ConversionKind) { |
| case StandardConversion: |
| OS << "Standard conversion: "; |
| Standard.DebugPrint(); |
| break; |
| case UserDefinedConversion: |
| OS << "User-defined conversion: "; |
| UserDefined.DebugPrint(); |
| break; |
| case EllipsisConversion: |
| OS << "Ellipsis conversion"; |
| break; |
| case AmbiguousConversion: |
| OS << "Ambiguous conversion"; |
| break; |
| case BadConversion: |
| OS << "Bad conversion"; |
| break; |
| } |
| |
| OS << "\n"; |
| } |
| |
| void AmbiguousConversionSequence::construct() { |
| new (&conversions()) ConversionSet(); |
| } |
| |
| void AmbiguousConversionSequence::destruct() { |
| conversions().~ConversionSet(); |
| } |
| |
| void |
| AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { |
| FromTypePtr = O.FromTypePtr; |
| ToTypePtr = O.ToTypePtr; |
| new (&conversions()) ConversionSet(O.conversions()); |
| } |
| |
| namespace { |
| // Structure used by OverloadCandidate::DeductionFailureInfo to store |
| // template parameter and template argument information. |
| struct DFIParamWithArguments { |
| TemplateParameter Param; |
| TemplateArgument FirstArg; |
| TemplateArgument SecondArg; |
| }; |
| } |
| |
| /// \brief Convert from Sema's representation of template deduction information |
| /// to the form used in overload-candidate information. |
| OverloadCandidate::DeductionFailureInfo |
| static MakeDeductionFailureInfo(ASTContext &Context, |
| Sema::TemplateDeductionResult TDK, |
| Sema::TemplateDeductionInfo &Info) { |
| OverloadCandidate::DeductionFailureInfo Result; |
| Result.Result = static_cast<unsigned>(TDK); |
| Result.Data = 0; |
| switch (TDK) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| break; |
| |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_InvalidExplicitArguments: |
| Result.Data = Info.Param.getOpaqueValue(); |
| break; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_InconsistentQuals: { |
| // FIXME: Should allocate from normal heap so that we can free this later. |
| DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; |
| Saved->Param = Info.Param; |
| Saved->FirstArg = Info.FirstArg; |
| Saved->SecondArg = Info.SecondArg; |
| Result.Data = Saved; |
| break; |
| } |
| |
| case Sema::TDK_SubstitutionFailure: |
| Result.Data = Info.take(); |
| break; |
| |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return Result; |
| } |
| |
| void OverloadCandidate::DeductionFailureInfo::Destroy() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_InvalidExplicitArguments: |
| break; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_InconsistentQuals: |
| // FIXME: Destroy the data? |
| Data = 0; |
| break; |
| |
| case Sema::TDK_SubstitutionFailure: |
| // FIXME: Destroy the template arugment list? |
| Data = 0; |
| break; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| } |
| |
| TemplateParameter |
| OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_SubstitutionFailure: |
| return TemplateParameter(); |
| |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_InvalidExplicitArguments: |
| return TemplateParameter::getFromOpaqueValue(Data); |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_InconsistentQuals: |
| return static_cast<DFIParamWithArguments*>(Data)->Param; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return TemplateParameter(); |
| } |
| |
| TemplateArgumentList * |
| OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_InvalidExplicitArguments: |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_InconsistentQuals: |
| return 0; |
| |
| case Sema::TDK_SubstitutionFailure: |
| return static_cast<TemplateArgumentList*>(Data); |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_InvalidExplicitArguments: |
| case Sema::TDK_SubstitutionFailure: |
| return 0; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_InconsistentQuals: |
| return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| const TemplateArgument * |
| OverloadCandidate::DeductionFailureInfo::getSecondArg() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_InvalidExplicitArguments: |
| case Sema::TDK_SubstitutionFailure: |
| return 0; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_InconsistentQuals: |
| return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void OverloadCandidateSet::clear() { |
| inherited::clear(); |
| Functions.clear(); |
| } |
| |
| // IsOverload - Determine whether the given New declaration is an |
| // overload of the declarations in Old. This routine returns false if |
| // New and Old cannot be overloaded, e.g., if New has the same |
| // signature as some function in Old (C++ 1.3.10) or if the Old |
| // declarations aren't functions (or function templates) at all. When |
| // it does return false, MatchedDecl will point to the decl that New |
| // cannot be overloaded with. This decl may be a UsingShadowDecl on |
| // top of the underlying declaration. |
| // |
| // Example: Given the following input: |
| // |
| // void f(int, float); // #1 |
| // void f(int, int); // #2 |
| // int f(int, int); // #3 |
| // |
| // When we process #1, there is no previous declaration of "f", |
| // so IsOverload will not be used. |
| // |
| // When we process #2, Old contains only the FunctionDecl for #1. By |
| // comparing the parameter types, we see that #1 and #2 are overloaded |
| // (since they have different signatures), so this routine returns |
| // false; MatchedDecl is unchanged. |
| // |
| // When we process #3, Old is an overload set containing #1 and #2. We |
| // compare the signatures of #3 to #1 (they're overloaded, so we do |
| // nothing) and then #3 to #2. Since the signatures of #3 and #2 are |
| // identical (return types of functions are not part of the |
| // signature), IsOverload returns false and MatchedDecl will be set to |
| // point to the FunctionDecl for #2. |
| // |
| // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced |
| // into a class by a using declaration. The rules for whether to hide |
| // shadow declarations ignore some properties which otherwise figure |
| // into a function template's signature. |
| Sema::OverloadKind |
| Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, |
| NamedDecl *&Match, bool NewIsUsingDecl) { |
| for (LookupResult::iterator I = Old.begin(), E = Old.end(); |
| I != E; ++I) { |
| NamedDecl *OldD = *I; |
| |
| bool OldIsUsingDecl = false; |
| if (isa<UsingShadowDecl>(OldD)) { |
| OldIsUsingDecl = true; |
| |
| // We can always introduce two using declarations into the same |
| // context, even if they have identical signatures. |
| if (NewIsUsingDecl) continue; |
| |
| OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); |
| } |
| |
| // If either declaration was introduced by a using declaration, |
| // we'll need to use slightly different rules for matching. |
| // Essentially, these rules are the normal rules, except that |
| // function templates hide function templates with different |
| // return types or template parameter lists. |
| bool UseMemberUsingDeclRules = |
| (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); |
| |
| if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { |
| if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { |
| if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
| HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); |
| continue; |
| } |
| |
| Match = *I; |
| return Ovl_Match; |
| } |
| } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { |
| if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { |
| if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
| HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); |
| continue; |
| } |
| |
| Match = *I; |
| return Ovl_Match; |
| } |
| } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { |
| // We can overload with these, which can show up when doing |
| // redeclaration checks for UsingDecls. |
| assert(Old.getLookupKind() == LookupUsingDeclName); |
| } else if (isa<UnresolvedUsingValueDecl>(OldD)) { |
| // Optimistically assume that an unresolved using decl will |
| // overload; if it doesn't, we'll have to diagnose during |
| // template instantiation. |
| } else { |
| // (C++ 13p1): |
| // Only function declarations can be overloaded; object and type |
| // declarations cannot be overloaded. |
| Match = *I; |
| return Ovl_NonFunction; |
| } |
| } |
| |
| return Ovl_Overload; |
| } |
| |
| bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, |
| bool UseUsingDeclRules) { |
| FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); |
| FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); |
| |
| // C++ [temp.fct]p2: |
| // A function template can be overloaded with other function templates |
| // and with normal (non-template) functions. |
| if ((OldTemplate == 0) != (NewTemplate == 0)) |
| return true; |
| |
| // Is the function New an overload of the function Old? |
| QualType OldQType = Context.getCanonicalType(Old->getType()); |
| QualType NewQType = Context.getCanonicalType(New->getType()); |
| |
| // Compare the signatures (C++ 1.3.10) of the two functions to |
| // determine whether they are overloads. If we find any mismatch |
| // in the signature, they are overloads. |
| |
| // If either of these functions is a K&R-style function (no |
| // prototype), then we consider them to have matching signatures. |
| if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || |
| isa<FunctionNoProtoType>(NewQType.getTypePtr())) |
| return false; |
| |
| FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); |
| FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); |
| |
| // The signature of a function includes the types of its |
| // parameters (C++ 1.3.10), which includes the presence or absence |
| // of the ellipsis; see C++ DR 357). |
| if (OldQType != NewQType && |
| (OldType->getNumArgs() != NewType->getNumArgs() || |
| OldType->isVariadic() != NewType->isVariadic() || |
| !FunctionArgTypesAreEqual(OldType, NewType))) |
| return true; |
| |
| // C++ [temp.over.link]p4: |
| // The signature of a function template consists of its function |
| // signature, its return type and its template parameter list. The names |
| // of the template parameters are significant only for establishing the |
| // relationship between the template parameters and the rest of the |
| // signature. |
| // |
| // We check the return type and template parameter lists for function |
| // templates first; the remaining checks follow. |
| // |
| // However, we don't consider either of these when deciding whether |
| // a member introduced by a shadow declaration is hidden. |
| if (!UseUsingDeclRules && NewTemplate && |
| (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
| OldTemplate->getTemplateParameters(), |
| false, TPL_TemplateMatch) || |
| OldType->getResultType() != NewType->getResultType())) |
| return true; |
| |
| // If the function is a class member, its signature includes the |
| // cv-qualifiers (if any) on the function itself. |
| // |
| // As part of this, also check whether one of the member functions |
| // is static, in which case they are not overloads (C++ |
| // 13.1p2). While not part of the definition of the signature, |
| // this check is important to determine whether these functions |
| // can be overloaded. |
| CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); |
| CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); |
| if (OldMethod && NewMethod && |
| !OldMethod->isStatic() && !NewMethod->isStatic() && |
| OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) |
| return true; |
| |
| // The signatures match; this is not an overload. |
| return false; |
| } |
| |
| /// TryImplicitConversion - Attempt to perform an implicit conversion |
| /// from the given expression (Expr) to the given type (ToType). This |
| /// function returns an implicit conversion sequence that can be used |
| /// to perform the initialization. Given |
| /// |
| /// void f(float f); |
| /// void g(int i) { f(i); } |
| /// |
| /// this routine would produce an implicit conversion sequence to |
| /// describe the initialization of f from i, which will be a standard |
| /// conversion sequence containing an lvalue-to-rvalue conversion (C++ |
| /// 4.1) followed by a floating-integral conversion (C++ 4.9). |
| // |
| /// Note that this routine only determines how the conversion can be |
| /// performed; it does not actually perform the conversion. As such, |
| /// it will not produce any diagnostics if no conversion is available, |
| /// but will instead return an implicit conversion sequence of kind |
| /// "BadConversion". |
| /// |
| /// If @p SuppressUserConversions, then user-defined conversions are |
| /// not permitted. |
| /// If @p AllowExplicit, then explicit user-defined conversions are |
| /// permitted. |
| ImplicitConversionSequence |
| Sema::TryImplicitConversion(Expr* From, QualType ToType, |
| bool SuppressUserConversions, |
| bool AllowExplicit, |
| bool InOverloadResolution) { |
| ImplicitConversionSequence ICS; |
| if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { |
| ICS.setStandard(); |
| return ICS; |
| } |
| |
| if (!getLangOptions().CPlusPlus) { |
| ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| return ICS; |
| } |
| |
| if (SuppressUserConversions) { |
| // C++ [over.ics.user]p4: |
| // A conversion of an expression of class type to the same class |
| // type is given Exact Match rank, and a conversion of an |
| // expression of class type to a base class of that type is |
| // given Conversion rank, in spite of the fact that a copy/move |
| // constructor (i.e., a user-defined conversion function) is |
| // called for those cases. |
| QualType FromType = From->getType(); |
| if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() || |
| !(Context.hasSameUnqualifiedType(FromType, ToType) || |
| IsDerivedFrom(FromType, ToType))) { |
| // We're not in the case above, so there is no conversion that |
| // we can perform. |
| ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| return ICS; |
| } |
| |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| ICS.Standard.setFromType(FromType); |
| ICS.Standard.setAllToTypes(ToType); |
| |
| // We don't actually check at this point whether there is a valid |
| // copy/move constructor, since overloading just assumes that it |
| // exists. When we actually perform initialization, we'll find the |
| // appropriate constructor to copy the returned object, if needed. |
| ICS.Standard.CopyConstructor = 0; |
| |
| // Determine whether this is considered a derived-to-base conversion. |
| if (!Context.hasSameUnqualifiedType(FromType, ToType)) |
| ICS.Standard.Second = ICK_Derived_To_Base; |
| |
| return ICS; |
| } |
| |
| // Attempt user-defined conversion. |
| OverloadCandidateSet Conversions(From->getExprLoc()); |
| OverloadingResult UserDefResult |
| = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, |
| AllowExplicit); |
| |
| if (UserDefResult == OR_Success) { |
| ICS.setUserDefined(); |
| // C++ [over.ics.user]p4: |
| // A conversion of an expression of class type to the same class |
| // type is given Exact Match rank, and a conversion of an |
| // expression of class type to a base class of that type is |
| // given Conversion rank, in spite of the fact that a copy |
| // constructor (i.e., a user-defined conversion function) is |
| // called for those cases. |
| if (CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { |
| QualType FromCanon |
| = Context.getCanonicalType(From->getType().getUnqualifiedType()); |
| QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); |
| if (Constructor->isCopyConstructor() && |
| (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { |
| // Turn this into a "standard" conversion sequence, so that it |
| // gets ranked with standard conversion sequences. |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| ICS.Standard.setFromType(From->getType()); |
| ICS.Standard.setAllToTypes(ToType); |
| ICS.Standard.CopyConstructor = Constructor; |
| if (ToCanon != FromCanon) |
| ICS.Standard.Second = ICK_Derived_To_Base; |
| } |
| } |
| |
| // C++ [over.best.ics]p4: |
| // However, when considering the argument of a user-defined |
| // conversion function that is a candidate by 13.3.1.3 when |
| // invoked for the copying of the temporary in the second step |
| // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or |
| // 13.3.1.6 in all cases, only standard conversion sequences and |
| // ellipsis conversion sequences are allowed. |
| if (SuppressUserConversions && ICS.isUserDefined()) { |
| ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); |
| } |
| } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { |
| ICS.setAmbiguous(); |
| ICS.Ambiguous.setFromType(From->getType()); |
| ICS.Ambiguous.setToType(ToType); |
| for (OverloadCandidateSet::iterator Cand = Conversions.begin(); |
| Cand != Conversions.end(); ++Cand) |
| if (Cand->Viable) |
| ICS.Ambiguous.addConversion(Cand->Function); |
| } else { |
| ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| } |
| |
| return ICS; |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType. Returns true if there was an |
| /// error, false otherwise. The expression From is replaced with the |
| /// converted expression. Flavor is the kind of conversion we're |
| /// performing, used in the error message. If @p AllowExplicit, |
| /// explicit user-defined conversions are permitted. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| AssignmentAction Action, bool AllowExplicit) { |
| ImplicitConversionSequence ICS; |
| return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); |
| } |
| |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| AssignmentAction Action, bool AllowExplicit, |
| ImplicitConversionSequence& ICS) { |
| ICS = TryImplicitConversion(From, ToType, |
| /*SuppressUserConversions=*/false, |
| AllowExplicit, |
| /*InOverloadResolution=*/false); |
| return PerformImplicitConversion(From, ToType, ICS, Action); |
| } |
| |
| /// \brief Determine whether the conversion from FromType to ToType is a valid |
| /// conversion that strips "noreturn" off the nested function type. |
| static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, |
| QualType ToType, QualType &ResultTy) { |
| if (Context.hasSameUnqualifiedType(FromType, ToType)) |
| return false; |
| |
| // Strip the noreturn off the type we're converting from; noreturn can |
| // safely be removed. |
| FromType = Context.getNoReturnType(FromType, false); |
| if (!Context.hasSameUnqualifiedType(FromType, ToType)) |
| return false; |
| |
| ResultTy = FromType; |
| return true; |
| } |
| |
| /// \brief Determine whether the conversion from FromType to ToType is a valid |
| /// vector conversion. |
| /// |
| /// \param ICK Will be set to the vector conversion kind, if this is a vector |
| /// conversion. |
| static bool IsVectorConversion(ASTContext &Context, QualType FromType, |
| QualType ToType, ImplicitConversionKind &ICK) { |
| // We need at least one of these types to be a vector type to have a vector |
| // conversion. |
| if (!ToType->isVectorType() && !FromType->isVectorType()) |
| return false; |
| |
| // Identical types require no conversions. |
| if (Context.hasSameUnqualifiedType(FromType, ToType)) |
| return false; |
| |
| // There are no conversions between extended vector types, only identity. |
| if (ToType->isExtVectorType()) { |
| // There are no conversions between extended vector types other than the |
| // identity conversion. |
| if (FromType->isExtVectorType()) |
| return false; |
| |
| // Vector splat from any arithmetic type to a vector. |
| if (FromType->isArithmeticType()) { |
| ICK = ICK_Vector_Splat; |
| return true; |
| } |
| } |
| |
| // If lax vector conversions are permitted and the vector types are of the |
| // same size, we can perform the conversion. |
| if (Context.getLangOptions().LaxVectorConversions && |
| FromType->isVectorType() && ToType->isVectorType() && |
| Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) { |
| ICK = ICK_Vector_Conversion; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// IsStandardConversion - Determines whether there is a standard |
| /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the |
| /// expression From to the type ToType. Standard conversion sequences |
| /// only consider non-class types; for conversions that involve class |
| /// types, use TryImplicitConversion. If a conversion exists, SCS will |
| /// contain the standard conversion sequence required to perform this |
| /// conversion and this routine will return true. Otherwise, this |
| /// routine will return false and the value of SCS is unspecified. |
| bool |
| Sema::IsStandardConversion(Expr* From, QualType ToType, |
| bool InOverloadResolution, |
| StandardConversionSequence &SCS) { |
| QualType FromType = From->getType(); |
| |
| // Standard conversions (C++ [conv]) |
| SCS.setAsIdentityConversion(); |
| SCS.DeprecatedStringLiteralToCharPtr = false; |
| SCS.IncompatibleObjC = false; |
| SCS.setFromType(FromType); |
| SCS.CopyConstructor = 0; |
| |
| // There are no standard conversions for class types in C++, so |
| // abort early. When overloading in C, however, we do permit |
| if (FromType->isRecordType() || ToType->isRecordType()) { |
| if (getLangOptions().CPlusPlus) |
| return false; |
| |
| // When we're overloading in C, we allow, as standard conversions, |
| } |
| |
| // The first conversion can be an lvalue-to-rvalue conversion, |
| // array-to-pointer conversion, or function-to-pointer conversion |
| // (C++ 4p1). |
| |
| if (FromType == Context.OverloadTy) { |
| DeclAccessPair AccessPair; |
| if (FunctionDecl *Fn |
| = ResolveAddressOfOverloadedFunction(From, ToType, false, |
| AccessPair)) { |
| // We were able to resolve the address of the overloaded function, |
| // so we can convert to the type of that function. |
| FromType = Fn->getType(); |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| if (!Method->isStatic()) { |
| Type *ClassType |
| = Context.getTypeDeclType(Method->getParent()).getTypePtr(); |
| FromType = Context.getMemberPointerType(FromType, ClassType); |
| } |
| } |
| |
| // If the "from" expression takes the address of the overloaded |
| // function, update the type of the resulting expression accordingly. |
| if (FromType->getAs<FunctionType>()) |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) |
| if (UnOp->getOpcode() == UnaryOperator::AddrOf) |
| FromType = Context.getPointerType(FromType); |
| |
| // Check that we've computed the proper type after overload resolution. |
| assert(Context.hasSameType(FromType, |
| FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); |
| } else { |
| return false; |
| } |
| } |
| // Lvalue-to-rvalue conversion (C++ 4.1): |
| // An lvalue (3.10) of a non-function, non-array type T can be |
| // converted to an rvalue. |
| Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); |
| if (argIsLvalue == Expr::LV_Valid && |
| !FromType->isFunctionType() && !FromType->isArrayType() && |
| Context.getCanonicalType(FromType) != Context.OverloadTy) { |
| SCS.First = ICK_Lvalue_To_Rvalue; |
| |
| // If T is a non-class type, the type of the rvalue is the |
| // cv-unqualified version of T. Otherwise, the type of the rvalue |
| // is T (C++ 4.1p1). C++ can't get here with class types; in C, we |
| // just strip the qualifiers because they don't matter. |
| FromType = FromType.getUnqualifiedType(); |
| } else if (FromType->isArrayType()) { |
| // Array-to-pointer conversion (C++ 4.2) |
| SCS.First = ICK_Array_To_Pointer; |
| |
| // An lvalue or rvalue of type "array of N T" or "array of unknown |
| // bound of T" can be converted to an rvalue of type "pointer to |
| // T" (C++ 4.2p1). |
| FromType = Context.getArrayDecayedType(FromType); |
| |
| if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { |
| // This conversion is deprecated. (C++ D.4). |
| SCS.DeprecatedStringLiteralToCharPtr = true; |
| |
| // For the purpose of ranking in overload resolution |
| // (13.3.3.1.1), this conversion is considered an |
| // array-to-pointer conversion followed by a qualification |
| // conversion (4.4). (C++ 4.2p2) |
| SCS.Second = ICK_Identity; |
| SCS.Third = ICK_Qualification; |
| SCS.setAllToTypes(FromType); |
| return true; |
| } |
| } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { |
| // Function-to-pointer conversion (C++ 4.3). |
| SCS.First = ICK_Function_To_Pointer; |
| |
| // An lvalue of function type T can be converted to an rvalue of |
| // type "pointer to T." The result is a pointer to the |
| // function. (C++ 4.3p1). |
| FromType = Context.getPointerType(FromType); |
| } else { |
| // We don't require any conversions for the first step. |
| SCS.First = ICK_Identity; |
| } |
| SCS.setToType(0, FromType); |
| |
| // The second conversion can be an integral promotion, floating |
| // point promotion, integral conversion, floating point conversion, |
| // floating-integral conversion, pointer conversion, |
| // pointer-to-member conversion, or boolean conversion (C++ 4p1). |
| // For overloading in C, this can also be a "compatible-type" |
| // conversion. |
| bool IncompatibleObjC = false; |
| ImplicitConversionKind SecondICK = ICK_Identity; |
| if (Context.hasSameUnqualifiedType(FromType, ToType)) { |
| // The unqualified versions of the types are the same: there's no |
| // conversion to do. |
| SCS.Second = ICK_Identity; |
| } else if (IsIntegralPromotion(From, FromType, ToType)) { |
| // Integral promotion (C++ 4.5). |
| SCS.Second = ICK_Integral_Promotion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (IsFloatingPointPromotion(FromType, ToType)) { |
| // Floating point promotion (C++ 4.6). |
| SCS.Second = ICK_Floating_Promotion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (IsComplexPromotion(FromType, ToType)) { |
| // Complex promotion (Clang extension) |
| SCS.Second = ICK_Complex_Promotion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (FromType->isIntegralOrEnumerationType() && |
| ToType->isIntegralType(Context)) { |
| // Integral conversions (C++ 4.7). |
| SCS.Second = ICK_Integral_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (FromType->isComplexType() && ToType->isComplexType()) { |
| // Complex conversions (C99 6.3.1.6) |
| SCS.Second = ICK_Complex_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || |
| (ToType->isComplexType() && FromType->isArithmeticType())) { |
| // Complex-real conversions (C99 6.3.1.7) |
| SCS.Second = ICK_Complex_Real; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { |
| // Floating point conversions (C++ 4.8). |
| SCS.Second = ICK_Floating_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if ((FromType->isRealFloatingType() && |
| ToType->isIntegralType(Context) && !ToType->isBooleanType()) || |
| (FromType->isIntegralOrEnumerationType() && |
| ToType->isRealFloatingType())) { |
| // Floating-integral conversions (C++ 4.9). |
| SCS.Second = ICK_Floating_Integral; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, |
| FromType, IncompatibleObjC)) { |
| // Pointer conversions (C++ 4.10). |
| SCS.Second = ICK_Pointer_Conversion; |
| SCS.IncompatibleObjC = IncompatibleObjC; |
| } else if (IsMemberPointerConversion(From, FromType, ToType, |
| InOverloadResolution, FromType)) { |
| // Pointer to member conversions (4.11). |
| SCS.Second = ICK_Pointer_Member; |
| } else if (ToType->isBooleanType() && |
| (FromType->isArithmeticType() || |
| FromType->isEnumeralType() || |
| FromType->isAnyPointerType() || |
| FromType->isBlockPointerType() || |
| FromType->isMemberPointerType() || |
| FromType->isNullPtrType())) { |
| // Boolean conversions (C++ 4.12). |
| SCS.Second = ICK_Boolean_Conversion; |
| FromType = Context.BoolTy; |
| } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) { |
| SCS.Second = SecondICK; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (!getLangOptions().CPlusPlus && |
| Context.typesAreCompatible(ToType, FromType)) { |
| // Compatible conversions (Clang extension for C function overloading) |
| SCS.Second = ICK_Compatible_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { |
| // Treat a conversion that strips "noreturn" as an identity conversion. |
| SCS.Second = ICK_NoReturn_Adjustment; |
| } else { |
| // No second conversion required. |
| SCS.Second = ICK_Identity; |
| } |
| SCS.setToType(1, FromType); |
| |
| QualType CanonFrom; |
| QualType CanonTo; |
| // The third conversion can be a qualification conversion (C++ 4p1). |
| if (IsQualificationConversion(FromType, ToType)) { |
| SCS.Third = ICK_Qualification; |
| FromType = ToType; |
| CanonFrom = Context.getCanonicalType(FromType); |
| CanonTo = Context.getCanonicalType(ToType); |
| } else { |
| // No conversion required |
| SCS.Third = ICK_Identity; |
| |
| // C++ [over.best.ics]p6: |
| // [...] Any difference in top-level cv-qualification is |
| // subsumed by the initialization itself and does not constitute |
| // a conversion. [...] |
| CanonFrom = Context.getCanonicalType(FromType); |
| CanonTo = Context.getCanonicalType(ToType); |
| if (CanonFrom.getLocalUnqualifiedType() |
| == CanonTo.getLocalUnqualifiedType() && |
| (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() |
| || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { |
| FromType = ToType; |
| CanonFrom = CanonTo; |
| } |
| } |
| SCS.setToType(2, FromType); |
| |
| // If we have not converted the argument type to the parameter type, |
| // this is a bad conversion sequence. |
| if (CanonFrom != CanonTo) |
| return false; |
| |
| return true; |
| } |
| |
| /// IsIntegralPromotion - Determines whether the conversion from the |
| /// expression From (whose potentially-adjusted type is FromType) to |
| /// ToType is an integral promotion (C++ 4.5). If so, returns true and |
| /// sets PromotedType to the promoted type. |
| bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { |
| const BuiltinType *To = ToType->getAs<BuiltinType>(); |
| // All integers are built-in. |
| if (!To) { |
| return false; |
| } |
| |
| // An rvalue of type char, signed char, unsigned char, short int, or |
| // unsigned short int can be converted to an rvalue of type int if |
| // int can represent all the values of the source type; otherwise, |
| // the source rvalue can be converted to an rvalue of type unsigned |
| // int (C++ 4.5p1). |
| if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && |
| !FromType->isEnumeralType()) { |
| if (// We can promote any signed, promotable integer type to an int |
| (FromType->isSignedIntegerType() || |
| // We can promote any unsigned integer type whose size is |
| // less than int to an int. |
| (!FromType->isSignedIntegerType() && |
| Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { |
| return To->getKind() == BuiltinType::Int; |
| } |
| |
| return To->getKind() == BuiltinType::UInt; |
| } |
| |
| // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) |
| // can be converted to an rvalue of the first of the following types |
| // that can represent all the values of its underlying type: int, |
| // unsigned int, long, or unsigned long (C++ 4.5p2). |
| |
| // We pre-calculate the promotion type for enum types. |
| if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) |
| if (ToType->isIntegerType()) |
| return Context.hasSameUnqualifiedType(ToType, |
| FromEnumType->getDecl()->getPromotionType()); |
| |
| if (FromType->isWideCharType() && ToType->isIntegerType()) { |
| // Determine whether the type we're converting from is signed or |
| // unsigned. |
| bool FromIsSigned; |
| uint64_t FromSize = Context.getTypeSize(FromType); |
| |
| // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. |
| FromIsSigned = true; |
| |
| // The types we'll try to promote to, in the appropriate |
| // order. Try each of these types. |
| QualType PromoteTypes[6] = { |
| Context.IntTy, Context.UnsignedIntTy, |
| Context.LongTy, Context.UnsignedLongTy , |
| Context.LongLongTy, Context.UnsignedLongLongTy |
| }; |
| for (int Idx = 0; Idx < 6; ++Idx) { |
| uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); |
| if (FromSize < ToSize || |
| (FromSize == ToSize && |
| FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { |
| // We found the type that we can promote to. If this is the |
| // type we wanted, we have a promotion. Otherwise, no |
| // promotion. |
| return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); |
| } |
| } |
| } |
| |
| // An rvalue for an integral bit-field (9.6) can be converted to an |
| // rvalue of type int if int can represent all the values of the |
| // bit-field; otherwise, it can be converted to unsigned int if |
| // unsigned int can represent all the values of the bit-field. If |
| // the bit-field is larger yet, no integral promotion applies to |
| // it. If the bit-field has an enumerated type, it is treated as any |
| // other value of that type for promotion purposes (C++ 4.5p3). |
| // FIXME: We should delay checking of bit-fields until we actually perform the |
| // conversion. |
| using llvm::APSInt; |
| if (From) |
| if (FieldDecl *MemberDecl = From->getBitField()) { |
| APSInt BitWidth; |
| if (FromType->isIntegralType(Context) && |
| MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { |
| APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); |
| ToSize = Context.getTypeSize(ToType); |
| |
| // Are we promoting to an int from a bitfield that fits in an int? |
| if (BitWidth < ToSize || |
| (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { |
| return To->getKind() == BuiltinType::Int; |
| } |
| |
| // Are we promoting to an unsigned int from an unsigned bitfield |
| // that fits into an unsigned int? |
| if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { |
| return To->getKind() == BuiltinType::UInt; |
| } |
| |
| return false; |
| } |
| } |
| |
| // An rvalue of type bool can be converted to an rvalue of type int, |
| // with false becoming zero and true becoming one (C++ 4.5p4). |
| if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// IsFloatingPointPromotion - Determines whether the conversion from |
| /// FromType to ToType is a floating point promotion (C++ 4.6). If so, |
| /// returns true and sets PromotedType to the promoted type. |
| bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { |
| /// An rvalue of type float can be converted to an rvalue of type |
| /// double. (C++ 4.6p1). |
| if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) |
| if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { |
| if (FromBuiltin->getKind() == BuiltinType::Float && |
| ToBuiltin->getKind() == BuiltinType::Double) |
| return true; |
| |
| // C99 6.3.1.5p1: |
| // When a float is promoted to double or long double, or a |
| // double is promoted to long double [...]. |
| if (!getLangOptions().CPlusPlus && |
| (FromBuiltin->getKind() == BuiltinType::Float || |
| FromBuiltin->getKind() == BuiltinType::Double) && |
| (ToBuiltin->getKind() == BuiltinType::LongDouble)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Determine if a conversion is a complex promotion. |
| /// |
| /// A complex promotion is defined as a complex -> complex conversion |
| /// where the conversion between the underlying real types is a |
| /// floating-point or integral promotion. |
| bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { |
| const ComplexType *FromComplex = FromType->getAs<ComplexType>(); |
| if (!FromComplex) |
| return false; |
| |
| const ComplexType *ToComplex = ToType->getAs<ComplexType>(); |
| if (!ToComplex) |
| return false; |
| |
| return IsFloatingPointPromotion(FromComplex->getElementType(), |
| ToComplex->getElementType()) || |
| IsIntegralPromotion(0, FromComplex->getElementType(), |
| ToComplex->getElementType()); |
| } |
| |
| /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from |
| /// the pointer type FromPtr to a pointer to type ToPointee, with the |
| /// same type qualifiers as FromPtr has on its pointee type. ToType, |
| /// if non-empty, will be a pointer to ToType that may or may not have |
| /// the right set of qualifiers on its pointee. |
| static QualType |
| BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, |
| QualType ToPointee, QualType ToType, |
| ASTContext &Context) { |
| QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); |
| QualType CanonToPointee = Context.getCanonicalType(ToPointee); |
| Qualifiers Quals = CanonFromPointee.getQualifiers(); |
| |
| // Exact qualifier match -> return the pointer type we're converting to. |
| if (CanonToPointee.getLocalQualifiers() == Quals) { |
| // ToType is exactly what we need. Return it. |
| if (!ToType.isNull()) |
| return ToType.getUnqualifiedType(); |
| |
| // Build a pointer to ToPointee. It has the right qualifiers |
| // already. |
| return Context.getPointerType(ToPointee); |
| } |
| |
| // Just build a canonical type that has the right qualifiers. |
| return Context.getPointerType( |
| Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), |
| Quals)); |
| } |
| |
| /// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from |
| /// the FromType, which is an objective-c pointer, to ToType, which may or may |
| /// not have the right set of qualifiers. |
| static QualType |
| BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, |
| QualType ToType, |
| ASTContext &Context) { |
| QualType CanonFromType = Context.getCanonicalType(FromType); |
| QualType CanonToType = Context.getCanonicalType(ToType); |
| Qualifiers Quals = CanonFromType.getQualifiers(); |
| |
| // Exact qualifier match -> return the pointer type we're converting to. |
| if (CanonToType.getLocalQualifiers() == Quals) |
| return ToType; |
| |
| // Just build a canonical type that has the right qualifiers. |
| return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); |
| } |
| |
| static bool isNullPointerConstantForConversion(Expr *Expr, |
| bool InOverloadResolution, |
| ASTContext &Context) { |
| // Handle value-dependent integral null pointer constants correctly. |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 |
| if (Expr->isValueDependent() && !Expr->isTypeDependent() && |
| Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) |
| return !InOverloadResolution; |
| |
| return Expr->isNullPointerConstant(Context, |
| InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| : Expr::NPC_ValueDependentIsNull); |
| } |
| |
| /// IsPointerConversion - Determines whether the conversion of the |
| /// expression From, which has the (possibly adjusted) type FromType, |
| /// can be converted to the type ToType via a pointer conversion (C++ |
| /// 4.10). If so, returns true and places the converted type (that |
| /// might differ from ToType in its cv-qualifiers at some level) into |
| /// ConvertedType. |
| /// |
| /// This routine also supports conversions to and from block pointers |
| /// and conversions with Objective-C's 'id', 'id<protocols...>', and |
| /// pointers to interfaces. FIXME: Once we've determined the |
| /// appropriate overloading rules for Objective-C, we may want to |
| /// split the Objective-C checks into a different routine; however, |
| /// GCC seems to consider all of these conversions to be pointer |
| /// conversions, so for now they live here. IncompatibleObjC will be |
| /// set if the conversion is an allowed Objective-C conversion that |
| /// should result in a warning. |
| bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, |
| bool InOverloadResolution, |
| QualType& ConvertedType, |
| bool &IncompatibleObjC) { |
| IncompatibleObjC = false; |
| if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) |
| return true; |
| |
| // Conversion from a null pointer constant to any Objective-C pointer type. |
| if (ToType->isObjCObjectPointerType() && |
| isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // Blocks: Block pointers can be converted to void*. |
| if (FromType->isBlockPointerType() && ToType->isPointerType() && |
| ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { |
| ConvertedType = ToType; |
| return true; |
| } |
| // Blocks: A null pointer constant can be converted to a block |
| // pointer type. |
| if (ToType->isBlockPointerType() && |
| isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // If the left-hand-side is nullptr_t, the right side can be a null |
| // pointer constant. |
| if (ToType->isNullPtrType() && |
| isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| const PointerType* ToTypePtr = ToType->getAs<PointerType>(); |
| if (!ToTypePtr) |
| return false; |
| |
| // A null pointer constant can be converted to a pointer type (C++ 4.10p1). |
| if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // Beyond this point, both types need to be pointers |
| // , including objective-c pointers. |
| QualType ToPointeeType = ToTypePtr->getPointeeType(); |
| if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { |
| ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, |
| ToType, Context); |
| return true; |
| |
| } |
| const PointerType *FromTypePtr = FromType->getAs<PointerType>(); |
| if (!FromTypePtr) |
| return false; |
| |
| QualType FromPointeeType = FromTypePtr->getPointeeType(); |
| |
| // An rvalue of type "pointer to cv T," where T is an object type, |
| // can be converted to an rvalue of type "pointer to cv void" (C++ |
| // 4.10p2). |
| if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| |
| // When we're overloading in C, we allow a special kind of pointer |
| // conversion for compatible-but-not-identical pointee types. |
| if (!getLangOptions().CPlusPlus && |
| Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| |
| // C++ [conv.ptr]p3: |
| // |
| // An rvalue of type "pointer to cv D," where D is a class type, |
| // can be converted to an rvalue of type "pointer to cv B," where |
| // B is a base class (clause 10) of D. If B is an inaccessible |
| // (clause 11) or ambiguous (10.2) base class of D, a program that |
| // necessitates this conversion is ill-formed. The result of the |
| // conversion is a pointer to the base class sub-object of the |
| // derived class object. The null pointer value is converted to |
| // the null pointer value of the destination type. |
| // |
| // Note that we do not check for ambiguity or inaccessibility |
| // here. That is handled by CheckPointerConversion. |
| if (getLangOptions().CPlusPlus && |
| FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
| !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && |
| !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && |
| IsDerivedFrom(FromPointeeType, ToPointeeType)) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// isObjCPointerConversion - Determines whether this is an |
| /// Objective-C pointer conversion. Subroutine of IsPointerConversion, |
| /// with the same arguments and return values. |
| bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, |
| QualType& ConvertedType, |
| bool &IncompatibleObjC) { |
| if (!getLangOptions().ObjC1) |
| return false; |
| |
| // First, we handle all conversions on ObjC object pointer types. |
| const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *FromObjCPtr = |
| FromType->getAs<ObjCObjectPointerType>(); |
| |
| if (ToObjCPtr && FromObjCPtr) { |
| // Objective C++: We're able to convert between "id" or "Class" and a |
| // pointer to any interface (in both directions). |
| if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { |
| ConvertedType = ToType; |
| return true; |
| } |
| // Conversions with Objective-C's id<...>. |
| if ((FromObjCPtr->isObjCQualifiedIdType() || |
| ToObjCPtr->isObjCQualifiedIdType()) && |
| Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, |
| /*compare=*/false)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| // Objective C++: We're able to convert from a pointer to an |
| // interface to a pointer to a different interface. |
| if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { |
| const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); |
| const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); |
| if (getLangOptions().CPlusPlus && LHS && RHS && |
| !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( |
| FromObjCPtr->getPointeeType())) |
| return false; |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { |
| // Okay: this is some kind of implicit downcast of Objective-C |
| // interfaces, which is permitted. However, we're going to |
| // complain about it. |
| IncompatibleObjC = true; |
| ConvertedType = FromType; |
| return true; |
| } |
| } |
| // Beyond this point, both types need to be C pointers or block pointers. |
| QualType ToPointeeType; |
| if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) |
| ToPointeeType = ToCPtr->getPointeeType(); |
| else if (const BlockPointerType *ToBlockPtr = |
| ToType->getAs<BlockPointerType>()) { |
| // Objective C++: We're able to convert from a pointer to any object |
| // to a block pointer type. |
| if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { |
| ConvertedType = ToType; |
| return true; |
| } |
| ToPointeeType = ToBlockPtr->getPointeeType(); |
| } |
| else if (FromType->getAs<BlockPointerType>() && |
| ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { |
| // Objective C++: We're able to convert from a block pointer type to a |
| // pointer to any object. |
| ConvertedType = ToType; |
| return true; |
| } |
| else |
| return false; |
| |
| QualType FromPointeeType; |
| if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) |
| FromPointeeType = FromCPtr->getPointeeType(); |
| else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) |
| FromPointeeType = FromBlockPtr->getPointeeType(); |
| else |
| return false; |
| |
| // If we have pointers to pointers, recursively check whether this |
| // is an Objective-C conversion. |
| if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && |
| isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
| IncompatibleObjC)) { |
| // We always complain about this conversion. |
| IncompatibleObjC = true; |
| ConvertedType = ToType; |
| return true; |
| } |
| // Allow conversion of pointee being objective-c pointer to another one; |
| // as in I* to id. |
| if (FromPointeeType->getAs<ObjCObjectPointerType>() && |
| ToPointeeType->getAs<ObjCObjectPointerType>() && |
| isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
| IncompatibleObjC)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // If we have pointers to functions or blocks, check whether the only |
| // differences in the argument and result types are in Objective-C |
| // pointer conversions. If so, we permit the conversion (but |
| // complain about it). |
| const FunctionProtoType *FromFunctionType |
| = FromPointeeType->getAs<FunctionProtoType>(); |
| const FunctionProtoType *ToFunctionType |
| = ToPointeeType->getAs<FunctionProtoType>(); |
| if (FromFunctionType && ToFunctionType) { |
| // If the function types are exactly the same, this isn't an |
| // Objective-C pointer conversion. |
| if (Context.getCanonicalType(FromPointeeType) |
| == Context.getCanonicalType(ToPointeeType)) |
| return false; |
| |
| // Perform the quick checks that will tell us whether these |
| // function types are obviously different. |
| if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || |
| FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || |
| FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) |
| return false; |
| |
| bool HasObjCConversion = false; |
| if (Context.getCanonicalType(FromFunctionType->getResultType()) |
| == Context.getCanonicalType(ToFunctionType->getResultType())) { |
| // Okay, the types match exactly. Nothing to do. |
| } else if (isObjCPointerConversion(FromFunctionType->getResultType(), |
| ToFunctionType->getResultType(), |
| ConvertedType, IncompatibleObjC)) { |
| // Okay, we have an Objective-C pointer conversion. |
| HasObjCConversion = true; |
| } else { |
| // Function types are too different. Abort. |
| return false; |
| } |
| |
| // Check argument types. |
| for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); |
| ArgIdx != NumArgs; ++ArgIdx) { |
| QualType FromArgType = FromFunctionType->getArgType(ArgIdx); |
| QualType ToArgType = ToFunctionType->getArgType(ArgIdx); |
| if (Context.getCanonicalType(FromArgType) |
| == Context.getCanonicalType(ToArgType)) { |
| // Okay, the types match exactly. Nothing to do. |
| } else if (isObjCPointerConversion(FromArgType, ToArgType, |
| ConvertedType, IncompatibleObjC)) { |
| // Okay, we have an Objective-C pointer conversion. |
| HasObjCConversion = true; |
| } else { |
| // Argument types are too different. Abort. |
| return false; |
| } |
| } |
| |
| if (HasObjCConversion) { |
| // We had an Objective-C conversion. Allow this pointer |
| // conversion, but complain about it. |
| ConvertedType = ToType; |
| IncompatibleObjC = true; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// FunctionArgTypesAreEqual - This routine checks two function proto types |
| /// for equlity of their argument types. Caller has already checked that |
| /// they have same number of arguments. This routine assumes that Objective-C |
| /// pointer types which only differ in their protocol qualifiers are equal. |
| bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, |
| FunctionProtoType* NewType){ |
| if (!getLangOptions().ObjC1) |
| return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), |
| NewType->arg_type_begin()); |
| |
| for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), |
| N = NewType->arg_type_begin(), |
| E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { |
| QualType ToType = (*O); |
| QualType FromType = (*N); |
| if (ToType != FromType) { |
| if (const PointerType *PTTo = ToType->getAs<PointerType>()) { |
| if (const PointerType *PTFr = FromType->getAs<PointerType>()) |
| if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && |
| PTFr->getPointeeType()->isObjCQualifiedIdType()) || |
| (PTTo->getPointeeType()->isObjCQualifiedClassType() && |
| PTFr->getPointeeType()->isObjCQualifiedClassType())) |
| continue; |
| } |
| else if (const ObjCObjectPointerType *PTTo = |
| ToType->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *PTFr = |
| FromType->getAs<ObjCObjectPointerType>()) |
| if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) |
| continue; |
| } |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// CheckPointerConversion - Check the pointer conversion from the |
| /// expression From to the type ToType. This routine checks for |
| /// ambiguous or inaccessible derived-to-base pointer |
| /// conversions for which IsPointerConversion has already returned |
| /// true. It returns true and produces a diagnostic if there was an |
| /// error, or returns false otherwise. |
| bool Sema::CheckPointerConversion(Expr *From, QualType ToType, |
| CastExpr::CastKind &Kind, |
| CXXBaseSpecifierArray& BasePath, |
| bool IgnoreBaseAccess) { |
| QualType FromType = From->getType(); |
| |
| if (CXXBoolLiteralExpr* LitBool |
| = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) |
| if (LitBool->getValue() == false) |
| Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) |
| << ToType; |
| |
| if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) |
| if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { |
| QualType FromPointeeType = FromPtrType->getPointeeType(), |
| ToPointeeType = ToPtrType->getPointeeType(); |
| |
| if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
| !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { |
| // We must have a derived-to-base conversion. Check an |
| // ambiguous or inaccessible conversion. |
| if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, |
| From->getExprLoc(), |
| From->getSourceRange(), &BasePath, |
| IgnoreBaseAccess)) |
| return true; |
| |
| // The conversion was successful. |
| Kind = CastExpr::CK_DerivedToBase; |
| } |
| } |
| if (const ObjCObjectPointerType *FromPtrType = |
| FromType->getAs<ObjCObjectPointerType>()) |
| if (const ObjCObjectPointerType *ToPtrType = |
| ToType->getAs<ObjCObjectPointerType>()) { |
| // Objective-C++ conversions are always okay. |
| // FIXME: We should have a different class of conversions for the |
| // Objective-C++ implicit conversions. |
| if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) |
| return false; |
| |
| } |
| return false; |
| } |
| |
| /// IsMemberPointerConversion - Determines whether the conversion of the |
| /// expression From, which has the (possibly adjusted) type FromType, can be |
| /// converted to the type ToType via a member pointer conversion (C++ 4.11). |
| /// If so, returns true and places the converted type (that might differ from |
| /// ToType in its cv-qualifiers at some level) into ConvertedType. |
| bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, |
| QualType ToType, |
| bool InOverloadResolution, |
| QualType &ConvertedType) { |
| const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); |
| if (!ToTypePtr) |
| return false; |
| |
| // A null pointer constant can be converted to a member pointer (C++ 4.11p1) |
| if (From->isNullPointerConstant(Context, |
| InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| : Expr::NPC_ValueDependentIsNull)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // Otherwise, both types have to be member pointers. |
| const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); |
| if (!FromTypePtr) |
| return false; |
| |
| // A pointer to member of B can be converted to a pointer to member of D, |
| // where D is derived from B (C++ 4.11p2). |
| QualType FromClass(FromTypePtr->getClass(), 0); |
| QualType ToClass(ToTypePtr->getClass(), 0); |
| // FIXME: What happens when these are dependent? Is this function even called? |
| |
| if (IsDerivedFrom(ToClass, FromClass)) { |
| ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), |
| ToClass.getTypePtr()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// CheckMemberPointerConversion - Check the member pointer conversion from the |
| /// expression From to the type ToType. This routine checks for ambiguous or |
| /// virtual or inaccessible base-to-derived member pointer conversions |
| /// for which IsMemberPointerConversion has already returned true. It returns |
| /// true and produces a diagnostic if there was an error, or returns false |
| /// otherwise. |
| bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, |
| CastExpr::CastKind &Kind, |
| CXXBaseSpecifierArray &BasePath, |
| bool IgnoreBaseAccess) { |
| QualType FromType = From->getType(); |
| const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); |
| if (!FromPtrType) { |
| // This must be a null pointer to member pointer conversion |
| assert(From->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull) && |
| "Expr must be null pointer constant!"); |
| Kind = CastExpr::CK_NullToMemberPointer; |
| return false; |
| } |
| |
| const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); |
| assert(ToPtrType && "No member pointer cast has a target type " |
| "that is not a member pointer."); |
| |
| QualType FromClass = QualType(FromPtrType->getClass(), 0); |
| QualType ToClass = QualType(ToPtrType->getClass(), 0); |
| |
| // FIXME: What about dependent types? |
| assert(FromClass->isRecordType() && "Pointer into non-class."); |
| assert(ToClass->isRecordType() && "Pointer into non-class."); |
| |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/true); |
| bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); |
| assert(DerivationOkay && |
| "Should not have been called if derivation isn't OK."); |
| (void)DerivationOkay; |
| |
| if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). |
| getUnqualifiedType())) { |
| std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
| Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) |
| << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); |
| return true; |
| } |
| |
| if (const RecordType *VBase = Paths.getDetectedVirtual()) { |
| Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) |
| << FromClass << ToClass << QualType(VBase, 0) |
| << From->getSourceRange(); |
| return true; |
| } |
| |
| if (!IgnoreBaseAccess) |
| CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, |
| Paths.front(), |
| diag::err_downcast_from_inaccessible_base); |
| |
| // Must be a base to derived member conversion. |
| BuildBasePathArray(Paths, BasePath); |
| Kind = CastExpr::CK_BaseToDerivedMemberPointer; |
| return false; |
| } |
| |
| /// IsQualificationConversion - Determines whether the conversion from |
| /// an rvalue of type FromType to ToType is a qualification conversion |
| /// (C++ 4.4). |
| bool |
| Sema::IsQualificationConversion(QualType FromType, QualType ToType) { |
| FromType = Context.getCanonicalType(FromType); |
| ToType = Context.getCanonicalType(ToType); |
| |
| // If FromType and ToType are the same type, this is not a |
| // qualification conversion. |
| if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) |
| return false; |
| |
| // (C++ 4.4p4): |
| // A conversion can add cv-qualifiers at levels other than the first |
| // in multi-level pointers, subject to the following rules: [...] |
| bool PreviousToQualsIncludeConst = true; |
| bool UnwrappedAnyPointer = false; |
| while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { |
| // Within each iteration of the loop, we check the qualifiers to |
| // determine if this still looks like a qualification |
| // conversion. Then, if all is well, we unwrap one more level of |
| // pointers or pointers-to-members and do it all again |
| // until there are no more pointers or pointers-to-members left to |
| // unwrap. |
| UnwrappedAnyPointer = true; |
| |
| // -- for every j > 0, if const is in cv 1,j then const is in cv |
| // 2,j, and similarly for volatile. |
| if (!ToType.isAtLeastAsQualifiedAs(FromType)) |
| return false; |
| |
| // -- if the cv 1,j and cv 2,j are different, then const is in |
| // every cv for 0 < k < j. |
| if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() |
| && !PreviousToQualsIncludeConst) |
| return false; |
| |
| // Keep track of whether all prior cv-qualifiers in the "to" type |
| // include const. |
| PreviousToQualsIncludeConst |
| = PreviousToQualsIncludeConst && ToType.isConstQualified(); |
| } |
| |
| // We are left with FromType and ToType being the pointee types |
| // after unwrapping the original FromType and ToType the same number |
| // of types. If we unwrapped any pointers, and if FromType and |
| // ToType have the same unqualified type (since we checked |
| // qualifiers above), then this is a qualification conversion. |
| return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); |
| } |
| |
| /// Determines whether there is a user-defined conversion sequence |
| /// (C++ [over.ics.user]) that converts expression From to the type |
| /// ToType. If such a conversion exists, User will contain the |
| /// user-defined conversion sequence that performs such a conversion |
| /// and this routine will return true. Otherwise, this routine returns |
| /// false and User is unspecified. |
| /// |
| /// \param AllowExplicit true if the conversion should consider C++0x |
| /// "explicit" conversion functions as well as non-explicit conversion |
| /// functions (C++0x [class.conv.fct]p2). |
| OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, |
| UserDefinedConversionSequence& User, |
| OverloadCandidateSet& CandidateSet, |
| bool AllowExplicit) { |
| // Whether we will only visit constructors. |
| bool ConstructorsOnly = false; |
| |
| // If the type we are conversion to is a class type, enumerate its |
| // constructors. |
| if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { |
| // C++ [over.match.ctor]p1: |
| // When objects of class type are direct-initialized (8.5), or |
| // copy-initialized from an expression of the same or a |
| // derived class type (8.5), overload resolution selects the |
| // constructor. [...] For copy-initialization, the candidate |
| // functions are all the converting constructors (12.3.1) of |
| // that class. The argument list is the expression-list within |
| // the parentheses of the initializer. |
| if (Context.hasSameUnqualifiedType(ToType, From->getType()) || |
| (From->getType()->getAs<RecordType>() && |
| IsDerivedFrom(From->getType(), ToType))) |
| ConstructorsOnly = true; |
| |
| if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { |
| // We're not going to find any constructors. |
| } else if (CXXRecordDecl *ToRecordDecl |
| = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { |
| DeclarationName ConstructorName |
| = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(ToType).getUnqualifiedType()); |
| DeclContext::lookup_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) |
| = ToRecordDecl->lookup(ConstructorName); |
| Con != ConEnd; ++Con) { |
| NamedDecl *D = *Con; |
| DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); |
| |
| // Find the constructor (which may be a template). |
| CXXConstructorDecl *Constructor = 0; |
| FunctionTemplateDecl *ConstructorTmpl |
| = dyn_cast<FunctionTemplateDecl>(D); |
| if (ConstructorTmpl) |
| Constructor |
| = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); |
| else |
| Constructor = cast<CXXConstructorDecl>(D); |
| |
| if (!Constructor->isInvalidDecl() && |
| Constructor->isConvertingConstructor(AllowExplicit)) { |
| if (ConstructorTmpl) |
| AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, |
| /*ExplicitArgs*/ 0, |
| &From, 1, CandidateSet, |
| /*SuppressUserConversions=*/!ConstructorsOnly); |
| else |
| // Allow one user-defined conversion when user specifies a |
| // From->ToType conversion via an static cast (c-style, etc). |
| AddOverloadCandidate(Constructor, FoundDecl, |
| &From, 1, CandidateSet, |
| /*SuppressUserConversions=*/!ConstructorsOnly); |
| } |
| } |
| } |
| } |
| |
| // Enumerate conversion functions, if we're allowed to. |
| if (ConstructorsOnly) { |
| } else if (RequireCompleteType(From->getLocStart(), From->getType(), |
| PDiag(0) << From->getSourceRange())) { |
| // No conversion functions from incomplete types. |
| } else if (const RecordType *FromRecordType |
| = From->getType()->getAs<RecordType>()) { |
| if (CXXRecordDecl *FromRecordDecl |
| = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { |
| // Add all of the conversion functions as candidates. |
| const UnresolvedSetImpl *Conversions |
| = FromRecordDecl->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| DeclAccessPair FoundDecl = I.getPair(); |
| NamedDecl *D = FoundDecl.getDecl(); |
| CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| CXXConversionDecl *Conv; |
| FunctionTemplateDecl *ConvTemplate; |
| if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| if (AllowExplicit || !Conv->isExplicit()) { |
| if (ConvTemplate) |
| AddTemplateConversionCandidate(ConvTemplate, FoundDecl, |
| ActingContext, From, ToType, |
| CandidateSet); |
| else |
| AddConversionCandidate(Conv, FoundDecl, ActingContext, |
| From, ToType, CandidateSet); |
| } |
| } |
| } |
| } |
| |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { |
| case OR_Success: |
| // Record the standard conversion we used and the conversion function. |
| if (CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(Best->Function)) { |
| // C++ [over.ics.user]p1: |
| // If the user-defined conversion is specified by a |
| // constructor (12.3.1), the initial standard conversion |
| // sequence converts the source type to the type required by |
| // the argument of the constructor. |
| // |
| QualType ThisType = Constructor->getThisType(Context); |
| if (Best->Conversions[0].isEllipsis()) |
| User.EllipsisConversion = true; |
| else { |
| User.Before = Best->Conversions[0].Standard; |
| User.EllipsisConversion = false; |
| } |
| User.ConversionFunction = Constructor; |
| User.After.setAsIdentityConversion(); |
| User.After.setFromType( |
| ThisType->getAs<PointerType>()->getPointeeType()); |
| User.After.setAllToTypes(ToType); |
| return OR_Success; |
| } else if (CXXConversionDecl *Conversion |
| = dyn_cast<CXXConversionDecl>(Best->Function)) { |
| // C++ [over.ics.user]p1: |
| // |
| // [...] If the user-defined conversion is specified by a |
| // conversion function (12.3.2), the initial standard |
| // conversion sequence converts the source type to the |
| // implicit object parameter of the conversion function. |
| User.Before = Best->Conversions[0].Standard; |
| User.ConversionFunction = Conversion; |
| User.EllipsisConversion = false; |
| |
| // C++ [over.ics.user]p2: |
| // The second standard conversion sequence converts the |
| // result of the user-defined conversion to the target type |
| // for the sequence. Since an implicit conversion sequence |
| // is an initialization, the special rules for |
| // initialization by user-defined conversion apply when |
| // selecting the best user-defined conversion for a |
| // user-defined conversion sequence (see 13.3.3 and |
| // 13.3.3.1). |
| User.After = Best->FinalConversion; |
| return OR_Success; |
| } else { |
| assert(false && "Not a constructor or conversion function?"); |
| return OR_No_Viable_Function; |
| } |
| |
| case OR_No_Viable_Function: |
| return OR_No_Viable_Function; |
| case OR_Deleted: |
| // No conversion here! We're done. |
| return OR_Deleted; |
| |
| case OR_Ambiguous: |
| return OR_Ambiguous; |
| } |
| |
| return OR_No_Viable_Function; |
| } |
| |
| bool |
| Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { |
| ImplicitConversionSequence ICS; |
| OverloadCandidateSet CandidateSet(From->getExprLoc()); |
| OverloadingResult OvResult = |
| IsUserDefinedConversion(From, ToType, ICS.UserDefined, |
| CandidateSet, false); |
| if (OvResult == OR_Ambiguous) |
| Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_ambiguous_condition) |
| << From->getType() << ToType << From->getSourceRange(); |
| else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) |
| Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_nonviable_condition) |
| << From->getType() << ToType << From->getSourceRange(); |
| else |
| return false; |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); |
| return true; |
| } |
| |
| /// CompareImplicitConversionSequences - Compare two implicit |
| /// conversion sequences to determine whether one is better than the |
| /// other or if they are indistinguishable (C++ 13.3.3.2). |
| ImplicitConversionSequence::CompareKind |
| Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, |
| const ImplicitConversionSequence& ICS2) |
| { |
| // (C++ 13.3.3.2p2): When comparing the basic forms of implicit |
| // conversion sequences (as defined in 13.3.3.1) |
| // -- a standard conversion sequence (13.3.3.1.1) is a better |
| // conversion sequence than a user-defined conversion sequence or |
| // an ellipsis conversion sequence, and |
| // -- a user-defined conversion sequence (13.3.3.1.2) is a better |
| // conversion sequence than an ellipsis conversion sequence |
| // (13.3.3.1.3). |
| // |
| // C++0x [over.best.ics]p10: |
| // For the purpose of ranking implicit conversion sequences as |
| // described in 13.3.3.2, the ambiguous conversion sequence is |
| // treated as a user-defined sequence that is indistinguishable |
| // from any other user-defined conversion sequence. |
| if (ICS1.getKindRank() < ICS2.getKindRank()) |
| return ImplicitConversionSequence::Better; |
| else if (ICS2.getKindRank() < ICS1.getKindRank()) |
| return ImplicitConversionSequence::Worse; |
| |
| // The following checks require both conversion sequences to be of |
| // the same kind. |
| if (ICS1.getKind() != ICS2.getKind()) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| // Two implicit conversion sequences of the same form are |
| // indistinguishable conversion sequences unless one of the |
| // following rules apply: (C++ 13.3.3.2p3): |
| if (ICS1.isStandard()) |
| return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); |
| else if (ICS1.isUserDefined()) { |
| // User-defined conversion sequence U1 is a better conversion |
| // sequence than another user-defined conversion sequence U2 if |
| // they contain the same user-defined conversion function or |
| // constructor and if the second standard conversion sequence of |
| // U1 is better than the second standard conversion sequence of |
| // U2 (C++ 13.3.3.2p3). |
| if (ICS1.UserDefined.ConversionFunction == |
| ICS2.UserDefined.ConversionFunction) |
| return CompareStandardConversionSequences(ICS1.UserDefined.After, |
| ICS2.UserDefined.After); |
| } |
| |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { |
| while (Context.UnwrapSimilarPointerTypes(T1, T2)) { |
| Qualifiers Quals; |
| T1 = Context.getUnqualifiedArrayType(T1, Quals); |
| T2 = Context.getUnqualifiedArrayType(T2, Quals); |
| } |
| |
| return Context.hasSameUnqualifiedType(T1, T2); |
| } |
| |
| // Per 13.3.3.2p3, compare the given standard conversion sequences to |
| // determine if one is a proper subset of the other. |
| static ImplicitConversionSequence::CompareKind |
| compareStandardConversionSubsets(ASTContext &Context, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) { |
| ImplicitConversionSequence::CompareKind Result |
| = ImplicitConversionSequence::Indistinguishable; |
| |
| // the identity conversion sequence is considered to be a subsequence of |
| // any non-identity conversion sequence |
| if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { |
| if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) |
| return ImplicitConversionSequence::Better; |
| else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) |
| return ImplicitConversionSequence::Worse; |
| } |
| |
| if (SCS1.Second != SCS2.Second) { |
| if (SCS1.Second == ICK_Identity) |
| Result = ImplicitConversionSequence::Better; |
| else if (SCS2.Second == ICK_Identity) |
| Result = ImplicitConversionSequence::Worse; |
| else |
| return ImplicitConversionSequence::Indistinguishable; |
| } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| if (SCS1.Third == SCS2.Third) { |
| return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result |
| : ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| if (SCS1.Third == ICK_Identity) |
| return Result == ImplicitConversionSequence::Worse |
| ? ImplicitConversionSequence::Indistinguishable |
| : ImplicitConversionSequence::Better; |
| |
| if (SCS2.Third == ICK_Identity) |
| return Result == ImplicitConversionSequence::Better |
| ? ImplicitConversionSequence::Indistinguishable |
| : ImplicitConversionSequence::Worse; |
| |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| /// CompareStandardConversionSequences - Compare two standard |
| /// conversion sequences to determine whether one is better than the |
| /// other or if they are indistinguishable (C++ 13.3.3.2p3). |
| ImplicitConversionSequence::CompareKind |
| Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) |
| { |
| // Standard conversion sequence S1 is a better conversion sequence |
| // than standard conversion sequence S2 if (C++ 13.3.3.2p3): |
| |
| // -- S1 is a proper subsequence of S2 (comparing the conversion |
| // sequences in the canonical form defined by 13.3.3.1.1, |
| // excluding any Lvalue Transformation; the identity conversion |
| // sequence is considered to be a subsequence of any |
| // non-identity conversion sequence) or, if not that, |
| if (ImplicitConversionSequence::CompareKind CK |
| = compareStandardConversionSubsets(Context, SCS1, SCS2)) |
| return CK; |
| |
| // -- the rank of S1 is better than the rank of S2 (by the rules |
| // defined below), or, if not that, |
| ImplicitConversionRank Rank1 = SCS1.getRank(); |
| ImplicitConversionRank Rank2 = SCS2.getRank(); |
| if (Rank1 < Rank2) |
| return ImplicitConversionSequence::Better; |
| else if (Rank2 < Rank1) |
| return ImplicitConversionSequence::Worse; |
| |
| // (C++ 13.3.3.2p4): Two conversion sequences with the same rank |
| // are indistinguishable unless one of the following rules |
| // applies: |
| |
| // A conversion that is not a conversion of a pointer, or |
| // pointer to member, to bool is better than another conversion |
| // that is such a conversion. |
| if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) |
| return SCS2.isPointerConversionToBool() |
| ? ImplicitConversionSequence::Better |
| : ImplicitConversionSequence::Worse; |
| |
| // C++ [over.ics.rank]p4b2: |
| // |
| // If class B is derived directly or indirectly from class A, |
| // conversion of B* to A* is better than conversion of B* to |
| // void*, and conversion of A* to void* is better than conversion |
| // of B* to void*. |
| bool SCS1ConvertsToVoid |
| = SCS1.isPointerConversionToVoidPointer(Context); |
| bool SCS2ConvertsToVoid |
| = SCS2.isPointerConversionToVoidPointer(Context); |
| if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { |
| // Exactly one of the conversion sequences is a conversion to |
| // a void pointer; it's the worse conversion. |
| return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better |
| : ImplicitConversionSequence::Worse; |
| } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { |
| // Neither conversion sequence converts to a void pointer; compare |
| // their derived-to-base conversions. |
| if (ImplicitConversionSequence::CompareKind DerivedCK |
| = CompareDerivedToBaseConversions(SCS1, SCS2)) |
| return DerivedCK; |
| } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { |
| // Both conversion sequences are conversions to void |
| // pointers. Compare the source types to determine if there's an |
| // inheritance relationship in their sources. |
| QualType FromType1 = SCS1.getFromType(); |
| QualType FromType2 = SCS2.getFromType(); |
| |
| // Adjust the types we're converting from via the array-to-pointer |
| // conversion, if we need to. |
| if (SCS1.First == ICK_Array_To_Pointer) |
| FromType1 = Context.getArrayDecayedType(FromType1); |
| if (SCS2.First == ICK_Array_To_Pointer) |
| FromType2 = Context.getArrayDecayedType(FromType2); |
| |
| QualType FromPointee1 |
| = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| QualType FromPointee2 |
| = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| |
| if (IsDerivedFrom(FromPointee2, FromPointee1)) |
| return ImplicitConversionSequence::Better; |
| else if (IsDerivedFrom(FromPointee1, FromPointee2)) |
| return ImplicitConversionSequence::Worse; |
| |
| // Objective-C++: If one interface is more specific than the |
| // other, it is the better one. |
| const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); |
| const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); |
| if (FromIface1 && FromIface1) { |
| if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) |
| return ImplicitConversionSequence::Better; |
| else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| // Compare based on qualification conversions (C++ 13.3.3.2p3, |
| // bullet 3). |
| if (ImplicitConversionSequence::CompareKind QualCK |
| = CompareQualificationConversions(SCS1, SCS2)) |
| return QualCK; |
| |
| if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
| // C++0x [over.ics.rank]p3b4: |
| // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an |
| // implicit object parameter of a non-static member function declared |
| // without a ref-qualifier, and S1 binds an rvalue reference to an |
| // rvalue and S2 binds an lvalue reference. |
| // FIXME: We don't know if we're dealing with the implicit object parameter, |
| // or if the member function in this case has a ref qualifier. |
| // (Of course, we don't have ref qualifiers yet.) |
| if (SCS1.RRefBinding != SCS2.RRefBinding) |
| return SCS1.RRefBinding ? ImplicitConversionSequence::Better |
| : ImplicitConversionSequence::Worse; |
| |
| // C++ [over.ics.rank]p3b4: |
| // -- S1 and S2 are reference bindings (8.5.3), and the types to |
| // which the references refer are the same type except for |
| // top-level cv-qualifiers, and the type to which the reference |
| // initialized by S2 refers is more cv-qualified than the type |
| // to which the reference initialized by S1 refers. |
| QualType T1 = SCS1.getToType(2); |
| QualType T2 = SCS2.getToType(2); |
| T1 = Context.getCanonicalType(T1); |
| T2 = Context.getCanonicalType(T2); |
| Qualifiers T1Quals, T2Quals; |
| QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); |
| QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); |
| if (UnqualT1 == UnqualT2) { |
| // If the type is an array type, promote the element qualifiers to the type |
| // for comparison. |
| if (isa<ArrayType>(T1) && T1Quals) |
| T1 = Context.getQualifiedType(UnqualT1, T1Quals); |
| if (isa<ArrayType>(T2) && T2Quals) |
| T2 = Context.getQualifiedType(UnqualT2, T2Quals); |
| if (T2.isMoreQualifiedThan(T1)) |
| return ImplicitConversionSequence::Better; |
| else if (T1.isMoreQualifiedThan(T2)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| /// CompareQualificationConversions - Compares two standard conversion |
| /// sequences to determine whether they can be ranked based on their |
| /// qualification conversions (C++ 13.3.3.2p3 bullet 3). |
| ImplicitConversionSequence::CompareKind |
| Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) { |
| // C++ 13.3.3.2p3: |
| // -- S1 and S2 differ only in their qualification conversion and |
| // yield similar types T1 and T2 (C++ 4.4), respectively, and the |
| // cv-qualification signature of type T1 is a proper subset of |
| // the cv-qualification signature of type T2, and S1 is not the |
| // deprecated string literal array-to-pointer conversion (4.2). |
| if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || |
| SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| // FIXME: the example in the standard doesn't use a qualification |
| // conversion (!) |
| QualType T1 = SCS1.getToType(2); |
| QualType T2 = SCS2.getToType(2); |
| T1 = Context.getCanonicalType(T1); |
| T2 = Context.getCanonicalType(T2); |
| Qualifiers T1Quals, T2Quals; |
| QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); |
| QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); |
| |
| // If the types are the same, we won't learn anything by unwrapped |
| // them. |
| if (UnqualT1 == UnqualT2) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| // If the type is an array type, promote the element qualifiers to the type |
| // for comparison. |
| if (isa<ArrayType>(T1) && T1Quals) |
| T1 = Context.getQualifiedType(UnqualT1, T1Quals); |
| if (isa<ArrayType>(T2) && T2Quals) |
| T2 = Context.getQualifiedType(UnqualT2, T2Quals); |
| |
| ImplicitConversionSequence::CompareKind Result |
| = ImplicitConversionSequence::Indistinguishable; |
| while (Context.UnwrapSimilarPointerTypes(T1, T2)) { |
| // Within each iteration of the loop, we check the qualifiers to |
| // determine if this still looks like a qualification |
| // conversion. Then, if all is well, we unwrap one more level of |
| // pointers or pointers-to-members and do it all again |
| // until there are no more pointers or pointers-to-members left |
| // to unwrap. This essentially mimics what |
| // IsQualificationConversion does, but here we're checking for a |
| // strict subset of qualifiers. |
| if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) |
| // The qualifiers are the same, so this doesn't tell us anything |
| // about how the sequences rank. |
| ; |
| else if (T2.isMoreQualifiedThan(T1)) { |
| // T1 has fewer qualifiers, so it could be the better sequence. |
| if (Result == ImplicitConversionSequence::Worse) |
| // Neither has qualifiers that are a subset of the other's |
| // qualifiers. |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| Result = ImplicitConversionSequence::Better; |
| } else if (T1.isMoreQualifiedThan(T2)) { |
| // T2 has fewer qualifiers, so it could be the better sequence. |
| if (Result == ImplicitConversionSequence::Better) |
| // Neither has qualifiers that are a subset of the other's |
| // qualifiers. |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| Result = ImplicitConversionSequence::Worse; |
| } else { |
| // Qualifiers are disjoint. |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| // If the types after this point are equivalent, we're done. |
| if (Context.hasSameUnqualifiedType(T1, T2)) |
| break; |
| } |
| |
| // Check that the winning standard conversion sequence isn't using |
| // the deprecated string literal array to pointer conversion. |
| switch (Result) { |
| case ImplicitConversionSequence::Better: |
| if (SCS1.DeprecatedStringLiteralToCharPtr) |
| Result = ImplicitConversionSequence::Indistinguishable; |
| break; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| break; |
| |
| case ImplicitConversionSequence::Worse: |
| if (SCS2.DeprecatedStringLiteralToCharPtr) |
| Result = ImplicitConversionSequence::Indistinguishable; |
| break; |
| } |
| |
| return Result; |
| } |
| |
| /// CompareDerivedToBaseConversions - Compares two standard conversion |
| /// sequences to determine whether they can be ranked based on their |
| /// various kinds of derived-to-base conversions (C++ |
| /// [over.ics.rank]p4b3). As part of these checks, we also look at |
| /// conversions between Objective-C interface types. |
| ImplicitConversionSequence::CompareKind |
| Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) { |
| QualType FromType1 = SCS1.getFromType(); |
| QualType ToType1 = SCS1.getToType(1); |
| QualType FromType2 = SCS2.getFromType(); |
| QualType ToType2 = SCS2.getToType(1); |
| |
| // Adjust the types we're converting from via the array-to-pointer |
| // conversion, if we need to. |
| if (SCS1.First == ICK_Array_To_Pointer) |
| FromType1 = Context.getArrayDecayedType(FromType1); |
| if (SCS2.First == ICK_Array_To_Pointer) |
| FromType2 = Context.getArrayDecayedType(FromType2); |
| |
| // Canonicalize all of the types. |
| FromType1 = Context.getCanonicalType(FromType1); |
| ToType1 = Context.getCanonicalType(ToType1); |
| FromType2 = Context.getCanonicalType(FromType2); |
| ToType2 = Context.getCanonicalType(ToType2); |
| |
| // C++ [over.ics.rank]p4b3: |
| // |
| // If class B is derived directly or indirectly from class A and |
| // class C is derived directly or indirectly from B, |
| // |
| // For Objective-C, we let A, B, and C also be Objective-C |
| // interfaces. |
| |
| // Compare based on pointer conversions. |
| if (SCS1.Second == ICK_Pointer_Conversion && |
| SCS2.Second == ICK_Pointer_Conversion && |
| /*FIXME: Remove if Objective-C id conversions get their own rank*/ |
| FromType1->isPointerType() && FromType2->isPointerType() && |
| ToType1->isPointerType() && ToType2->isPointerType()) { |
| QualType FromPointee1 |
| = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| QualType ToPointee1 |
| = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| QualType FromPointee2 |
| = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| QualType ToPointee2 |
| = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| |
| const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); |
| const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); |
| const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); |
| const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); |
| |
| // -- conversion of C* to B* is better than conversion of C* to A*, |
| if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| if (IsDerivedFrom(ToPointee1, ToPointee2)) |
| return ImplicitConversionSequence::Better; |
| else if (IsDerivedFrom(ToPointee2, ToPointee1)) |
| return ImplicitConversionSequence::Worse; |
| |
| if (ToIface1 && ToIface2) { |
| if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) |
| return ImplicitConversionSequence::Better; |
| else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| // -- conversion of B* to A* is better than conversion of C* to A*, |
| if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { |
| if (IsDerivedFrom(FromPointee2, FromPointee1)) |
| return ImplicitConversionSequence::Better; |
| else if (IsDerivedFrom(FromPointee1, FromPointee2)) |
| return ImplicitConversionSequence::Worse; |
| |
| if (FromIface1 && FromIface2) { |
| if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) |
| return ImplicitConversionSequence::Better; |
| else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| } |
| |
| // Ranking of member-pointer types. |
| if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && |
| FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && |
| ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { |
| const MemberPointerType * FromMemPointer1 = |
| FromType1->getAs<MemberPointerType>(); |
| const MemberPointerType * ToMemPointer1 = |
| ToType1->getAs<MemberPointerType>(); |
| const MemberPointerType * FromMemPointer2 = |
| FromType2->getAs<MemberPointerType>(); |
| const MemberPointerType * ToMemPointer2 = |
| ToType2->getAs<MemberPointerType>(); |
| const Type *FromPointeeType1 = FromMemPointer1->getClass(); |
| const Type *ToPointeeType1 = ToMemPointer1->getClass(); |
| const Type *FromPointeeType2 = FromMemPointer2->getClass(); |
| const Type *ToPointeeType2 = ToMemPointer2->getClass(); |
| QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); |
| QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); |
| QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); |
| QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); |
| // conversion of A::* to B::* is better than conversion of A::* to C::*, |
| if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| if (IsDerivedFrom(ToPointee1, ToPointee2)) |
| return ImplicitConversionSequence::Worse; |
| else if (IsDerivedFrom(ToPointee2, ToPointee1)) |
| return ImplicitConversionSequence::Better; |
| } |
| // conversion of B::* to C::* is better than conversion of A::* to C::* |
| if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { |
| if (IsDerivedFrom(FromPointee1, FromPointee2)) |
| return ImplicitConversionSequence::Better; |
| else if (IsDerivedFrom(FromPointee2, FromPointee1)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| if (SCS1.Second == ICK_Derived_To_Base) { |
| // -- conversion of C to B is better than conversion of C to A, |
| // -- binding of an expression of type C to a reference of type |
| // B& is better than binding an expression of type C to a |
| // reference of type A&, |
| if (Context.hasSameUnqualifiedType(FromType1, FromType2) && |
| !Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
| if (IsDerivedFrom(ToType1, ToType2)) |
| return ImplicitConversionSequence::Better; |
| else if (IsDerivedFrom(ToType2, ToType1)) |
| return ImplicitConversionSequence::Worse; |
| } |
| |
| // -- conversion of B to A is better than conversion of C to A. |
| // -- binding of an expression of type B to a reference of type |
| // A& is better than binding an expression of type C to a |
| // reference of type A&, |
| if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && |
| Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
| if (IsDerivedFrom(FromType2, FromType1)) |
| return ImplicitConversionSequence::Better; |
| else if (IsDerivedFrom(FromType1, FromType2)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| /// CompareReferenceRelationship - Compare the two types T1 and T2 to |
| /// determine whether they are reference-related, |
| /// reference-compatible, reference-compatible with added |
| /// qualification, or incompatible, for use in C++ initialization by |
| /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference |
| /// type, and the first type (T1) is the pointee type of the reference |
| /// type being initialized. |
| Sema::ReferenceCompareResult |
| Sema::CompareReferenceRelationship(SourceLocation Loc, |
| QualType OrigT1, QualType OrigT2, |
| bool& DerivedToBase) { |
| assert(!OrigT1->isReferenceType() && |
| "T1 must be the pointee type of the reference type"); |
| assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); |
| |
| QualType T1 = Context.getCanonicalType(OrigT1); |
| QualType T2 = Context.getCanonicalType(OrigT2); |
| Qualifiers T1Quals, T2Quals; |
| QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); |
| QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); |
| |
| // C++ [dcl.init.ref]p4: |
| // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is |
| // reference-related to "cv2 T2" if T1 is the same type as T2, or |
| // T1 is a base class of T2. |
| if (UnqualT1 == UnqualT2) |
| DerivedToBase = false; |
| else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && |
| IsDerivedFrom(UnqualT2, UnqualT1)) |
| DerivedToBase = true; |
| else |
| return Ref_Incompatible; |
| |
| // At this point, we know that T1 and T2 are reference-related (at |
| // least). |
| |
| // If the type is an array type, promote the element qualifiers to the type |
| // for comparison. |
| if (isa<ArrayType>(T1) && T1Quals) |
| T1 = Context.getQualifiedType(UnqualT1, T1Quals); |
| if (isa<ArrayType>(T2) && T2Quals) |
| T2 = Context.getQualifiedType(UnqualT2, T2Quals); |
| |
| // C++ [dcl.init.ref]p4: |
| // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is |
| // reference-related to T2 and cv1 is the same cv-qualification |
| // as, or greater cv-qualification than, cv2. For purposes of |
| // overload resolution, cases for which cv1 is greater |
| // cv-qualification than cv2 are identified as |
| // reference-compatible with added qualification (see 13.3.3.2). |
| if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) |
| return Ref_Compatible; |
| else if (T1.isMoreQualifiedThan(T2)) |
| return Ref_Compatible_With_Added_Qualification; |
| else |
| return Ref_Related; |
| } |
| |
| /// \brief Compute an implicit conversion sequence for reference |
| /// initialization. |
| static ImplicitConversionSequence |
| TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, |
| SourceLocation DeclLoc, |
| bool SuppressUserConversions, |
| bool AllowExplicit) { |
| assert(DeclType->isReferenceType() && "Reference init needs a reference"); |
| |
| // Most paths end in a failed conversion. |
| ImplicitConversionSequence ICS; |
| ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
| |
| QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); |
| QualType T2 = Init->getType(); |
| |
| // If the initializer is the address of an overloaded function, try |
| // to resolve the overloaded function. If all goes well, T2 is the |
| // type of the resulting function. |
| if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
| DeclAccessPair Found; |
| if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, |
| false, Found)) |
| T2 = Fn->getType(); |
| } |
| |
| // Compute some basic properties of the types and the initializer. |
| bool isRValRef = DeclType->isRValueReferenceType(); |
| bool DerivedToBase = false; |
| Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context); |
| Sema::ReferenceCompareResult RefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); |
| |
| |
| // C++ [over.ics.ref]p3: |
| // Except for an implicit object parameter, for which see 13.3.1, |
| // a standard conversion sequence cannot be formed if it requires |
| // binding an lvalue reference to non-const to an rvalue or |
| // binding an rvalue reference to an lvalue. |
| // |
| // FIXME: DPG doesn't trust this code. It seems far too early to |
| // abort because of a binding of an rvalue reference to an lvalue. |
| if (isRValRef && InitLvalue == Expr::LV_Valid) |
| return ICS; |
| |
| // C++0x [dcl.init.ref]p16: |
| // A reference to type "cv1 T1" is initialized by an expression |
| // of type "cv2 T2" as follows: |
| |
| // -- If the initializer expression |
| // -- is an lvalue (but is not a bit-field), and "cv1 T1" is |
| // reference-compatible with "cv2 T2," or |
| // |
| // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. |
| if (InitLvalue == Expr::LV_Valid && |
| RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { |
| // C++ [over.ics.ref]p1: |
| // When a parameter of reference type binds directly (8.5.3) |
| // to an argument expression, the implicit conversion sequence |
| // is the identity conversion, unless the argument expression |
| // has a type that is a derived class of the parameter type, |
| // in which case the implicit conversion sequence is a |
| // derived-to-base Conversion (13.3.3.1). |
| ICS.setStandard(); |
| ICS.Standard.First = ICK_Identity; |
| ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; |
| ICS.Standard.Third = ICK_Identity; |
| ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS.Standard.setToType(0, T2); |
| ICS.Standard.setToType(1, T1); |
| ICS.Standard.setToType(2, T1); |
| ICS.Standard.ReferenceBinding = true; |
| ICS.Standard.DirectBinding = true; |
| ICS.Standard.RRefBinding = false; |
| ICS.Standard.CopyConstructor = 0; |
| |
| // Nothing more to do: the inaccessibility/ambiguity check for |
| // derived-to-base conversions is suppressed when we're |
| // computing the implicit conversion sequence (C++ |
| // [over.best.ics]p2). |
| return ICS; |
| } |
| |
| // -- has a class type (i.e., T2 is a class type), where T1 is |
| // not reference-related to T2, and can be implicitly |
| // converted to an lvalue of type "cv3 T3," where "cv1 T1" |
| // is reference-compatible with "cv3 T3" 92) (this |
| // conversion is selected by enumerating the applicable |
| // conversion functions (13.3.1.6) and choosing the best |
| // one through overload resolution (13.3)), |
| if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && |
| !S.RequireCompleteType(DeclLoc, T2, 0) && |
| RefRelationship == Sema::Ref_Incompatible) { |
| CXXRecordDecl *T2RecordDecl |
| = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); |
| |
| OverloadCandidateSet CandidateSet(DeclLoc); |
| const UnresolvedSetImpl *Conversions |
| = T2RecordDecl->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate |
| = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| // If the conversion function doesn't return a reference type, |
| // it can't be considered for this conversion. |
| if (Conv->getConversionType()->isLValueReferenceType() && |
| (AllowExplicit || !Conv->isExplicit())) { |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, |
| Init, DeclType, CandidateSet); |
| else |
| S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, |
| DeclType, CandidateSet); |
| } |
| } |
| |
| OverloadCandidateSet::iterator Best; |
| switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) { |
| case OR_Success: |
| // C++ [over.ics.ref]p1: |
| // |
| // [...] If the parameter binds directly to the result of |
| // applying a conversion function to the argument |
| // expression, the implicit conversion sequence is a |
| // user-defined conversion sequence (13.3.3.1.2), with the |
| // second standard conversion sequence either an identity |
| // conversion or, if the conversion function returns an |
| // entity of a type that is a derived class of the parameter |
| // type, a derived-to-base Conversion. |
| if (!Best->FinalConversion.DirectBinding) |
| break; |
| |
| ICS.setUserDefined(); |
| ICS.UserDefined.Before = Best->Conversions[0].Standard; |
| ICS.UserDefined.After = Best->FinalConversion; |
| ICS.UserDefined.ConversionFunction = Best->Function; |
| ICS.UserDefined.EllipsisConversion = false; |
| assert(ICS.UserDefined.After.ReferenceBinding && |
| ICS.UserDefined.After.DirectBinding && |
| "Expected a direct reference binding!"); |
| return ICS; |
| |
| case OR_Ambiguous: |
| ICS.setAmbiguous(); |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
| Cand != CandidateSet.end(); ++Cand) |
| if (Cand->Viable) |
| ICS.Ambiguous.addConversion(Cand->Function); |
| return ICS; |
| |
| case OR_No_Viable_Function: |
| case OR_Deleted: |
| // There was no suitable conversion, or we found a deleted |
| // conversion; continue with other checks. |
| break; |
| } |
| } |
| |
| // -- Otherwise, the reference shall be to a non-volatile const |
| // type (i.e., cv1 shall be const), or the reference shall be an |
| // rvalue reference and the initializer expression shall be an rvalue. |
| // |
| // We actually handle one oddity of C++ [over.ics.ref] at this |
| // point, which is that, due to p2 (which short-circuits reference |
| // binding by only attempting a simple conversion for non-direct |
| // bindings) and p3's strange wording, we allow a const volatile |
| // reference to bind to an rvalue. Hence the check for the presence |
| // of "const" rather than checking for "const" being the only |
| // qualifier. |
| if (!isRValRef && !T1.isConstQualified()) |
| return ICS; |
| |
| // -- if T2 is a class type and |
| // -- the initializer expression is an rvalue and "cv1 T1" |
| // is reference-compatible with "cv2 T2," or |
| // |
| // -- T1 is not reference-related to T2 and the initializer |
| // expression can be implicitly converted to an rvalue |
| // of type "cv3 T3" (this conversion is selected by |
| // enumerating the applicable conversion functions |
| // (13.3.1.6) and choosing the best one through overload |
| // resolution (13.3)), |
| // |
| // then the reference is bound to the initializer |
| // expression rvalue in the first case and to the object |
| // that is the result of the conversion in the second case |
| // (or, in either case, to the appropriate base class |
| // subobject of the object). |
| // |
| // We're only checking the first case here, which is a direct |
| // binding in C++0x but not in C++03. |
| if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && |
| RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { |
| ICS.setStandard(); |
| ICS.Standard.First = ICK_Identity; |
| ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; |
| ICS.Standard.Third = ICK_Identity; |
| ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS.Standard.setToType(0, T2); |
| ICS.Standard.setToType(1, T1); |
| ICS.Standard.setToType(2, T1); |
| ICS.Standard.ReferenceBinding = true; |
| ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; |
| ICS.Standard.RRefBinding = isRValRef; |
| ICS.Standard.CopyConstructor = 0; |
| return ICS; |
| } |
| |
| // -- Otherwise, a temporary of type "cv1 T1" is created and |
| // initialized from the initializer expression using the |
| // rules for a non-reference copy initialization (8.5). The |
| // reference is then bound to the temporary. If T1 is |
| // reference-related to T2, cv1 must be the same |
| // cv-qualification as, or greater cv-qualification than, |
| // cv2; otherwise, the program is ill-formed. |
| if (RefRelationship == Sema::Ref_Related) { |
| // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
| // we would be reference-compatible or reference-compatible with |
| // added qualification. But that wasn't the case, so the reference |
| // initialization fails. |
| return ICS; |
| } |
| |
| // If at least one of the types is a class type, the types are not |
| // related, and we aren't allowed any user conversions, the |
| // reference binding fails. This case is important for breaking |
| // recursion, since TryImplicitConversion below will attempt to |
| // create a temporary through the use of a copy constructor. |
| if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
| (T1->isRecordType() || T2->isRecordType())) |
| return ICS; |
| |
| // C++ [over.ics.ref]p2: |
| // When a parameter of reference type is not bound directly to |
| // an argument expression, the conversion sequence is the one |
| // required to convert the argument expression to the |
| // underlying type of the reference according to |
| // 13.3.3.1. Conceptually, this conversion sequence corresponds |
| // to copy-initializing a temporary of the underlying type with |
| // the argument expression. Any difference in top-level |
| // cv-qualification is subsumed by the initialization itself |
| // and does not constitute a conversion. |
| ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions, |
| /*AllowExplicit=*/false, |
| /*InOverloadResolution=*/false); |
| |
| // Of course, that's still a reference binding. |
| if (ICS.isStandard()) { |
| ICS.Standard.ReferenceBinding = true; |
| ICS.Standard.RRefBinding = isRValRef; |
| } else if (ICS.isUserDefined()) { |
| ICS.UserDefined.After.ReferenceBinding = true; |
| ICS.UserDefined.After.RRefBinding = isRValRef; |
| } |
| return ICS; |
| } |
| |
| /// TryCopyInitialization - Try to copy-initialize a value of type |
| /// ToType from the expression From. Return the implicit conversion |
| /// sequence required to pass this argument, which may be a bad |
| /// conversion sequence (meaning that the argument cannot be passed to |
| /// a parameter of this type). If @p SuppressUserConversions, then we |
| /// do not permit any user-defined conversion sequences. |
| static ImplicitConversionSequence |
| TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
| bool SuppressUserConversions, |
| bool InOverloadResolution) { |
| if (ToType->isReferenceType()) |
| return TryReferenceInit(S, From, ToType, |
| /*FIXME:*/From->getLocStart(), |
| SuppressUserConversions, |
| /*AllowExplicit=*/false); |
| |
| return S.TryImplicitConversion(From, ToType, |
| SuppressUserConversions, |
| /*AllowExplicit=*/false, |
| InOverloadResolution); |
| } |
| |
| /// TryObjectArgumentInitialization - Try to initialize the object |
| /// parameter of the given member function (@c Method) from the |
| /// expression @p From. |
| ImplicitConversionSequence |
| Sema::TryObjectArgumentInitialization(QualType OrigFromType, |
| CXXMethodDecl *Method, |
| CXXRecordDecl *ActingContext) { |
| QualType ClassType = Context.getTypeDeclType(ActingContext); |
| // [class.dtor]p2: A destructor can be invoked for a const, volatile or |
| // const volatile object. |
| unsigned Quals = isa<CXXDestructorDecl>(Method) ? |
| Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); |
| QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); |
| |
| // Set up the conversion sequence as a "bad" conversion, to allow us |
| // to exit early. |
| ImplicitConversionSequence ICS; |
| |
| // We need to have an object of class type. |
| QualType FromType = OrigFromType; |
| if (const PointerType *PT = FromType->getAs<PointerType>()) |
| FromType = PT->getPointeeType(); |
| |
| assert(FromType->isRecordType()); |
| |
| // The implicit object parameter is has the type "reference to cv X", |
| // where X is the class of which the function is a member |
| // (C++ [over.match.funcs]p4). However, when finding an implicit |
| // conversion sequence for the argument, we are not allowed to |
| // create temporaries or perform user-defined conversions |
| // (C++ [over.match.funcs]p5). We perform a simplified version of |
| // reference binding here, that allows class rvalues to bind to |
| // non-constant references. |
| |
| // First check the qualifiers. We don't care about lvalue-vs-rvalue |
| // with the implicit object parameter (C++ [over.match.funcs]p5). |
| QualType FromTypeCanon = Context.getCanonicalType(FromType); |
| if (ImplicitParamType.getCVRQualifiers() |
| != FromTypeCanon.getLocalCVRQualifiers() && |
| !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { |
| ICS.setBad(BadConversionSequence::bad_qualifiers, |
| OrigFromType, ImplicitParamType); |
| return ICS; |
| } |
| |
| // Check that we have either the same type or a derived type. It |
| // affects the conversion rank. |
| QualType ClassTypeCanon = Context.getCanonicalType(ClassType); |
| ImplicitConversionKind SecondKind; |
| if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { |
| SecondKind = ICK_Identity; |
| } else if (IsDerivedFrom(FromType, ClassType)) |
| SecondKind = ICK_Derived_To_Base; |
| else { |
| ICS.setBad(BadConversionSequence::unrelated_class, |
| FromType, ImplicitParamType); |
| return ICS; |
| } |
| |
| // Success. Mark this as a reference binding. |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| ICS.Standard.Second = SecondKind; |
| ICS.Standard.setFromType(FromType); |
| ICS.Standard.setAllToTypes(ImplicitParamType); |
| ICS.Standard.ReferenceBinding = true; |
| ICS.Standard.DirectBinding = true; |
| ICS.Standard.RRefBinding = false; |
| return ICS; |
| } |
| |
| /// PerformObjectArgumentInitialization - Perform initialization of |
| /// the implicit object parameter for the given Method with the given |
| /// expression. |
| bool |
| Sema::PerformObjectArgumentInitialization(Expr *&From, |
| NestedNameSpecifier *Qualifier, |
| NamedDecl *FoundDecl, |
| CXXMethodDecl *Method) { |
| QualType FromRecordType, DestType; |
| QualType ImplicitParamRecordType = |
| Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); |
| |
| if (const PointerType *PT = From->getType()->getAs<PointerType>()) { |
| FromRecordType = PT->getPointeeType(); |
| DestType = Method->getThisType(Context); |
| } else { |
| FromRecordType = From->getType(); |
| DestType = ImplicitParamRecordType; |
| } |
| |
| // Note that we always use the true parent context when performing |
| // the actual argument initialization. |
| ImplicitConversionSequence ICS |
| = TryObjectArgumentInitialization(From->getType(), Method, |
| Method->getParent()); |
| if (ICS.isBad()) |
| return Diag(From->getSourceRange().getBegin(), |
| diag::err_implicit_object_parameter_init) |
| << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); |
| |
| if (ICS.Standard.Second == ICK_Derived_To_Base) |
| return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); |
| |
| if (!Context.hasSameType(From->getType(), DestType)) |
| ImpCastExprToType(From, DestType, CastExpr::CK_NoOp, |
| /*isLvalue=*/!From->getType()->isPointerType()); |
| return false; |
| } |
| |
| /// TryContextuallyConvertToBool - Attempt to contextually convert the |
| /// expression From to bool (C++0x [conv]p3). |
| ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { |
| // FIXME: This is pretty broken. |
| return TryImplicitConversion(From, Context.BoolTy, |
| // FIXME: Are these flags correct? |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/true, |
| /*InOverloadResolution=*/false); |
| } |
| |
| /// PerformContextuallyConvertToBool - Perform a contextual conversion |
| /// of the expression From to bool (C++0x [conv]p3). |
| bool Sema::PerformContextuallyConvertToBool(Expr *&From) { |
| ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); |
| if (!ICS.isBad()) |
| return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); |
| |
| if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) |
| return Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_bool_condition) |
| << From->getType() << From->getSourceRange(); |
| return true; |
| } |
| |
| /// TryContextuallyConvertToObjCId - Attempt to contextually convert the |
| /// expression From to 'id'. |
| ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) { |
| QualType Ty = Context.getObjCIdType(); |
| return TryImplicitConversion(From, Ty, |
| // FIXME: Are these flags correct? |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/true, |
| /*InOverloadResolution=*/false); |
| } |
| |
| /// PerformContextuallyConvertToObjCId - Perform a contextual conversion |
| /// of the expression From to 'id'. |
| bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { |
| QualType Ty = Context.getObjCIdType(); |
| ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From); |
| if (!ICS.isBad()) |
| return PerformImplicitConversion(From, Ty, ICS, AA_Converting); |
| return true; |
| } |
| |
| /// \brief Attempt to convert the given expression to an integral or |
| /// enumeration type. |
| /// |
| /// This routine will attempt to convert an expression of class type to an |
| /// integral or enumeration type, if that class type only has a single |
| /// conversion to an integral or enumeration type. |
| /// |
| /// \param From The expression we're converting from. |
| /// |
| /// \returns The expression converted to an integral or enumeration type, |
| /// if successful, or an invalid expression. |
| Sema::OwningExprResult |
| Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, ExprArg FromE, |
| const PartialDiagnostic &NotIntDiag, |
| const PartialDiagnostic &IncompleteDiag, |
| const PartialDiagnostic &ExplicitConvDiag, |
| const PartialDiagnostic &ExplicitConvNote, |
| const PartialDiagnostic &AmbigDiag, |
| const PartialDiagnostic &AmbigNote) { |
| Expr *From = static_cast<Expr *>(FromE.get()); |
| |
| // We can't perform any more checking for type-dependent expressions. |
| if (From->isTypeDependent()) |
| return move(FromE); |
| |
| // If the expression already has integral or enumeration type, we're golden. |
| QualType T = From->getType(); |
| if (T->isIntegralOrEnumerationType()) |
| return move(FromE); |
| |
| // FIXME: Check for missing '()' if T is a function type? |
| |
| // If we don't have a class type in C++, there's no way we can get an |
| // expression of integral or enumeration type. |
| const RecordType *RecordTy = T->getAs<RecordType>(); |
| if (!RecordTy || !getLangOptions().CPlusPlus) { |
| Diag(Loc, NotIntDiag) |
| << T << From->getSourceRange(); |
| return move(FromE); |
| } |
| |
| // We must have a complete class type. |
| if (RequireCompleteType(Loc, T, IncompleteDiag)) |
| return ExprError(); |
| |
| // Look for a conversion to an integral or enumeration type. |
| UnresolvedSet<4> ViableConversions; |
| UnresolvedSet<4> ExplicitConversions; |
| const UnresolvedSetImpl *Conversions |
| = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); |
| |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); |
| I != E; |
| ++I) { |
| if (CXXConversionDecl *Conversion |
| = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) |
| if (Conversion->getConversionType().getNonReferenceType() |
| ->isIntegralOrEnumerationType()) { |
| if (Conversion->isExplicit()) |
| ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); |
| else |
| ViableConversions.addDecl(I.getDecl(), I.getAccess()); |
| } |
| } |
| |
| switch (ViableConversions.size()) { |
| case 0: |
| if (ExplicitConversions.size() == 1) { |
| DeclAccessPair Found = ExplicitConversions[0]; |
| CXXConversionDecl *Conversion |
| = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); |
| |
| // The user probably meant to invoke the given explicit |
| // conversion; use it. |
| QualType ConvTy |
| = Conversion->getConversionType().getNonReferenceType(); |
| std::string TypeStr; |
| ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); |
| |
| Diag(Loc, ExplicitConvDiag) |
| << T << ConvTy |
| << FixItHint::CreateInsertion(From->getLocStart(), |
| "static_cast<" + TypeStr + ">(") |
| << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), |
| ")"); |
| Diag(Conversion->getLocation(), ExplicitConvNote) |
| << ConvTy->isEnumeralType() << ConvTy; |
| |
| // If we aren't in a SFINAE context, build a call to the |
| // explicit conversion function. |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); |
| From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, Conversion); |
| FromE = Owned(From); |
| } |
| |
| // We'll complain below about a non-integral condition type. |
| break; |
| |
| case 1: { |
| // Apply this conversion. |
| DeclAccessPair Found = ViableConversions[0]; |
| CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); |
| From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, |
| cast<CXXConversionDecl>(Found->getUnderlyingDecl())); |
| FromE = Owned(From); |
| break; |
| } |
| |
| default: |
| Diag(Loc, AmbigDiag) |
| << T << From->getSourceRange(); |
| for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
| CXXConversionDecl *Conv |
| = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); |
| QualType ConvTy = Conv->getConversionType().getNonReferenceType(); |
| Diag(Conv->getLocation(), AmbigNote) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| return move(FromE); |
| } |
| |
| if (!From->getType()->isIntegralOrEnumerationType()) |
| Diag(Loc, NotIntDiag) |
| << From->getType() << From->getSourceRange(); |
| |
| return move(FromE); |
| } |
| |
| /// AddOverloadCandidate - Adds the given function to the set of |
| /// candidate functions, using the given function call arguments. If |
| /// @p SuppressUserConversions, then don't allow user-defined |
| /// conversions via constructors or conversion operators. |
| /// |
| /// \para PartialOverloading true if we are performing "partial" overloading |
| /// based on an incomplete set of function arguments. This feature is used by |
| /// code completion. |
| void |
| Sema::AddOverloadCandidate(FunctionDecl *Function, |
| DeclAccessPair FoundDecl, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions, |
| bool PartialOverloading) { |
| const FunctionProtoType* Proto |
| = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); |
| assert(Proto && "Functions without a prototype cannot be overloaded"); |
| assert(!Function->getDescribedFunctionTemplate() && |
| "Use AddTemplateOverloadCandidate for function templates"); |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { |
| if (!isa<CXXConstructorDecl>(Method)) { |
| // If we get here, it's because we're calling a member function |
| // that is named without a member access expression (e.g., |
| // "this->f") that was either written explicitly or created |
| // implicitly. This can happen with a qualified call to a member |
| // function, e.g., X::f(). We use an empty type for the implied |
| // object argument (C++ [over.call.func]p3), and the acting context |
| // is irrelevant. |
| AddMethodCandidate(Method, FoundDecl, Method->getParent(), |
| QualType(), Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| return; |
| } |
| // We treat a constructor like a non-member function, since its object |
| // argument doesn't participate in overload resolution. |
| } |
| |
| if (!CandidateSet.isNewCandidate(Function)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); |
| |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ |
| // C++ [class.copy]p3: |
| // A member function template is never instantiated to perform the copy |
| // of a class object to an object of its class type. |
| QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); |
| if (NumArgs == 1 && |
| Constructor->isCopyConstructorLikeSpecialization() && |
| (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || |
| IsDerivedFrom(Args[0]->getType(), ClassType))) |
| return; |
| } |
| |
| // Add this candidate |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate& Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = Function; |
| Candidate.Viable = true; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // (C++ 13.3.2p2): A candidate function having fewer than m |
| // parameters is viable only if it has an ellipsis in its parameter |
| // list (8.3.5). |
| if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && |
| !Proto->isVariadic()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_many_arguments; |
| return; |
| } |
| |
| // (C++ 13.3.2p2): A candidate function having more than m parameters |
| // is viable only if the (m+1)st parameter has a default argument |
| // (8.3.6). For the purposes of overload resolution, the |
| // parameter list is truncated on the right, so that there are |
| // exactly m parameters. |
| unsigned MinRequiredArgs = Function->getMinRequiredArguments(); |
| if (NumArgs < MinRequiredArgs && !PartialOverloading) { |
| // Not enough arguments. |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_few_arguments; |
| return; |
| } |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| Candidate.Conversions.resize(NumArgs); |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) { |
| // (C++ 13.3.2p3): for F to be a viable function, there shall |
| // exist for each argument an implicit conversion sequence |
| // (13.3.3.1) that converts that argument to the corresponding |
| // parameter of F. |
| QualType ParamType = Proto->getArgType(ArgIdx); |
| Candidate.Conversions[ArgIdx] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| SuppressUserConversions, |
| /*InOverloadResolution=*/true); |
| if (Candidate.Conversions[ArgIdx].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } else { |
| // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| // argument for which there is no corresponding parameter is |
| // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| Candidate.Conversions[ArgIdx].setEllipsis(); |
| } |
| } |
| } |
| |
| /// \brief Add all of the function declarations in the given function set to |
| /// the overload canddiate set. |
| void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { |
| NamedDecl *D = F.getDecl()->getUnderlyingDecl(); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) |
| AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), |
| cast<CXXMethodDecl>(FD)->getParent(), |
| Args[0]->getType(), Args + 1, NumArgs - 1, |
| CandidateSet, SuppressUserConversions); |
| else |
| AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| } else { |
| FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); |
| if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && |
| !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) |
| AddMethodTemplateCandidate(FunTmpl, F.getPair(), |
| cast<CXXRecordDecl>(FunTmpl->getDeclContext()), |
| /*FIXME: explicit args */ 0, |
| Args[0]->getType(), Args + 1, NumArgs - 1, |
| CandidateSet, |
| SuppressUserConversions); |
| else |
| AddTemplateOverloadCandidate(FunTmpl, F.getPair(), |
| /*FIXME: explicit args */ 0, |
| Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| } |
| } |
| } |
| |
| /// AddMethodCandidate - Adds a named decl (which is some kind of |
| /// method) as a method candidate to the given overload set. |
| void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, |
| QualType ObjectType, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| NamedDecl *Decl = FoundDecl.getDecl(); |
| CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); |
| |
| if (isa<UsingShadowDecl>(Decl)) |
| Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); |
| |
| if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { |
| assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && |
| "Expected a member function template"); |
| AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, |
| /*ExplicitArgs*/ 0, |
| ObjectType, Args, NumArgs, |
| CandidateSet, |
| SuppressUserConversions); |
| } else { |
| AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, |
| ObjectType, Args, NumArgs, |
| CandidateSet, SuppressUserConversions); |
| } |
| } |
| |
| /// AddMethodCandidate - Adds the given C++ member function to the set |
| /// of candidate functions, using the given function call arguments |
| /// and the object argument (@c Object). For example, in a call |
| /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain |
| /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't |
| /// allow user-defined conversions via constructors or conversion |
| /// operators. |
| void |
| Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, QualType ObjectType, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| const FunctionProtoType* Proto |
| = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); |
| assert(Proto && "Methods without a prototype cannot be overloaded"); |
| assert(!isa<CXXConstructorDecl>(Method) && |
| "Use AddOverloadCandidate for constructors"); |
| |
| if (!CandidateSet.isNewCandidate(Method)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); |
| |
| // Add this candidate |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate& Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = Method; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // (C++ 13.3.2p2): A candidate function having fewer than m |
| // parameters is viable only if it has an ellipsis in its parameter |
| // list (8.3.5). |
| if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_many_arguments; |
| return; |
| } |
| |
| // (C++ 13.3.2p2): A candidate function having more than m parameters |
| // is viable only if the (m+1)st parameter has a default argument |
| // (8.3.6). For the purposes of overload resolution, the |
| // parameter list is truncated on the right, so that there are |
| // exactly m parameters. |
| unsigned MinRequiredArgs = Method->getMinRequiredArguments(); |
| if (NumArgs < MinRequiredArgs) { |
| // Not enough arguments. |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_few_arguments; |
| return; |
| } |
| |
| Candidate.Viable = true; |
| Candidate.Conversions.resize(NumArgs + 1); |
| |
| if (Method->isStatic() || ObjectType.isNull()) |
| // The implicit object argument is ignored. |
| Candidate.IgnoreObjectArgument = true; |
| else { |
| // Determine the implicit conversion sequence for the object |
| // parameter. |
| Candidate.Conversions[0] |
| = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); |
| if (Candidate.Conversions[0].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| return; |
| } |
| } |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) { |
| // (C++ 13.3.2p3): for F to be a viable function, there shall |
| // exist for each argument an implicit conversion sequence |
| // (13.3.3.1) that converts that argument to the corresponding |
| // parameter of F. |
| QualType ParamType = Proto->getArgType(ArgIdx); |
| Candidate.Conversions[ArgIdx + 1] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| SuppressUserConversions, |
| /*InOverloadResolution=*/true); |
| if (Candidate.Conversions[ArgIdx + 1].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } else { |
| // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| // argument for which there is no corresponding parameter is |
| // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| Candidate.Conversions[ArgIdx + 1].setEllipsis(); |
| } |
| } |
| } |
| |
| /// \brief Add a C++ member function template as a candidate to the candidate |
| /// set, using template argument deduction to produce an appropriate member |
| /// function template specialization. |
| void |
| Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| QualType ObjectType, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| if (!CandidateSet.isNewCandidate(MethodTmpl)) |
| return; |
| |
| // C++ [over.match.funcs]p7: |
| // In each case where a candidate is a function template, candidate |
| // function template specializations are generated using template argument |
| // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| // candidate functions in the usual way.113) A given name can refer to one |
| // or more function templates and also to a set of overloaded non-template |
| // functions. In such a case, the candidate functions generated from each |
| // function template are combined with the set of non-template candidate |
| // functions. |
| TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); |
| FunctionDecl *Specialization = 0; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, |
| Args, NumArgs, Specialization, Info)) { |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate &Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = MethodTmpl->getTemplatedDecl(); |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_deduction; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| Info); |
| return; |
| } |
| |
| // Add the function template specialization produced by template argument |
| // deduction as a candidate. |
| assert(Specialization && "Missing member function template specialization?"); |
| assert(isa<CXXMethodDecl>(Specialization) && |
| "Specialization is not a member function?"); |
| AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, |
| ActingContext, ObjectType, Args, NumArgs, |
| CandidateSet, SuppressUserConversions); |
| } |
| |
| /// \brief Add a C++ function template specialization as a candidate |
| /// in the candidate set, using template argument deduction to produce |
| /// an appropriate function template specialization. |
| void |
| Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, |
| DeclAccessPair FoundDecl, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| if (!CandidateSet.isNewCandidate(FunctionTemplate)) |
| return; |
| |
| // C++ [over.match.funcs]p7: |
| // In each case where a candidate is a function template, candidate |
| // function template specializations are generated using template argument |
| // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| // candidate functions in the usual way.113) A given name can refer to one |
| // or more function templates and also to a set of overloaded non-template |
| // functions. In such a case, the candidate functions generated from each |
| // function template are combined with the set of non-template candidate |
| // functions. |
| TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); |
| FunctionDecl *Specialization = 0; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, |
| Args, NumArgs, Specialization, Info)) { |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate &Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_deduction; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| Info); |
| return; |
| } |
| |
| // Add the function template specialization produced by template argument |
| // deduction as a candidate. |
| assert(Specialization && "Missing function template specialization?"); |
| AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| } |
| |
| /// AddConversionCandidate - Add a C++ conversion function as a |
| /// candidate in the candidate set (C++ [over.match.conv], |
| /// C++ [over.match.copy]). From is the expression we're converting from, |
| /// and ToType is the type that we're eventually trying to convert to |
| /// (which may or may not be the same type as the type that the |
| /// conversion function produces). |
| void |
| Sema::AddConversionCandidate(CXXConversionDecl *Conversion, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, |
| Expr *From, QualType ToType, |
| OverloadCandidateSet& CandidateSet) { |
| assert(!Conversion->getDescribedFunctionTemplate() && |
| "Conversion function templates use AddTemplateConversionCandidate"); |
| QualType ConvType = Conversion->getConversionType().getNonReferenceType(); |
| if (!CandidateSet.isNewCandidate(Conversion)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); |
| |
| // Add this candidate |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate& Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = Conversion; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.FinalConversion.setAsIdentityConversion(); |
| Candidate.FinalConversion.setFromType(ConvType); |
| Candidate.FinalConversion.setAllToTypes(ToType); |
| |
| // Determine the implicit conversion sequence for the implicit |
| // object parameter. |
| Candidate.Viable = true; |
| Candidate.Conversions.resize(1); |
| Candidate.Conversions[0] |
| = TryObjectArgumentInitialization(From->getType(), Conversion, |
| ActingContext); |
| // Conversion functions to a different type in the base class is visible in |
| // the derived class. So, a derived to base conversion should not participate |
| // in overload resolution. |
| if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) |
| Candidate.Conversions[0].Standard.Second = ICK_Identity; |
| if (Candidate.Conversions[0].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| return; |
| } |
| |
| // We won't go through a user-define type conversion function to convert a |
| // derived to base as such conversions are given Conversion Rank. They only |
| // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] |
| QualType FromCanon |
| = Context.getCanonicalType(From->getType().getUnqualifiedType()); |
| QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); |
| if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_trivial_conversion; |
| return; |
| } |
| |
| // To determine what the conversion from the result of calling the |
| // conversion function to the type we're eventually trying to |
| // convert to (ToType), we need to synthesize a call to the |
| // conversion function and attempt copy initialization from it. This |
| // makes sure that we get the right semantics with respect to |
| // lvalues/rvalues and the type. Fortunately, we can allocate this |
| // call on the stack and we don't need its arguments to be |
| // well-formed. |
| DeclRefExpr ConversionRef(Conversion, Conversion->getType(), |
| From->getLocStart()); |
| ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), |
| CastExpr::CK_FunctionToPointerDecay, |
| &ConversionRef, CXXBaseSpecifierArray(), false); |
| |
| // Note that it is safe to allocate CallExpr on the stack here because |
| // there are 0 arguments (i.e., nothing is allocated using ASTContext's |
| // allocator). |
| CallExpr Call(Context, &ConversionFn, 0, 0, |
| Conversion->getConversionType().getNonReferenceType(), |
| From->getLocStart()); |
| ImplicitConversionSequence ICS = |
| TryCopyInitialization(*this, &Call, ToType, |
| /*SuppressUserConversions=*/true, |
| /*InOverloadResolution=*/false); |
| |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::StandardConversion: |
| Candidate.FinalConversion = ICS.Standard; |
| |
| // C++ [over.ics.user]p3: |
| // If the user-defined conversion is specified by a specialization of a |
| // conversion function template, the second standard conversion sequence |
| // shall have exact match rank. |
| if (Conversion->getPrimaryTemplate() && |
| GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_final_conversion_not_exact; |
| } |
| |
| break; |
| |
| case ImplicitConversionSequence::BadConversion: |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| break; |
| |
| default: |
| assert(false && |
| "Can only end up with a standard conversion sequence or failure"); |
| } |
| } |
| |
| /// \brief Adds a conversion function template specialization |
| /// candidate to the overload set, using template argument deduction |
| /// to deduce the template arguments of the conversion function |
| /// template from the type that we are converting to (C++ |
| /// [temp.deduct.conv]). |
| void |
| Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingDC, |
| Expr *From, QualType ToType, |
| OverloadCandidateSet &CandidateSet) { |
| assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && |
| "Only conversion function templates permitted here"); |
| |
| if (!CandidateSet.isNewCandidate(FunctionTemplate)) |
| return; |
| |
| TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); |
| CXXConversionDecl *Specialization = 0; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(FunctionTemplate, ToType, |
| Specialization, Info)) { |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate &Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_deduction; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| Info); |
| return; |
| } |
| |
| // Add the conversion function template specialization produced by |
| // template argument deduction as a candidate. |
| assert(Specialization && "Missing function template specialization?"); |
| AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, |
| CandidateSet); |
| } |
| |
| /// AddSurrogateCandidate - Adds a "surrogate" candidate function that |
| /// converts the given @c Object to a function pointer via the |
| /// conversion function @c Conversion, and then attempts to call it |
| /// with the given arguments (C++ [over.call.object]p2-4). Proto is |
| /// the type of function that we'll eventually be calling. |
| void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, |
| const FunctionProtoType *Proto, |
| QualType ObjectType, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet) { |
| if (!CandidateSet.isNewCandidate(Conversion)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); |
| |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate& Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = 0; |
| Candidate.Surrogate = Conversion; |
| Candidate.Viable = true; |
| Candidate.IsSurrogate = true; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.Conversions.resize(NumArgs + 1); |
| |
| // Determine the implicit conversion sequence for the implicit |
| // object parameter. |
| ImplicitConversionSequence ObjectInit |
| = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); |
| if (ObjectInit.isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| Candidate.Conversions[0] = ObjectInit; |
| return; |
| } |
| |
| // The first conversion is actually a user-defined conversion whose |
| // first conversion is ObjectInit's standard conversion (which is |
| // effectively a reference binding). Record it as such. |
| Candidate.Conversions[0].setUserDefined(); |
| Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; |
| Candidate.Conversions[0].UserDefined.EllipsisConversion = false; |
| Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; |
| Candidate.Conversions[0].UserDefined.After |
| = Candidate.Conversions[0].UserDefined.Before; |
| Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); |
| |
| // Find the |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // (C++ 13.3.2p2): A candidate function having fewer than m |
| // parameters is viable only if it has an ellipsis in its parameter |
| // list (8.3.5). |
| if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_many_arguments; |
| return; |
| } |
| |
| // Function types don't have any default arguments, so just check if |
| // we have enough arguments. |
| if (NumArgs < NumArgsInProto) { |
| // Not enough arguments. |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_few_arguments; |
| return; |
| } |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) { |
| // (C++ 13.3.2p3): for F to be a viable function, there shall |
| // exist for each argument an implicit conversion sequence |
| // (13.3.3.1) that converts that argument to the corresponding |
| // parameter of F. |
| QualType ParamType = Proto->getArgType(ArgIdx); |
| Candidate.Conversions[ArgIdx + 1] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| /*SuppressUserConversions=*/false, |
| /*InOverloadResolution=*/false); |
| if (Candidate.Conversions[ArgIdx + 1].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } else { |
| // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| // argument for which there is no corresponding parameter is |
| // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| Candidate.Conversions[ArgIdx + 1].setEllipsis(); |
| } |
| } |
| } |
| |
| /// \brief Add overload candidates for overloaded operators that are |
| /// member functions. |
| /// |
| /// Add the overloaded operator candidates that are member functions |
| /// for the operator Op that was used in an operator expression such |
| /// as "x Op y". , Args/NumArgs provides the operator arguments, and |
| /// CandidateSet will store the added overload candidates. (C++ |
| /// [over.match.oper]). |
| void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| SourceRange OpRange) { |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| |
| // C++ [over.match.oper]p3: |
| // For a unary operator @ with an operand of a type whose |
| // cv-unqualified version is T1, and for a binary operator @ with |
| // a left operand of a type whose cv-unqualified version is T1 and |
| // a right operand of a type whose cv-unqualified version is T2, |
| // three sets of candidate functions, designated member |
| // candidates, non-member candidates and built-in candidates, are |
| // constructed as follows: |
| QualType T1 = Args[0]->getType(); |
| QualType T2; |
| if (NumArgs > 1) |
| T2 = Args[1]->getType(); |
| |
| // -- If T1 is a class type, the set of member candidates is the |
| // result of the qualified lookup of T1::operator@ |
| // (13.3.1.1.1); otherwise, the set of member candidates is |
| // empty. |
| if (const RecordType *T1Rec = T1->getAs<RecordType>()) { |
| // Complete the type if it can be completed. Otherwise, we're done. |
| if (RequireCompleteType(OpLoc, T1, PDiag())) |
| return; |
| |
| LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); |
| LookupQualifiedName(Operators, T1Rec->getDecl()); |
| Operators.suppressDiagnostics(); |
| |
| for (LookupResult::iterator Oper = Operators.begin(), |
| OperEnd = Operators.end(); |
| Oper != OperEnd; |
| ++Oper) |
| AddMethodCandidate(Oper.getPair(), Args[0]->getType(), |
| Args + 1, NumArgs - 1, CandidateSet, |
| /* SuppressUserConversions = */ false); |
| } |
| } |
| |
| /// AddBuiltinCandidate - Add a candidate for a built-in |
| /// operator. ResultTy and ParamTys are the result and parameter types |
| /// of the built-in candidate, respectively. Args and NumArgs are the |
| /// arguments being passed to the candidate. IsAssignmentOperator |
| /// should be true when this built-in candidate is an assignment |
| /// operator. NumContextualBoolArguments is the number of arguments |
| /// (at the beginning of the argument list) that will be contextually |
| /// converted to bool. |
| void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool IsAssignmentOperator, |
| unsigned NumContextualBoolArguments) { |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); |
| |
| // Add this candidate |
| CandidateSet.push_back(OverloadCandidate()); |
| OverloadCandidate& Candidate = CandidateSet.back(); |
| Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); |
| Candidate.Function = 0; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.BuiltinTypes.ResultTy = ResultTy; |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| Candidate.Viable = true; |
| Candidate.Conversions.resize(NumArgs); |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| // C++ [over.match.oper]p4: |
| // For the built-in assignment operators, conversions of the |
| // left operand are restricted as follows: |
| // -- no temporaries are introduced to hold the left operand, and |
| // -- no user-defined conversions are applied to the left |
| // operand to achieve a type match with the left-most |
| // parameter of a built-in candidate. |
| // |
| // We block these conversions by turning off user-defined |
| // conversions, since that is the only way that initialization of |
| // a reference to a non-class type can occur from something that |
| // is not of the same type. |
| if (ArgIdx < NumContextualBoolArguments) { |
| assert(ParamTys[ArgIdx] == Context.BoolTy && |
| "Contextual conversion to bool requires bool type"); |
| Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); |
| } else { |
| Candidate.Conversions[ArgIdx] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], |
| ArgIdx == 0 && IsAssignmentOperator, |
| /*InOverloadResolution=*/false); |
| } |
| if (Candidate.Conversions[ArgIdx].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } |
| } |
| |
| /// BuiltinCandidateTypeSet - A set of types that will be used for the |
| /// candidate operator functions for built-in operators (C++ |
| /// [over.built]). The types are separated into pointer types and |
| /// enumeration types. |
| class BuiltinCandidateTypeSet { |
| /// TypeSet - A set of types. |
| typedef llvm::SmallPtrSet<QualType, 8> TypeSet; |
| |
| /// PointerTypes - The set of pointer types that will be used in the |
| /// built-in candidates. |
| TypeSet PointerTypes; |
| |
| /// MemberPointerTypes - The set of member pointer types that will be |
| /// used in the built-in candidates. |
| TypeSet MemberPointerTypes; |
| |
| /// EnumerationTypes - The set of enumeration types that will be |
| /// used in the built-in candidates. |
| TypeSet EnumerationTypes; |
| |
| /// \brief The set of vector types that will be used in the built-in |
| /// candidates. |
| TypeSet VectorTypes; |
| |
| /// Sema - The semantic analysis instance where we are building the |
| /// candidate type set. |
| Sema &SemaRef; |
| |
| /// Context - The AST context in which we will build the type sets. |
| ASTContext &Context; |
| |
| bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| const Qualifiers &VisibleQuals); |
| bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); |
| |
| public: |
| /// iterator - Iterates through the types that are part of the set. |
| typedef TypeSet::iterator iterator; |
| |
| BuiltinCandidateTypeSet(Sema &SemaRef) |
| : SemaRef(SemaRef), Context(SemaRef.Context) { } |
| |
| void AddTypesConvertedFrom(QualType Ty, |
| SourceLocation Loc, |
| bool AllowUserConversions, |
| bool AllowExplicitConversions, |
| const Qualifiers &VisibleTypeConversionsQuals); |
| |
| /// pointer_begin - First pointer type found; |
| iterator pointer_begin() { return PointerTypes.begin(); } |
| |
| /// pointer_end - Past the last pointer type found; |
| iterator pointer_end() { return PointerTypes.end(); } |
| |
| /// member_pointer_begin - First member pointer type found; |
| iterator member_pointer_begin() { return MemberPointerTypes.begin(); } |
| |
| /// member_pointer_end - Past the last member pointer type found; |
| iterator member_pointer_end() { return MemberPointerTypes.end(); } |
| |
| /// enumeration_begin - First enumeration type found; |
| iterator enumeration_begin() { return EnumerationTypes.begin(); } |
| |
| /// enumeration_end - Past the last enumeration type found; |
| iterator enumeration_end() { return EnumerationTypes.end(); } |
| |
| iterator vector_begin() { return VectorTypes.begin(); } |
| iterator vector_end() { return VectorTypes.end(); } |
| }; |
| |
| /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to |
| /// the set of pointer types along with any more-qualified variants of |
| /// that type. For example, if @p Ty is "int const *", this routine |
| /// will add "int const *", "int const volatile *", "int const |
| /// restrict *", and "int const volatile restrict *" to the set of |
| /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| /// false otherwise. |
| /// |
| /// FIXME: what to do about extended qualifiers? |
| bool |
| BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| const Qualifiers &VisibleQuals) { |
| |
| // Insert this type. |
| if (!PointerTypes.insert(Ty)) |
| return false; |
| |
| const PointerType *PointerTy = Ty->getAs<PointerType>(); |
| assert(PointerTy && "type was not a pointer type!"); |
| |
| QualType PointeeTy = PointerTy->getPointeeType(); |
| // Don't add qualified variants of arrays. For one, they're not allowed |
| // (the qualifier would sink to the element type), and for another, the |
| // only overload situation where it matters is subscript or pointer +- int, |
| // and those shouldn't have qualifier variants anyway. |
| if (PointeeTy->isArrayType()) |
| return true; |
| unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) |
| BaseCVR = Array->getElementType().getCVRQualifiers(); |
| bool hasVolatile = VisibleQuals.hasVolatile(); |
| bool hasRestrict = VisibleQuals.hasRestrict(); |
| |
| // Iterate through all strict supersets of BaseCVR. |
| for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| if ((CVR | BaseCVR) != CVR) continue; |
| // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere |
| // in the types. |
| if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; |
| if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; |
| QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); |
| PointerTypes.insert(Context.getPointerType(QPointeeTy)); |
| } |
| |
| return true; |
| } |
| |
| /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty |
| /// to the set of pointer types along with any more-qualified variants of |
| /// that type. For example, if @p Ty is "int const *", this routine |
| /// will add "int const *", "int const volatile *", "int const |
| /// restrict *", and "int const volatile restrict *" to the set of |
| /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| /// false otherwise. |
| /// |
| /// FIXME: what to do about extended qualifiers? |
| bool |
| BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( |
| QualType Ty) { |
| // Insert this type. |
| if (!MemberPointerTypes.insert(Ty)) |
| return false; |
| |
| const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); |
| assert(PointerTy && "type was not a member pointer type!"); |
| |
| QualType PointeeTy = PointerTy->getPointeeType(); |
| // Don't add qualified variants of arrays. For one, they're not allowed |
| // (the qualifier would sink to the element type), and for another, the |
| // only overload situation where it matters is subscript or pointer +- int, |
| // and those shouldn't have qualifier variants anyway. |
| if (PointeeTy->isArrayType()) |
| return true; |
| const Type *ClassTy = PointerTy->getClass(); |
| |
| // Iterate through all strict supersets of the pointee type's CVR |
| // qualifiers. |
| unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| if ((CVR | BaseCVR) != CVR) continue; |
| |
| QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); |
| MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); |
| } |
| |
| return true; |
| } |
| |
| /// AddTypesConvertedFrom - Add each of the types to which the type @p |
| /// Ty can be implicit converted to the given set of @p Types. We're |
| /// primarily interested in pointer types and enumeration types. We also |
| /// take member pointer types, for the conditional operator. |
| /// AllowUserConversions is true if we should look at the conversion |
| /// functions of a class type, and AllowExplicitConversions if we |
| /// should also include the explicit conversion functions of a class |
| /// type. |
| void |
| BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, |
| SourceLocation Loc, |
| bool AllowUserConversions, |
| bool AllowExplicitConversions, |
| const Qualifiers &VisibleQuals) { |
| // Only deal with canonical types. |
| Ty = Context.getCanonicalType(Ty); |
| |
| // Look through reference types; they aren't part of the type of an |
| // expression for the purposes of conversions. |
| if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) |
| Ty = RefTy->getPointeeType(); |
| |
| // We don't care about qualifiers on the type. |
| Ty = Ty.getLocalUnqualifiedType(); |
| |
| // If we're dealing with an array type, decay to the pointer. |
| if (Ty->isArrayType()) |
| Ty = SemaRef.Context.getArrayDecayedType(Ty); |
| |
| if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { |
| QualType PointeeTy = PointerTy->getPointeeType(); |
| |
| // Insert our type, and its more-qualified variants, into the set |
| // of types. |
| if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) |
| return; |
| } else if (Ty->isMemberPointerType()) { |
| // Member pointers are far easier, since the pointee can't be converted. |
| if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) |
| return; |
| } else if (Ty->isEnumeralType()) { |
| EnumerationTypes.insert(Ty); |
| } else if (Ty->isVectorType()) { |
| VectorTypes.insert(Ty); |
| } else if (AllowUserConversions) { |
| if (const RecordType *TyRec = Ty->getAs<RecordType>()) { |
| if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { |
| // No conversion functions in incomplete types. |
| return; |
| } |
| |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); |
| const UnresolvedSetImpl *Conversions |
| = ClassDecl->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = I.getDecl(); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| // Skip conversion function templates; they don't tell us anything |
| // about which builtin types we can convert to. |
| if (isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| if (AllowExplicitConversions || !Conv->isExplicit()) { |
| AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, |
| VisibleQuals); |
| } |
| } |
| } |
| } |
| } |
| |
| /// \brief Helper function for AddBuiltinOperatorCandidates() that adds |
| /// the volatile- and non-volatile-qualified assignment operators for the |
| /// given type to the candidate set. |
| static void AddBuiltinAssignmentOperatorCandidates(Sema &S, |
| QualType T, |
| Expr **Args, |
| unsigned NumArgs, |
| OverloadCandidateSet &CandidateSet) { |
| QualType ParamTypes[2]; |
| |
| // T& operator=(T&, T) |
| ParamTypes[0] = S.Context.getLValueReferenceType(T); |
| ParamTypes[1] = T; |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssignmentOperator=*/true); |
| |
| if (!S.Context.getCanonicalType(T).isVolatileQualified()) { |
| // volatile T& operator=(volatile T&, T) |
| ParamTypes[0] |
| = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); |
| ParamTypes[1] = T; |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssignmentOperator=*/true); |
| } |
| } |
| |
| /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, |
| /// if any, found in visible type conversion functions found in ArgExpr's type. |
| static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { |
| Qualifiers VRQuals; |
| const RecordType *TyRec; |
| if (const MemberPointerType *RHSMPType = |
| ArgExpr->getType()->getAs<MemberPointerType>()) |
| TyRec = RHSMPType->getClass()->getAs<RecordType>(); |
| else |
| TyRec = ArgExpr->getType()->getAs<RecordType>(); |
| if (!TyRec) { |
| // Just to be safe, assume the worst case. |
| VRQuals.addVolatile(); |
| VRQuals.addRestrict(); |
| return VRQuals; |
| } |
| |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); |
| if (!ClassDecl->hasDefinition()) |
| return VRQuals; |
| |
| const UnresolvedSetImpl *Conversions = |
| ClassDecl->getVisibleConversionFunctions(); |
| |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = I.getDecl(); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { |
| QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); |
| if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) |
| CanTy = ResTypeRef->getPointeeType(); |
| // Need to go down the pointer/mempointer chain and add qualifiers |
| // as see them. |
| bool done = false; |
| while (!done) { |
| if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) |
| CanTy = ResTypePtr->getPointeeType(); |
| else if (const MemberPointerType *ResTypeMPtr = |
| CanTy->getAs<MemberPointerType>()) |
| CanTy = ResTypeMPtr->getPointeeType(); |
| else |
| done = true; |
| if (CanTy.isVolatileQualified()) |
| VRQuals.addVolatile(); |
| if (CanTy.isRestrictQualified()) |
| VRQuals.addRestrict(); |
| if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) |
| return VRQuals; |
| } |
| } |
| } |
| return VRQuals; |
| } |
| |
| /// AddBuiltinOperatorCandidates - Add the appropriate built-in |
| /// operator overloads to the candidate set (C++ [over.built]), based |
| /// on the operator @p Op and the arguments given. For example, if the |
| /// operator is a binary '+', this routine might add "int |
| /// operator+(int, int)" to cover integer addition. |
| void |
| Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet) { |
| // The set of "promoted arithmetic types", which are the arithmetic |
| // types are that preserved by promotion (C++ [over.built]p2). Note |
| // that the first few of these types are the promoted integral |
| // types; these types need to be first. |
| // FIXME: What about complex? |
| const unsigned FirstIntegralType = 0; |
| const unsigned LastIntegralType = 13; |
| const unsigned FirstPromotedIntegralType = 7, |
| LastPromotedIntegralType = 13; |
| const unsigned FirstPromotedArithmeticType = 7, |
| LastPromotedArithmeticType = 16; |
| const unsigned NumArithmeticTypes = 16; |
| QualType ArithmeticTypes[NumArithmeticTypes] = { |
| Context.BoolTy, Context.CharTy, Context.WCharTy, |
| // FIXME: Context.Char16Ty, Context.Char32Ty, |
| Context.SignedCharTy, Context.ShortTy, |
| Context.UnsignedCharTy, Context.UnsignedShortTy, |
| Context.IntTy, Context.LongTy, Context.LongLongTy, |
| Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, |
| Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy |
| }; |
| assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && |
| "Invalid first promoted integral type"); |
| assert(ArithmeticTypes[LastPromotedIntegralType - 1] |
| == Context.UnsignedLongLongTy && |
| "Invalid last promoted integral type"); |
| assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && |
| "Invalid first promoted arithmetic type"); |
| assert(ArithmeticTypes[LastPromotedArithmeticType - 1] |
| == Context.LongDoubleTy && |
| "Invalid last promoted arithmetic type"); |
| |
| // Find all of the types that the arguments can convert to, but only |
| // if the operator we're looking at has built-in operator candidates |
| // that make use of these types. |
| Qualifiers VisibleTypeConversionsQuals; |
| VisibleTypeConversionsQuals.addConst(); |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); |
| |
| BuiltinCandidateTypeSet CandidateTypes(*this); |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), |
| OpLoc, |
| true, |
| (Op == OO_Exclaim || |
| Op == OO_AmpAmp || |
| Op == OO_PipePipe), |
| VisibleTypeConversionsQuals); |
| |
| bool isComparison = false; |
| switch (Op) { |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| assert(false && "Expected an overloaded operator"); |
| break; |
| |
| case OO_Star: // '*' is either unary or binary |
| if (NumArgs == 1) |
| goto UnaryStar; |
| else |
| goto BinaryStar; |
| break; |
| |
| case OO_Plus: // '+' is either unary or binary |
| if (NumArgs == 1) |
| goto UnaryPlus; |
| else |
| goto BinaryPlus; |
| break; |
| |
| case OO_Minus: // '-' is either unary or binary |
| if (NumArgs == 1) |
| goto UnaryMinus; |
| else |
| goto BinaryMinus; |
| break; |
| |
| case OO_Amp: // '&' is either unary or binary |
| if (NumArgs == 1) |
| goto UnaryAmp; |
| else |
| goto BinaryAmp; |
| |
| case OO_PlusPlus: |
| case OO_MinusMinus: |
| // C++ [over.built]p3: |
| // |
| // For every pair (T, VQ), where T is an arithmetic type, and VQ |
| // is either volatile or empty, there exist candidate operator |
| // functions of the form |
| // |
| // VQ T& operator++(VQ T&); |
| // T operator++(VQ T&, int); |
| // |
| // C++ [over.built]p4: |
| // |
| // For every pair (T, VQ), where T is an arithmetic type other |
| // than bool, and VQ is either volatile or empty, there exist |
| // candidate operator functions of the form |
| // |
| // VQ T& operator--(VQ T&); |
| // T operator--(VQ T&, int); |
| for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); |
| Arith < NumArithmeticTypes; ++Arith) { |
| QualType ArithTy = ArithmeticTypes[Arith]; |
| QualType ParamTypes[2] |
| = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; |
| |
| // Non-volatile version. |
| if (NumArgs == 1) |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); |
| else |
| AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); |
| // heuristic to reduce number of builtin candidates in the set. |
| // Add volatile version only if there are conversions to a volatile type. |
| if (VisibleTypeConversionsQuals.hasVolatile()) { |
| // Volatile version |
| ParamTypes[0] |
| = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); |
| if (NumArgs == 1) |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); |
| else |
| AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| |
| // C++ [over.built]p5: |
| // |
| // For every pair (T, VQ), where T is a cv-qualified or |
| // cv-unqualified object type, and VQ is either volatile or |
| // empty, there exist candidate operator functions of the form |
| // |
| // T*VQ& operator++(T*VQ&); |
| // T*VQ& operator--(T*VQ&); |
| // T* operator++(T*VQ&, int); |
| // T* operator--(T*VQ&, int); |
| for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| // Skip pointer types that aren't pointers to object types. |
| if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) |
| continue; |
| |
| QualType ParamTypes[2] = { |
| Context.getLValueReferenceType(*Ptr), Context.IntTy |
| }; |
| |
| // Without volatile |
| if (NumArgs == 1) |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); |
| else |
| AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); |
| |
| if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && |
| VisibleTypeConversionsQuals.hasVolatile()) { |
| // With volatile |
| ParamTypes[0] |
| = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); |
| if (NumArgs == 1) |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); |
| else |
| AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| break; |
| |
| UnaryStar: |
| // C++ [over.built]p6: |
| // For every cv-qualified or cv-unqualified object type T, there |
| // exist candidate operator functions of the form |
| // |
| // T& operator*(T*); |
| // |
| // C++ [over.built]p7: |
| // For every function type T, there exist candidate operator |
| // functions of the form |
| // T& operator*(T*); |
| for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| QualType ParamTy = *Ptr; |
| QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); |
| AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), |
| &ParamTy, Args, 1, CandidateSet); |
| } |
| break; |
| |
| UnaryPlus: |
| // C++ [over.built]p8: |
| // For every type T, there exist candidate operator functions of |
| // the form |
| // |
| // T* operator+(T*); |
| for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| QualType ParamTy = *Ptr; |
| AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); |
| } |
| |
| // Fall through |
| |
| UnaryMinus: |
| // C++ [over.built]p9: |
| // For every promoted arithmetic type T, there exist candidate |
| // operator functions of the form |
| // |
| // T operator+(T); |
| // T operator-(T); |
| for (unsigned Arith = FirstPromotedArithmeticType; |
| Arith < LastPromotedArithmeticType; ++Arith) { |
| QualType ArithTy = ArithmeticTypes[Arith]; |
| AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); |
| } |
| |
| // Extension: We also add these operators for vector types. |
| for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), |
| VecEnd = CandidateTypes.vector_end(); |
| Vec != VecEnd; ++Vec) { |
| QualType VecTy = *Vec; |
| AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); |
| } |
| break; |
| |
| case OO_Tilde: |
| // C++ [over.built]p10: |
| // For every promoted integral type T, there exist candidate |
| // operator functions of the form |
| // |
| // T operator~(T); |
| for (unsigned Int = FirstPromotedIntegralType; |
| Int < LastPromotedIntegralType; ++Int) { |
| QualType IntTy = ArithmeticTypes[Int]; |
| AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); |
| } |
| |
| // Extension: We also add this operator for vector types. |
| for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), |
| VecEnd = CandidateTypes.vector_end(); |
| Vec != VecEnd; ++Vec) { |
| QualType VecTy = *Vec; |
| AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); |
| } |
| break; |
| |
| case OO_New: |
| case OO_Delete: |
| case OO_Array_New: |
| case OO_Array_Delete: |
| case OO_Call: |
| assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); |
| break; |
| |
| case OO_Comma: |
| UnaryAmp: |
| case OO_Arrow: |
| // C++ [over.match.oper]p3: |
| // -- For the operator ',', the unary operator '&', or the |
| // operator '->', the built-in candidates set is empty. |
| break; |
| |
| case OO_EqualEqual: |
| case OO_ExclaimEqual: |
| // C++ [over.match.oper]p16: |
| // For every pointer to member type T, there exist candidate operator |
| // functions of the form |
| // |
| // bool operator==(T,T); |
| // bool operator!=(T,T); |
| for (BuiltinCandidateTypeSet::iterator |
| MemPtr = CandidateTypes.member_pointer_begin(), |
| MemPtrEnd = CandidateTypes.member_pointer_end(); |
| MemPtr != MemPtrEnd; |
| ++MemPtr) { |
| QualType ParamTypes[2] = { *MemPtr, *MemPtr }; |
| AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| |
| // Fall through |
| |
| case OO_Less: |
| case OO_Greater: |
| case OO_LessEqual: |
| case OO_GreaterEqual: |
| // C++ [over.built]p15: |
| // |
| // For every pointer or enumeration type T, there exist |
| // candidate operator functions of the form |
| // |
| // bool operator<(T, T); |
| // bool operator>(T, T); |
| // bool operator<=(T, T); |
| // bool operator>=(T, T); |
| // bool operator==(T, T); |
| // bool operator!=(T, T); |
| for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| QualType ParamTypes[2] = { *Ptr, *Ptr }; |
| AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| for (BuiltinCandidateTypeSet::iterator Enum |
| = CandidateTypes.enumeration_begin(); |
| Enum != CandidateTypes.enumeration_end(); ++Enum) { |
| QualType ParamTypes[2] = { *Enum, *Enum }; |
| AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| |
| // Fall through. |
| isComparison = true; |
| |
| BinaryPlus: |
| BinaryMinus: |
| if (!isComparison) { |
| // We didn't fall through, so we must have OO_Plus or OO_Minus. |
| |
| // C++ [over.built]p13: |
| // |
| // For every cv-qualified or cv-unqualified object type T |
| // there exist candidate operator functions of the form |
| // |
| // T* operator+(T*, ptrdiff_t); |
| // T& operator[](T*, ptrdiff_t); [BELOW] |
| // T* operator-(T*, ptrdiff_t); |
| // T* operator+(ptrdiff_t, T*); |
| // T& operator[](ptrdiff_t, T*); [BELOW] |
| // |
| // C++ [over.built]p14: |
| // |
| // For every T, where T is a pointer to object type, there |
| // exist candidate operator functions of the form |
| // |
| // ptrdiff_t operator-(T, T); |
| for (BuiltinCandidateTypeSet::iterator Ptr |
| = CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; |
| |
| // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) |
| AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); |
| |
| if (Op == OO_Plus) { |
| // T* operator+(ptrdiff_t, T*); |
| ParamTypes[0] = ParamTypes[1]; |
| ParamTypes[1] = *Ptr; |
| AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); |
| } else { |
| // ptrdiff_t operator-(T, T); |
| ParamTypes[1] = *Ptr; |
| AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, |
| Args, 2, CandidateSet); |
| } |
| } |
| } |
| // Fall through |
| |
| case OO_Slash: |
| BinaryStar: |
| Conditional: |
| // C++ [over.built]p12: |
| // |
| // For every pair of promoted arithmetic types L and R, there |
| // exist candidate operator functions of the form |
| // |
| // LR operator*(L, R); |
| // LR operator/(L, R); |
| // LR operator+(L, R); |
| // LR operator-(L, R); |
| // bool operator<(L, R); |
| // bool operator>(L, R); |
| // bool operator<=(L, R); |
| // bool operator>=(L, R); |
| // bool operator==(L, R); |
| // bool operator!=(L, R); |
| // |
| // where LR is the result of the usual arithmetic conversions |
| // between types L and R. |
| // |
| // C++ [over.built]p24: |
| // |
| // For every pair of promoted arithmetic types L and R, there exist |
| // candidate operator functions of the form |
| // |
| // LR operator?(bool, L, R); |
| // |
| // where LR is the result of the usual arithmetic conversions |
| // between types L and R. |
| // Our candidates ignore the first parameter. |
| for (unsigned Left = FirstPromotedArithmeticType; |
| Left < LastPromotedArithmeticType; ++Left) { |
| for (unsigned Right = FirstPromotedArithmeticType; |
| Right < LastPromotedArithmeticType; ++Right) { |
| QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; |
| QualType Result |
| = isComparison |
| ? Context.BoolTy |
| : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); |
| AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); |
| } |
| } |
| |
| // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the |
| // conditional operator for vector types. |
| for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), |
| Vec1End = CandidateTypes.vector_end(); |
| Vec1 != Vec1End; ++Vec1) |
| for (BuiltinCandidateTypeSet::iterator |
| Vec2 = CandidateTypes.vector_begin(), |
| Vec2End = CandidateTypes.vector_end(); |
| Vec2 != Vec2End; ++Vec2) { |
| QualType LandR[2] = { *Vec1, *Vec2 }; |
| QualType Result; |
| if (isComparison) |
| Result = Context.BoolTy; |
| else { |
| if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) |
| Result = *Vec1; |
| else |
| Result = *Vec2; |
| } |
| |
| AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); |
| } |
| |
| break; |
| |
| case OO_Percent: |
| BinaryAmp: |
| case OO_Caret: |
| case OO_Pipe: |
| case OO_LessLess: |
| case OO_GreaterGreater: |
| // C++ [over.built]p17: |
| // |
| // For every pair of promoted integral types L and R, there |
| // exist candidate operator functions of the form |
| // |
| // LR operator%(L, R); |
| // LR operator&(L, R); |
| // LR operator^(L, R); |
| // LR operator|(L, R); |
| // L operator<<(L, R); |
| // L operator>>(L, R); |
| // |
| // where LR is the result of the usual arithmetic conversions |
| // between types L and R. |
| for (unsigned Left = FirstPromotedIntegralType; |
| Left < LastPromotedIntegralType; ++Left) { |
| for (unsigned Right = FirstPromotedIntegralType; |
| Right < LastPromotedIntegralType; ++Right) { |
| QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; |
| QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) |
| ? LandR[0] |
| : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); |
| AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); |
| } |
| } |
| break; |
| |
| case OO_Equal: |
| // C++ [over.built]p20: |
| // |
| // For every pair (T, VQ), where T is an enumeration or |
| // pointer to member type and VQ is either volatile or |
| // empty, there exist candidate operator functions of the form |
| // |
| // VQ T& operator=(VQ T&, T); |
| for (BuiltinCandidateTypeSet::iterator |
| Enum = CandidateTypes.enumeration_begin(), |
| EnumEnd = CandidateTypes.enumeration_end(); |
| Enum != EnumEnd; ++Enum) |
| AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, |
| CandidateSet); |
| for (BuiltinCandidateTypeSet::iterator |
| MemPtr = CandidateTypes.member_pointer_begin(), |
| MemPtrEnd = CandidateTypes.member_pointer_end(); |
| MemPtr != MemPtrEnd; ++MemPtr) |
| AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, |
| CandidateSet); |
| |
| // Fall through. |
| |
| case OO_PlusEqual: |
| case OO_MinusEqual: |
| // C++ [over.built]p19: |
| // |
| // For every pair (T, VQ), where T is any type and VQ is either |
| // volatile or empty, there exist candidate operator functions |
| // of the form |
| // |
| // T*VQ& operator=(T*VQ&, T*); |
| // |
| // C++ [over.built]p21: |
| // |
| // For every pair (T, VQ), where T is a cv-qualified or |
| // cv-unqualified object type and VQ is either volatile or |
| // empty, there exist candidate operator functions of the form |
| // |
| // T*VQ& operator+=(T*VQ&, ptrdiff_t); |
| // T*VQ& operator-=(T*VQ&, ptrdiff_t); |
| for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| QualType ParamTypes[2]; |
| ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); |
| |
| // non-volatile version |
| ParamTypes[0] = Context.getLValueReferenceType(*Ptr); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/Op == OO_Equal); |
| |
| if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && |
| VisibleTypeConversionsQuals.hasVolatile()) { |
| // volatile version |
| ParamTypes[0] |
| = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/Op == OO_Equal); |
| } |
| } |
| // Fall through. |
| |
| case OO_StarEqual: |
| case OO_SlashEqual: |
| // C++ [over.built]p18: |
| // |
| // For every triple (L, VQ, R), where L is an arithmetic type, |
| // VQ is either volatile or empty, and R is a promoted |
| // arithmetic type, there exist candidate operator functions of |
| // the form |
| // |
| // VQ L& operator=(VQ L&, R); |
| // VQ L& operator*=(VQ L&, R); |
| // VQ L& operator/=(VQ L&, R); |
| // VQ L& operator+=(VQ L&, R); |
| // VQ L& operator-=(VQ L&, R); |
| for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { |
| for (unsigned Right = FirstPromotedArithmeticType; |
| Right < LastPromotedArithmeticType; ++Right) { |
| QualType ParamTypes[2]; |
| ParamTypes[1] = ArithmeticTypes[Right]; |
| |
| // Add this built-in operator as a candidate (VQ is empty). |
| ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/Op == OO_Equal); |
| |
| // Add this built-in operator as a candidate (VQ is 'volatile'). |
| if (VisibleTypeConversionsQuals.hasVolatile()) { |
| ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); |
| ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/Op == OO_Equal); |
| } |
| } |
| } |
| |
| // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. |
| for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), |
| Vec1End = CandidateTypes.vector_end(); |
| Vec1 != Vec1End; ++Vec1) |
| for (BuiltinCandidateTypeSet::iterator |
| Vec2 = CandidateTypes.vector_begin(), |
| Vec2End = CandidateTypes.vector_end(); |
| Vec2 != Vec2End; ++Vec2) { |
| QualType ParamTypes[2]; |
| ParamTypes[1] = *Vec2; |
| // Add this built-in operator as a candidate (VQ is empty). |
| ParamTypes[0] = Context.getLValueReferenceType(*Vec1); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/Op == OO_Equal); |
| |
| // Add this built-in operator as a candidate (VQ is 'volatile'). |
| if (VisibleTypeConversionsQuals.hasVolatile()) { |
| ParamTypes[0] = Context.getVolatileType(*Vec1); |
| ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/Op == OO_Equal); |
| } |
| } |
| break; |
| |
| case OO_PercentEqual: |
| case OO_LessLessEqual: |
| case OO_GreaterGreaterEqual: |
| case OO_AmpEqual: |
| case OO_CaretEqual: |
| case OO_PipeEqual: |
| // C++ [over.built]p22: |
| // |
| // For every triple (L, VQ, R), where L is an integral type, VQ |
| // is either volatile or empty, and R is a promoted integral |
| // type, there exist candidate operator functions of the form |
| // |
| // VQ L& operator%=(VQ L&, R); |
| // VQ L& operator<<=(VQ L&, R); |
| // VQ L& operator>>=(VQ L&, R); |
| // VQ L& operator&=(VQ L&, R); |
| // VQ L& operator^=(VQ L&, R); |
| // VQ L& operator|=(VQ L&, R); |
| for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { |
| for (unsigned Right = FirstPromotedIntegralType; |
| Right < LastPromotedIntegralType; ++Right) { |
| QualType ParamTypes[2]; |
| ParamTypes[1] = ArithmeticTypes[Right]; |
| |
| // Add this built-in operator as a candidate (VQ is empty). |
| ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); |
| if (VisibleTypeConversionsQuals.hasVolatile()) { |
| // Add this built-in operator as a candidate (VQ is 'volatile'). |
| ParamTypes[0] = ArithmeticTypes[Left]; |
| ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); |
| ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); |
| AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| } |
| break; |
| |
| case OO_Exclaim: { |
| // C++ [over.operator]p23: |
| // |
| // There also exist candidate operator functions of the form |
| // |
| // bool operator!(bool); |
| // bool operator&&(bool, bool); [BELOW] |
| // bool operator||(bool, bool); [BELOW] |
| QualType ParamTy = Context.BoolTy; |
| AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, |
| /*IsAssignmentOperator=*/false, |
| /*NumContextualBoolArguments=*/1); |
| break; |
| } |
| |
| case OO_AmpAmp: |
| case OO_PipePipe: { |
| // C++ [over.operator]p23: |
| // |
| // There also exist candidate operator functions of the form |
| // |
| // bool operator!(bool); [ABOVE] |
| // bool operator&&(bool, bool); |
| // bool operator||(bool, bool); |
| QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; |
| AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, |
| /*IsAssignmentOperator=*/false, |
| /*NumContextualBoolArguments=*/2); |
| break; |
| } |
| |
| case OO_Subscript: |
| // C++ [over.built]p13: |
| // |
| // For every cv-qualified or cv-unqualified object type T there |
| // exist candidate operator functions of the form |
| // |
| // T* operator+(T*, ptrdiff_t); [ABOVE] |
| // T& operator[](T*, ptrdiff_t); |
| // T* operator-(T*, ptrdiff_t); [ABOVE] |
| // T* operator+(ptrdiff_t, T*); [ABOVE] |
| // T& operator[](ptrdiff_t, T*); |
| for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; |
| QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); |
| QualType ResultTy = Context.getLValueReferenceType(PointeeType); |
| |
| // T& operator[](T*, ptrdiff_t) |
| AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); |
| |
| // T& operator[](ptrdiff_t, T*); |
| ParamTypes[0] = ParamTypes[1]; |
| ParamTypes[1] = *Ptr; |
| AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| break; |
| |
| case OO_ArrowStar: |
| // C++ [over.built]p11: |
| // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, |
| // C1 is the same type as C2 or is a derived class of C2, T is an object |
| // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, |
| // there exist candidate operator functions of the form |
| // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); |
| // where CV12 is the union of CV1 and CV2. |
| { |
| for (BuiltinCandidateTypeSet::iterator Ptr = |
| CandidateTypes.pointer_begin(); |
| Ptr != CandidateTypes.pointer_end(); ++Ptr) { |
| QualType C1Ty = (*Ptr); |
| QualType C1; |
| QualifierCollector Q1; |
| if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { |
| C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); |
| if (!isa<RecordType>(C1)) |
| continue; |
| // heuristic to reduce number of builtin candidates in the set. |
| // Add volatile/restrict version only if there are conversions to a |
| // volatile/restrict type. |
| if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) |
| continue; |
| if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) |
| continue; |
| } |
| for (BuiltinCandidateTypeSet::iterator |
| MemPtr = CandidateTypes.member_pointer_begin(), |
| MemPtrEnd = CandidateTypes.member_pointer_end(); |
| MemPtr != MemPtrEnd; ++MemPtr) { |
| const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); |
| QualType C2 = QualType(mptr->getClass(), 0); |
| C2 = C2.getUnqualifiedType(); |
| if (C1 != C2 && !IsDerivedFrom(C1, C2)) |
| break; |
| QualType ParamTypes[2] = { *Ptr, *MemPtr }; |
| // build CV12 T& |
| QualType T = mptr->getPointeeType(); |
| if (!VisibleTypeConversionsQuals.hasVolatile() && |
| T.isVolatileQualified()) |
| continue; |
| if (!VisibleTypeConversionsQuals.hasRestrict() && |
| T.isRestrictQualified()) |
| continue; |
| T = Q1.apply(T); |
| QualType ResultTy = Context.getLValueReferenceType(T); |
| AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| } |
| break; |
| |
| case OO_Conditional: |
| // Note that we don't consider the first argument, since it has been |
| // contextually converted to bool long ago. The candidates below are |
| // therefore added as binary. |
| // |
| // C++ [over.built]p24: |
| // For every type T, where T is a pointer or pointer-to-member type, |
| // there exist candidate operator functions of the form |
| // |
| // T operator?(bool, T, T); |
| // |
| for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), |
| E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { |
| QualType ParamTypes[2] = { *Ptr, *Ptr }; |
| AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); |
| } |
| for (BuiltinCandidateTypeSet::iterator Ptr = |
| CandidateTypes.member_pointer_begin(), |
| E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { |
| QualType ParamTypes[2] = { *Ptr, *Ptr }; |
| AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); |
| } |
| goto Conditional; |
| } |
| } |
| |
| /// \brief Add function candidates found via argument-dependent lookup |
| /// to the set of overloading candidates. |
| /// |
| /// This routine performs argument-dependent name lookup based on the |
| /// given function name (which may also be an operator name) and adds |
| /// all of the overload candidates found by ADL to the overload |
| /// candidate set (C++ [basic.lookup.argdep]). |
| void |
| Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, |
| bool Operator, |
| Expr **Args, unsigned NumArgs, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool PartialOverloading) { |
| ADLResult Fns; |
| |
| // FIXME: This approach for uniquing ADL results (and removing |
| // redundant candidates from the set) relies on pointer-equality, |
| // which means we need to key off the canonical decl. However, |
| // always going back to the canonical decl might not get us the |
| // right set of default arguments. What default arguments are |
| // we supposed to consider on ADL candidates, anyway? |
| |
| // FIXME: Pass in the explicit template arguments? |
| ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); |
| |
| // Erase all of the candidates we already knew about. |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), |
| CandEnd = CandidateSet.end(); |
| Cand != CandEnd; ++Cand) |
| if (Cand->Function) { |
| Fns.erase(Cand->Function); |
| if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) |
| Fns.erase(FunTmpl); |
| } |
| |
| // For each of the ADL candidates we found, add it to the overload |
| // set. |
| for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { |
| if (ExplicitTemplateArgs) |
| continue; |
| |
| AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, |
| false, PartialOverloading); |
| } else |
| AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), |
| FoundDecl, ExplicitTemplateArgs, |
| Args, NumArgs, CandidateSet); |
| } |
| } |
| |
| /// isBetterOverloadCandidate - Determines whether the first overload |
| /// candidate is a better candidate than the second (C++ 13.3.3p1). |
| bool |
| Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, |
| const OverloadCandidate& Cand2, |
| SourceLocation Loc) { |
| // Define viable functions to be better candidates than non-viable |
| // functions. |
| if (!Cand2.Viable) |
| return Cand1.Viable; |
| else if (!Cand1.Viable) |
| return false; |
| |
| // C++ [over.match.best]p1: |
| // |
| // -- if F is a static member function, ICS1(F) is defined such |
| // that ICS1(F) is neither better nor worse than ICS1(G) for |
| // any function G, and, symmetrically, ICS1(G) is neither |
| // better nor worse than ICS1(F). |
| unsigned StartArg = 0; |
| if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) |
| StartArg = 1; |
| |
| // C++ [over.match.best]p1: |
| // A viable function F1 is defined to be a better function than another |
| // viable function F2 if for all arguments i, ICSi(F1) is not a worse |
| // conversion sequence than ICSi(F2), and then... |
| unsigned NumArgs = Cand1.Conversions.size(); |
| assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); |
| bool HasBetterConversion = false; |
| for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { |
| switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], |
| Cand2.Conversions[ArgIdx])) { |
| case ImplicitConversionSequence::Better: |
| // Cand1 has a better conversion sequence. |
| HasBetterConversion = true; |
| break; |
| |
| case ImplicitConversionSequence::Worse: |
| // Cand1 can't be better than Cand2. |
| return false; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| // Do nothing. |
| break; |
| } |
| } |
| |
| // -- for some argument j, ICSj(F1) is a better conversion sequence than |
| // ICSj(F2), or, if not that, |
| if (HasBetterConversion) |
| return true; |
| |
| // - F1 is a non-template function and F2 is a function template |
| // specialization, or, if not that, |
| if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && |
| Cand2.Function && Cand2.Function->getPrimaryTemplate()) |
| return true; |
| |
| // -- F1 and F2 are function template specializations, and the function |
| // template for F1 is more specialized than the template for F2 |
| // according to the partial ordering rules described in 14.5.5.2, or, |
| // if not that, |
| if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && |
| Cand2.Function && Cand2.Function->getPrimaryTemplate()) |
| if (FunctionTemplateDecl *BetterTemplate |
| = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), |
| Cand2.Function->getPrimaryTemplate(), |
| Loc, |
| isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion |
| : TPOC_Call)) |
| return BetterTemplate == Cand1.Function->getPrimaryTemplate(); |
| |
| // -- the context is an initialization by user-defined conversion |
| // (see 8.5, 13.3.1.5) and the standard conversion sequence |
| // from the return type of F1 to the destination type (i.e., |
| // the type of the entity being initialized) is a better |
| // conversion sequence than the standard conversion sequence |
| // from the return type of F2 to the destination type. |
| if (Cand1.Function && Cand2.Function && |
| isa<CXXConversionDecl>(Cand1.Function) && |
| isa<CXXConversionDecl>(Cand2.Function)) { |
| switch (CompareStandardConversionSequences(Cand1.FinalConversion, |
| Cand2.FinalConversion)) { |
| case ImplicitConversionSequence::Better: |
| // Cand1 has a better conversion sequence. |
| return true; |
| |
| case ImplicitConversionSequence::Worse: |
| // Cand1 can't be better than Cand2. |
| return false; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| // Do nothing |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// \brief Computes the best viable function (C++ 13.3.3) |
| /// within an overload candidate set. |
| /// |
| /// \param CandidateSet the set of candidate functions. |
| /// |
| /// \param Loc the location of the function name (or operator symbol) for |
| /// which overload resolution occurs. |
| /// |
| /// \param Best f overload resolution was successful or found a deleted |
| /// function, Best points to the candidate function found. |
| /// |
| /// \returns The result of overload resolution. |
| OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, |
| SourceLocation Loc, |
| OverloadCandidateSet::iterator& Best) { |
| // Find the best viable function. |
| Best = CandidateSet.end(); |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
| Cand != CandidateSet.end(); ++Cand) { |
| if (Cand->Viable) { |
| if (Best == CandidateSet.end() || |
| isBetterOverloadCandidate(*Cand, *Best, Loc)) |
| Best = Cand; |
| } |
| } |
| |
| // If we didn't find any viable functions, abort. |
| if (Best == CandidateSet.end()) |
| return OR_No_Viable_Function; |
| |
| // Make sure that this function is better than every other viable |
| // function. If not, we have an ambiguity. |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
| Cand != CandidateSet.end(); ++Cand) { |
| if (Cand->Viable && |
| Cand != Best && |
| !isBetterOverloadCandidate(*Best, *Cand, Loc)) { |
| Best = CandidateSet.end(); |
| return OR_Ambiguous; |
| } |
| } |
| |
| // Best is the best viable function. |
| if (Best->Function && |
| (Best->Function->isDeleted() || |
| Best->Function->getAttr<UnavailableAttr>())) |
| return OR_Deleted; |
| |
| // C++ [basic.def.odr]p2: |
| // An overloaded function is used if it is selected by overload resolution |
| // when referred to from a potentially-evaluated expression. [Note: this |
| // covers calls to named functions (5.2.2), operator overloading |
| // (clause 13), user-defined conversions (12.3.2), allocation function for |
| // placement new (5.3.4), as well as non-default initialization (8.5). |
| if (Best->Function) |
| MarkDeclarationReferenced(Loc, Best->Function); |
| return OR_Success; |
| } |
| |
| namespace { |
| |
| enum OverloadCandidateKind { |
| oc_function, |
| oc_method, |
| oc_constructor, |
| oc_function_template, |
| oc_method_template, |
| oc_constructor_template, |
| oc_implicit_default_constructor, |
| oc_implicit_copy_constructor, |
| oc_implicit_copy_assignment |
| }; |
| |
| OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, |
| FunctionDecl *Fn, |
| std::string &Description) { |
| bool isTemplate = false; |
| |
| if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { |
| isTemplate = true; |
| Description = S.getTemplateArgumentBindingsText( |
| FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); |
| } |
| |
| if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { |
| if (!Ctor->isImplicit()) |
| return isTemplate ? oc_constructor_template : oc_constructor; |
| |
| return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor |
| : oc_implicit_default_constructor; |
| } |
| |
| if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { |
| // This actually gets spelled 'candidate function' for now, but |
| // it doesn't hurt to split it out. |
| if (!Meth->isImplicit()) |
| return isTemplate ? oc_method_template : oc_method; |
| |
| assert(Meth->isCopyAssignment() |
| && "implicit method is not copy assignment operator?"); |
| return oc_implicit_copy_assignment; |
| } |
| |
| return isTemplate ? oc_function_template : oc_function; |
| } |
| |
| } // end anonymous namespace |
| |
| // Notes the location of an overload candidate. |
| void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { |
| std::string FnDesc; |
| OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); |
| Diag(Fn->getLocation(), diag::note_ovl_candidate) |
| << (unsigned) K << FnDesc; |
| } |
| |
| /// Diagnoses an ambiguous conversion. The partial diagnostic is the |
| /// "lead" diagnostic; it will be given two arguments, the source and |
| /// target types of the conversion. |
| void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, |
| SourceLocation CaretLoc, |
| const PartialDiagnostic &PDiag) { |
| Diag(CaretLoc, PDiag) |
| << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); |
| for (AmbiguousConversionSequence::const_iterator |
| I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { |
| NoteOverloadCandidate(*I); |
| } |
| } |
| |
| namespace { |
| |
| void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { |
| const ImplicitConversionSequence &Conv = Cand->Conversions[I]; |
| assert(Conv.isBad()); |
| assert(Cand->Function && "for now, candidate must be a function"); |
| FunctionDecl *Fn = Cand->Function; |
| |
| // There's a conversion slot for the object argument if this is a |
| // non-constructor method. Note that 'I' corresponds the |
| // conversion-slot index. |
| bool isObjectArgument = false; |
| if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { |
| if (I == 0) |
| isObjectArgument = true; |
| else |
| I--; |
| } |
| |
| std::string FnDesc; |
| OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); |
| |
| Expr *FromExpr = Conv.Bad.FromExpr; |
| QualType FromTy = Conv.Bad.getFromType(); |
| QualType ToTy = Conv.Bad.getToType(); |
| |
| if (FromTy == S.Context.OverloadTy) { |
| assert(FromExpr && "overload set argument came from implicit argument?"); |
| Expr *E = FromExpr->IgnoreParens(); |
| if (isa<UnaryOperator>(E)) |
| E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); |
| DeclarationName Name = cast<OverloadExpr>(E)->getName(); |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << ToTy << Name << I+1; |
| return; |
| } |
| |
| // Do some hand-waving analysis to see if the non-viability is due |
| // to a qualifier mismatch. |
| CanQualType CFromTy = S.Context.getCanonicalType(FromTy); |
| CanQualType CToTy = S.Context.getCanonicalType(ToTy); |
| if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) |
| CToTy = RT->getPointeeType(); |
| else { |
| // TODO: detect and diagnose the full richness of const mismatches. |
| if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) |
| if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) |
| CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); |
| } |
| |
| if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && |
| !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { |
| // It is dumb that we have to do this here. |
| while (isa<ArrayType>(CFromTy)) |
| CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); |
| while (isa<ArrayType>(CToTy)) |
| CToTy = CFromTy->getAs<ArrayType>()->getElementType(); |
| |
| Qualifiers FromQs = CFromTy.getQualifiers(); |
| Qualifiers ToQs = CToTy.getQualifiers(); |
| |
| if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy |
| << FromQs.getAddressSpace() << ToQs.getAddressSpace() |
| << (unsigned) isObjectArgument << I+1; |
| return; |
| } |
| |
| unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
| assert(CVR && "unexpected qualifiers mismatch"); |
| |
| if (isObjectArgument) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << (CVR - 1); |
| } else { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << (CVR - 1) << I+1; |
| } |
| return; |
| } |
| |
| // Diagnose references or pointers to incomplete types differently, |
| // since it's far from impossible that the incompleteness triggered |
| // the failure. |
| QualType TempFromTy = FromTy.getNonReferenceType(); |
| if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) |
| TempFromTy = PTy->getPointeeType(); |
| if (TempFromTy->isIncompleteType()) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << ToTy << (unsigned) isObjectArgument << I+1; |
| return; |
| } |
| |
| // TODO: specialize more based on the kind of mismatch |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << ToTy << (unsigned) isObjectArgument << I+1; |
| } |
| |
| void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, |
| unsigned NumFormalArgs) { |
| // TODO: treat calls to a missing default constructor as a special case |
| |
| FunctionDecl *Fn = Cand->Function; |
| const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); |
| |
| unsigned MinParams = Fn->getMinRequiredArguments(); |
| |
| // at least / at most / exactly |
| // FIXME: variadic templates "at most" should account for parameter packs |
| unsigned mode, modeCount; |
| if (NumFormalArgs < MinParams) { |
| assert((Cand->FailureKind == ovl_fail_too_few_arguments) || |
| (Cand->FailureKind == ovl_fail_bad_deduction && |
| Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); |
| if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) |
| mode = 0; // "at least" |
| else |
| mode = 2; // "exactly" |
| modeCount = MinParams; |
| } else { |
| assert((Cand->FailureKind == ovl_fail_too_many_arguments) || |
| (Cand->FailureKind == ovl_fail_bad_deduction && |
| Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); |
| if (MinParams != FnTy->getNumArgs()) |
| mode = 1; // "at most" |
| else |
| mode = 2; // "exactly" |
| modeCount = FnTy->getNumArgs(); |
| } |
| |
| std::string Description; |
| OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) |
| << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode |
| << modeCount << NumFormalArgs; |
| } |
| |
| /// Diagnose a failed template-argument deduction. |
| void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, |
| Expr **Args, unsigned NumArgs) { |
| FunctionDecl *Fn = Cand->Function; // pattern |
| |
| TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); |
| NamedDecl *ParamD; |
| (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || |
| (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || |
| (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); |
| switch (Cand->DeductionFailure.Result) { |
| case Sema::TDK_Success: |
| llvm_unreachable("TDK_success while diagnosing bad deduction"); |
| |
| case Sema::TDK_Incomplete: { |
| assert(ParamD && "no parameter found for incomplete deduction result"); |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) |
| << ParamD->getDeclName(); |
| return; |
| } |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_InconsistentQuals: { |
| assert(ParamD && "no parameter found for inconsistent deduction result"); |
| int which = 0; |
| if (isa<TemplateTypeParmDecl>(ParamD)) |
| which = 0; |
| else if (isa<NonTypeTemplateParmDecl>(ParamD)) |
| which = 1; |
| else { |
| which = 2; |
| } |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) |
| << which << ParamD->getDeclName() |
| << *Cand->DeductionFailure.getFirstArg() |
| << *Cand->DeductionFailure.getSecondArg(); |
| return; |
| } |
| |
| case Sema::TDK_InvalidExplicitArguments: |
| assert(ParamD && "no parameter found for invalid explicit arguments"); |
| if (ParamD->getDeclName()) |
| S.Diag(Fn->getLocation(), |
| diag::note_ovl_candidate_explicit_arg_mismatch_named) |
| << ParamD->getDeclName(); |
| else { |
| int index = 0; |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) |
| index = TTP->getIndex(); |
| else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) |
| index = NTTP->getIndex(); |
| else |
| index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); |
| S.Diag(Fn->getLocation(), |
| diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) |
| << (index + 1); |
| } |
| return; |
| |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| DiagnoseArityMismatch(S, Cand, NumArgs); |
| return; |
| |
| case Sema::TDK_InstantiationDepth: |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); |
| return; |
| |
| case Sema::TDK_SubstitutionFailure: { |
| std::string ArgString; |
| if (TemplateArgumentList *Args |
| = Cand->DeductionFailure.getTemplateArgumentList()) |
| ArgString = S.getTemplateArgumentBindingsText( |
| Fn->getDescribedFunctionTemplate()->getTemplateParameters(), |
| *Args); |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) |
| << ArgString; |
| return; |
| } |
| |
| // TODO: diagnose these individually, then kill off |
| // note_ovl_candidate_bad_deduction, which is uselessly vague. |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); |
| return; |
| } |
| } |
| |
| /// Generates a 'note' diagnostic for an overload candidate. We've |
| /// already generated a primary error at the call site. |
| /// |
| /// It really does need to be a single diagnostic with its caret |
| /// pointed at the candidate declaration. Yes, this creates some |
| /// major challenges of technical writing. Yes, this makes pointing |
| /// out problems with specific arguments quite awkward. It's still |
| /// better than generating twenty screens of text for every failed |
| /// overload. |
| /// |
| /// It would be great to be able to express per-candidate problems |
| /// more richly for those diagnostic clients that cared, but we'd |
| /// still have to be just as careful with the default diagnostics. |
| void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, |
| Expr **Args, unsigned NumArgs) { |
| FunctionDecl *Fn = Cand->Function; |
| |
| // Note deleted candidates, but only if they're viable. |
| if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { |
| std::string FnDesc; |
| OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) |
| << FnKind << FnDesc << Fn->isDeleted(); |
| return; |
| } |
| |
| // We don't really have anything else to say about viable candidates. |
| if (Cand->Viable) { |
| S.NoteOverloadCandidate(Fn); |
| return; |
| } |
| |
| switch (Cand->FailureKind) { |
| case ovl_fail_too_many_arguments: |
| case ovl_fail_too_few_arguments: |
| return DiagnoseArityMismatch(S, Cand, NumArgs); |
| |
| case ovl_fail_bad_deduction: |
| return DiagnoseBadDeduction(S, Cand, Args, NumArgs); |
| |
| case ovl_fail_trivial_conversion: |
| case ovl_fail_bad_final_conversion: |
| case ovl_fail_final_conversion_not_exact: |
| return S.NoteOverloadCandidate(Fn); |
| |
| case ovl_fail_bad_conversion: { |
| unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); |
| for (unsigned N = Cand->Conversions.size(); I != N; ++I) |
| if (Cand->Conversions[I].isBad()) |
| return DiagnoseBadConversion(S, Cand, I); |
| |
| // FIXME: this currently happens when we're called from SemaInit |
| // when user-conversion overload fails. Figure out how to handle |
| // those conditions and diagnose them well. |
| return S.NoteOverloadCandidate(Fn); |
| } |
| } |
| } |
| |
| void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { |
| // Desugar the type of the surrogate down to a function type, |
| // retaining as many typedefs as possible while still showing |
| // the function type (and, therefore, its parameter types). |
| QualType FnType = Cand->Surrogate->getConversionType(); |
| bool isLValueReference = false; |
| bool isRValueReference = false; |
| bool isPointer = false; |
| if (const LValueReferenceType *FnTypeRef = |
| FnType->getAs<LValueReferenceType>()) { |
| FnType = FnTypeRef->getPointeeType(); |
| isLValueReference = true; |
| } else if (const RValueReferenceType *FnTypeRef = |
| FnType->getAs<RValueReferenceType>()) { |
| FnType = FnTypeRef->getPointeeType(); |
| isRValueReference = true; |
| } |
| if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { |
| FnType = FnTypePtr->getPointeeType(); |
| isPointer = true; |
| } |
| // Desugar down to a function type. |
| FnType = QualType(FnType->getAs<FunctionType>(), 0); |
| // Reconstruct the pointer/reference as appropriate. |
| if (isPointer) FnType = S.Context.getPointerType(FnType); |
| if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); |
| if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); |
| |
| S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) |
| << FnType; |
| } |
| |
| void NoteBuiltinOperatorCandidate(Sema &S, |
| const char *Opc, |
| SourceLocation OpLoc, |
| OverloadCandidate *Cand) { |
| assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); |
| std::string TypeStr("operator"); |
| TypeStr += Opc; |
| TypeStr += "("; |
| TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); |
| if (Cand->Conversions.size() == 1) { |
| TypeStr += ")"; |
| S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; |
| } else { |
| TypeStr += ", "; |
| TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); |
| TypeStr += ")"; |
| S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; |
| } |
| } |
| |
| void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, |
| OverloadCandidate *Cand) { |
| unsigned NoOperands = Cand->Conversions.size(); |
| for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { |
| const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; |
| if (ICS.isBad()) break; // all meaningless after first invalid |
| if (!ICS.isAmbiguous()) continue; |
| |
| S.DiagnoseAmbiguousConversion(ICS, OpLoc, |
| S.PDiag(diag::note_ambiguous_type_conversion)); |
| } |
| } |
| |
| SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { |
| if (Cand->Function) |
| return Cand->Function->getLocation(); |
| if (Cand->IsSurrogate) |
| return Cand->Surrogate->getLocation(); |
| return SourceLocation(); |
| } |
| |
| struct CompareOverloadCandidatesForDisplay { |
| Sema &S; |
| CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} |
| |
| bool operator()(const OverloadCandidate *L, |
| const OverloadCandidate *R) { |
| // Fast-path this check. |
| if (L == R) return false; |
| |
| // Order first by viability. |
| if (L->Viable) { |
| if (!R->Viable) return true; |
| |
| // TODO: introduce a tri-valued comparison for overload |
| // candidates. Would be more worthwhile if we had a sort |
| // that could exploit it. |
| if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; |
| if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; |
| } else if (R->Viable) |
| return false; |
| |
| assert(L->Viable == R->Viable); |
| |
| // Criteria by which we can sort non-viable candidates: |
| if (!L->Viable) { |
| // 1. Arity mismatches come after other candidates. |
| if (L->FailureKind == ovl_fail_too_many_arguments || |
| L->FailureKind == ovl_fail_too_few_arguments) |
| return false; |
| if (R->FailureKind == ovl_fail_too_many_arguments || |
| R->FailureKind == ovl_fail_too_few_arguments) |
| return true; |
| |
| // 2. Bad conversions come first and are ordered by the number |
| // of bad conversions and quality of good conversions. |
| if (L->FailureKind == ovl_fail_bad_conversion) { |
| if (R->FailureKind != ovl_fail_bad_conversion) |
| return true; |
| |
| // If there's any ordering between the defined conversions... |
| // FIXME: this might not be transitive. |
| assert(L->Conversions.size() == R->Conversions.size()); |
| |
| int leftBetter = 0; |
| unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); |
| for (unsigned E = L->Conversions.size(); I != E; ++I) { |
| switch (S.CompareImplicitConversionSequences(L->Conversions[I], |
| R->Conversions[I])) { |
| case ImplicitConversionSequence::Better: |
| leftBetter++; |
| break; |
| |
| case ImplicitConversionSequence::Worse: |
| leftBetter--; |
| break; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| break; |
| } |
| } |
| if (leftBetter > 0) return true; |
| if (leftBetter < 0) return false; |
| |
| } else if (R->FailureKind == ovl_fail_bad_conversion) |
| return false; |
| |
| // TODO: others? |
| } |
| |
| // Sort everything else by location. |
| SourceLocation LLoc = GetLocationForCandidate(L); |
| SourceLocation RLoc = GetLocationForCandidate(R); |
| |
| // Put candidates without locations (e.g. builtins) at the end. |
| if (LLoc.isInvalid()) return false; |
| if (RLoc.isInvalid()) return true; |
| |
| return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); |
| } |
| }; |
| |
| /// CompleteNonViableCandidate - Normally, overload resolution only |
| /// computes up to the first |
| void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, |
| Expr **Args, unsigned NumArgs) { |
| assert(!Cand->Viable); |
| |
| // Don't do anything on failures other than bad conversion. |
| if (Cand->FailureKind != ovl_fail_bad_conversion) return; |
| |
| // Skip forward to the first bad conversion. |
| unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); |
| unsigned ConvCount = Cand->Conversions.size(); |
| while (true) { |
| assert(ConvIdx != ConvCount && "no bad conversion in candidate"); |
| ConvIdx++; |
| if (Cand->Conversions[ConvIdx - 1].isBad()) |
| break; |
| } |
| |
| if (ConvIdx == ConvCount) |
| return; |
| |
| assert(!Cand->Conversions[ConvIdx].isInitialized() && |
| "remaining conversion is initialized?"); |
| |
| // FIXME: this should probably be preserved from the overload |
| // operation somehow. |
| bool SuppressUserConversions = false; |
| |
| const FunctionProtoType* Proto; |
| unsigned ArgIdx = ConvIdx; |
| |
| if (Cand->IsSurrogate) { |
| QualType ConvType |
| = Cand->Surrogate->getConversionType().getNonReferenceType(); |
| if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| ConvType = ConvPtrType->getPointeeType(); |
| Proto = ConvType->getAs<FunctionProtoType>(); |
| ArgIdx--; |
| } else if (Cand->Function) { |
| Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); |
| if (isa<CXXMethodDecl>(Cand->Function) && |
| !isa<CXXConstructorDecl>(Cand->Function)) |
| ArgIdx--; |
| } else { |
| // Builtin binary operator with a bad first conversion. |
| assert(ConvCount <= 3); |
| for (; ConvIdx != ConvCount; ++ConvIdx) |
| Cand->Conversions[ConvIdx] |
| = TryCopyInitialization(S, Args[ConvIdx], |
| Cand->BuiltinTypes.ParamTypes[ConvIdx], |
| SuppressUserConversions, |
| /*InOverloadResolution*/ true); |
| return; |
| } |
| |
| // Fill in the rest of the conversions. |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) |
| Cand->Conversions[ConvIdx] |
| = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), |
| SuppressUserConversions, |
| /*InOverloadResolution=*/true); |
| else |
| Cand->Conversions[ConvIdx].setEllipsis(); |
| } |
| } |
| |
| } // end anonymous namespace |
| |
| /// PrintOverloadCandidates - When overload resolution fails, prints |
| /// diagnostic messages containing the candidates in the candidate |
| /// set. |
| void |
| Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, |
| OverloadCandidateDisplayKind OCD, |
| Expr **Args, unsigned NumArgs, |
| const char *Opc, |
| SourceLocation OpLoc) { |
| // Sort the candidates by viability and position. Sorting directly would |
| // be prohibitive, so we make a set of pointers and sort those. |
| llvm::SmallVector<OverloadCandidate*, 32> Cands; |
| if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), |
| LastCand = CandidateSet.end(); |
| Cand != LastCand; ++Cand) { |
| if (Cand->Viable) |
| Cands.push_back(Cand); |
| else if (OCD == OCD_AllCandidates) { |
| CompleteNonViableCandidate(*this, Cand, Args, NumArgs); |
| if (Cand->Function || Cand->IsSurrogate) |
| Cands.push_back(Cand); |
| // Otherwise, this a non-viable builtin candidate. We do not, in general, |
| // want to list every possible builtin candidate. |
| } |
| } |
| |
| std::sort(Cands.begin(), Cands.end(), |
| CompareOverloadCandidatesForDisplay(*this)); |
| |
| bool ReportedAmbiguousConversions = false; |
| |
| llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; |
| const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads(); |
| unsigned CandsShown = 0; |
| for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { |
| OverloadCandidate *Cand = *I; |
| |
| // Set an arbitrary limit on the number of candidate functions we'll spam |
| // the user with. FIXME: This limit should depend on details of the |
| // candidate list. |
| if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { |
| break; |
| } |
| ++CandsShown; |
| |
| if (Cand->Function) |
| NoteFunctionCandidate(*this, Cand, Args, NumArgs); |
| else if (Cand->IsSurrogate) |
| NoteSurrogateCandidate(*this, Cand); |
| else { |
| assert(Cand->Viable && |
| "Non-viable built-in candidates are not added to Cands."); |
| // Generally we only see ambiguities including viable builtin |
| // operators if overload resolution got screwed up by an |
| // ambiguous user-defined conversion. |
| // |
| // FIXME: It's quite possible for different conversions to see |
| // different ambiguities, though. |
| if (!ReportedAmbiguousConversions) { |
| NoteAmbiguousUserConversions(*this, OpLoc, Cand); |
| ReportedAmbiguousConversions = true; |
| } |
| |
| // If this is a viable builtin, print it. |
| NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); |
| } |
| } |
| |
| if (I != E) |
| Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); |
| } |
| |
| static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { |
| if (isa<UnresolvedLookupExpr>(E)) |
| return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); |
| |
| return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); |
| } |
| |
| /// ResolveAddressOfOverloadedFunction - Try to resolve the address of |
| /// an overloaded function (C++ [over.over]), where @p From is an |
| /// expression with overloaded function type and @p ToType is the type |
| /// we're trying to resolve to. For example: |
| /// |
| /// @code |
| /// int f(double); |
| /// int f(int); |
| /// |
| /// int (*pfd)(double) = f; // selects f(double) |
| /// @endcode |
| /// |
| /// This routine returns the resulting FunctionDecl if it could be |
| /// resolved, and NULL otherwise. When @p Complain is true, this |
| /// routine will emit diagnostics if there is an error. |
| FunctionDecl * |
| Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, |
| bool Complain, |
| DeclAccessPair &FoundResult) { |
| QualType FunctionType = ToType; |
| bool IsMember = false; |
| if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) |
| FunctionType = ToTypePtr->getPointeeType(); |
| else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) |
| FunctionType = ToTypeRef->getPointeeType(); |
| else if (const MemberPointerType *MemTypePtr = |
| ToType->getAs<MemberPointerType>()) { |
| FunctionType = MemTypePtr->getPointeeType(); |
| IsMember = true; |
| } |
| |
| // C++ [over.over]p1: |
| // [...] [Note: any redundant set of parentheses surrounding the |
| // overloaded function name is ignored (5.1). ] |
| // C++ [over.over]p1: |
| // [...] The overloaded function name can be preceded by the & |
| // operator. |
| OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); |
| TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; |
| if (OvlExpr->hasExplicitTemplateArgs()) { |
| OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); |
| ExplicitTemplateArgs = &ETABuffer; |
| } |
| |
| // We expect a pointer or reference to function, or a function pointer. |
| FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); |
| if (!FunctionType->isFunctionType()) { |
| if (Complain) |
| Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) |
| << OvlExpr->getName() << ToType; |
| |
| return 0; |
| } |
| |
| assert(From->getType() == Context.OverloadTy); |
| |
| // Look through all of the overloaded functions, searching for one |
| // whose type matches exactly. |
| llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; |
| llvm::SmallVector<FunctionDecl *, 4> NonMatches; |
| |
| bool FoundNonTemplateFunction = false; |
| for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| E = OvlExpr->decls_end(); I != E; ++I) { |
| // Look through any using declarations to find the underlying function. |
| NamedDecl *Fn = (*I)->getUnderlyingDecl(); |
| |
| // C++ [over.over]p3: |
| // Non-member functions and static member functions match |
| // targets of type "pointer-to-function" or "reference-to-function." |
| // Nonstatic member functions match targets of |
| // type "pointer-to-member-function." |
| // Note that according to DR 247, the containing class does not matter. |
| |
| if (FunctionTemplateDecl *FunctionTemplate |
| = dyn_cast<FunctionTemplateDecl>(Fn)) { |
| if (CXXMethodDecl *Method |
| = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { |
| // Skip non-static function templates when converting to pointer, and |
| // static when converting to member pointer. |
| if (Method->isStatic() == IsMember) |
| continue; |
| } else if (IsMember) |
| continue; |
| |
| // C++ [over.over]p2: |
| // If the name is a function template, template argument deduction is |
| // done (14.8.2.2), and if the argument deduction succeeds, the |
| // resulting template argument list is used to generate a single |
| // function template specialization, which is added to the set of |
| // overloaded functions considered. |
| // FIXME: We don't really want to build the specialization here, do we? |
| FunctionDecl *Specialization = 0; |
| TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, |
| FunctionType, Specialization, Info)) { |
| // FIXME: make a note of the failed deduction for diagnostics. |
| (void)Result; |
| } else { |
| // FIXME: If the match isn't exact, shouldn't we just drop this as |
| // a candidate? Find a testcase before changing the code. |
| assert(FunctionType |
| == Context.getCanonicalType(Specialization->getType())); |
| Matches.push_back(std::make_pair(I.getPair(), |
| cast<FunctionDecl>(Specialization->getCanonicalDecl()))); |
| } |
| |
| continue; |
| } |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| // Skip non-static functions when converting to pointer, and static |
| // when converting to member pointer. |
| if (Method->isStatic() == IsMember) |
| continue; |
| |
| // If we have explicit template arguments, skip non-templates. |
| if (OvlExpr->hasExplicitTemplateArgs()) |
| continue; |
| } else if (IsMember) |
| continue; |
| |
| if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { |
| QualType ResultTy; |
| if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || |
| IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, |
| ResultTy)) { |
| Matches.push_back(std::make_pair(I.getPair(), |
| cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); |
| FoundNonTemplateFunction = true; |
| } |
| } |
| } |
| |
| // If there were 0 or 1 matches, we're done. |
| if (Matches.empty()) { |
| if (Complain) { |
| Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) |
| << OvlExpr->getName() << FunctionType; |
| for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| E = OvlExpr->decls_end(); |
| I != E; ++I) |
| if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) |
| NoteOverloadCandidate(F); |
| } |
| |
| return 0; |
| } else if (Matches.size() == 1) { |
| FunctionDecl *Result = Matches[0].second; |
| FoundResult = Matches[0].first; |
| MarkDeclarationReferenced(From->getLocStart(), Result); |
| if (Complain) |
| CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); |
| return Result; |
| } |
| |
| // C++ [over.over]p4: |
| // If more than one function is selected, [...] |
| if (!FoundNonTemplateFunction) { |
| // [...] and any given function template specialization F1 is |
| // eliminated if the set contains a second function template |
| // specialization whose function template is more specialized |
| // than the function template of F1 according to the partial |
| // ordering rules of 14.5.5.2. |
| |
| // The algorithm specified above is quadratic. We instead use a |
| // two-pass algorithm (similar to the one used to identify the |
| // best viable function in an overload set) that identifies the |
| // best function template (if it exists). |
| |
| UnresolvedSet<4> MatchesCopy; // TODO: avoid! |
| for (unsigned I = 0, E = Matches.size(); I != E; ++I) |
| MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); |
| |
| UnresolvedSetIterator Result = |
| getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), |
| TPOC_Other, From->getLocStart(), |
| PDiag(), |
| PDiag(diag::err_addr_ovl_ambiguous) |
| << Matches[0].second->getDeclName(), |
| PDiag(diag::note_ovl_candidate) |
| << (unsigned) oc_function_template); |
| assert(Result != MatchesCopy.end() && "no most-specialized template"); |
| MarkDeclarationReferenced(From->getLocStart(), *Result); |
| FoundResult = Matches[Result - MatchesCopy.begin()].first; |
| if (Complain) { |
| CheckUnresolvedAccess(*this, OvlExpr, FoundResult); |
| DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); |
| } |
| return cast<FunctionDecl>(*Result); |
| } |
| |
| // [...] any function template specializations in the set are |
| // eliminated if the set also contains a non-template function, [...] |
| for (unsigned I = 0, N = Matches.size(); I != N; ) { |
| if (Matches[I].second->getPrimaryTemplate() == 0) |
| ++I; |
| else { |
| Matches[I] = Matches[--N]; |
| Matches.set_size(N); |
| } |
| } |
| |
| // [...] After such eliminations, if any, there shall remain exactly one |
| // selected function. |
| if (Matches.size() == 1) { |
| MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); |
| FoundResult = Matches[0].first; |
| if (Complain) { |
| CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); |
| DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); |
| } |
| return cast<FunctionDecl>(Matches[0].second); |
| } |
| |
| // FIXME: We should probably return the same thing that BestViableFunction |
| // returns (even if we issue the diagnostics here). |
| Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) |
| << Matches[0].second->getDeclName(); |
| for (unsigned I = 0, E = Matches.size(); I != E; ++I) |
| NoteOverloadCandidate(Matches[I].second); |
| return 0; |
| } |
| |
| /// \brief Given an expression that refers to an overloaded function, try to |
| /// resolve that overloaded function expression down to a single function. |
| /// |
| /// This routine can only resolve template-ids that refer to a single function |
| /// template, where that template-id refers to a single template whose template |
| /// arguments are either provided by the template-id or have defaults, |
| /// as described in C++0x [temp.arg.explicit]p3. |
| FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { |
| // C++ [over.over]p1: |
| // [...] [Note: any redundant set of parentheses surrounding the |
| // overloaded function name is ignored (5.1). ] |
| // C++ [over.over]p1: |
| // [...] The overloaded function name can be preceded by the & |
| // operator. |
| |
| if (From->getType() != Context.OverloadTy) |
| return 0; |
| |
| OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); |
| |
| // If we didn't actually find any template-ids, we're done. |
| if (!OvlExpr->hasExplicitTemplateArgs()) |
| return 0; |
| |
| TemplateArgumentListInfo ExplicitTemplateArgs; |
| OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); |
| |
| // Look through all of the overloaded functions, searching for one |
| // whose type matches exactly. |
| FunctionDecl *Matched = 0; |
| for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| E = OvlExpr->decls_end(); I != E; ++I) { |
| // C++0x [temp.arg.explicit]p3: |
| // [...] In contexts where deduction is done and fails, or in contexts |
| // where deduction is not done, if a template argument list is |
| // specified and it, along with any default template arguments, |
| // identifies a single function template specialization, then the |
| // template-id is an lvalue for the function template specialization. |
| FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); |
| |
| // C++ [over.over]p2: |
| // If the name is a function template, template argument deduction is |
| // done (14.8.2.2), and if the argument deduction succeeds, the |
| // resulting template argument list is used to generate a single |
| // function template specialization, which is added to the set of |
| // overloaded functions considered. |
| FunctionDecl *Specialization = 0; |
| TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, |
| Specialization, Info)) { |
| // FIXME: make a note of the failed deduction for diagnostics. |
| (void)Result; |
| continue; |
| } |
| |
| // Multiple matches; we can't resolve to a single declaration. |
| if (Matched) |
| return 0; |
| |
| Matched = Specialization; |
| } |
| |
| return Matched; |
| } |
| |
| /// \brief Add a single candidate to the overload set. |
| static void AddOverloadedCallCandidate(Sema &S, |
| DeclAccessPair FoundDecl, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet &CandidateSet, |
| bool PartialOverloading) { |
| NamedDecl *Callee = FoundDecl.getDecl(); |
| if (isa<UsingShadowDecl>(Callee)) |
| Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); |
| |
| if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { |
| assert(!ExplicitTemplateArgs && "Explicit template arguments?"); |
| S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, |
| false, PartialOverloading); |
| return; |
| } |
| |
| if (FunctionTemplateDecl *FuncTemplate |
| = dyn_cast<FunctionTemplateDecl>(Callee)) { |
| S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, |
| ExplicitTemplateArgs, |
| Args, NumArgs, CandidateSet); |
| return; |
| } |
| |
| assert(false && "unhandled case in overloaded call candidate"); |
| |
| // do nothing? |
| } |
| |
| /// \brief Add the overload candidates named by callee and/or found by argument |
| /// dependent lookup to the given overload set. |
| void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet &CandidateSet, |
| bool PartialOverloading) { |
| |
| #ifndef NDEBUG |
| // Verify that ArgumentDependentLookup is consistent with the rules |
| // in C++0x [basic.lookup.argdep]p3: |
| // |
| // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| // and let Y be the lookup set produced by argument dependent |
| // lookup (defined as follows). If X contains |
| // |
| // -- a declaration of a class member, or |
| // |
| // -- a block-scope function declaration that is not a |
| // using-declaration, or |
| // |
| // -- a declaration that is neither a function or a function |
| // template |
| // |
| // then Y is empty. |
| |
| if (ULE->requiresADL()) { |
| for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| E = ULE->decls_end(); I != E; ++I) { |
| assert(!(*I)->getDeclContext()->isRecord()); |
| assert(isa<UsingShadowDecl>(*I) || |
| !(*I)->getDeclContext()->isFunctionOrMethod()); |
| assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); |
| } |
| } |
| #endif |
| |
| // It would be nice to avoid this copy. |
| TemplateArgumentListInfo TABuffer; |
| const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; |
| if (ULE->hasExplicitTemplateArgs()) { |
| ULE->copyTemplateArgumentsInto(TABuffer); |
| ExplicitTemplateArgs = &TABuffer; |
| } |
| |
| for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| E = ULE->decls_end(); I != E; ++I) |
| AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, |
| Args, NumArgs, CandidateSet, |
| PartialOverloading); |
| |
| if (ULE->requiresADL()) |
| AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, |
| Args, NumArgs, |
| ExplicitTemplateArgs, |
| CandidateSet, |
| PartialOverloading); |
| } |
| |
| static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, |
| Expr **Args, unsigned NumArgs) { |
| Fn->Destroy(SemaRef.Context); |
| for (unsigned Arg = 0; Arg < NumArgs; ++Arg) |
| Args[Arg]->Destroy(SemaRef.Context); |
| return SemaRef.ExprError(); |
| } |
| |
| /// Attempts to recover from a call where no functions were found. |
| /// |
| /// Returns true if new candidates were found. |
| static Sema::OwningExprResult |
| BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, |
| UnresolvedLookupExpr *ULE, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| |
| CXXScopeSpec SS; |
| if (ULE->getQualifier()) { |
| SS.setScopeRep(ULE->getQualifier()); |
| SS.setRange(ULE->getQualifierRange()); |
| } |
| |
| TemplateArgumentListInfo TABuffer; |
| const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; |
| if (ULE->hasExplicitTemplateArgs()) { |
| ULE->copyTemplateArgumentsInto(TABuffer); |
| ExplicitTemplateArgs = &TABuffer; |
| } |
| |
| LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), |
| Sema::LookupOrdinaryName); |
| if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) |
| return Destroy(SemaRef, Fn, Args, NumArgs); |
| |
| assert(!R.empty() && "lookup results empty despite recovery"); |
| |
| // Build an implicit member call if appropriate. Just drop the |
| // casts and such from the call, we don't really care. |
| Sema::OwningExprResult NewFn = SemaRef.ExprError(); |
| if ((*R.begin())->isCXXClassMember()) |
| NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); |
| else if (ExplicitTemplateArgs) |
| NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); |
| else |
| NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); |
| |
| if (NewFn.isInvalid()) |
| return Destroy(SemaRef, Fn, Args, NumArgs); |
| |
| Fn->Destroy(SemaRef.Context); |
| |
| // This shouldn't cause an infinite loop because we're giving it |
| // an expression with non-empty lookup results, which should never |
| // end up here. |
| return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, |
| Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), |
| CommaLocs, RParenLoc); |
| } |
| |
| /// ResolveOverloadedCallFn - Given the call expression that calls Fn |
| /// (which eventually refers to the declaration Func) and the call |
| /// arguments Args/NumArgs, attempt to resolve the function call down |
| /// to a specific function. If overload resolution succeeds, returns |
| /// the function declaration produced by overload |
| /// resolution. Otherwise, emits diagnostics, deletes all of the |
| /// arguments and Fn, and returns NULL. |
| Sema::OwningExprResult |
| Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| #ifndef NDEBUG |
| if (ULE->requiresADL()) { |
| // To do ADL, we must have found an unqualified name. |
| assert(!ULE->getQualifier() && "qualified name with ADL"); |
| |
| // We don't perform ADL for implicit declarations of builtins. |
| // Verify that this was correctly set up. |
| FunctionDecl *F; |
| if (ULE->decls_begin() + 1 == ULE->decls_end() && |
| (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && |
| F->getBuiltinID() && F->isImplicit()) |
| assert(0 && "performing ADL for builtin"); |
| |
| // We don't perform ADL in C. |
| assert(getLangOptions().CPlusPlus && "ADL enabled in C"); |
| } |
| #endif |
| |
| OverloadCandidateSet CandidateSet(Fn->getExprLoc()); |
| |
| // Add the functions denoted by the callee to the set of candidate |
| // functions, including those from argument-dependent lookup. |
| AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); |
| |
| // If we found nothing, try to recover. |
| // AddRecoveryCallCandidates diagnoses the error itself, so we just |
| // bailout out if it fails. |
| if (CandidateSet.empty()) |
| return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, |
| CommaLocs, RParenLoc); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { |
| case OR_Success: { |
| FunctionDecl *FDecl = Best->Function; |
| CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); |
| Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); |
| return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); |
| } |
| |
| case OR_No_Viable_Function: |
| Diag(Fn->getSourceRange().getBegin(), |
| diag::err_ovl_no_viable_function_in_call) |
| << ULE->getName() << Fn->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| break; |
| |
| case OR_Ambiguous: |
| Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) |
| << ULE->getName() << Fn->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); |
| break; |
| |
| case OR_Deleted: |
| Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) |
| << Best->Function->isDeleted() |
| << ULE->getName() |
| << Fn->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| break; |
| } |
| |
| // Overload resolution failed. Destroy all of the subexpressions and |
| // return NULL. |
| Fn->Destroy(Context); |
| for (unsigned Arg = 0; Arg < NumArgs; ++Arg) |
| Args[Arg]->Destroy(Context); |
| return ExprError(); |
| } |
| |
| static bool IsOverloaded(const UnresolvedSetImpl &Functions) { |
| return Functions.size() > 1 || |
| (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); |
| } |
| |
| /// \brief Create a unary operation that may resolve to an overloaded |
| /// operator. |
| /// |
| /// \param OpLoc The location of the operator itself (e.g., '*'). |
| /// |
| /// \param OpcIn The UnaryOperator::Opcode that describes this |
| /// operator. |
| /// |
| /// \param Functions The set of non-member functions that will be |
| /// considered by overload resolution. The caller needs to build this |
| /// set based on the context using, e.g., |
| /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This |
| /// set should not contain any member functions; those will be added |
| /// by CreateOverloadedUnaryOp(). |
| /// |
| /// \param input The input argument. |
| Sema::OwningExprResult |
| Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, |
| const UnresolvedSetImpl &Fns, |
| ExprArg input) { |
| UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); |
| Expr *Input = (Expr *)input.get(); |
| |
| OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); |
| assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| |
| Expr *Args[2] = { Input, 0 }; |
| unsigned NumArgs = 1; |
| |
| // For post-increment and post-decrement, add the implicit '0' as |
| // the second argument, so that we know this is a post-increment or |
| // post-decrement. |
| if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { |
| llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); |
| Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, |
| SourceLocation()); |
| NumArgs = 2; |
| } |
| |
| if (Input->isTypeDependent()) { |
| if (Fns.empty()) |
| return Owned(new (Context) UnaryOperator(input.takeAs<Expr>(), |
| Opc, |
| Context.DependentTy, |
| OpLoc)); |
| |
| CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators |
| UnresolvedLookupExpr *Fn |
| = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, |
| 0, SourceRange(), OpName, OpLoc, |
| /*ADL*/ true, IsOverloaded(Fns), |
| Fns.begin(), Fns.end()); |
| input.release(); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, |
| &Args[0], NumArgs, |
| Context.DependentTy, |
| OpLoc)); |
| } |
| |
| // Build an empty overload set. |
| OverloadCandidateSet CandidateSet(OpLoc); |
| |
| // Add the candidates from the given function set. |
| AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); |
| |
| // Add operator candidates that are member functions. |
| AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); |
| |
| // Add candidates from ADL. |
| AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, |
| Args, NumArgs, |
| /*ExplicitTemplateArgs*/ 0, |
| CandidateSet); |
| |
| // Add builtin operator candidates. |
| AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, OpLoc, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); |
| |
| if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, |
| Best->FoundDecl, Method)) |
| return ExprError(); |
| } else { |
| // Convert the arguments. |
| OwningExprResult InputInit |
| = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), |
| move(input)); |
| if (InputInit.isInvalid()) |
| return ExprError(); |
| |
| input = move(InputInit); |
| Input = (Expr *)input.get(); |
| } |
| |
| DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); |
| |
| // Determine the result type |
| QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); |
| |
| // Build the actual expression node. |
| Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), |
| SourceLocation()); |
| UsualUnaryConversions(FnExpr); |
| |
| input.release(); |
| Args[0] = Input; |
| ExprOwningPtr<CallExpr> TheCall(this, |
| new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, |
| Args, NumArgs, ResultTy, OpLoc)); |
| |
| if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), |
| FnDecl)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall.release()); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], AA_Passing)) |
| return ExprError(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: |
| // No viable function; fall through to handling this as a |
| // built-in operator, which will produce an error message for us. |
| break; |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper) |
| << UnaryOperator::getOpcodeStr(Opc) |
| << Input->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, |
| UnaryOperator::getOpcodeStr(Opc), OpLoc); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << UnaryOperator::getOpcodeStr(Opc) |
| << Input->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| return ExprError(); |
| } |
| |
| // Either we found no viable overloaded operator or we matched a |
| // built-in operator. In either case, fall through to trying to |
| // build a built-in operation. |
| input.release(); |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); |
| } |
| |
| /// \brief Create a binary operation that may resolve to an overloaded |
| /// operator. |
| /// |
| /// \param OpLoc The location of the operator itself (e.g., '+'). |
| /// |
| /// \param OpcIn The BinaryOperator::Opcode that describes this |
| /// operator. |
| /// |
| /// \param Functions The set of non-member functions that will be |
| /// considered by overload resolution. The caller needs to build this |
| /// set based on the context using, e.g., |
| /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This |
| /// set should not contain any member functions; those will be added |
| /// by CreateOverloadedBinOp(). |
| /// |
| /// \param LHS Left-hand argument. |
| /// \param RHS Right-hand argument. |
| Sema::OwningExprResult |
| Sema::CreateOverloadedBinOp(SourceLocation OpLoc, |
| unsigned OpcIn, |
| const UnresolvedSetImpl &Fns, |
| Expr *LHS, Expr *RHS) { |
| Expr *Args[2] = { LHS, RHS }; |
| LHS=RHS=0; //Please use only Args instead of LHS/RHS couple |
| |
| BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); |
| OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| |
| // If either side is type-dependent, create an appropriate dependent |
| // expression. |
| if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { |
| if (Fns.empty()) { |
| // If there are no functions to store, just build a dependent |
| // BinaryOperator or CompoundAssignment. |
| if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) |
| return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, |
| Context.DependentTy, OpLoc)); |
| |
| return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, |
| Context.DependentTy, |
| Context.DependentTy, |
| Context.DependentTy, |
| OpLoc)); |
| } |
| |
| // FIXME: save results of ADL from here? |
| CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators |
| UnresolvedLookupExpr *Fn |
| = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, |
| 0, SourceRange(), OpName, OpLoc, |
| /*ADL*/ true, IsOverloaded(Fns), |
| Fns.begin(), Fns.end()); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, |
| Args, 2, |
| Context.DependentTy, |
| OpLoc)); |
| } |
| |
| // If this is the .* operator, which is not overloadable, just |
| // create a built-in binary operator. |
| if (Opc == BinaryOperator::PtrMemD) |
| return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| |
| // If this is the assignment operator, we only perform overload resolution |
| // if the left-hand side is a class or enumeration type. This is actually |
| // a hack. The standard requires that we do overload resolution between the |
| // various built-in candidates, but as DR507 points out, this can lead to |
| // problems. So we do it this way, which pretty much follows what GCC does. |
| // Note that we go the traditional code path for compound assignment forms. |
| if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) |
| return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| |
| // Build an empty overload set. |
| OverloadCandidateSet CandidateSet(OpLoc); |
| |
| // Add the candidates from the given function set. |
| AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); |
| |
| // Add operator candidates that are member functions. |
| AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); |
| |
| // Add candidates from ADL. |
| AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, |
| Args, 2, |
| /*ExplicitTemplateArgs*/ 0, |
| CandidateSet); |
| |
| // Add builtin operator candidates. |
| AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, OpLoc, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| // Best->Access is only meaningful for class members. |
| CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); |
| |
| OwningExprResult Arg1 |
| = PerformCopyInitialization( |
| InitializedEntity::InitializeParameter( |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), |
| Owned(Args[1])); |
| if (Arg1.isInvalid()) |
| return ExprError(); |
| |
| if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, |
| Best->FoundDecl, Method)) |
| return ExprError(); |
| |
| Args[1] = RHS = Arg1.takeAs<Expr>(); |
| } else { |
| // Convert the arguments. |
| OwningExprResult Arg0 |
| = PerformCopyInitialization( |
| InitializedEntity::InitializeParameter( |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), |
| Owned(Args[0])); |
| if (Arg0.isInvalid()) |
| return ExprError(); |
| |
| OwningExprResult Arg1 |
| = PerformCopyInitialization( |
| InitializedEntity::InitializeParameter( |
| FnDecl->getParamDecl(1)), |
| SourceLocation(), |
| Owned(Args[1])); |
| if (Arg1.isInvalid()) |
| return ExprError(); |
| Args[0] = LHS = Arg0.takeAs<Expr>(); |
| Args[1] = RHS = Arg1.takeAs<Expr>(); |
| } |
| |
| DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); |
| |
| // Determine the result type |
| QualType ResultTy |
| = FnDecl->getType()->getAs<FunctionType>()->getResultType(); |
| ResultTy = ResultTy.getNonReferenceType(); |
| |
| // Build the actual expression node. |
| Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), |
| OpLoc); |
| UsualUnaryConversions(FnExpr); |
| |
| ExprOwningPtr<CXXOperatorCallExpr> |
| TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, |
| Args, 2, ResultTy, |
| OpLoc)); |
| |
| if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), |
| FnDecl)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall.release()); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], AA_Passing) || |
| PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], AA_Passing)) |
| return ExprError(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: { |
| // C++ [over.match.oper]p9: |
| // If the operator is the operator , [...] and there are no |
| // viable functions, then the operator is assumed to be the |
| // built-in operator and interpreted according to clause 5. |
| if (Opc == BinaryOperator::Comma) |
| break; |
| |
| // For class as left operand for assignment or compound assigment operator |
| // do not fall through to handling in built-in, but report that no overloaded |
| // assignment operator found |
| OwningExprResult Result = ExprError(); |
| if (Args[0]->getType()->isRecordType() && |
| Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { |
| Diag(OpLoc, diag::err_ovl_no_viable_oper) |
| << BinaryOperator::getOpcodeStr(Opc) |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| } else { |
| // No viable function; try to create a built-in operation, which will |
| // produce an error. Then, show the non-viable candidates. |
| Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| } |
| assert(Result.isInvalid() && |
| "C++ binary operator overloading is missing candidates!"); |
| if (Result.isInvalid()) |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, |
| BinaryOperator::getOpcodeStr(Opc), OpLoc); |
| return move(Result); |
| } |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper) |
| << BinaryOperator::getOpcodeStr(Opc) |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, |
| BinaryOperator::getOpcodeStr(Opc), OpLoc); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << BinaryOperator::getOpcodeStr(Opc) |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); |
| return ExprError(); |
| } |
| |
| // We matched a built-in operator; build it. |
| return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| } |
| |
| Action::OwningExprResult |
| Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, |
| SourceLocation RLoc, |
| ExprArg Base, ExprArg Idx) { |
| Expr *Args[2] = { static_cast<Expr*>(Base.get()), |
| static_cast<Expr*>(Idx.get()) }; |
| DeclarationName OpName = |
| Context.DeclarationNames.getCXXOperatorName(OO_Subscript); |
| |
| // If either side is type-dependent, create an appropriate dependent |
| // expression. |
| if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { |
| |
| CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators |
| UnresolvedLookupExpr *Fn |
| = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, |
| 0, SourceRange(), OpName, LLoc, |
| /*ADL*/ true, /*Overloaded*/ false, |
| UnresolvedSetIterator(), |
| UnresolvedSetIterator()); |
| // Can't add any actual overloads yet |
| |
| Base.release(); |
| Idx.release(); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, |
| Args, 2, |
| Context.DependentTy, |
| RLoc)); |
| } |
| |
| // Build an empty overload set. |
| OverloadCandidateSet CandidateSet(LLoc); |
| |
| // Subscript can only be overloaded as a member function. |
| |
| // Add operator candidates that are member functions. |
| AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); |
| |
| // Add builtin operator candidates. |
| AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, LLoc, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, LLoc); |
| |
| // Convert the arguments. |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); |
| if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, |
| Best->FoundDecl, Method)) |
| return ExprError(); |
| |
| // Convert the arguments. |
| OwningExprResult InputInit |
| = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), |
| Owned(Args[1])); |
| if (InputInit.isInvalid()) |
| return ExprError(); |
| |
| Args[1] = InputInit.takeAs<Expr>(); |
| |
| // Determine the result type |
| QualType ResultTy |
| = FnDecl->getType()->getAs<FunctionType>()->getResultType(); |
| ResultTy = ResultTy.getNonReferenceType(); |
| |
| // Build the actual expression node. |
| Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), |
| LLoc); |
| UsualUnaryConversions(FnExpr); |
| |
| Base.release(); |
| Idx.release(); |
| ExprOwningPtr<CXXOperatorCallExpr> |
| TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, |
| FnExpr, Args, 2, |
| ResultTy, RLoc)); |
| |
| if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), |
| FnDecl)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall.release()); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], AA_Passing) || |
| PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], AA_Passing)) |
| return ExprError(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: { |
| if (CandidateSet.empty()) |
| Diag(LLoc, diag::err_ovl_no_oper) |
| << Args[0]->getType() << /*subscript*/ 0 |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| else |
| Diag(LLoc, diag::err_ovl_no_viable_subscript) |
| << Args[0]->getType() |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, |
| "[]", LLoc); |
| return ExprError(); |
| } |
| |
| case OR_Ambiguous: |
| Diag(LLoc, diag::err_ovl_ambiguous_oper) |
| << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, |
| "[]", LLoc); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(LLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() << "[]" |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, |
| "[]", LLoc); |
| return ExprError(); |
| } |
| |
| // We matched a built-in operator; build it. |
| Base.release(); |
| Idx.release(); |
| return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, |
| Owned(Args[1]), RLoc); |
| } |
| |
| /// BuildCallToMemberFunction - Build a call to a member |
| /// function. MemExpr is the expression that refers to the member |
| /// function (and includes the object parameter), Args/NumArgs are the |
| /// arguments to the function call (not including the object |
| /// parameter). The caller needs to validate that the member |
| /// expression refers to a member function or an overloaded member |
| /// function. |
| Sema::OwningExprResult |
| Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, |
| SourceLocation LParenLoc, Expr **Args, |
| unsigned NumArgs, SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| // Dig out the member expression. This holds both the object |
| // argument and the member function we're referring to. |
| Expr *NakedMemExpr = MemExprE->IgnoreParens(); |
| |
| MemberExpr *MemExpr; |
| CXXMethodDecl *Method = 0; |
| DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); |
| NestedNameSpecifier *Qualifier = 0; |
| if (isa<MemberExpr>(NakedMemExpr)) { |
| MemExpr = cast<MemberExpr>(NakedMemExpr); |
| Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); |
| FoundDecl = MemExpr->getFoundDecl(); |
| Qualifier = MemExpr->getQualifier(); |
| } else { |
| UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); |
| Qualifier = UnresExpr->getQualifier(); |
| |
| QualType ObjectType = UnresExpr->getBaseType(); |
| |
| // Add overload candidates |
| OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); |
| |
| // FIXME: avoid copy. |
| TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; |
| if (UnresExpr->hasExplicitTemplateArgs()) { |
| UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| TemplateArgs = &TemplateArgsBuffer; |
| } |
| |
| for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), |
| E = UnresExpr->decls_end(); I != E; ++I) { |
| |
| NamedDecl *Func = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); |
| if (isa<UsingShadowDecl>(Func)) |
| Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); |
| |
| if ((Method = dyn_cast<CXXMethodDecl>(Func))) { |
| // If explicit template arguments were provided, we can't call a |
| // non-template member function. |
| if (TemplateArgs) |
| continue; |
| |
| AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, |
| Args, NumArgs, |
| CandidateSet, /*SuppressUserConversions=*/false); |
| } else { |
| AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), |
| I.getPair(), ActingDC, TemplateArgs, |
| ObjectType, Args, NumArgs, |
| CandidateSet, |
| /*SuppressUsedConversions=*/false); |
| } |
| } |
| |
| DeclarationName DeclName = UnresExpr->getMemberName(); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { |
| case OR_Success: |
| Method = cast<CXXMethodDecl>(Best->Function); |
| FoundDecl = Best->FoundDecl; |
| CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); |
| break; |
| |
| case OR_No_Viable_Function: |
| Diag(UnresExpr->getMemberLoc(), |
| diag::err_ovl_no_viable_member_function_in_call) |
| << DeclName << MemExprE->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| // FIXME: Leaking incoming expressions! |
| return ExprError(); |
| |
| case OR_Ambiguous: |
| Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) |
| << DeclName << MemExprE->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| // FIXME: Leaking incoming expressions! |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) |
| << Best->Function->isDeleted() |
| << DeclName << MemExprE->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| // FIXME: Leaking incoming expressions! |
| return ExprError(); |
| } |
| |
| MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); |
| |
| // If overload resolution picked a static member, build a |
| // non-member call based on that function. |
| if (Method->isStatic()) { |
| return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, |
| Args, NumArgs, RParenLoc); |
| } |
| |
| MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); |
| } |
| |
| assert(Method && "Member call to something that isn't a method?"); |
| ExprOwningPtr<CXXMemberCallExpr> |
| TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, |
| NumArgs, |
| Method->getResultType().getNonReferenceType(), |
| RParenLoc)); |
| |
| // Check for a valid return type. |
| if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), |
| TheCall.get(), Method)) |
| return ExprError(); |
| |
| // Convert the object argument (for a non-static member function call). |
| // We only need to do this if there was actually an overload; otherwise |
| // it was done at lookup. |
| Expr *ObjectArg = MemExpr->getBase(); |
| if (!Method->isStatic() && |
| PerformObjectArgumentInitialization(ObjectArg, Qualifier, |
| FoundDecl, Method)) |
| return ExprError(); |
| MemExpr->setBase(ObjectArg); |
| |
| // Convert the rest of the arguments |
| const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); |
| if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, |
| RParenLoc)) |
| return ExprError(); |
| |
| if (CheckFunctionCall(Method, TheCall.get())) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall.release()); |
| } |
| |
| /// BuildCallToObjectOfClassType - Build a call to an object of class |
| /// type (C++ [over.call.object]), which can end up invoking an |
| /// overloaded function call operator (@c operator()) or performing a |
| /// user-defined conversion on the object argument. |
| Sema::ExprResult |
| Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| assert(Object->getType()->isRecordType() && "Requires object type argument"); |
| const RecordType *Record = Object->getType()->getAs<RecordType>(); |
| |
| // C++ [over.call.object]p1: |
| // If the primary-expression E in the function call syntax |
| // evaluates to a class object of type "cv T", then the set of |
| // candidate functions includes at least the function call |
| // operators of T. The function call operators of T are obtained by |
| // ordinary lookup of the name operator() in the context of |
| // (E).operator(). |
| OverloadCandidateSet CandidateSet(LParenLoc); |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); |
| |
| if (RequireCompleteType(LParenLoc, Object->getType(), |
| PDiag(diag::err_incomplete_object_call) |
| << Object->getSourceRange())) |
| return true; |
| |
| LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); |
| LookupQualifiedName(R, Record->getDecl()); |
| R.suppressDiagnostics(); |
| |
| for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| Oper != OperEnd; ++Oper) { |
| AddMethodCandidate(Oper.getPair(), Object->getType(), |
| Args, NumArgs, CandidateSet, |
| /*SuppressUserConversions=*/ false); |
| } |
| |
| // C++ [over.call.object]p2: |
| // In addition, for each conversion function declared in T of the |
| // form |
| // |
| // operator conversion-type-id () cv-qualifier; |
| // |
| // where cv-qualifier is the same cv-qualification as, or a |
| // greater cv-qualification than, cv, and where conversion-type-id |
| // denotes the type "pointer to function of (P1,...,Pn) returning |
| // R", or the type "reference to pointer to function of |
| // (P1,...,Pn) returning R", or the type "reference to function |
| // of (P1,...,Pn) returning R", a surrogate call function [...] |
| // is also considered as a candidate function. Similarly, |
| // surrogate call functions are added to the set of candidate |
| // functions for each conversion function declared in an |
| // accessible base class provided the function is not hidden |
| // within T by another intervening declaration. |
| const UnresolvedSetImpl *Conversions |
| = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| // Skip over templated conversion functions; they aren't |
| // surrogates. |
| if (isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| |
| // Strip the reference type (if any) and then the pointer type (if |
| // any) to get down to what might be a function type. |
| QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| ConvType = ConvPtrType->getPointeeType(); |
| |
| if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) |
| AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, |
| Object->getType(), Args, NumArgs, |
| CandidateSet); |
| } |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { |
| case OR_Success: |
| // Overload resolution succeeded; we'll build the appropriate call |
| // below. |
| break; |
| |
| case OR_No_Viable_Function: |
| if (CandidateSet.empty()) |
| Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) |
| << Object->getType() << /*call*/ 1 |
| << Object->getSourceRange(); |
| else |
| Diag(Object->getSourceRange().getBegin(), |
| diag::err_ovl_no_viable_object_call) |
| << Object->getType() << Object->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| break; |
| |
| case OR_Ambiguous: |
| Diag(Object->getSourceRange().getBegin(), |
| diag::err_ovl_ambiguous_object_call) |
| << Object->getType() << Object->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); |
| break; |
| |
| case OR_Deleted: |
| Diag(Object->getSourceRange().getBegin(), |
| diag::err_ovl_deleted_object_call) |
| << Best->Function->isDeleted() |
| << Object->getType() << Object->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); |
| break; |
| } |
| |
| if (Best == CandidateSet.end()) { |
| // We had an error; delete all of the subexpressions and return |
| // the error. |
| Object->Destroy(Context); |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| Args[ArgIdx]->Destroy(Context); |
| return true; |
| } |
| |
| if (Best->Function == 0) { |
| // Since there is no function declaration, this is one of the |
| // surrogate candidates. Dig out the conversion function. |
| CXXConversionDecl *Conv |
| = cast<CXXConversionDecl>( |
| Best->Conversions[0].UserDefined.ConversionFunction); |
| |
| CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); |
| |
| // We selected one of the surrogate functions that converts the |
| // object parameter to a function pointer. Perform the conversion |
| // on the object argument, then let ActOnCallExpr finish the job. |
| |
| // Create an implicit member expr to refer to the conversion operator. |
| // and then call it. |
| CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, |
| Conv); |
| |
| return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, |
| MultiExprArg(*this, (ExprTy**)Args, NumArgs), |
| CommaLocs, RParenLoc).result(); |
| } |
| |
| CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); |
| |
| // We found an overloaded operator(). Build a CXXOperatorCallExpr |
| // that calls this method, using Object for the implicit object |
| // parameter and passing along the remaining arguments. |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); |
| const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); |
| |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| unsigned NumArgsToCheck = NumArgs; |
| |
| // Build the full argument list for the method call (the |
| // implicit object parameter is placed at the beginning of the |
| // list). |
| Expr **MethodArgs; |
| if (NumArgs < NumArgsInProto) { |
| NumArgsToCheck = NumArgsInProto; |
| MethodArgs = new Expr*[NumArgsInProto + 1]; |
| } else { |
| MethodArgs = new Expr*[NumArgs + 1]; |
| } |
| MethodArgs[0] = Object; |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| MethodArgs[ArgIdx + 1] = Args[ArgIdx]; |
| |
| Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), |
| SourceLocation()); |
| UsualUnaryConversions(NewFn); |
| |
| // Once we've built TheCall, all of the expressions are properly |
| // owned. |
| QualType ResultTy = Method->getResultType().getNonReferenceType(); |
| ExprOwningPtr<CXXOperatorCallExpr> |
| TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, |
| MethodArgs, NumArgs + 1, |
| ResultTy, RParenLoc)); |
| delete [] MethodArgs; |
| |
| if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), |
| Method)) |
| return true; |
| |
| // We may have default arguments. If so, we need to allocate more |
| // slots in the call for them. |
| if (NumArgs < NumArgsInProto) |
| TheCall->setNumArgs(Context, NumArgsInProto + 1); |
| else if (NumArgs > NumArgsInProto) |
| NumArgsToCheck = NumArgsInProto; |
| |
| bool IsError = false; |
| |
| // Initialize the implicit object parameter. |
| IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, |
| Best->FoundDecl, Method); |
| TheCall->setArg(0, Object); |
| |
| |
| // Check the argument types. |
| for (unsigned i = 0; i != NumArgsToCheck; i++) { |
| Expr *Arg; |
| if (i < NumArgs) { |
| Arg = Args[i]; |
| |
| // Pass the argument. |
| |
| OwningExprResult InputInit |
| = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| Method->getParamDecl(i)), |
| SourceLocation(), Owned(Arg)); |
| |
| IsError |= InputInit.isInvalid(); |
| Arg = InputInit.takeAs<Expr>(); |
| } else { |
| OwningExprResult DefArg |
| = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); |
| if (DefArg.isInvalid()) { |
| IsError = true; |
| break; |
| } |
| |
| Arg = DefArg.takeAs<Expr>(); |
| } |
| |
| TheCall->setArg(i + 1, Arg); |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (Proto->isVariadic()) { |
| // Promote the arguments (C99 6.5.2.2p7). |
| for (unsigned i = NumArgsInProto; i != NumArgs; i++) { |
| Expr *Arg = Args[i]; |
| IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); |
| TheCall->setArg(i + 1, Arg); |
| } |
| } |
| |
| if (IsError) return true; |
| |
| if (CheckFunctionCall(Method, TheCall.get())) |
| return true; |
| |
| return MaybeBindToTemporary(TheCall.release()).result(); |
| } |
| |
| /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> |
| /// (if one exists), where @c Base is an expression of class type and |
| /// @c Member is the name of the member we're trying to find. |
| Sema::OwningExprResult |
| Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { |
| Expr *Base = static_cast<Expr *>(BaseIn.get()); |
| assert(Base->getType()->isRecordType() && "left-hand side must have class type"); |
| |
| SourceLocation Loc = Base->getExprLoc(); |
| |
| // C++ [over.ref]p1: |
| // |
| // [...] An expression x->m is interpreted as (x.operator->())->m |
| // for a class object x of type T if T::operator->() exists and if |
| // the operator is selected as the best match function by the |
| // overload resolution mechanism (13.3). |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); |
| OverloadCandidateSet CandidateSet(Loc); |
| const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); |
| |
| if (RequireCompleteType(Loc, Base->getType(), |
| PDiag(diag::err_typecheck_incomplete_tag) |
| << Base->getSourceRange())) |
| return ExprError(); |
| |
| LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); |
| LookupQualifiedName(R, BaseRecord->getDecl()); |
| R.suppressDiagnostics(); |
| |
| for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| Oper != OperEnd; ++Oper) { |
| AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, |
| /*SuppressUserConversions=*/false); |
| } |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, OpLoc, Best)) { |
| case OR_Success: |
| // Overload resolution succeeded; we'll build the call below. |
| break; |
| |
| case OR_No_Viable_Function: |
| if (CandidateSet.empty()) |
| Diag(OpLoc, diag::err_typecheck_member_reference_arrow) |
| << Base->getType() << Base->getSourceRange(); |
| else |
| Diag(OpLoc, diag::err_ovl_no_viable_oper) |
| << "operator->" << Base->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); |
| return ExprError(); |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper) |
| << "->" << Base->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << "->" << Base->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); |
| return ExprError(); |
| } |
| |
| CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); |
| |
| // Convert the object parameter. |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); |
| if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, |
| Best->FoundDecl, Method)) |
| return ExprError(); |
| |
| // No concerns about early exits now. |
| BaseIn.release(); |
| |
| // Build the operator call. |
| Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), |
| SourceLocation()); |
| UsualUnaryConversions(FnExpr); |
| |
| QualType ResultTy = Method->getResultType().getNonReferenceType(); |
| ExprOwningPtr<CXXOperatorCallExpr> |
| TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, |
| &Base, 1, ResultTy, OpLoc)); |
| |
| if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), |
| Method)) |
| return ExprError(); |
| return move(TheCall); |
| } |
| |
| /// FixOverloadedFunctionReference - E is an expression that refers to |
| /// a C++ overloaded function (possibly with some parentheses and |
| /// perhaps a '&' around it). We have resolved the overloaded function |
| /// to the function declaration Fn, so patch up the expression E to |
| /// refer (possibly indirectly) to Fn. Returns the new expr. |
| Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, |
| FunctionDecl *Fn) { |
| if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
| Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), |
| Found, Fn); |
| if (SubExpr == PE->getSubExpr()) |
| return PE->Retain(); |
| |
| return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); |
| } |
| |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), |
| Found, Fn); |
| assert(Context.hasSameType(ICE->getSubExpr()->getType(), |
| SubExpr->getType()) && |
| "Implicit cast type cannot be determined from overload"); |
| if (SubExpr == ICE->getSubExpr()) |
| return ICE->Retain(); |
| |
| return new (Context) ImplicitCastExpr(ICE->getType(), |
| ICE->getCastKind(), |
| SubExpr, CXXBaseSpecifierArray(), |
| ICE->isLvalueCast()); |
| } |
| |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { |
| assert(UnOp->getOpcode() == UnaryOperator::AddrOf && |
| "Can only take the address of an overloaded function"); |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| if (Method->isStatic()) { |
| // Do nothing: static member functions aren't any different |
| // from non-member functions. |
| } else { |
| // Fix the sub expression, which really has to be an |
| // UnresolvedLookupExpr holding an overloaded member function |
| // or template. |
| Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), |
| Found, Fn); |
| if (SubExpr == UnOp->getSubExpr()) |
| return UnOp->Retain(); |
| |
| assert(isa<DeclRefExpr>(SubExpr) |
| && "fixed to something other than a decl ref"); |
| assert(cast<DeclRefExpr>(SubExpr)->getQualifier() |
| && "fixed to a member ref with no nested name qualifier"); |
| |
| // We have taken the address of a pointer to member |
| // function. Perform the computation here so that we get the |
| // appropriate pointer to member type. |
| QualType ClassType |
| = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); |
| QualType MemPtrType |
| = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); |
| |
| return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, |
| MemPtrType, UnOp->getOperatorLoc()); |
| } |
| } |
| Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), |
| Found, Fn); |
| if (SubExpr == UnOp->getSubExpr()) |
| return UnOp->Retain(); |
| |
| return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, |
| Context.getPointerType(SubExpr->getType()), |
| UnOp->getOperatorLoc()); |
| } |
| |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| // FIXME: avoid copy. |
| TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; |
| if (ULE->hasExplicitTemplateArgs()) { |
| ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| TemplateArgs = &TemplateArgsBuffer; |
| } |
| |
| return DeclRefExpr::Create(Context, |
| ULE->getQualifier(), |
| ULE->getQualifierRange(), |
| Fn, |
| ULE->getNameLoc(), |
| Fn->getType(), |
| TemplateArgs); |
| } |
| |
| if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { |
| // FIXME: avoid copy. |
| TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; |
| if (MemExpr->hasExplicitTemplateArgs()) { |
| MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| TemplateArgs = &TemplateArgsBuffer; |
| } |
| |
| Expr *Base; |
| |
| // If we're filling in |
| if (MemExpr->isImplicitAccess()) { |
| if (cast<CXXMethodDecl>(Fn)->isStatic()) { |
| return DeclRefExpr::Create(Context, |
| MemExpr->getQualifier(), |
| MemExpr->getQualifierRange(), |
| Fn, |
| MemExpr->getMemberLoc(), |
| Fn->getType(), |
| TemplateArgs); |
| } else { |
| SourceLocation Loc = MemExpr->getMemberLoc(); |
| if (MemExpr->getQualifier()) |
| Loc = MemExpr->getQualifierRange().getBegin(); |
| Base = new (Context) CXXThisExpr(Loc, |
| MemExpr->getBaseType(), |
| /*isImplicit=*/true); |
| } |
| } else |
| Base = MemExpr->getBase()->Retain(); |
| |
| return MemberExpr::Create(Context, Base, |
| MemExpr->isArrow(), |
| MemExpr->getQualifier(), |
| MemExpr->getQualifierRange(), |
| Fn, |
| Found, |
| MemExpr->getMemberLoc(), |
| TemplateArgs, |
| Fn->getType()); |
| } |
| |
| assert(false && "Invalid reference to overloaded function"); |
| return E->Retain(); |
| } |
| |
| Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, |
| DeclAccessPair Found, |
| FunctionDecl *Fn) { |
| return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); |
| } |
| |
| } // end namespace clang |