blob: 6ee50ab98caf6594fa58c44c83157537011132c6 [file] [log] [blame]
//===------- SemaTemplateInstantiate.cpp - C++ Template Instantiation ------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template instantiation.
//
//===----------------------------------------------------------------------===/
#include "Sema.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
//===----------------------------------------------------------------------===/
// Template Instantiation Support
//===----------------------------------------------------------------------===/
/// \brief Retrieve the template argument list that should be used to
/// instantiate the given declaration.
const TemplateArgumentList &
Sema::getTemplateInstantiationArgs(NamedDecl *D) {
// Template arguments for a class template specialization.
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(D))
return Spec->getTemplateArgs();
// Template arguments for a function template specialization.
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
if (const TemplateArgumentList *TemplateArgs
= Function->getTemplateSpecializationArgs())
return *TemplateArgs;
// Template arguments for a member of a class template specialization.
DeclContext *EnclosingTemplateCtx = D->getDeclContext();
while (!isa<ClassTemplateSpecializationDecl>(EnclosingTemplateCtx)) {
assert(!EnclosingTemplateCtx->isFileContext() &&
"Tried to get the instantiation arguments of a non-template");
EnclosingTemplateCtx = EnclosingTemplateCtx->getParent();
}
ClassTemplateSpecializationDecl *EnclosingTemplate
= cast<ClassTemplateSpecializationDecl>(EnclosingTemplateCtx);
return EnclosingTemplate->getTemplateArgs();
}
Sema::InstantiatingTemplate::
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
Decl *Entity,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind = ActiveTemplateInstantiation::TemplateInstantiation;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(Entity);
Inst.TemplateArgs = 0;
Inst.NumTemplateArgs = 0;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
Invalid = false;
}
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
TemplateDecl *Template,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind
= ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(Template);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
Invalid = false;
}
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
FunctionTemplateDecl *FunctionTemplate,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
ActiveTemplateInstantiation::InstantiationKind Kind,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind = Kind;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(FunctionTemplate);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
Invalid = false;
}
}
Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef,
SourceLocation PointOfInstantiation,
ClassTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange)
: SemaRef(SemaRef) {
Invalid = CheckInstantiationDepth(PointOfInstantiation,
InstantiationRange);
if (!Invalid) {
ActiveTemplateInstantiation Inst;
Inst.Kind
= ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution;
Inst.PointOfInstantiation = PointOfInstantiation;
Inst.Entity = reinterpret_cast<uintptr_t>(PartialSpec);
Inst.TemplateArgs = TemplateArgs;
Inst.NumTemplateArgs = NumTemplateArgs;
Inst.InstantiationRange = InstantiationRange;
SemaRef.ActiveTemplateInstantiations.push_back(Inst);
Invalid = false;
}
}
void Sema::InstantiatingTemplate::Clear() {
if (!Invalid) {
SemaRef.ActiveTemplateInstantiations.pop_back();
Invalid = true;
}
}
bool Sema::InstantiatingTemplate::CheckInstantiationDepth(
SourceLocation PointOfInstantiation,
SourceRange InstantiationRange) {
if (SemaRef.ActiveTemplateInstantiations.size()
<= SemaRef.getLangOptions().InstantiationDepth)
return false;
SemaRef.Diag(PointOfInstantiation,
diag::err_template_recursion_depth_exceeded)
<< SemaRef.getLangOptions().InstantiationDepth
<< InstantiationRange;
SemaRef.Diag(PointOfInstantiation, diag::note_template_recursion_depth)
<< SemaRef.getLangOptions().InstantiationDepth;
return true;
}
/// \brief Prints the current instantiation stack through a series of
/// notes.
void Sema::PrintInstantiationStack() {
// FIXME: In all of these cases, we need to show the template arguments
for (llvm::SmallVector<ActiveTemplateInstantiation, 16>::reverse_iterator
Active = ActiveTemplateInstantiations.rbegin(),
ActiveEnd = ActiveTemplateInstantiations.rend();
Active != ActiveEnd;
++Active) {
switch (Active->Kind) {
case ActiveTemplateInstantiation::TemplateInstantiation: {
Decl *D = reinterpret_cast<Decl *>(Active->Entity);
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
unsigned DiagID = diag::note_template_member_class_here;
if (isa<ClassTemplateSpecializationDecl>(Record))
DiagID = diag::note_template_class_instantiation_here;
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
DiagID)
<< Context.getTypeDeclType(Record)
<< Active->InstantiationRange;
} else {
FunctionDecl *Function = cast<FunctionDecl>(D);
unsigned DiagID;
if (Function->getPrimaryTemplate())
DiagID = diag::note_function_template_spec_here;
else
DiagID = diag::note_template_member_function_here;
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
DiagID)
<< Function
<< Active->InstantiationRange;
}
break;
}
case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation: {
TemplateDecl *Template = cast<TemplateDecl>((Decl *)Active->Entity);
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
Active->TemplateArgs,
Active->NumTemplateArgs,
Context.PrintingPolicy);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_default_arg_instantiation_here)
<< (Template->getNameAsString() + TemplateArgsStr)
<< Active->InstantiationRange;
break;
}
case ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution: {
FunctionTemplateDecl *FnTmpl
= cast<FunctionTemplateDecl>((Decl *)Active->Entity);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_explicit_template_arg_substitution_here)
<< FnTmpl << Active->InstantiationRange;
break;
}
case ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution:
if (ClassTemplatePartialSpecializationDecl *PartialSpec
= dyn_cast<ClassTemplatePartialSpecializationDecl>(
(Decl *)Active->Entity)) {
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_partial_spec_deduct_instantiation_here)
<< Context.getTypeDeclType(PartialSpec)
<< Active->InstantiationRange;
} else {
FunctionTemplateDecl *FnTmpl
= cast<FunctionTemplateDecl>((Decl *)Active->Entity);
Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr),
diag::note_function_template_deduction_instantiation_here)
<< FnTmpl << Active->InstantiationRange;
}
break;
}
}
}
bool Sema::isSFINAEContext() const {
using llvm::SmallVector;
for (SmallVector<ActiveTemplateInstantiation, 16>::const_reverse_iterator
Active = ActiveTemplateInstantiations.rbegin(),
ActiveEnd = ActiveTemplateInstantiations.rend();
Active != ActiveEnd;
++Active) {
switch(Active->Kind) {
case ActiveTemplateInstantiation::TemplateInstantiation:
// This is a template instantiation, so there is no SFINAE.
return false;
case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation:
// A default template argument instantiation may or may not be a
// SFINAE context; look further up the stack.
break;
case ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution:
case ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution:
// We're either substitution explicitly-specified template arguments
// or deduced template arguments, so SFINAE applies.
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===/
// Template Instantiation for Types
//===----------------------------------------------------------------------===/
namespace {
class VISIBILITY_HIDDEN TemplateTypeInstantiator {
Sema &SemaRef;
const TemplateArgumentList &TemplateArgs;
SourceLocation Loc;
DeclarationName Entity;
public:
TemplateTypeInstantiator(Sema &SemaRef,
const TemplateArgumentList &TemplateArgs,
SourceLocation Loc,
DeclarationName Entity)
: SemaRef(SemaRef), TemplateArgs(TemplateArgs),
Loc(Loc), Entity(Entity) { }
QualType operator()(QualType T) const { return Instantiate(T); }
QualType Instantiate(QualType T) const;
// Declare instantiate functions for each type.
#define TYPE(Class, Base) \
QualType Instantiate##Class##Type(const Class##Type *T) const;
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
};
}
QualType
TemplateTypeInstantiator::InstantiateExtQualType(const ExtQualType *T) const {
// FIXME: Implement this
assert(false && "Cannot instantiate ExtQualType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateBuiltinType(const BuiltinType *T) const {
assert(false && "Builtin types are not dependent and cannot be instantiated");
return QualType(T, 0);
}
QualType
TemplateTypeInstantiator::
InstantiateFixedWidthIntType(const FixedWidthIntType *T) const {
// FIXME: Implement this
assert(false && "Cannot instantiate FixedWidthIntType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateComplexType(const ComplexType *T) const {
// FIXME: Implement this
assert(false && "Cannot instantiate ComplexType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiatePointerType(const PointerType *T) const {
QualType PointeeType = Instantiate(T->getPointeeType());
if (PointeeType.isNull())
return QualType();
return SemaRef.BuildPointerType(PointeeType, 0, Loc, Entity);
}
QualType
TemplateTypeInstantiator::InstantiateBlockPointerType(
const BlockPointerType *T) const {
QualType PointeeType = Instantiate(T->getPointeeType());
if (PointeeType.isNull())
return QualType();
return SemaRef.BuildBlockPointerType(PointeeType, 0, Loc, Entity);
}
QualType
TemplateTypeInstantiator::InstantiateLValueReferenceType(
const LValueReferenceType *T) const {
QualType ReferentType = Instantiate(T->getPointeeType());
if (ReferentType.isNull())
return QualType();
return SemaRef.BuildReferenceType(ReferentType, true, 0, Loc, Entity);
}
QualType
TemplateTypeInstantiator::InstantiateRValueReferenceType(
const RValueReferenceType *T) const {
QualType ReferentType = Instantiate(T->getPointeeType());
if (ReferentType.isNull())
return QualType();
return SemaRef.BuildReferenceType(ReferentType, false, 0, Loc, Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateMemberPointerType(const MemberPointerType *T) const {
QualType PointeeType = Instantiate(T->getPointeeType());
if (PointeeType.isNull())
return QualType();
QualType ClassType = Instantiate(QualType(T->getClass(), 0));
if (ClassType.isNull())
return QualType();
return SemaRef.BuildMemberPointerType(PointeeType, ClassType, 0, Loc,
Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateConstantArrayType(const ConstantArrayType *T) const {
QualType ElementType = Instantiate(T->getElementType());
if (ElementType.isNull())
return ElementType;
// Build a temporary integer literal to specify the size for
// BuildArrayType. Since we have already checked the size as part of
// creating the dependent array type in the first place, we know
// there aren't any errors. However, we do need to determine what
// C++ type to give the size expression.
llvm::APInt Size = T->getSize();
QualType Types[] = {
SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
};
const unsigned NumTypes = sizeof(Types) / sizeof(QualType);
QualType SizeType;
for (unsigned I = 0; I != NumTypes; ++I)
if (Size.getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
SizeType = Types[I];
break;
}
if (SizeType.isNull())
SizeType = SemaRef.Context.getFixedWidthIntType(Size.getBitWidth(), false);
IntegerLiteral ArraySize(Size, SizeType, Loc);
return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(),
&ArraySize, T->getIndexTypeQualifier(),
SourceRange(), // FIXME: provide proper range?
Entity);
}
QualType
TemplateTypeInstantiator::InstantiateConstantArrayWithExprType
(const ConstantArrayWithExprType *T) const {
return InstantiateConstantArrayType(T);
}
QualType
TemplateTypeInstantiator::InstantiateConstantArrayWithoutExprType
(const ConstantArrayWithoutExprType *T) const {
return InstantiateConstantArrayType(T);
}
QualType
TemplateTypeInstantiator::
InstantiateIncompleteArrayType(const IncompleteArrayType *T) const {
QualType ElementType = Instantiate(T->getElementType());
if (ElementType.isNull())
return ElementType;
return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(),
0, T->getIndexTypeQualifier(),
SourceRange(), // FIXME: provide proper range?
Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateVariableArrayType(const VariableArrayType *T) const {
// FIXME: Implement this
assert(false && "Cannot instantiate VariableArrayType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateDependentSizedArrayType(const DependentSizedArrayType *T) const {
Expr *ArraySize = T->getSizeExpr();
assert(ArraySize->isValueDependent() &&
"dependent sized array types must have value dependent size expr");
// Instantiate the element type if needed
QualType ElementType = T->getElementType();
if (ElementType->isDependentType()) {
ElementType = Instantiate(ElementType);
if (ElementType.isNull())
return QualType();
}
// Instantiate the size expression
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
Sema::OwningExprResult InstantiatedArraySize =
SemaRef.InstantiateExpr(ArraySize, TemplateArgs);
if (InstantiatedArraySize.isInvalid())
return QualType();
return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(),
InstantiatedArraySize.takeAs<Expr>(),
T->getIndexTypeQualifier(),
SourceRange(), // FIXME: provide proper range?
Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateDependentSizedExtVectorType(
const DependentSizedExtVectorType *T) const {
// Instantiate the element type if needed.
QualType ElementType = T->getElementType();
if (ElementType->isDependentType()) {
ElementType = Instantiate(ElementType);
if (ElementType.isNull())
return QualType();
}
// The expression in a dependent-sized extended vector type is not
// potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
// Instantiate the size expression.
const Expr *SizeExpr = T->getSizeExpr();
Sema::OwningExprResult InstantiatedArraySize =
SemaRef.InstantiateExpr(const_cast<Expr *>(SizeExpr), TemplateArgs);
if (InstantiatedArraySize.isInvalid())
return QualType();
return SemaRef.BuildExtVectorType(ElementType,
SemaRef.Owned(
InstantiatedArraySize.takeAs<Expr>()),
T->getAttributeLoc());
}
QualType
TemplateTypeInstantiator::InstantiateVectorType(const VectorType *T) const {
// FIXME: Implement this
assert(false && "Cannot instantiate VectorType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateExtVectorType(
const ExtVectorType *T) const {
// FIXME: Implement this
assert(false && "Cannot instantiate ExtVectorType yet");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateFunctionProtoType(const FunctionProtoType *T) const {
QualType ResultType = Instantiate(T->getResultType());
if (ResultType.isNull())
return ResultType;
llvm::SmallVector<QualType, 4> ParamTypes;
for (FunctionProtoType::arg_type_iterator Param = T->arg_type_begin(),
ParamEnd = T->arg_type_end();
Param != ParamEnd; ++Param) {
QualType P = Instantiate(*Param);
if (P.isNull())
return P;
ParamTypes.push_back(P);
}
return SemaRef.BuildFunctionType(ResultType, ParamTypes.data(),
ParamTypes.size(),
T->isVariadic(), T->getTypeQuals(),
Loc, Entity);
}
QualType
TemplateTypeInstantiator::
InstantiateFunctionNoProtoType(const FunctionNoProtoType *T) const {
assert(false && "Functions without prototypes cannot be dependent.");
return QualType();
}
QualType
TemplateTypeInstantiator::InstantiateTypedefType(const TypedefType *T) const {
TypedefDecl *Typedef
= cast_or_null<TypedefDecl>(
SemaRef.InstantiateCurrentDeclRef(T->getDecl()));
if (!Typedef)
return QualType();
return SemaRef.Context.getTypeDeclType(Typedef);
}
QualType
TemplateTypeInstantiator::InstantiateTypeOfExprType(
const TypeOfExprType *T) const {
// The expression in a typeof is not potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
Sema::OwningExprResult E
= SemaRef.InstantiateExpr(T->getUnderlyingExpr(), TemplateArgs);
if (E.isInvalid())
return QualType();
return SemaRef.BuildTypeofExprType(E.takeAs<Expr>());
}
QualType
TemplateTypeInstantiator::InstantiateTypeOfType(const TypeOfType *T) const {
QualType Underlying = Instantiate(T->getUnderlyingType());
if (Underlying.isNull())
return QualType();
return SemaRef.Context.getTypeOfType(Underlying);
}
QualType
TemplateTypeInstantiator::InstantiateDecltypeType(const DecltypeType *T) const {
// C++0x [dcl.type.simple]p4:
// The operand of the decltype specifier is an unevaluated operand.
EnterExpressionEvaluationContext Unevaluated(SemaRef,
Action::Unevaluated);
Sema::OwningExprResult E
= SemaRef.InstantiateExpr(T->getUnderlyingExpr(), TemplateArgs);
if (E.isInvalid())
return QualType();
return SemaRef.BuildDecltypeType(E.takeAs<Expr>());
}
QualType
TemplateTypeInstantiator::InstantiateRecordType(const RecordType *T) const {
RecordDecl *Record
= cast_or_null<RecordDecl>(SemaRef.InstantiateCurrentDeclRef(T->getDecl()));
if (!Record)
return QualType();
return SemaRef.Context.getTypeDeclType(Record);
}
QualType
TemplateTypeInstantiator::InstantiateEnumType(const EnumType *T) const {
EnumDecl *Enum
= cast_or_null<EnumDecl>(SemaRef.InstantiateCurrentDeclRef(T->getDecl()));
if (!Enum)
return QualType();
return SemaRef.Context.getTypeDeclType(Enum);
}
QualType
TemplateTypeInstantiator::
InstantiateTemplateTypeParmType(const TemplateTypeParmType *T) const {
if (T->getDepth() == 0) {
// Replace the template type parameter with its corresponding
// template argument.
// If the corresponding template argument is NULL or doesn't exist, it's
// because we are performing instantiation from explicitly-specified
// template arguments in a function template class, but there were some
// arguments left unspecified.
if (T->getIndex() >= TemplateArgs.size() ||
TemplateArgs[T->getIndex()].isNull())
return QualType(T, 0); // Would be nice to keep the original type here
assert(TemplateArgs[T->getIndex()].getKind() == TemplateArgument::Type &&
"Template argument kind mismatch");
return TemplateArgs[T->getIndex()].getAsType();
}
// The template type parameter comes from an inner template (e.g.,
// the template parameter list of a member template inside the
// template we are instantiating). Create a new template type
// parameter with the template "level" reduced by one.
return SemaRef.Context.getTemplateTypeParmType(T->getDepth() - 1,
T->getIndex(),
T->isParameterPack(),
T->getName());
}
QualType
TemplateTypeInstantiator::
InstantiateTemplateSpecializationType(
const TemplateSpecializationType *T) const {
llvm::SmallVector<TemplateArgument, 4> InstantiatedTemplateArgs;
InstantiatedTemplateArgs.reserve(T->getNumArgs());
for (TemplateSpecializationType::iterator Arg = T->begin(), ArgEnd = T->end();
Arg != ArgEnd; ++Arg) {
TemplateArgument InstArg = SemaRef.Instantiate(*Arg, TemplateArgs);
if (InstArg.isNull())
return QualType();
InstantiatedTemplateArgs.push_back(InstArg);
}
// FIXME: We're missing the locations of the template name, '<', and '>'.
TemplateName Name = SemaRef.InstantiateTemplateName(T->getTemplateName(),
Loc,
TemplateArgs);
return SemaRef.CheckTemplateIdType(Name, Loc, SourceLocation(),
InstantiatedTemplateArgs.data(),
InstantiatedTemplateArgs.size(),
SourceLocation());
}
QualType
TemplateTypeInstantiator::
InstantiateQualifiedNameType(const QualifiedNameType *T) const {
// When we instantiated a qualified name type, there's no point in
// keeping the qualification around in the instantiated result. So,
// just instantiate the named type.
return (*this)(T->getNamedType());
}
QualType
TemplateTypeInstantiator::
InstantiateTypenameType(const TypenameType *T) const {
if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
// When the typename type refers to a template-id, the template-id
// is dependent and has enough information to instantiate the
// result of the typename type. Since we don't care about keeping
// the spelling of the typename type in template instantiations,
// we just instantiate the template-id.
return InstantiateTemplateSpecializationType(TemplateId);
}
NestedNameSpecifier *NNS
= SemaRef.InstantiateNestedNameSpecifier(T->getQualifier(),
SourceRange(Loc),
TemplateArgs);
if (!NNS)
return QualType();
return SemaRef.CheckTypenameType(NNS, *T->getIdentifier(), SourceRange(Loc));
}
QualType
TemplateTypeInstantiator::
InstantiateObjCObjectPointerType(const ObjCObjectPointerType *T) const {
assert(false && "Objective-C types cannot be dependent");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateObjCInterfaceType(const ObjCInterfaceType *T) const {
assert(false && "Objective-C types cannot be dependent");
return QualType();
}
QualType
TemplateTypeInstantiator::
InstantiateObjCQualifiedInterfaceType(
const ObjCQualifiedInterfaceType *T) const {
assert(false && "Objective-C types cannot be dependent");
return QualType();
}
/// \brief The actual implementation of Sema::InstantiateType().
QualType TemplateTypeInstantiator::Instantiate(QualType T) const {
// If T is not a dependent type, there is nothing to do.
if (!T->isDependentType())
return T;
QualType Result;
switch (T->getTypeClass()) {
#define TYPE(Class, Base) \
case Type::Class: \
Result = Instantiate##Class##Type(cast<Class##Type>(T.getTypePtr())); \
break;
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
}
// C++ [dcl.ref]p1:
// [...] Cv-qualified references are ill-formed except when
// the cv-qualifiers are introduced through the use of a
// typedef (7.1.3) or of a template type argument (14.3), in
// which case the cv-qualifiers are ignored.
//
// The same rule applies to function types.
if (!Result.isNull() && T.getCVRQualifiers() &&
!Result->isFunctionType() && !Result->isReferenceType())
Result = Result.getWithAdditionalQualifiers(T.getCVRQualifiers());
return Result;
}
/// \brief Instantiate the type T with a given set of template arguments.
///
/// This routine substitutes the given template arguments into the
/// type T and produces the instantiated type.
///
/// \param T the type into which the template arguments will be
/// substituted. If this type is not dependent, it will be returned
/// immediately.
///
/// \param TemplateArgs the template arguments that will be
/// substituted for the top-level template parameters within T.
///
/// \param Loc the location in the source code where this substitution
/// is being performed. It will typically be the location of the
/// declarator (if we're instantiating the type of some declaration)
/// or the location of the type in the source code (if, e.g., we're
/// instantiating the type of a cast expression).
///
/// \param Entity the name of the entity associated with a declaration
/// being instantiated (if any). May be empty to indicate that there
/// is no such entity (if, e.g., this is a type that occurs as part of
/// a cast expression) or that the entity has no name (e.g., an
/// unnamed function parameter).
///
/// \returns If the instantiation succeeds, the instantiated
/// type. Otherwise, produces diagnostics and returns a NULL type.
QualType Sema::InstantiateType(QualType T,
const TemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity) {
assert(!ActiveTemplateInstantiations.empty() &&
"Cannot perform an instantiation without some context on the "
"instantiation stack");
// If T is not a dependent type, there is nothing to do.
if (!T->isDependentType())
return T;
TemplateTypeInstantiator Instantiator(*this, TemplateArgs, Loc, Entity);
return Instantiator(T);
}
/// \brief Instantiate the base class specifiers of the given class
/// template specialization.
///
/// Produces a diagnostic and returns true on error, returns false and
/// attaches the instantiated base classes to the class template
/// specialization if successful.
bool
Sema::InstantiateBaseSpecifiers(CXXRecordDecl *Instantiation,
CXXRecordDecl *Pattern,
const TemplateArgumentList &TemplateArgs) {
bool Invalid = false;
llvm::SmallVector<CXXBaseSpecifier*, 4> InstantiatedBases;
for (ClassTemplateSpecializationDecl::base_class_iterator
Base = Pattern->bases_begin(), BaseEnd = Pattern->bases_end();
Base != BaseEnd; ++Base) {
if (!Base->getType()->isDependentType()) {
// FIXME: Allocate via ASTContext
InstantiatedBases.push_back(new CXXBaseSpecifier(*Base));
continue;
}
QualType BaseType = InstantiateType(Base->getType(),
TemplateArgs,
Base->getSourceRange().getBegin(),
DeclarationName());
if (BaseType.isNull()) {
Invalid = true;
continue;
}
if (CXXBaseSpecifier *InstantiatedBase
= CheckBaseSpecifier(Instantiation,
Base->getSourceRange(),
Base->isVirtual(),
Base->getAccessSpecifierAsWritten(),
BaseType,
/*FIXME: Not totally accurate */
Base->getSourceRange().getBegin()))
InstantiatedBases.push_back(InstantiatedBase);
else
Invalid = true;
}
if (!Invalid &&
AttachBaseSpecifiers(Instantiation, InstantiatedBases.data(),
InstantiatedBases.size()))
Invalid = true;
return Invalid;
}
/// \brief Instantiate the definition of a class from a given pattern.
///
/// \param PointOfInstantiation The point of instantiation within the
/// source code.
///
/// \param Instantiation is the declaration whose definition is being
/// instantiated. This will be either a class template specialization
/// or a member class of a class template specialization.
///
/// \param Pattern is the pattern from which the instantiation
/// occurs. This will be either the declaration of a class template or
/// the declaration of a member class of a class template.
///
/// \param TemplateArgs The template arguments to be substituted into
/// the pattern.
///
/// \returns true if an error occurred, false otherwise.
bool
Sema::InstantiateClass(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const TemplateArgumentList &TemplateArgs,
bool ExplicitInstantiation) {
bool Invalid = false;
CXXRecordDecl *PatternDef
= cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
if (!PatternDef) {
if (Pattern == Instantiation->getInstantiatedFromMemberClass()) {
Diag(PointOfInstantiation,
diag::err_implicit_instantiate_member_undefined)
<< Context.getTypeDeclType(Instantiation);
Diag(Pattern->getLocation(), diag::note_member_of_template_here);
} else {
Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
<< ExplicitInstantiation
<< Context.getTypeDeclType(Instantiation);
Diag(Pattern->getLocation(), diag::note_template_decl_here);
}
return true;
}
Pattern = PatternDef;
InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation);
if (Inst)
return true;
// Enter the scope of this instantiation. We don't use
// PushDeclContext because we don't have a scope.
DeclContext *PreviousContext = CurContext;
CurContext = Instantiation;
// Start the definition of this instantiation.
Instantiation->startDefinition();
// Instantiate the base class specifiers.
if (InstantiateBaseSpecifiers(Instantiation, Pattern, TemplateArgs))
Invalid = true;
llvm::SmallVector<DeclPtrTy, 4> Fields;
for (RecordDecl::decl_iterator Member = Pattern->decls_begin(),
MemberEnd = Pattern->decls_end();
Member != MemberEnd; ++Member) {
Decl *NewMember = InstantiateDecl(*Member, Instantiation, TemplateArgs);
if (NewMember) {
if (NewMember->isInvalidDecl())
Invalid = true;
else if (FieldDecl *Field = dyn_cast<FieldDecl>(NewMember))
Fields.push_back(DeclPtrTy::make(Field));
} else {
// FIXME: Eventually, a NULL return will mean that one of the
// instantiations was a semantic disaster, and we'll want to set Invalid =
// true. For now, we expect to skip some members that we can't yet handle.
}
}
// Finish checking fields.
ActOnFields(0, Instantiation->getLocation(), DeclPtrTy::make(Instantiation),
Fields.data(), Fields.size(), SourceLocation(), SourceLocation(),
0);
// Add any implicitly-declared members that we might need.
AddImplicitlyDeclaredMembersToClass(Instantiation);
// Exit the scope of this instantiation.
CurContext = PreviousContext;
if (!Invalid)
Consumer.HandleTagDeclDefinition(Instantiation);
// If this is an explicit instantiation, instantiate our members, too.
if (!Invalid && ExplicitInstantiation) {
Inst.Clear();
InstantiateClassMembers(PointOfInstantiation, Instantiation, TemplateArgs);
}
return Invalid;
}
bool
Sema::InstantiateClassTemplateSpecialization(
ClassTemplateSpecializationDecl *ClassTemplateSpec,
bool ExplicitInstantiation) {
// Perform the actual instantiation on the canonical declaration.
ClassTemplateSpec = cast<ClassTemplateSpecializationDecl>(
Context.getCanonicalDecl(ClassTemplateSpec));
// We can only instantiate something that hasn't already been
// instantiated or specialized. Fail without any diagnostics: our
// caller will provide an error message.
if (ClassTemplateSpec->getSpecializationKind() != TSK_Undeclared)
return true;
ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate();
CXXRecordDecl *Pattern = Template->getTemplatedDecl();
const TemplateArgumentList *TemplateArgs
= &ClassTemplateSpec->getTemplateArgs();
// C++ [temp.class.spec.match]p1:
// When a class template is used in a context that requires an
// instantiation of the class, it is necessary to determine
// whether the instantiation is to be generated using the primary
// template or one of the partial specializations. This is done by
// matching the template arguments of the class template
// specialization with the template argument lists of the partial
// specializations.
typedef std::pair<ClassTemplatePartialSpecializationDecl *,
TemplateArgumentList *> MatchResult;
llvm::SmallVector<MatchResult, 4> Matched;
for (llvm::FoldingSet<ClassTemplatePartialSpecializationDecl>::iterator
Partial = Template->getPartialSpecializations().begin(),
PartialEnd = Template->getPartialSpecializations().end();
Partial != PartialEnd;
++Partial) {
TemplateDeductionInfo Info(Context);
if (TemplateDeductionResult Result
= DeduceTemplateArguments(&*Partial,
ClassTemplateSpec->getTemplateArgs(),
Info)) {
// FIXME: Store the failed-deduction information for use in
// diagnostics, later.
(void)Result;
} else {
Matched.push_back(std::make_pair(&*Partial, Info.take()));
}
}
if (Matched.size() == 1) {
// -- If exactly one matching specialization is found, the
// instantiation is generated from that specialization.
Pattern = Matched[0].first;
TemplateArgs = Matched[0].second;
} else if (Matched.size() > 1) {
// -- If more than one matching specialization is found, the
// partial order rules (14.5.4.2) are used to determine
// whether one of the specializations is more specialized
// than the others. If none of the specializations is more
// specialized than all of the other matching
// specializations, then the use of the class template is
// ambiguous and the program is ill-formed.
// FIXME: Implement partial ordering of class template partial
// specializations.
Diag(ClassTemplateSpec->getLocation(),
diag::unsup_template_partial_spec_ordering);
} else {
// -- If no matches are found, the instantiation is generated
// from the primary template.
// Since we initialized the pattern and template arguments from
// the primary template, there is nothing more we need to do here.
}
// Note that this is an instantiation.
ClassTemplateSpec->setSpecializationKind(
ExplicitInstantiation? TSK_ExplicitInstantiation
: TSK_ImplicitInstantiation);
bool Result = InstantiateClass(ClassTemplateSpec->getLocation(),
ClassTemplateSpec, Pattern, *TemplateArgs,
ExplicitInstantiation);
for (unsigned I = 0, N = Matched.size(); I != N; ++I) {
// FIXME: Implement TemplateArgumentList::Destroy!
// if (Matched[I].first != Pattern)
// Matched[I].second->Destroy(Context);
}
return Result;
}
/// \brief Instantiate the definitions of all of the member of the
/// given class, which is an instantiation of a class template or a
/// member class of a template.
void
Sema::InstantiateClassMembers(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation,
const TemplateArgumentList &TemplateArgs) {
for (DeclContext::decl_iterator D = Instantiation->decls_begin(),
DEnd = Instantiation->decls_end();
D != DEnd; ++D) {
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(*D)) {
if (!Function->getBody())
InstantiateFunctionDefinition(PointOfInstantiation, Function);
} else if (VarDecl *Var = dyn_cast<VarDecl>(*D)) {
const VarDecl *Def = 0;
if (!Var->getDefinition(Def))
InstantiateVariableDefinition(Var);
} else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(*D)) {
if (!Record->isInjectedClassName() && !Record->getDefinition(Context)) {
assert(Record->getInstantiatedFromMemberClass() &&
"Missing instantiated-from-template information");
InstantiateClass(PointOfInstantiation, Record,
Record->getInstantiatedFromMemberClass(),
TemplateArgs, true);
}
}
}
}
/// \brief Instantiate the definitions of all of the members of the
/// given class template specialization, which was named as part of an
/// explicit instantiation.
void Sema::InstantiateClassTemplateSpecializationMembers(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec) {
// C++0x [temp.explicit]p7:
// An explicit instantiation that names a class template
// specialization is an explicit instantion of the same kind
// (declaration or definition) of each of its members (not
// including members inherited from base classes) that has not
// been previously explicitly specialized in the translation unit
// containing the explicit instantiation, except as described
// below.
InstantiateClassMembers(PointOfInstantiation, ClassTemplateSpec,
ClassTemplateSpec->getTemplateArgs());
}
/// \brief Instantiate a nested-name-specifier.
NestedNameSpecifier *
Sema::InstantiateNestedNameSpecifier(NestedNameSpecifier *NNS,
SourceRange Range,
const TemplateArgumentList &TemplateArgs) {
// Instantiate the prefix of this nested name specifier.
NestedNameSpecifier *Prefix = NNS->getPrefix();
if (Prefix) {
Prefix = InstantiateNestedNameSpecifier(Prefix, Range, TemplateArgs);
if (!Prefix)
return 0;
}
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier: {
assert(Prefix &&
"Can't have an identifier nested-name-specifier with no prefix");
CXXScopeSpec SS;
// FIXME: The source location information is all wrong.
SS.setRange(Range);
SS.setScopeRep(Prefix);
return static_cast<NestedNameSpecifier *>(
ActOnCXXNestedNameSpecifier(0, SS,
Range.getEnd(),
Range.getEnd(),
*NNS->getAsIdentifier()));
break;
}
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::Global:
return NNS;
case NestedNameSpecifier::TypeSpecWithTemplate:
case NestedNameSpecifier::TypeSpec: {
QualType T = QualType(NNS->getAsType(), 0);
if (!T->isDependentType())
return NNS;
T = InstantiateType(T, TemplateArgs, Range.getBegin(), DeclarationName());
if (T.isNull())
return 0;
if (T->isDependentType() || T->isRecordType() ||
(getLangOptions().CPlusPlus0x && T->isEnumeralType())) {
assert(T.getCVRQualifiers() == 0 && "Can't get cv-qualifiers here");
return NestedNameSpecifier::Create(Context, Prefix,
NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
T.getTypePtr());
}
Diag(Range.getBegin(), diag::err_nested_name_spec_non_tag) << T;
return 0;
}
}
// Required to silence a GCC warning
return 0;
}
TemplateName
Sema::InstantiateTemplateName(TemplateName Name, SourceLocation Loc,
const TemplateArgumentList &TemplateArgs) {
if (TemplateTemplateParmDecl *TTP
= dyn_cast_or_null<TemplateTemplateParmDecl>(
Name.getAsTemplateDecl())) {
assert(TTP->getDepth() == 0 &&
"Cannot reduce depth of a template template parameter");
assert(TemplateArgs[TTP->getPosition()].getAsDecl() &&
"Wrong kind of template template argument");
ClassTemplateDecl *ClassTemplate
= dyn_cast<ClassTemplateDecl>(
TemplateArgs[TTP->getPosition()].getAsDecl());
assert(ClassTemplate && "Expected a class template");
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
NestedNameSpecifier *NNS
= InstantiateNestedNameSpecifier(QTN->getQualifier(),
/*FIXME=*/SourceRange(Loc),
TemplateArgs);
if (NNS)
return Context.getQualifiedTemplateName(NNS,
QTN->hasTemplateKeyword(),
ClassTemplate);
}
return TemplateName(ClassTemplate);
} else if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
NestedNameSpecifier *NNS
= InstantiateNestedNameSpecifier(DTN->getQualifier(),
/*FIXME=*/SourceRange(Loc),
TemplateArgs);
if (!NNS) // FIXME: Not the best recovery strategy.
return Name;
if (NNS->isDependent())
return Context.getDependentTemplateName(NNS, DTN->getName());
// Somewhat redundant with ActOnDependentTemplateName.
CXXScopeSpec SS;
SS.setRange(SourceRange(Loc));
SS.setScopeRep(NNS);
TemplateTy Template;
TemplateNameKind TNK = isTemplateName(*DTN->getName(), 0, Template, &SS);
if (TNK == TNK_Non_template) {
Diag(Loc, diag::err_template_kw_refers_to_non_template)
<< DTN->getName();
return Name;
} else if (TNK == TNK_Function_template) {
Diag(Loc, diag::err_template_kw_refers_to_non_template)
<< DTN->getName();
return Name;
}
return Template.getAsVal<TemplateName>();
}
// FIXME: Even if we're referring to a Decl that isn't a template template
// parameter, we may need to instantiate the outer contexts of that
// Decl. However, this won't be needed until we implement member templates.
return Name;
}
TemplateArgument Sema::Instantiate(TemplateArgument Arg,
const TemplateArgumentList &TemplateArgs) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
assert(false && "Should never have a NULL template argument");
break;
case TemplateArgument::Type: {
QualType T = InstantiateType(Arg.getAsType(), TemplateArgs,
Arg.getLocation(), DeclarationName());
if (T.isNull())
return TemplateArgument();
return TemplateArgument(Arg.getLocation(), T);
}
case TemplateArgument::Declaration:
// FIXME: Template instantiation for template template parameters.
return Arg;
case TemplateArgument::Integral:
return Arg;
case TemplateArgument::Expression: {
// Template argument expressions are not potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
Sema::OwningExprResult E = InstantiateExpr(Arg.getAsExpr(), TemplateArgs);
if (E.isInvalid())
return TemplateArgument();
return TemplateArgument(E.takeAs<Expr>());
}
case TemplateArgument::Pack:
assert(0 && "FIXME: Implement!");
break;
}
assert(false && "Unhandled template argument kind");
return TemplateArgument();
}